搜索
[FreeCourseSite.com] Udemy - A deep understanding of deep learning (with Python intro)
磁力链接/BT种子名称
[FreeCourseSite.com] Udemy - A deep understanding of deep learning (with Python intro)
磁力链接/BT种子简介
种子哈希:
7a88209a3f8203999cc31b0f486a1fa5a8de1277
文件大小:
23.65G
已经下载:
3812
次
下载速度:
极快
收录时间:
2023-12-18
最近下载:
2024-11-23
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:7A88209A3F8203999CC31B0F486A1FA5A8DE1277
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
最近搜索
個撮
roxanne
厦航空姐
ccav
田螺艳鬼
巨乳剪
adam
3d电影
偽娘
豐胸
小马拉大车
lilo
超会版
萝莉
apple music
爱玩夫妻10对
real wife
ktv
endless sex
detective conan vs lupin
girlsandstuds
网传的张继科出卖景甜私密三段视频!景甜私密片外流案连日来引发关注
苏州狗
ssni-241
milk-089
sone-288
3171572
+お母さんの交尾+中国
咪妮
ssis 663
文件列表
19 - Understand and design CNNs/177 - Examine feature map activations.mp4
432.2 MB
22 - Style transfer/205 - Transferring the screaming bathtub.mp4
361.5 MB
19 - Understand and design CNNs/176 - Classify Gaussian blurs.mp4
293.3 MB
24 - RNNs Recurrent Neural Networks and GRULSTM/218 - CodeChallenge sine wave extrapolation.mp4
272.5 MB
18 - Convolution and transformations/163 - Convolution in code.mp4
270.8 MB
24 - RNNs Recurrent Neural Networks and GRULSTM/217 - Predicting alternating sequences.mp4
259.1 MB
26 - Where to go from here/229 - How to read academic DL papers.mp4
232.8 MB
19 - Understand and design CNNs/184 - The EMNIST dataset letter recognition.mp4
230.7 MB
19 - Understand and design CNNs/174 - CNN to classify MNIST digits.mp4
228.4 MB
24 - RNNs Recurrent Neural Networks and GRULSTM/222 - Lorem ipsum.mp4
226.2 MB
7 - ANNs Artificial Neural Networks/52 - Multioutput ANN iris dataset.mp4
225.5 MB
23 - Generative adversarial networks/210 - CNN GAN with Gaussians.mp4
224.6 MB
21 - Transfer learning/200 - Pretraining with autoencoders.mp4
218.8 MB
19 - Understand and design CNNs/180 - Do autoencoders clean Gaussians.mp4
216.1 MB
9 - Regularization/72 - Dropout regularization in practice.mp4
211.2 MB
21 - Transfer learning/198 - Transfer learning with ResNet18.mp4
210.9 MB
16 - Autoencoders/157 - Autoencoder with tied weights.mp4
210.4 MB
7 - ANNs Artificial Neural Networks/47 - ANN for classifying qwerties.mp4
205.8 MB
10 - Metaparameters activations optimizers/82 - The wine quality dataset.mp4
203.8 MB
18 - Convolution and transformations/171 - Image transforms.mp4
202.3 MB
8 - Overfitting and crossvalidation/66 - Crossvalidation DataLoader.mp4
197.7 MB
23 - Generative adversarial networks/208 - Linear GAN with MNIST.mp4
197.3 MB
12 - More on data/119 - CodeChallenge unbalanced data.mp4
192.3 MB
16 - Autoencoders/156 - The latent code of MNIST.mp4
190.9 MB
11 - FFNs FeedForward Networks/107 - FFN to classify digits.mp4
187.0 MB
7 - ANNs Artificial Neural Networks/57 - Model depth vs breadth.mp4
186.0 MB
12 - More on data/123 - Data feature augmentation.mp4
184.8 MB
19 - Understand and design CNNs/178 - CodeChallenge Softcode internal parameters.mp4
184.6 MB
15 - Weight inits and investigations/147 - CodeChallenge Xavier vs Kaiming.mp4
177.3 MB
7 - ANNs Artificial Neural Networks/48 - Learning rates comparison.mp4
176.8 MB
21 - Transfer learning/201 - CIFAR10 with autoencoderpretrained model.mp4
175.0 MB
13 - Measuring model performance/131 - APRF example 1 wine quality.mp4
170.6 MB
15 - Weight inits and investigations/150 - Learningrelated changes in weights.mp4
169.4 MB
10 - Metaparameters activations optimizers/83 - CodeChallenge Minibatch size in the wine dataset.mp4
168.2 MB
7 - ANNs Artificial Neural Networks/49 - Multilayer ANN.mp4
168.0 MB
8 - Overfitting and crossvalidation/65 - Crossvalidation scikitlearn.mp4
167.3 MB
14 - FFN milestone projects/139 - Project 2 My solution.mp4
163.3 MB
19 - Understand and design CNNs/182 - CodeChallenge Custom loss functions.mp4
162.4 MB
10 - Metaparameters activations optimizers/95 - Loss functions in PyTorch.mp4
162.2 MB
18 - Convolution and transformations/172 - Creating and using custom DataLoaders.mp4
161.6 MB
9 - Regularization/71 - Dropout regularization.mp4
159.3 MB
12 - More on data/117 - Anatomy of a torch dataset and dataloader.mp4
159.2 MB
6 - Gradient descent/36 - Parametric experiments on gd.mp4
158.8 MB
13 - Measuring model performance/132 - APRF example 2 MNIST.mp4
157.6 MB
7 - ANNs Artificial Neural Networks/46 - CodeChallenge manipulate regression slopes.mp4
157.5 MB
12 - More on data/118 - Data size and network size.mp4
156.8 MB
7 - ANNs Artificial Neural Networks/55 - Depth vs breadth number of parameters.mp4
156.3 MB
15 - Weight inits and investigations/146 - Xavier and Kaiming initializations.mp4
156.1 MB
16 - Autoencoders/154 - CodeChallenge How many units.mp4
155.6 MB
19 - Understand and design CNNs/179 - CodeChallenge How wide the FC.mp4
151.7 MB
11 - FFNs FeedForward Networks/110 - Distributions of weights pre and postlearning.mp4
148.7 MB
11 - FFNs FeedForward Networks/111 - CodeChallenge MNIST and breadth vs depth.mp4
147.2 MB
12 - More on data/126 - Save the bestperforming model.mp4
146.7 MB
16 - Autoencoders/155 - AEs for occlusion.mp4
144.9 MB
15 - Weight inits and investigations/149 - Freezing weights during learning.mp4
144.5 MB
24 - RNNs Recurrent Neural Networks and GRULSTM/220 - GRU and LSTM.mp4
144.2 MB
19 - Understand and design CNNs/183 - Discover the Gaussian parameters.mp4
143.3 MB
12 - More on data/121 - Data oversampling in MNIST.mp4
142.7 MB
11 - FFNs FeedForward Networks/106 - The MNIST dataset.mp4
142.3 MB
24 - RNNs Recurrent Neural Networks and GRULSTM/216 - The RNN class in PyTorch.mp4
141.2 MB
10 - Metaparameters activations optimizers/93 - CodeChallenge Predict sugar.mp4
140.8 MB
16 - Autoencoders/153 - Denoising MNIST.mp4
140.7 MB
15 - Weight inits and investigations/143 - A surprising demo of weight initializations.mp4
139.2 MB
24 - RNNs Recurrent Neural Networks and GRULSTM/221 - The LSTM and GRU classes.mp4
138.9 MB
21 - Transfer learning/196 - CodeChallenge letters to numbers.mp4
138.3 MB
6 - Gradient descent/32 - Gradient descent in 1D.mp4
137.8 MB
9 - Regularization/80 - CodeChallenge Effects of minibatch size.mp4
136.7 MB
20 - CNN milestone projects/190 - Project 1 My solution.mp4
136.3 MB
19 - Understand and design CNNs/181 - CodeChallenge AEs and occluded Gaussians.mp4
134.3 MB
7 - ANNs Artificial Neural Networks/53 - CodeChallenge more qwerties.mp4
133.3 MB
3 - Concepts in deep learning/7 - The role of DL in science and knowledge.mp4
133.3 MB
6 - Gradient descent/37 - CodeChallenge fixed vs dynamic learning rate.mp4
132.3 MB
18 - Convolution and transformations/161 - Convolution concepts.mp4
132.2 MB
9 - Regularization/75 - L2 regularization in practice.mp4
129.3 MB
21 - Transfer learning/195 - Transfer learning MNIST FMNIST.mp4
127.2 MB
10 - Metaparameters activations optimizers/89 - Activation functions.mp4
126.9 MB
9 - Regularization/78 - Batch training in action.mp4
126.1 MB
12 - More on data/122 - Data noise augmentation with devsettest.mp4
123.4 MB
18 - Convolution and transformations/165 - The Conv2 class in PyTorch.mp4
118.9 MB
15 - Weight inits and investigations/145 - CodeChallenge Weight variance inits.mp4
118.3 MB
10 - Metaparameters activations optimizers/91 - Activation functions comparison.mp4
118.2 MB
30 - Python intro Flow control/257 - Function error checking and handling.mp4
117.1 MB
13 - Measuring model performance/134 - Computation time.mp4
115.8 MB
9 - Regularization/76 - L1 regularization in practice.mp4
115.4 MB
10 - Metaparameters activations optimizers/96 - More practice with multioutput ANNs.mp4
