搜索
Learning Deep Learning From Perceptron to Large Language Models
磁力链接/BT种子名称
Learning Deep Learning From Perceptron to Large Language Models
磁力链接/BT种子简介
种子哈希:
768ee2a668ac0a7b217e61232e9047762ae8be86
文件大小:
2.76G
已经下载:
3951
次
下载速度:
极快
收录时间:
2024-02-27
最近下载:
2024-12-09
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:768EE2A668AC0A7B217E61232E9047762AE8BE86
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
少女初夜
萝莉岛
最近搜索
山有木兮
ultimate+force
ai换脸+井川里予
willow 2022
sm老
小姐姐粉嫩粉嫩哒【13p】
海神社区
小菲
捷克家庭系列
triple+anal
that darn cat 1965
2048制作
dom sub
少妇摇
老头
interstellar.2014.
90.days.fiancee.happily.ever.after..s08
女友和公公
+禁忌
ybb -005
探花小吊带
淫妇
山口希望++图片
【精美ai❤神极拟人】最近超火的换脸技术
真实偷情职高老师一开始还和老公视频挂断疯狂做爱【后续已
足球网
麻豆
舔脚
老婆 3p
2024 对
文件列表
Lesson 7 Encoder–Decoder Networks, Attention, Transformers, and Neural Machine Translation/003. 7.2 Programming Example Neural Machine Translation with TensorFlow.mp4
114.1 MB
Lesson 7 Encoder–Decoder Networks, Attention, Transformers, and Neural Machine Translation/004. 7.3 Programming Example Neural Machine Translation with PyTorch.mp4
104.7 MB
Lesson 9 Multi-Modal Networks and Image Captioning/007. 9.6 Programming Example Image Captioning with PyTorch.mp4
86.3 MB
Lesson 9 Multi-Modal Networks and Image Captioning/006. 9.5 Programming Example Image Captioning with TensorFlow.mp4
85.1 MB
Lesson 3 Neural Network Fundamentals II/004. 3.3 Programming Example Digit Classification with Python.mp4
77.2 MB
Lesson 5 Recurrent Neural Networks (RNN) and Time Series Prediction/010. 5.9 Programming Example Text Autocompletion with PyTorch.mp4
67.9 MB
Lesson 9 Multi-Modal Networks and Image Captioning/008. 9.7 Multimodal Large Language Models.mp4
63.1 MB
Lesson 5 Recurrent Neural Networks (RNN) and Time Series Prediction/009. 5.8 Programming Example Text Autocompletion with TensorFlow.mp4
63.0 MB
Lesson 2 Neural Network Fundamentals I/010. 2.9 Programming Example Learning the XOR Function.mp4
62.5 MB
Lesson 6 Neural Language Models and Word Embeddings/004. 6.3 Programming Example Language Model and Word Embeddings with TensorFlow.mp4
57.0 MB
Lesson 11 Applying Deep Learning/002. 11.1 Ethical AI and Data Ethics.mp4
55.5 MB
Lesson 8 Large Language Models/004. 8.3 From GPT to GPT4.mp4
54.7 MB
Lesson 3 Neural Network Fundamentals II/007. 3.6 Programming Example Digit Classification with PyTorch.mp4
52.1 MB
Lesson 6 Neural Language Models and Word Embeddings/005. 6.4 Programming Example Language Model and Word Embeddings with PyTorch.mp4
48.3 MB
Lesson 5 Recurrent Neural Networks (RNN) and Time Series Prediction/005. 5.4 Programming Example Forecasting Book Sales with PyTorch.mp4
47.7 MB
Lesson 3 Neural Network Fundamentals II/016. 3.15 Programming Example Regression Problem with PyTorch.mp4
47.3 MB
Lesson 4 Convolutional Neural Networks (CNN) and Image Classification/004. 4.3 Building a Convolutional Neural Network.mp4
45.8 MB
Lesson 2 Neural Network Fundamentals I/008. 2.7 Computing Gradient with the Chain Rule.mp4
43.8 MB
Lesson 7 Encoder–Decoder Networks, Attention, Transformers, and Neural Machine Translation/008. 7.7 Programming Example Machine Translation Using Transformer with Py.mp4
43.0 MB