115.3 MB
14 - FFN milestone projects/137 - Project 1 My solution.mp4
114.9 MB
8 - Overfitting and crossvalidation/64 - Crossvalidation manual separation.mp4
114.0 MB
15 - Weight inits and investigations/144 - Theory Why and how to initialize weights.mp4
113.2 MB
10 - Metaparameters activations optimizers/103 - Learning rate decay.mp4
112.4 MB
7 - ANNs Artificial Neural Networks/45 - ANN for regression.mp4
110.4 MB
19 - Understand and design CNNs/185 - Dropout in CNNs.mp4
109.3 MB
11 - FFNs FeedForward Networks/109 - CodeChallenge Data normalization.mp4
109.2 MB
31 - Python intro Text and plots/263 - Images.mp4
109.2 MB
18 - Convolution and transformations/167 - Transpose convolution.mp4
107.8 MB
5 - Math numpy PyTorch/19 - Softmax.mp4
106.3 MB
10 - Metaparameters activations optimizers/90 - Activation functions in PyTorch.mp4
106.2 MB
19 - Understand and design CNNs/187 - CodeChallenge Varying number of channels.mp4
104.7 MB
7 - ANNs Artificial Neural Networks/56 - Defining models using sequential vs class.mp4
102.6 MB
10 - Metaparameters activations optimizers/100 - Optimizers comparison.mp4
102.0 MB
6 - Gradient descent/34 - Gradient descent in 2D.mp4
101.1 MB
10 - Metaparameters activations optimizers/94 - Loss functions.mp4
100.9 MB
15 - Weight inits and investigations/148 - CodeChallenge Identically random weights.mp4
100.8 MB
24 - RNNs Recurrent Neural Networks and GRULSTM/219 - More on RNNs Hidden states embeddings.mp4
98.8 MB
24 - RNNs Recurrent Neural Networks and GRULSTM/214 - Leveraging sequences in deep learning.mp4
96.1 MB
13 - Measuring model performance/133 - CodeChallenge MNIST with unequal groups.mp4
95.9 MB
29 - Python intro Functions/242 - Python libraries pandas.mp4
95.7 MB
13 - Measuring model performance/129 - Accuracy precision recall F1.mp4
95.1 MB
15 - Weight inits and investigations/142 - Explanation of weight matrix sizes.mp4
93.9 MB
9 - Regularization/69 - Regularization Concept and methods.mp4
92.9 MB
29 - Python intro Functions/247 - Classes and objectoriented programming.mp4
92.8 MB
25 - Ethics of deep learning/227 - Accountability and making ethical AI.mp4
92.7 MB
5 - Math numpy PyTorch/26 - The ttest.mp4
92.5 MB
31 - Python intro Text and plots/261 - Making the graphs look nicer.mp4
91.3 MB
8 - Overfitting and crossvalidation/67 - Splitting data into train devset test.mp4
91.2 MB
23 - Generative adversarial networks/209 - CodeChallenge Linear GAN with FMNIST.mp4
90.7 MB
11 - FFNs FeedForward Networks/114 - Shifted MNIST.mp4
90.6 MB
6 - Gradient descent/33 - CodeChallenge unfortunate starting value.mp4
90.1 MB
5 - Math numpy PyTorch/21 - Entropy and crossentropy.mp4
89.5 MB
3 - Concepts in deep learning/9 - Are artificial neurons like biological neurons.mp4
89.3 MB
25 - Ethics of deep learning/225 - Some other possible ethical scenarios.mp4
88.4 MB
23 - Generative adversarial networks/211 - CodeChallenge Gaussians with fewer layers.mp4
88.4 MB
14 - FFN milestone projects/141 - Project 3 My solution.mp4
87.6 MB
18 - Convolution and transformations/162 - Feature maps and convolution kernels.mp4
87.3 MB
9 - Regularization/79 - The importance of equal batch sizes.mp4
86.1 MB
22 - Style transfer/206 - CodeChallenge Style transfer with AlexNet.mp4
85.4 MB
11 - FFNs FeedForward Networks/115 - CodeChallenge The mystery of the missing 7.mp4
84.8 MB
8 - Overfitting and crossvalidation/61 - What is overfitting and is it as bad as they say.mp4
80.7 MB
7 - ANNs Artificial Neural Networks/60 - Reflection Are DL models understandable yet.mp4
80.5 MB
20 - CNN milestone projects/193 - Project 4 Psychometric functions in CNNs.mp4
80.2 MB
30 - Python intro Flow control/249 - Ifelse statements part 2.mp4
80.0 MB
5 - Math numpy PyTorch/25 - Reproducible randomness via seeding.mp4
79.2 MB
3 - Concepts in deep learning/8 - Running experiments to understand DL.mp4
78.5 MB
23 - Generative adversarial networks/212 - CNN GAN with FMNIST.mp4
78.3 MB
10 - Metaparameters activations optimizers/85 - The importance of data normalization.mp4
76.3 MB
18 - Convolution and transformations/170 - To pool or to stride.mp4
74.2 MB
31 - Python intro Text and plots/260 - Subplot geometry.mp4
73.8 MB
10 - Metaparameters activations optimizers/87 - Batch normalization in practice.mp4
73.4 MB
23 - Generative adversarial networks/213 - CodeChallenge CNN GAN with CIFAR.mp4
72.9 MB
18 - Convolution and transformations/168 - Maxmean pooling.mp4
72.7 MB
17 - Running models on a GPU/158 - What is a GPU and why use it.mp4
72.6 MB
31 - Python intro Text and plots/258 - Printing and string interpolation.mp4
72.4 MB
5 - Math numpy PyTorch/22 - Minmax and argminargmax.mp4
72.3 MB
30 - Python intro Flow control/255 - while loops.mp4
71.7 MB
8 - Overfitting and crossvalidation/62 - Crossvalidation.mp4
71.6 MB
30 - Python intro Flow control/253 - Initializing variables.mp4
70.7 MB
5 - Math numpy PyTorch/18 - Matrix multiplication.mp4
70.0 MB
22 - Style transfer/203 - The Gram matrix feature activation covariance.mp4
69.7 MB
9 - Regularization/74 - Weight regularization L1L2 math.mp4
68.6 MB
10 - Metaparameters activations optimizers/88 - CodeChallenge Batchnormalize the qwerties.mp4
68.0 MB
27 - Python intro Data types/236 - Booleans.mp4
67.7 MB
5 - Math numpy PyTorch/13 - Spectral theories in mathematics.mp4
67.6 MB
30 - Python intro Flow control/250 - For loops.mp4
67.5 MB
18 - Convolution and transformations/169 - Pooling in PyTorch.mp4
67.4 MB
10 - Metaparameters activations optimizers/92 - CodeChallenge Compare relu variants.mp4
67.1 MB
19 - Understand and design CNNs/175 - CNN on shifted MNIST.mp4
66.6 MB
5 - Math numpy PyTorch/24 - Random sampling and sampling variability.mp4
66.3 MB
10 - Metaparameters activations optimizers/84 - Data normalization.mp4
65.5 MB
25 - Ethics of deep learning/224 - Example case studies.mp4
65.4 MB
10 - Metaparameters activations optimizers/98 - SGD with momentum.mp4
65.1 MB
30 - Python intro Flow control/254 - Singleline loops list comprehension.mp4
64.9 MB
12 - More on data/125 - Save and load trained models.mp4
64.6 MB
10 - Metaparameters activations optimizers/102 - CodeChallenge Adam with L2 regularization.mp4
64.1 MB
13 - Measuring model performance/130 - APRF in code.mp4
64.0 MB
9 - Regularization/73 - Dropout example 2.mp4
63.7 MB
17 - Running models on a GPU/159 - Implementation.mp4
63.6 MB
19 - Understand and design CNNs/186 - CodeChallenge How low can you go.mp4
63.2 MB
11 - FFNs FeedForward Networks/113 - Scrambled MNIST.mp4
63.1 MB
10 - Metaparameters activations optimizers/97 - Optimizers minibatch momentum.mp4
62.3 MB
17 - Running models on a GPU/160 - CodeChallenge Run an experiment on the GPU.mp4
62.0 MB
30 - Python intro Flow control/251 - Enumerate and zip.mp4
61.4 MB
21 - Transfer learning/194 - Transfer learning What why and when.mp4
61.0 MB
27 - Python intro Data types/231 - Variables.mp4
60.6 MB
23 - Generative adversarial networks/207 - GAN What why and how.mp4
60.3 MB
29 - Python intro Functions/244 - Creating functions.mp4
60.1 MB
7 - ANNs Artificial Neural Networks/58 - CodeChallenge convert sequential to class.mp4
59.9 MB
31 - Python intro Text and plots/264 - Export plots in low and high resolution.mp4
59.0 MB
1 - Introduction/1 - How to learn from this course.mp4
57.6 MB
29 - Python intro Functions/245 - Global and local variable scopes.mp4
57.5 MB
7 - ANNs Artificial Neural Networks/50 - Linear solutions to linear problems.mp4
57.2 MB
10 - Metaparameters activations optimizers/86 - Batch normalization.mp4
57.1 MB
10 - Metaparameters activations optimizers/101 - CodeChallenge Optimizers and something.mp4
57.0 MB
6 - Gradient descent/30 - Overview of gradient descent.mp4
57.0 MB
20 - CNN milestone projects/189 - Project 1 Import and classify CIFAR10.mp4
55.8 MB
25 - Ethics of deep learning/226 - Will deep learning take our jobs.mp4
55.6 MB
2 - Download all course materials/3 - Downloading and using the code.mp4
55.1 MB
10 - Metaparameters activations optimizers/99 - Optimizers RMSprop Adam.mp4
55.1 MB
30 - Python intro Flow control/256 - Broadcasting in numpy.mp4
55.0 MB
7 - ANNs Artificial Neural Networks/43 - ANN math part 2 errors loss cost.mp4
54.7 MB
27 - Python intro Data types/232 - Math and printing.mp4
53.6 MB
3 - Concepts in deep learning/6 - How models learn.mp4
53.6 MB
31 - Python intro Text and plots/262 - Seaborn.mp4
53.4 MB
7 - ANNs Artificial Neural Networks/40 - The perceptron and ANN architecture.mp4
53.2 MB
11 - FFNs FeedForward Networks/112 - CodeChallenge Optimizers and MNIST.mp4
53.2 MB
7 - ANNs Artificial Neural Networks/54 - Comparing the number of hidden units.mp4
51.8 MB
12 - More on data/124 - Getting data into colab.mp4
51.1 MB
5 - Math numpy PyTorch/23 - Mean and variance.mp4
49.3 MB
5 - Math numpy PyTorch/27 - Derivatives intuition and polynomials.mp4
48.5 MB
12 - More on data/127 - Where to find online datasets.mp4
48.3 MB
24 - RNNs Recurrent Neural Networks and GRULSTM/215 - How RNNs work.mp4
47.9 MB
20 - CNN milestone projects/191 - Project 2 CIFARautoencoder.mp4
47.4 MB
11 - FFNs FeedForward Networks/108 - CodeChallenge Binarized MNIST images.mp4
46.7 MB
7 - ANNs Artificial Neural Networks/42 - ANN math part 1 forward prop.mp4
46.1 MB
6 - Gradient descent/35 - CodeChallenge 2D gradient ascent.mp4
45.5 MB
30 - Python intro Flow control/248 - Ifelse statements.mp4
45.3 MB
7 - ANNs Artificial Neural Networks/41 - A geometric view of ANNs.mp4
45.0 MB
8 - Overfitting and crossvalidation/68 - Crossvalidation on regression.mp4
43.1 MB
22 - Style transfer/204 - The style transfer algorithm.mp4
42.7 MB
3 - Concepts in deep learning/5 - What is an artificial neural network.mp4
42.0 MB
31 - Python intro Text and plots/259 - Plotting dots and lines.mp4
42.0 MB
28 - Python intro Indexing slicing/239 - Slicing.mp4
41.9 MB
29 - Python intro Functions/241 - Python libraries numpy.mp4
41.8 MB
18 - Convolution and transformations/164 - Convolution parameters stride padding.mp4
40.8 MB
6 - Gradient descent/31 - What about local minima.mp4
39.9 MB
1 - Introduction/2 - Using Udemy like a pro.mp4
39.9 MB
7 - ANNs Artificial Neural Networks/44 - ANN math part 3 backprop.mp4
39.4 MB
14 - FFN milestone projects/136 - Project 1 A gratuitously complex adding machine.mp4
39.2 MB
29 - Python intro Functions/243 - Getting help on functions.mp4
39.1 MB
25 - Ethics of deep learning/223 - Will AI save us or destroy us.mp4
39.0 MB
5 - Math numpy PyTorch/29 - Derivatives product and chain rules.mp4
38.8 MB
10 - Metaparameters activations optimizers/104 - How to pick the right metaparameters.mp4
38.6 MB
14 - FFN milestone projects/138 - Project 2 Predicting heart disease.mp4
37.3 MB
9 - Regularization/77 - Training in minibatches.mp4
37.1 MB
27 - Python intro Data types/233 - Lists 1 of 2.mp4
36.8 MB
11 - FFNs FeedForward Networks/116 - Universal approximation theorem.mp4
35.9 MB
27 - Python intro Data types/234 - Lists 2 of 2.mp4
35.1 MB
19 - Understand and design CNNs/173 - The canonical CNN architecture.mp4
34.8 MB
27 - Python intro Data types/237 - Dictionaries.mp4
34.6 MB
21 - Transfer learning/197 - Famous CNN architectures.mp4
34.6 MB
28 - Python intro Indexing slicing/238 - Indexing.mp4
34.5 MB
6 - Gradient descent/38 - Vanishing and exploding gradients.mp4
33.2 MB
18 - Convolution and transformations/166 - CodeChallenge Choose the parameters.mp4
32.5 MB
12 - More on data/120 - What to do about unbalanced designs.mp4
31.2 MB
16 - Autoencoders/152 - What are autoencoders and what do they do.mp4
30.8 MB
5 - Math numpy PyTorch/20 - Logarithms.mp4
30.6 MB
20 - CNN milestone projects/192 - Project 3 FMNIST.mp4
30.2 MB
5 - Math numpy PyTorch/17 - OMG its the dot product.mp4
30.1 MB
22 - Style transfer/202 - What is style transfer and how does it work.mp4
29.5 MB
14 - FFN milestone projects/140 - Project 3 FFN for missing data interpolation.mp4
28.7 MB
7 - ANNs Artificial Neural Networks/51 - Why multilayer linear models dont exist.mp4
28.5 MB
13 - Measuring model performance/128 - Two perspectives of the world.mp4
28.1 MB
13 - Measuring model performance/135 - Better performance in test than train.mp4
27.5 MB
5 - Math numpy PyTorch/16 - Vector and matrix transpose.mp4
27.4 MB
5 - Math numpy PyTorch/28 - Derivatives find minima.mp4
27.3 MB
26 - Where to go from here/228 - How to learn topic X in deep learning.mp4
26.5 MB
6 - Gradient descent/39 - Tangent Notebook revision history.mp4
26.4 MB
9 - Regularization/70 - train and eval modes.mp4
23.9 MB
5 - Math numpy PyTorch/14 - Terms and datatypes in math and computers.mp4
23.8 MB
27 - Python intro Data types/235 - Tuples.mp4
23.3 MB
30 - Python intro Flow control/252 - Continue.mp4
21.7 MB
21 - Transfer learning/199 - CodeChallenge VGG16.mp4
21.3 MB
5 - Math numpy PyTorch/15 - Converting reality to numbers.mp4
20.7 MB
29 - Python intro Functions/240 - Inputs and outputs.mp4
20.1 MB
8 - Overfitting and crossvalidation/63 - Generalization.mp4
19.9 MB
10 - Metaparameters activations optimizers/81 - What are metaparameters.mp4
19.6 MB
11 - FFNs FeedForward Networks/105 - What are fullyconnected and feedforward networks.mp4
18.7 MB
27 - Python intro Data types/230 - How to learn from the Python tutorial.mp4
18.4 MB
15 - Weight inits and investigations/151 - Use default inits or apply your own.mp4
17.6 MB
29 - Python intro Functions/246 - Copies and referents of variables.mp4
15.8 MB
4 - About the Python tutorial/10 - Should you watch the Python tutorial.mp4
14.5 MB
19 - Understand and design CNNs/188 - So many possibilities How to create a CNN.mp4
13.6 MB
5 - Math numpy PyTorch/12 - Introduction to this section.mp4
6.9 MB
2 - Download all course materials/4 - My policy on codesharing.mp4
5.9 MB
2 - Download all course materials/3 - DUDL-PythonCode.zip
1.4 MB
19 - Understand and design CNNs/177 - Examine feature map activations Vietnamese.vtt
45.1 kB
7 - ANNs Artificial Neural Networks/52 - Multioutput ANN iris dataset Vietnamese.vtt
43.7 kB
24 - RNNs Recurrent Neural Networks and GRULSTM/218 - CodeChallenge sine wave extrapolation Vietnamese.vtt
42.8 kB
19 - Understand and design CNNs/174 - CNN to classify MNIST digits Vietnamese.vtt
41.7 kB
24 - RNNs Recurrent Neural Networks and GRULSTM/222 - Lorem ipsum Vietnamese.vtt
40.7 kB
7 - ANNs Artificial Neural Networks/45 - ANN for regression Vietnamese.vtt
40.4 kB
7 - ANNs Artificial Neural Networks/48 - Learning rates comparison Vietnamese.vtt
40.3 kB
19 - Understand and design CNNs/184 - The EMNIST dataset letter recognition Vietnamese.vtt
39.5 kB
16 - Autoencoders/157 - Autoencoder with tied weights Vietnamese.vtt
39.3 kB
7 - ANNs Artificial Neural Networks/47 - ANN for classifying qwerties Vietnamese.vtt
38.4 kB
19 - Understand and design CNNs/176 - Classify Gaussian blurs Vietnamese.vtt
37.4 kB
9 - Regularization/72 - Dropout regularization in practice Vietnamese.vtt
37.2 kB
24 - RNNs Recurrent Neural Networks and GRULSTM/220 - GRU and LSTM Vietnamese.vtt
36.4 kB
11 - FFNs FeedForward Networks/107 - FFN to classify digits Vietnamese.vtt