Lesson 5 Recurrent Neural Networks (RNN) and Time Series Prediction/004. 5.3 Programming Example Forecasting Book Sales with TensorFlow.mp4
42.6 MB
Lesson 4 Convolutional Neural Networks (CNN) and Image Classification/006. 4.5 Programming Example Image Classification Using CNN with PyTorch.mp4
42.0 MB
Lesson 4 Convolutional Neural Networks (CNN) and Image Classification/005. 4.4 Programming Example Image Classification Using CNN with TensorFlow.mp4
40.4 MB
Lesson 6 Neural Language Models and Word Embeddings/002. 6.1 Language Models.mp4
38.1 MB
Lesson 3 Neural Network Fundamentals II/015. 3.14 Programming Example Regression Problem with TensorFlow.mp4
37.9 MB
Lesson 7 Encoder–Decoder Networks, Attention, Transformers, and Neural Machine Translation/007. 7.6 Programming Example Machine Translation Using Transformer with Te.mp4
37.8 MB
Lesson 6 Neural Language Models and Word Embeddings/003. 6.2 Word Embeddings.mp4
37.7 MB
Lesson 2 Neural Network Fundamentals I/007. 2.6 Solving Learning Problem with Gradient Descent.mp4
37.4 MB
Lesson 9 Multi-Modal Networks and Image Captioning/003. 9.2 Programming Example Multimodal Classification with TensorFlow.mp4
36.1 MB
Lesson 3 Neural Network Fundamentals II/009. 3.8 Avoiding Saturating Neurons and Vanishing Gradients—Part II.mp4
35.7 MB
Lesson 9 Multi-Modal Networks and Image Captioning/004. 9.3 Programming Example Multimodal Classification with PyTorch.mp4
35.4 MB
Summary/001. Learning Deep Learning Summary.mp4
35.0 MB
Lesson 10 Multi-Task Learning and Computer Vision Beyond Classification/004. 10.3 Programming Example Multitask Learning with PyTorch.mp4
31.5 MB
Lesson 2 Neural Network Fundamentals I/002. 2.1 The Perceptron and Its Learning Algorithm.mp4
31.2 MB
Lesson 8 Large Language Models/002. 8.1 Overview of BERT.mp4
29.3 MB
Lesson 5 Recurrent Neural Networks (RNN) and Time Series Prediction/007. 5.6 Long Short-Term Memory.mp4
29.3 MB
Lesson 2 Neural Network Fundamentals I/006. 2.5 Perceptron Limitations.mp4
29.0 MB
Lesson 2 Neural Network Fundamentals I/003. 2.2 Programming Example Perceptron.mp4
28.9 MB
Lesson 8 Large Language Models/007. 8.6 Retrieving Data and Using Tools.mp4
27.7 MB
Lesson 3 Neural Network Fundamentals II/008. 3.7 Avoiding Saturating Neurons and Vanishing Gradients—Part I.mp4
27.3 MB
Lesson 7 Encoder–Decoder Networks, Attention, Transformers, and Neural Machine Translation/006. 7.5 The Transformer.mp4
27.3 MB
Lesson 8 Large Language Models/009. 8.8 Demo Large Language Model Prompting.mp4
27.0 MB
Lesson 4 Convolutional Neural Networks (CNN) and Image Classification/003. 4.2 Convolutional Layer.mp4
26.7 MB
Lesson 3 Neural Network Fundamentals II/006. 3.5 Programming Example Digit Classification with TensorFlow.mp4
26.6 MB
Lesson 3 Neural Network Fundamentals II/002. 3.1 Datasets and Generalization.mp4
26.5 MB
Lesson 6 Neural Language Models and Word Embeddings/007. 6.6 Programming Example Using Pretrained GloVe Embeddings.mp4
26.4 MB
Lesson 5 Recurrent Neural Networks (RNN) and Time Series Prediction/003. 5.2 Recurrent Neural Networks.mp4
26.3 MB
Lesson 7 Encoder–Decoder Networks, Attention, Transformers, and Neural Machine Translation/005. 7.4 Attention.mp4