36.3 kB
9 - Regularization/71 - Dropout regularization Vietnamese.vtt
36.1 kB
19 - Understand and design CNNs/177 - Examine feature map activations English.vtt
35.8 kB
15 - Weight inits and investigations/150 - Learningrelated changes in weights Vietnamese.vtt
35.7 kB
23 - Generative adversarial networks/208 - Linear GAN with MNIST Vietnamese.vtt
35.6 kB
22 - Style transfer/205 - Transferring the screaming bathtub Vietnamese.vtt
35.5 kB
7 - ANNs Artificial Neural Networks/52 - Multioutput ANN iris dataset English.vtt
35.4 kB
18 - Convolution and transformations/161 - Convolution concepts Vietnamese.vtt
35.4 kB
8 - Overfitting and crossvalidation/65 - Crossvalidation scikitlearn Vietnamese.vtt
34.9 kB
16 - Autoencoders/156 - The latent code of MNIST Vietnamese.vtt
34.6 kB
24 - RNNs Recurrent Neural Networks and GRULSTM/218 - CodeChallenge sine wave extrapolation English.vtt
34.4 kB
29 - Python intro Functions/244 - Creating functions Vietnamese.vtt
34.0 kB
18 - Convolution and transformations/163 - Convolution in code Vietnamese.vtt
33.7 kB
7 - ANNs Artificial Neural Networks/57 - Model depth vs breadth Vietnamese.vtt
33.7 kB
19 - Understand and design CNNs/174 - CNN to classify MNIST digits English.vtt
33.6 kB
8 - Overfitting and crossvalidation/66 - Crossvalidation DataLoader Vietnamese.vtt
33.5 kB
21 - Transfer learning/200 - Pretraining with autoencoders Vietnamese.vtt
33.3 kB
12 - More on data/119 - CodeChallenge unbalanced data Vietnamese.vtt
33.2 kB
24 - RNNs Recurrent Neural Networks and GRULSTM/222 - Lorem ipsum English.vtt
33.0 kB
24 - RNNs Recurrent Neural Networks and GRULSTM/217 - Predicting alternating sequences Vietnamese.vtt
32.8 kB
19 - Understand and design CNNs/182 - CodeChallenge Custom loss functions Vietnamese.vtt
32.4 kB
7 - ANNs Artificial Neural Networks/48 - Learning rates comparison English.vtt
31.9 kB
19 - Understand and design CNNs/184 - The EMNIST dataset letter recognition English.vtt
31.8 kB
7 - ANNs Artificial Neural Networks/45 - ANN for regression English.vtt
31.7 kB
7 - ANNs Artificial Neural Networks/49 - Multilayer ANN Vietnamese.vtt
31.6 kB
12 - More on data/123 - Data feature augmentation Vietnamese.vtt
31.5 kB
16 - Autoencoders/154 - CodeChallenge How many units Vietnamese.vtt
31.5 kB
7 - ANNs Artificial Neural Networks/46 - CodeChallenge manipulate regression slopes Vietnamese.vtt
31.3 kB
7 - ANNs Artificial Neural Networks/40 - The perceptron and ANN architecture Vietnamese.vtt
31.3 kB
10 - Metaparameters activations optimizers/97 - Optimizers minibatch momentum Vietnamese.vtt
31.3 kB
16 - Autoencoders/157 - Autoencoder with tied weights English.vtt
30.7 kB
6 - Gradient descent/36 - Parametric experiments on gd Vietnamese.vtt
30.6 kB
14 - FFN milestone projects/139 - Project 2 My solution Vietnamese.vtt
30.5 kB
7 - ANNs Artificial Neural Networks/47 - ANN for classifying qwerties English.vtt
30.4 kB
30 - Python intro Flow control/255 - while loops Vietnamese.vtt
30.4 kB
19 - Understand and design CNNs/176 - Classify Gaussian blurs English.vtt
30.4 kB
18 - Convolution and transformations/172 - Creating and using custom DataLoaders Vietnamese.vtt
30.1 kB
27 - Python intro Data types/236 - Booleans Vietnamese.vtt
30.1 kB
18 - Convolution and transformations/168 - Maxmean pooling Vietnamese.vtt
30.0 kB
27 - Python intro Data types/231 - Variables Vietnamese.vtt
30.0 kB
5 - Math numpy PyTorch/19 - Softmax Vietnamese.vtt
29.9 kB
31 - Python intro Text and plots/261 - Making the graphs look nicer Vietnamese.vtt
29.9 kB
29 - Python intro Functions/247 - Classes and objectoriented programming Vietnamese.vtt
29.8 kB
12 - More on data/117 - Anatomy of a torch dataset and dataloader Vietnamese.vtt
29.7 kB
24 - RNNs Recurrent Neural Networks and GRULSTM/216 - The RNN class in PyTorch Vietnamese.vtt
29.7 kB
9 - Regularization/74 - Weight regularization L1L2 math Vietnamese.vtt
29.7 kB
10 - Metaparameters activations optimizers/95 - Loss functions in PyTorch Vietnamese.vtt
29.6 kB
24 - RNNs Recurrent Neural Networks and GRULSTM/220 - GRU and LSTM English.vtt
29.6 kB
9 - Regularization/72 - Dropout regularization in practice English.vtt
29.5 kB
30 - Python intro Flow control/253 - Initializing variables Vietnamese.vtt
29.3 kB
27 - Python intro Data types/232 - Math and printing Vietnamese.vtt
29.1 kB
21 - Transfer learning/201 - CIFAR10 with autoencoderpretrained model Vietnamese.vtt
29.0 kB
11 - FFNs FeedForward Networks/107 - FFN to classify digits English.vtt
29.0 kB
15 - Weight inits and investigations/150 - Learningrelated changes in weights English.vtt
29.0 kB
10 - Metaparameters activations optimizers/89 - Activation functions Vietnamese.vtt
28.9 kB
10 - Metaparameters activations optimizers/82 - The wine quality dataset Vietnamese.vtt
28.9 kB
26 - Where to go from here/229 - How to read academic DL papers Vietnamese.vtt
28.8 kB
18 - Convolution and transformations/161 - Convolution concepts English.vtt
28.6 kB
8 - Overfitting and crossvalidation/62 - Crossvalidation Vietnamese.vtt
28.6 kB
22 - Style transfer/205 - Transferring the screaming bathtub English.vtt
28.4 kB
10 - Metaparameters activations optimizers/93 - CodeChallenge Predict sugar Vietnamese.vtt
28.4 kB
16 - Autoencoders/155 - AEs for occlusion Vietnamese.vtt
28.4 kB
30 - Python intro Flow control/257 - Function error checking and handling Vietnamese.vtt
28.2 kB
23 - Generative adversarial networks/208 - Linear GAN with MNIST English.vtt
28.2 kB
31 - Python intro Text and plots/263 - Images Vietnamese.vtt
28.1 kB
3 - Concepts in deep learning/9 - Are artificial neurons like biological neurons Vietnamese.vtt
28.1 kB
9 - Regularization/71 - Dropout regularization English.vtt
28.0 kB
7 - ANNs Artificial Neural Networks/55 - Depth vs breadth number of parameters Vietnamese.vtt
28.0 kB
16 - Autoencoders/156 - The latent code of MNIST English.vtt
28.0 kB
19 - Understand and design CNNs/178 - CodeChallenge Softcode internal parameters Vietnamese.vtt
27.7 kB
21 - Transfer learning/194 - Transfer learning What why and when Vietnamese.vtt
27.7 kB
5 - Math numpy PyTorch/21 - Entropy and crossentropy Vietnamese.vtt
27.7 kB
15 - Weight inits and investigations/147 - CodeChallenge Xavier vs Kaiming Vietnamese.vtt
27.6 kB
30 - Python intro Flow control/250 - For loops Vietnamese.vtt
27.6 kB
11 - FFNs FeedForward Networks/109 - CodeChallenge Data normalization Vietnamese.vtt
27.4 kB
6 - Gradient descent/32 - Gradient descent in 1D Vietnamese.vtt
27.3 kB
7 - ANNs Artificial Neural Networks/57 - Model depth vs breadth English.vtt
27.3 kB
15 - Weight inits and investigations/143 - A surprising demo of weight initializations Vietnamese.vtt
27.2 kB
29 - Python intro Functions/244 - Creating functions English.vtt
27.1 kB
21 - Transfer learning/198 - Transfer learning with ResNet18 Vietnamese.vtt
27.1 kB
12 - More on data/121 - Data oversampling in MNIST Vietnamese.vtt
27.1 kB
18 - Convolution and transformations/163 - Convolution in code English.vtt
27.0 kB
31 - Python intro Text and plots/258 - Printing and string interpolation Vietnamese.vtt
27.0 kB
19 - Understand and design CNNs/180 - Do autoencoders clean Gaussians Vietnamese.vtt
26.9 kB
8 - Overfitting and crossvalidation/65 - Crossvalidation scikitlearn English.vtt
26.9 kB
23 - Generative adversarial networks/207 - GAN What why and how Vietnamese.vtt
26.9 kB
18 - Convolution and transformations/171 - Image transforms Vietnamese.vtt
26.8 kB
3 - Concepts in deep learning/7 - The role of DL in science and knowledge Vietnamese.vtt