26.3 MB
Lesson 8 Large Language Models/006. 8.5 Prompt Tuning.mp4
26.3 MB
Lesson 10 Multi-Task Learning and Computer Vision Beyond Classification/007. 10.6 Segmentation with Deconvolution Network and U-Net.mp4
26.0 MB
Lesson 5 Recurrent Neural Networks (RNN) and Time Series Prediction/006. 5.5 Backpropagation Through Time and Keeping Gradients Healthy.mp4
26.0 MB
Lesson 3 Neural Network Fundamentals II/012. 3.11 Programming Example Improved Digit Classification with PyTorch.mp4
24.0 MB
Lesson 9 Multi-Modal Networks and Image Captioning/002. 9.1 Multimodal learning.mp4
23.7 MB
Lesson 10 Multi-Task Learning and Computer Vision Beyond Classification/003. 10.2 Programming Example Multitask Learning with TensorFlow.mp4
23.5 MB
Lesson 2 Neural Network Fundamentals I/009. 2.8 The Backpropagation Algorithm.mp4
22.5 MB
Lesson 2 Neural Network Fundamentals I/005. 2.4 Matrix and Vector Notation for Neural Networks.mp4
21.7 MB
Lesson 10 Multi-Task Learning and Computer Vision Beyond Classification/005. 10.4 Object Detection with R-CNN.mp4
21.5 MB
Lesson 8 Large Language Models/003. 8.2 Overview of GPT.mp4
21.3 MB
Lesson 3 Neural Network Fundamentals II/013. 3.12 Problem Types, Output Units, and Loss Functions.mp4
21.1 MB
Lesson 4 Convolutional Neural Networks (CNN) and Image Classification/012. 4.11 Programming Example Using a Pretrained Network with PyTorch.mp4
20.7 MB
Lesson 5 Recurrent Neural Networks (RNN) and Time Series Prediction/002. 5.1 Problem Types Involving Sequential Data.mp4
20.6 MB
Lesson 4 Convolutional Neural Networks (CNN) and Image Classification/010. 4.9 ResNet.mp4
20.3 MB
Lesson 6 Neural Language Models and Word Embeddings/006. 6.5 Word2vec.mp4
20.0 MB
Lesson 5 Recurrent Neural Networks (RNN) and Time Series Prediction/008. 5.7 Autoregression and Beam Search.mp4
19.4 MB
Lesson 9 Multi-Modal Networks and Image Captioning/005. 9.4 Image Captioning with Attention.mp4
18.8 MB
Lesson 4 Convolutional Neural Networks (CNN) and Image Classification/008. 4.7 VGGNet.mp4
18.8 MB
Lesson 3 Neural Network Fundamentals II/003. 3.2 Multiclass Classification.mp4
18.7 MB
Lesson 1 Deep Learning Introduction/002. 1.1 Deep Learning and Its History.mp4
18.4 MB
Lesson 10 Multi-Task Learning and Computer Vision Beyond Classification/002. 10.1 Multitask Learning.mp4
18.2 MB
Lesson 4 Convolutional Neural Networks (CNN) and Image Classification/011. 4.10 Programming Example Using a Pretrained Network with TensorFlow.mp4
17.9 MB
Lesson 4 Convolutional Neural Networks (CNN) and Image Classification/009. 4.8 GoogLeNet.mp4
17.4 MB
Lesson 8 Large Language Models/005. 8.4 Handling Chat History.mp4
17.1 MB
Lesson 11 Applying Deep Learning/003. 11.2 Process for Tuning a Network.mp4
17.1 MB
Lesson 1 Deep Learning Introduction/003. 1.2 Prerequisites.mp4
16.6 MB
Lesson 8 Large Language Models/008. 8.7 Open Datasets and Models.mp4
16.4 MB
Lesson 4 Convolutional Neural Networks (CNN) and Image Classification/007. 4.6 AlexNet.mp4
15.9 MB
Lesson 10 Multi-Task Learning and Computer Vision Beyond Classification/006. 10.5 Improved Object Detection with Fast and Faster R-CNN.mp4
15.3 MB
Lesson 4 Convolutional Neural Networks (CNN) and Image Classification/002. 4.1 The CIFAR-10 Dataset.mp4
14.6 MB
Lesson 7 Encoder–Decoder Networks, Attention, Transformers, and Neural Machine Translation/002. 7.1 Encoder–Decoder Network for Neural Machine Translation.mp4
13.3 MB
Lesson 11 Applying Deep Learning/004. 11.3 Further Studies.mp4
12.6 MB
Lesson 3 Neural Network Fundamentals II/010. 3.9 Variations on Gradient Descent.mp4
12.3 MB
Lesson 3 Neural Network Fundamentals II/011. 3.10 Programming Example Improved Digit Classification with TensorFlow.mp4
12.2 MB
Lesson 4 Convolutional Neural Networks (CNN) and Image Classification/013. 4.12 Transfer Learning.mp4
12.2 MB
Lesson 4 Convolutional Neural Networks (CNN) and Image Classification/014. 4.13 Efficient CNNs.mp4
12.1 MB
Introduction/001. Learning Deep Learning Introduction.mp4
11.9 MB
Lesson 6 Neural Language Models and Word Embeddings/008. 6.7 Handling Out-of-Vocabulary Words with Wordpieces.mp4
10.1 MB
Lesson 10 Multi-Task Learning and Computer Vision Beyond Classification/008. 10.7 Instance Segmentation with Mask R-CNN.mp4
10.0 MB
Lesson 3 Neural Network Fundamentals II/017. 3.16 Lesson 3 Summary.mp4
10.0 MB
Lesson 3 Neural Network Fundamentals II/014. 3.13 Regularization Techniques.mp4
9.6 MB
Lesson 2 Neural Network Fundamentals I/012. 2.11 Lesson 2 Summary.mp4
9.2 MB
Lesson 4 Convolutional Neural Networks (CNN) and Image Classification/015. 4.14 Lesson 4 Summary.mp4
7.9 MB
Lesson 3 Neural Network Fundamentals II/001. Topics.mp4
7.4 MB
Lesson 2 Neural Network Fundamentals I/011. 2.10 What Activation Function to Use.mp4
7.0 MB
Lesson 2 Neural Network Fundamentals I/004. 2.3 Understanding the Bias Term.mp4
6.9 MB
Lesson 2 Neural Network Fundamentals I/001. Topics.mp4
6.3 MB
Lesson 5 Recurrent Neural Networks (RNN) and Time Series Prediction/011. 5.10 Lesson 5 Summary.mp4
6.0 MB
Lesson 3 Neural Network Fundamentals II/005. 3.4 DL Frameworks.mp4
5.2 MB
Lesson 5 Recurrent Neural Networks (RNN) and Time Series Prediction/001. Topics.mp4
5.2 MB
Lesson 6 Neural Language Models and Word Embeddings/009. 6.8 Lesson 6 Summary.mp4
5.1 MB
Lesson 4 Convolutional Neural Networks (CNN) and Image Classification/001. Topics.mp4
5.0 MB
Lesson 7 Encoder–Decoder Networks, Attention, Transformers, and Neural Machine Translation/009. 7.8 Lesson 7 Summary.mp4
4.8 MB
Lesson 10 Multi-Task Learning and Computer Vision Beyond Classification/001. Topics.mp4
4.7 MB
Lesson 10 Multi-Task Learning and Computer Vision Beyond Classification/009. 10.8 Lesson 10 Summary.mp4
4.6 MB
Lesson 9 Multi-Modal Networks and Image Captioning/009. 9.8 Lesson 9 Summary.mp4
4.4 MB
Lesson 8 Large Language Models/001. Topics.mp4
4.4 MB
Lesson 7 Encoder–Decoder Networks, Attention, Transformers, and Neural Machine Translation/001. Topics.mp4
4.3 MB
Lesson 6 Neural Language Models and Word Embeddings/001. Topics.mp4
4.3 MB
Lesson 8 Large Language Models/010. 8.9 Lesson 8 Summary.mp4
4.3 MB
Lesson 9 Multi-Modal Networks and Image Captioning/001. Topics.mp4
4.0 MB
Lesson 11 Applying Deep Learning/001. Topics.mp4
2.8 MB
Lesson 1 Deep Learning Introduction/001. Topics.mp4
1.2 MB
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>