26.5 kB
19 - Understand and design CNNs/182 - CodeChallenge Custom loss functions English.vtt
26.4 kB
10 - Metaparameters activations optimizers/94 - Loss functions Vietnamese.vtt
26.2 kB
10 - Metaparameters activations optimizers/83 - CodeChallenge Minibatch size in the wine dataset Vietnamese.vtt
26.0 kB
7 - ANNs Artificial Neural Networks/49 - Multilayer ANN English.vtt
25.9 kB
12 - More on data/118 - Data size and network size Vietnamese.vtt
25.9 kB
31 - Python intro Text and plots/260 - Subplot geometry Vietnamese.vtt
25.9 kB
12 - More on data/119 - CodeChallenge unbalanced data English.vtt
25.9 kB
6 - Gradient descent/37 - CodeChallenge fixed vs dynamic learning rate Vietnamese.vtt
25.8 kB
16 - Autoencoders/154 - CodeChallenge How many units English.vtt
25.6 kB
5 - Math numpy PyTorch/27 - Derivatives intuition and polynomials Vietnamese.vtt
25.6 kB
21 - Transfer learning/200 - Pretraining with autoencoders English.vtt
25.5 kB
24 - RNNs Recurrent Neural Networks and GRULSTM/217 - Predicting alternating sequences English.vtt
25.5 kB
19 - Understand and design CNNs/183 - Discover the Gaussian parameters Vietnamese.vtt
25.5 kB
30 - Python intro Flow control/249 - Ifelse statements part 2 Vietnamese.vtt
25.4 kB
8 - Overfitting and crossvalidation/66 - Crossvalidation DataLoader English.vtt
25.3 kB
5 - Math numpy PyTorch/23 - Mean and variance Vietnamese.vtt
25.3 kB
15 - Weight inits and investigations/146 - Xavier and Kaiming initializations Vietnamese.vtt
25.2 kB
12 - More on data/123 - Data feature augmentation English.vtt
25.2 kB
24 - RNNs Recurrent Neural Networks and GRULSTM/219 - More on RNNs Hidden states embeddings Vietnamese.vtt
25.1 kB
7 - ANNs Artificial Neural Networks/46 - CodeChallenge manipulate regression slopes English.vtt
25.0 kB
16 - Autoencoders/153 - Denoising MNIST Vietnamese.vtt
25.0 kB
12 - More on data/126 - Save the bestperforming model Vietnamese.vtt
24.9 kB
7 - ANNs Artificial Neural Networks/40 - The perceptron and ANN architecture English.vtt
24.8 kB
10 - Metaparameters activations optimizers/99 - Optimizers RMSprop Adam Vietnamese.vtt
24.7 kB
30 - Python intro Flow control/255 - while loops English.vtt
24.6 kB
5 - Math numpy PyTorch/19 - Softmax English.vtt
24.6 kB
7 - ANNs Artificial Neural Networks/42 - ANN math part 1 forward prop Vietnamese.vtt
24.5 kB
11 - FFNs FeedForward Networks/110 - Distributions of weights pre and postlearning Vietnamese.vtt
24.5 kB
14 - FFN milestone projects/139 - Project 2 My solution English.vtt
24.4 kB
10 - Metaparameters activations optimizers/97 - Optimizers minibatch momentum English.vtt
24.4 kB
23 - Generative adversarial networks/210 - CNN GAN with Gaussians Vietnamese.vtt
24.3 kB
17 - Running models on a GPU/158 - What is a GPU and why use it Vietnamese.vtt
24.3 kB
30 - Python intro Flow control/254 - Singleline loops list comprehension Vietnamese.vtt
24.2 kB
24 - RNNs Recurrent Neural Networks and GRULSTM/215 - How RNNs work Vietnamese.vtt
24.2 kB
27 - Python intro Data types/236 - Booleans English.vtt
24.2 kB
6 - Gradient descent/36 - Parametric experiments on gd English.vtt
24.1 kB
9 - Regularization/74 - Weight regularization L1L2 math English.vtt
24.0 kB
27 - Python intro Data types/231 - Variables English.vtt
23.9 kB
21 - Transfer learning/196 - CodeChallenge letters to numbers Vietnamese.vtt
23.9 kB
3 - Concepts in deep learning/5 - What is an artificial neural network Vietnamese.vtt
23.8 kB
24 - RNNs Recurrent Neural Networks and GRULSTM/216 - The RNN class in PyTorch English.vtt
23.8 kB
31 - Python intro Text and plots/261 - Making the graphs look nicer English.vtt
23.8 kB
10 - Metaparameters activations optimizers/95 - Loss functions in PyTorch English.vtt
23.7 kB
18 - Convolution and transformations/168 - Maxmean pooling English.vtt
23.7 kB
30 - Python intro Flow control/248 - Ifelse statements Vietnamese.vtt
23.6 kB
10 - Metaparameters activations optimizers/89 - Activation functions English.vtt
23.6 kB
30 - Python intro Flow control/256 - Broadcasting in numpy Vietnamese.vtt
23.5 kB
29 - Python intro Functions/247 - Classes and objectoriented programming English.vtt
23.5 kB
27 - Python intro Data types/232 - Math and printing English.vtt
23.5 kB
18 - Convolution and transformations/172 - Creating and using custom DataLoaders English.vtt
23.4 kB
12 - More on data/117 - Anatomy of a torch dataset and dataloader English.vtt
23.2 kB
6 - Gradient descent/34 - Gradient descent in 2D Vietnamese.vtt
23.1 kB
21 - Transfer learning/201 - CIFAR10 with autoencoderpretrained model English.vtt
23.0 kB
10 - Metaparameters activations optimizers/82 - The wine quality dataset English.vtt
22.8 kB
6 - Gradient descent/30 - Overview of gradient descent Vietnamese.vtt
22.8 kB
7 - ANNs Artificial Neural Networks/55 - Depth vs breadth number of parameters English.vtt
22.7 kB
30 - Python intro Flow control/253 - Initializing variables English.vtt
22.6 kB
31 - Python intro Text and plots/263 - Images English.vtt
22.6 kB
27 - Python intro Data types/233 - Lists 1 of 2 Vietnamese.vtt
22.5 kB
16 - Autoencoders/155 - AEs for occlusion English.vtt
22.5 kB
29 - Python intro Functions/241 - Python libraries numpy Vietnamese.vtt
22.5 kB
5 - Math numpy PyTorch/21 - Entropy and crossentropy English.vtt
22.4 kB
26 - Where to go from here/229 - How to read academic DL papers English.vtt
22.4 kB
29 - Python intro Functions/242 - Python libraries pandas Vietnamese.vtt
22.4 kB
10 - Metaparameters activations optimizers/96 - More practice with multioutput ANNs Vietnamese.vtt
22.4 kB
30 - Python intro Flow control/257 - Function error checking and handling English.vtt
22.4 kB
5 - Math numpy PyTorch/18 - Matrix multiplication Vietnamese.vtt
22.3 kB
30 - Python intro Flow control/250 - For loops English.vtt
22.3 kB
19 - Understand and design CNNs/178 - CodeChallenge Softcode internal parameters English.vtt
22.3 kB
18 - Convolution and transformations/169 - Pooling in PyTorch Vietnamese.vtt
22.2 kB
8 - Overfitting and crossvalidation/62 - Crossvalidation English.vtt
22.2 kB
10 - Metaparameters activations optimizers/93 - CodeChallenge Predict sugar English.vtt
22.2 kB
10 - Metaparameters activations optimizers/84 - Data normalization Vietnamese.vtt
22.1 kB
13 - Measuring model performance/131 - APRF example 1 wine quality Vietnamese.vtt
22.0 kB
21 - Transfer learning/194 - Transfer learning What why and when English.vtt
22.0 kB
18 - Convolution and transformations/167 - Transpose convolution Vietnamese.vtt
21.9 kB
5 - Math numpy PyTorch/26 - The ttest Vietnamese.vtt
21.8 kB
24 - RNNs Recurrent Neural Networks and GRULSTM/221 - The LSTM and GRU classes Vietnamese.vtt
21.8 kB
15 - Weight inits and investigations/147 - CodeChallenge Xavier vs Kaiming English.vtt
21.7 kB
6 - Gradient descent/32 - Gradient descent in 1D English.vtt
21.7 kB
11 - FFNs FeedForward Networks/109 - CodeChallenge Data normalization English.vtt
21.7 kB
19 - Understand and design CNNs/180 - Do autoencoders clean Gaussians English.vtt
21.7 kB
21 - Transfer learning/198 - Transfer learning with ResNet18 English.vtt
21.7 kB
15 - Weight inits and investigations/149 - Freezing weights during learning Vietnamese.vtt
21.6 kB
10 - Metaparameters activations optimizers/94 - Loss functions English.vtt
21.6 kB
3 - Concepts in deep learning/8 - Running experiments to understand DL Vietnamese.vtt
21.5 kB
19 - Understand and design CNNs/187 - CodeChallenge Varying number of channels Vietnamese.vtt
21.5 kB
5 - Math numpy PyTorch/27 - Derivatives intuition and polynomials English.vtt
21.5 kB
31 - Python intro Text and plots/258 - Printing and string interpolation English.vtt
21.5 kB
7 - ANNs Artificial Neural Networks/41 - A geometric view of ANNs Vietnamese.vtt
21.5 kB
3 - Concepts in deep learning/9 - Are artificial neurons like biological neurons English.vtt
21.5 kB
9 - Regularization/69 - Regularization Concept and methods Vietnamese.vtt
21.4 kB
12 - More on data/121 - Data oversampling in MNIST English.vtt
21.3 kB
9 - Regularization/75 - L2 regularization in practice Vietnamese.vtt
21.3 kB
29 - Python intro Functions/245 - Global and local variable scopes Vietnamese.vtt
21.3 kB
7 - ANNs Artificial Neural Networks/56 - Defining models using sequential vs class Vietnamese.vtt
21.3 kB
8 - Overfitting and crossvalidation/61 - What is overfitting and is it as bad as they say Vietnamese.vtt
21.2 kB
8 - Overfitting and crossvalidation/64 - Crossvalidation manual separation Vietnamese.vtt
21.2 kB
15 - Weight inits and investigations/143 - A surprising demo of weight initializations English.vtt
21.2 kB
3 - Concepts in deep learning/6 - How models learn Vietnamese.vtt
21.1 kB
23 - Generative adversarial networks/207 - GAN What why and how English.vtt
21.0 kB
18 - Convolution and transformations/171 - Image transforms English.vtt
21.0 kB
10 - Metaparameters activations optimizers/86 - Batch normalization Vietnamese.vtt
21.0 kB
24 - RNNs Recurrent Neural Networks and GRULSTM/214 - Leveraging sequences in deep learning Vietnamese.vtt
20.9 kB
18 - Convolution and transformations/165 - The Conv2 class in PyTorch Vietnamese.vtt
20.9 kB
28 - Python intro Indexing slicing/238 - Indexing Vietnamese.vtt
20.9 kB
12 - More on data/118 - Data size and network size English.vtt
20.8 kB
3 - Concepts in deep learning/7 - The role of DL in science and knowledge English.vtt
20.8 kB
12 - More on data/122 - Data noise augmentation with devsettest Vietnamese.vtt
20.8 kB
19 - Understand and design CNNs/183 - Discover the Gaussian parameters English.vtt
20.7 kB
6 - Gradient descent/37 - CodeChallenge fixed vs dynamic learning rate English.vtt
20.7 kB
15 - Weight inits and investigations/145 - CodeChallenge Weight variance inits Vietnamese.vtt
20.6 kB
10 - Metaparameters activations optimizers/83 - CodeChallenge Minibatch size in the wine dataset English.vtt
20.5 kB
28 - Python intro Indexing slicing/239 - Slicing Vietnamese.vtt
20.4 kB
5 - Math numpy PyTorch/22 - Minmax and argminargmax Vietnamese.vtt
20.4 kB
11 - FFNs FeedForward Networks/106 - The MNIST dataset Vietnamese.vtt
20.4 kB
24 - RNNs Recurrent Neural Networks and GRULSTM/219 - More on RNNs Hidden states embeddings English.vtt
20.4 kB
31 - Python intro Text and plots/260 - Subplot geometry English.vtt
20.4 kB
15 - Weight inits and investigations/144 - Theory Why and how to initialize weights Vietnamese.vtt
20.3 kB
31 - Python intro Text and plots/259 - Plotting dots and lines Vietnamese.vtt
20.3 kB
10 - Metaparameters activations optimizers/103 - Learning rate decay Vietnamese.vtt
20.2 kB
15 - Weight inits and investigations/148 - CodeChallenge Identically random weights Vietnamese.vtt
20.2 kB
9 - Regularization/80 - CodeChallenge Effects of minibatch size Vietnamese.vtt
20.2 kB
30 - Python intro Flow control/249 - Ifelse statements part 2 English.vtt
20.2 kB
16 - Autoencoders/153 - Denoising MNIST English.vtt
20.1 kB
15 - Weight inits and investigations/146 - Xavier and Kaiming initializations English.vtt
20.0 kB
5 - Math numpy PyTorch/23 - Mean and variance English.vtt
20.0 kB
17 - Running models on a GPU/158 - What is a GPU and why use it English.vtt
19.9 kB
7 - ANNs Artificial Neural Networks/42 - ANN math part 1 forward prop English.vtt
19.7 kB
18 - Convolution and transformations/164 - Convolution parameters stride padding Vietnamese.vtt
19.7 kB
9 - Regularization/76 - L1 regularization in practice Vietnamese.vtt
19.6 kB
10 - Metaparameters activations optimizers/99 - Optimizers RMSprop Adam English.vtt
19.6 kB
23 - Generative adversarial networks/210 - CNN GAN with Gaussians English.vtt
19.5 kB
6 - Gradient descent/31 - What about local minima Vietnamese.vtt
19.5 kB
11 - FFNs FeedForward Networks/111 - CodeChallenge MNIST and breadth vs depth Vietnamese.vtt
19.5 kB
12 - More on data/126 - Save the bestperforming model English.vtt
19.4 kB
20 - CNN milestone projects/190 - Project 1 My solution Vietnamese.vtt
19.4 kB
24 - RNNs Recurrent Neural Networks and GRULSTM/215 - How RNNs work English.vtt
19.3 kB
25 - Ethics of deep learning/227 - Accountability and making ethical AI Vietnamese.vtt
19.3 kB
10 - Metaparameters activations optimizers/104 - How to pick the right metaparameters Vietnamese.vtt
19.3 kB
13 - Measuring model performance/129 - Accuracy precision recall F1 Vietnamese.vtt
19.2 kB
11 - FFNs FeedForward Networks/110 - Distributions of weights pre and postlearning English.vtt
19.2 kB
30 - Python intro Flow control/254 - Singleline loops list comprehension English.vtt
19.2 kB
7 - ANNs Artificial Neural Networks/53 - CodeChallenge more qwerties Vietnamese.vtt
19.2 kB
27 - Python intro Data types/237 - Dictionaries Vietnamese.vtt
19.2 kB
13 - Measuring model performance/132 - APRF example 2 MNIST Vietnamese.vtt
19.1 kB
6 - Gradient descent/34 - Gradient descent in 2D English.vtt
19.1 kB
11 - FFNs FeedForward Networks/114 - Shifted MNIST Vietnamese.vtt
19.1 kB
21 - Transfer learning/196 - CodeChallenge letters to numbers English.vtt
19.1 kB
3 - Concepts in deep learning/5 - What is an artificial neural network English.vtt
19.0 kB
30 - Python intro Flow control/248 - Ifelse statements English.vtt
19.0 kB
10 - Metaparameters activations optimizers/90 - Activation functions in PyTorch Vietnamese.vtt
19.0 kB
20 - CNN milestone projects/193 - Project 4 Psychometric functions in CNNs Vietnamese.vtt
19.0 kB
9 - Regularization/77 - Training in minibatches Vietnamese.vtt
19.0 kB
16 - Autoencoders/152 - What are autoencoders and what do they do Vietnamese.vtt
18.9 kB
14 - FFN milestone projects/137 - Project 1 My solution Vietnamese.vtt
18.9 kB
30 - Python intro Flow control/256 - Broadcasting in numpy English.vtt
18.8 kB
22 - Style transfer/203 - The Gram matrix feature activation covariance Vietnamese.vtt
18.5 kB
19 - Understand and design CNNs/179 - CodeChallenge How wide the FC Vietnamese.vtt
18.5 kB
6 - Gradient descent/30 - Overview of gradient descent English.vtt
18.5 kB
15 - Weight inits and investigations/142 - Explanation of weight matrix sizes Vietnamese.vtt
18.4 kB
5 - Math numpy PyTorch/24 - Random sampling and sampling variability Vietnamese.vtt
18.3 kB
5 - Math numpy PyTorch/18 - Matrix multiplication English.vtt
18.3 kB
30 - Python intro Flow control/251 - Enumerate and zip Vietnamese.vtt
18.2 kB
31 - Python intro Text and plots/262 - Seaborn Vietnamese.vtt
18.1 kB
10 - Metaparameters activations optimizers/96 - More practice with multioutput ANNs English.vtt
18.0 kB
27 - Python intro Data types/233 - Lists 1 of 2 English.vtt
17.9 kB
29 - Python intro Functions/242 - Python libraries pandas English.vtt
17.9 kB
18 - Convolution and transformations/169 - Pooling in PyTorch English.vtt
17.8 kB
29 - Python intro Functions/241 - Python libraries numpy English.vtt
17.7 kB
18 - Convolution and transformations/167 - Transpose convolution English.vtt
17.7 kB
6 - Gradient descent/33 - CodeChallenge unfortunate starting value Vietnamese.vtt
17.7 kB
24 - RNNs Recurrent Neural Networks and GRULSTM/221 - The LSTM and GRU classes English.vtt
17.6 kB
11 - FFNs FeedForward Networks/115 - CodeChallenge The mystery of the missing 7 Vietnamese.vtt
17.6 kB
25 - Ethics of deep learning/225 - Some other possible ethical scenarios Vietnamese.vtt
17.5 kB
19 - Understand and design CNNs/187 - CodeChallenge Varying number of channels English.vtt
17.5 kB
10 - Metaparameters activations optimizers/84 - Data normalization English.vtt
17.5 kB
9 - Regularization/78 - Batch training in action Vietnamese.vtt
17.4 kB
19 - Understand and design CNNs/173 - The canonical CNN architecture Vietnamese.vtt
17.4 kB
29 - Python intro Functions/245 - Global and local variable scopes English.vtt
17.4 kB
5 - Math numpy PyTorch/26 - The ttest English.vtt
17.3 kB
7 - ANNs Artificial Neural Networks/41 - A geometric view of ANNs English.vtt
17.2 kB
3 - Concepts in deep learning/8 - Running experiments to understand DL English.vtt
17.2 kB
15 - Weight inits and investigations/149 - Freezing weights during learning English.vtt
17.1 kB
9 - Regularization/69 - Regularization Concept and methods English.vtt
17.0 kB
13 - Measuring model performance/131 - APRF example 1 wine quality English.vtt
17.0 kB
7 - ANNs Artificial Neural Networks/56 - Defining models using sequential vs class English.vtt
17.0 kB
25 - Ethics of deep learning/226 - Will deep learning take our jobs Vietnamese.vtt
16.9 kB
22 - Style transfer/204 - The style transfer algorithm Vietnamese.vtt
16.9 kB
9 - Regularization/75 - L2 regularization in practice English.vtt
16.8 kB
7 - ANNs Artificial Neural Networks/44 - ANN math part 3 backprop Vietnamese.vtt
16.7 kB
10 - Metaparameters activations optimizers/86 - Batch normalization English.vtt
16.7 kB
18 - Convolution and transformations/165 - The Conv2 class in PyTorch English.vtt
16.7 kB
24 - RNNs Recurrent Neural Networks and GRULSTM/214 - Leveraging sequences in deep learning English.vtt
16.7 kB
3 - Concepts in deep learning/6 - How models learn English.vtt
16.7 kB
12 - More on data/122 - Data noise augmentation with devsettest English.vtt
16.5 kB
17 - Running models on a GPU/159 - Implementation Vietnamese.vtt
16.5 kB
8 - Overfitting and crossvalidation/64 - Crossvalidation manual separation English.vtt
16.5 kB
18 - Convolution and transformations/170 - To pool or to stride Vietnamese.vtt
16.4 kB
15 - Weight inits and investigations/145 - CodeChallenge Weight variance inits English.vtt
16.4 kB
11 - FFNs FeedForward Networks/106 - The MNIST dataset English.vtt
16.4 kB
14 - FFN milestone projects/140 - Project 3 FFN for missing data interpolation Vietnamese.vtt
16.3 kB
8 - Overfitting and crossvalidation/61 - What is overfitting and is it as bad as they say English.vtt
16.3 kB
27 - Python intro Data types/234 - Lists 2 of 2 Vietnamese.vtt
16.3 kB
15 - Weight inits and investigations/144 - Theory Why and how to initialize weights English.vtt
16.3 kB
10 - Metaparameters activations optimizers/100 - Optimizers comparison Vietnamese.vtt
16.3 kB
5 - Math numpy PyTorch/22 - Minmax and argminargmax English.vtt
16.1 kB
9 - Regularization/80 - CodeChallenge Effects of minibatch size English.vtt
16.1 kB
18 - Convolution and transformations/164 - Convolution parameters stride padding English.vtt
16.0 kB
13 - Measuring model performance/129 - Accuracy precision recall F1 English.vtt
16.0 kB
28 - Python intro Indexing slicing/238 - Indexing English.vtt
16.0 kB
15 - Weight inits and investigations/148 - CodeChallenge Identically random weights English.vtt
15.9 kB
21 - Transfer learning/195 - Transfer learning MNIST FMNIST Vietnamese.vtt
15.9 kB
7 - ANNs Artificial Neural Networks/54 - Comparing the number of hidden units Vietnamese.vtt
15.9 kB
19 - Understand and design CNNs/185 - Dropout in CNNs Vietnamese.vtt
15.8 kB
10 - Metaparameters activations optimizers/103 - Learning rate decay English.vtt
15.8 kB
11 - FFNs FeedForward Networks/111 - CodeChallenge MNIST and breadth vs depth English.vtt
15.8 kB
28 - Python intro Indexing slicing/239 - Slicing English.vtt
15.8 kB
7 - ANNs Artificial Neural Networks/53 - CodeChallenge more qwerties English.vtt
15.8 kB
23 - Generative adversarial networks/209 - CodeChallenge Linear GAN with FMNIST Vietnamese.vtt
15.8 kB
13 - Measuring model performance/134 - Computation time Vietnamese.vtt
15.8 kB
25 - Ethics of deep learning/223 - Will AI save us or destroy us Vietnamese.vtt
15.7 kB
31 - Python intro Text and plots/259 - Plotting dots and lines English.vtt
15.6 kB
19 - Understand and design CNNs/181 - CodeChallenge AEs and occluded Gaussians Vietnamese.vtt
15.6 kB
8 - Overfitting and crossvalidation/67 - Splitting data into train devset test Vietnamese.vtt
15.6 kB
9 - Regularization/76 - L1 regularization in practice English.vtt
15.5 kB
10 - Metaparameters activations optimizers/85 - The importance of data normalization Vietnamese.vtt
15.4 kB
18 - Convolution and transformations/162 - Feature maps and convolution kernels Vietnamese.vtt
15.4 kB
20 - CNN milestone projects/190 - Project 1 My solution English.vtt
15.3 kB
15 - Weight inits and investigations/142 - Explanation of weight matrix sizes English.vtt
15.3 kB
6 - Gradient descent/31 - What about local minima English.vtt
15.3 kB
10 - Metaparameters activations optimizers/91 - Activation functions comparison Vietnamese.vtt
15.2 kB
13 - Measuring model performance/132 - APRF example 2 MNIST English.vtt
15.2 kB
7 - ANNs Artificial Neural Networks/43 - ANN math part 2 errors loss cost Vietnamese.vtt
15.2 kB
10 - Metaparameters activations optimizers/90 - Activation functions in PyTorch English.vtt
15.2 kB
5 - Math numpy PyTorch/13 - Spectral theories in mathematics Vietnamese.vtt
15.1 kB
20 - CNN milestone projects/193 - Project 4 Psychometric functions in CNNs English.vtt
15.0 kB
16 - Autoencoders/152 - What are autoencoders and what do they do English.vtt
15.0 kB
22 - Style transfer/203 - The Gram matrix feature activation covariance English.vtt
15.0 kB
10 - Metaparameters activations optimizers/104 - How to pick the right metaparameters English.vtt
15.0 kB
19 - Understand and design CNNs/179 - CodeChallenge How wide the FC English.vtt
15.0 kB
9 - Regularization/77 - Training in minibatches English.vtt
14.9 kB
14 - FFN milestone projects/137 - Project 1 My solution English.vtt
14.9 kB
27 - Python intro Data types/237 - Dictionaries English.vtt
14.9 kB
25 - Ethics of deep learning/227 - Accountability and making ethical AI English.vtt
14.9 kB
5 - Math numpy PyTorch/17 - OMG its the dot product Vietnamese.vtt
14.7 kB
11 - FFNs FeedForward Networks/114 - Shifted MNIST English.vtt
14.6 kB
5 - Math numpy PyTorch/29 - Derivatives product and chain rules Vietnamese.vtt
14.5 kB
5 - Math numpy PyTorch/24 - Random sampling and sampling variability English.vtt
14.5 kB
1 - Introduction/1 - How to learn from this course Vietnamese.vtt
14.3 kB
7 - ANNs Artificial Neural Networks/60 - Reflection Are DL models understandable yet Vietnamese.vtt
14.2 kB
30 - Python intro Flow control/251 - Enumerate and zip English.vtt
14.1 kB
6 - Gradient descent/33 - CodeChallenge unfortunate starting value English.vtt
14.1 kB
13 - Measuring model performance/133 - CodeChallenge MNIST with unequal groups Vietnamese.vtt
14.1 kB
19 - Understand and design CNNs/175 - CNN on shifted MNIST Vietnamese.vtt
14.1 kB
1 - Introduction/2 - Using Udemy like a pro Vietnamese.vtt
14.1 kB
7 - ANNs Artificial Neural Networks/50 - Linear solutions to linear problems Vietnamese.vtt
14.0 kB
19 - Understand and design CNNs/173 - The canonical CNN architecture English.vtt
14.0 kB
31 - Python intro Text and plots/262 - Seaborn English.vtt
14.0 kB
11 - FFNs FeedForward Networks/115 - CodeChallenge The mystery of the missing 7 English.vtt
13.9 kB
9 - Regularization/78 - Batch training in action English.vtt
13.9 kB
7 - ANNs Artificial Neural Networks/44 - ANN math part 3 backprop English.vtt
13.7 kB
13 - Measuring model performance/135 - Better performance in test than train Vietnamese.vtt
13.6 kB
25 - Ethics of deep learning/225 - Some other possible ethical scenarios English.vtt
13.6 kB
26 - Where to go from here/228 - How to learn topic X in deep learning Vietnamese.vtt
13.6 kB
27 - Python intro Data types/235 - Tuples Vietnamese.vtt
13.5 kB
8 - Overfitting and crossvalidation/68 - Crossvalidation on regression Vietnamese.vtt
13.5 kB
22 - Style transfer/204 - The style transfer algorithm English.vtt
13.4 kB
14 - FFN milestone projects/141 - Project 3 My solution Vietnamese.vtt
13.4 kB
5 - Math numpy PyTorch/25 - Reproducible randomness via seeding Vietnamese.vtt
13.4 kB
25 - Ethics of deep learning/226 - Will deep learning take our jobs English.vtt
13.2 kB
10 - Metaparameters activations optimizers/98 - SGD with momentum Vietnamese.vtt
13.2 kB
5 - Math numpy PyTorch/28 - Derivatives find minima Vietnamese.vtt
13.2 kB
23 - Generative adversarial networks/213 - CodeChallenge CNN GAN with CIFAR Vietnamese.vtt
13.2 kB
17 - Running models on a GPU/159 - Implementation English.vtt
13.1 kB
10 - Metaparameters activations optimizers/100 - Optimizers comparison English.vtt
13.0 kB
11 - FFNs FeedForward Networks/116 - Universal approximation theorem Vietnamese.vtt
13.0 kB
7 - ANNs Artificial Neural Networks/54 - Comparing the number of hidden units English.vtt
12.9 kB
18 - Convolution and transformations/170 - To pool or to stride English.vtt
12.9 kB
21 - Transfer learning/195 - Transfer learning MNIST FMNIST English.vtt
12.9 kB
31 - Python intro Text and plots/264 - Export plots in low and high resolution Vietnamese.vtt
12.9 kB
27 - Python intro Data types/234 - Lists 2 of 2 English.vtt
12.8 kB
11 - FFNs FeedForward Networks/113 - Scrambled MNIST Vietnamese.vtt
12.8 kB
14 - FFN milestone projects/140 - Project 3 FFN for missing data interpolation English.vtt
12.8 kB
25 - Ethics of deep learning/223 - Will AI save us or destroy us English.vtt
12.8 kB
19 - Understand and design CNNs/185 - Dropout in CNNs English.vtt
12.7 kB
12 - More on data/120 - What to do about unbalanced designs Vietnamese.vtt
12.7 kB
13 - Measuring model performance/134 - Computation time English.vtt
12.7 kB
10 - Metaparameters activations optimizers/92 - CodeChallenge Compare relu variants Vietnamese.vtt
12.5 kB
29 - Python intro Functions/243 - Getting help on functions Vietnamese.vtt
12.5 kB
18 - Convolution and transformations/162 - Feature maps and convolution kernels English.vtt
12.4 kB
10 - Metaparameters activations optimizers/87 - Batch normalization in practice Vietnamese.vtt
12.4 kB
7 - ANNs Artificial Neural Networks/43 - ANN math part 2 errors loss cost English.vtt
12.4 kB
19 - Understand and design CNNs/181 - CodeChallenge AEs and occluded Gaussians English.vtt
12.4 kB
5 - Math numpy PyTorch/17 - OMG its the dot product English.vtt
12.4 kB
23 - Generative adversarial networks/209 - CodeChallenge Linear GAN with FMNIST English.vtt
12.4 kB
10 - Metaparameters activations optimizers/85 - The importance of data normalization English.vtt
12.3 kB
5 - Math numpy PyTorch/20 - Logarithms Vietnamese.vtt
12.3 kB
8 - Overfitting and crossvalidation/67 - Splitting data into train devset test English.vtt
12.3 kB
20 - CNN milestone projects/189 - Project 1 Import and classify CIFAR10 Vietnamese.vtt
12.2 kB
5 - Math numpy PyTorch/13 - Spectral theories in mathematics English.vtt
12.1 kB
14 - FFN milestone projects/138 - Project 2 Predicting heart disease Vietnamese.vtt
12.1 kB
5 - Math numpy PyTorch/29 - Derivatives product and chain rules English.vtt
12.1 kB
10 - Metaparameters activations optimizers/91 - Activation functions comparison English.vtt
12.1 kB
14 - FFN milestone projects/136 - Project 1 A gratuitously complex adding machine Vietnamese.vtt
12.0 kB
29 - Python intro Functions/240 - Inputs and outputs Vietnamese.vtt
12.0 kB
5 - Math numpy PyTorch/14 - Terms and datatypes in math and computers Vietnamese.vtt
11.7 kB
13 - Measuring model performance/128 - Two perspectives of the world Vietnamese.vtt
11.7 kB
1 - Introduction/1 - How to learn from this course English.vtt
11.6 kB
22 - Style transfer/206 - CodeChallenge Style transfer with AlexNet Vietnamese.vtt
11.5 kB
18 - Convolution and transformations/166 - CodeChallenge Choose the parameters Vietnamese.vtt
11.5 kB
13 - Measuring model performance/133 - CodeChallenge MNIST with unequal groups English.vtt
11.4 kB
10 - Metaparameters activations optimizers/102 - CodeChallenge Adam with L2 regularization Vietnamese.vtt
11.3 kB
30 - Python intro Flow control/252 - Continue Vietnamese.vtt
11.3 kB
9 - Regularization/70 - train and eval modes Vietnamese.vtt
11.2 kB
5 - Math numpy PyTorch/16 - Vector and matrix transpose Vietnamese.vtt
11.2 kB
7 - ANNs Artificial Neural Networks/60 - Reflection Are DL models understandable yet English.vtt
11.2 kB
19 - Understand and design CNNs/186 - CodeChallenge How low can you go Vietnamese.vtt
11.1 kB
11 - FFNs FeedForward Networks/112 - CodeChallenge Optimizers and MNIST Vietnamese.vtt
11.0 kB
5 - Math numpy PyTorch/15 - Converting reality to numbers Vietnamese.vtt
11.0 kB
26 - Where to go from here/228 - How to learn topic X in deep learning English.vtt
11.0 kB
1 - Introduction/2 - Using Udemy like a pro English.vtt
10.9 kB
7 - ANNs Artificial Neural Networks/50 - Linear solutions to linear problems English.vtt
10.9 kB
5 - Math numpy PyTorch/28 - Derivatives find minima English.vtt
10.8 kB
19 - Understand and design CNNs/175 - CNN on shifted MNIST English.vtt
10.8 kB
13 - Measuring model performance/135 - Better performance in test than train English.vtt
10.8 kB
7 - ANNs Artificial Neural Networks/58 - CodeChallenge convert sequential to class Vietnamese.vtt
10.7 kB
9 - Regularization/79 - The importance of equal batch sizes Vietnamese.vtt
10.7 kB
10 - Metaparameters activations optimizers/101 - CodeChallenge Optimizers and something Vietnamese.vtt
10.6 kB
8 - Overfitting and crossvalidation/68 - Crossvalidation on regression English.vtt
10.6 kB
27 - Python intro Data types/235 - Tuples English.vtt
10.5 kB
14 - FFN milestone projects/141 - Project 3 My solution English.vtt
10.5 kB
13 - Measuring model performance/130 - APRF in code Vietnamese.vtt
10.5 kB
5 - Math numpy PyTorch/25 - Reproducible randomness via seeding English.vtt
10.5 kB
11 - FFNs FeedForward Networks/116 - Universal approximation theorem English.vtt
10.5 kB
6 - Gradient descent/38 - Vanishing and exploding gradients Vietnamese.vtt
10.5 kB
25 - Ethics of deep learning/224 - Example case studies Vietnamese.vtt
10.4 kB
23 - Generative adversarial networks/213 - CodeChallenge CNN GAN with CIFAR English.vtt
10.4 kB
12 - More on data/125 - Save and load trained models Vietnamese.vtt
10.3 kB
17 - Running models on a GPU/160 - CodeChallenge Run an experiment on the GPU Vietnamese.vtt
10.3 kB
23 - Generative adversarial networks/212 - CNN GAN with FMNIST Vietnamese.vtt
10.2 kB
5 - Math numpy PyTorch/20 - Logarithms English.vtt
10.2 kB
10 - Metaparameters activations optimizers/98 - SGD with momentum English.vtt
10.2 kB
9 - Regularization/73 - Dropout example 2 Vietnamese.vtt
10.2 kB
7 - ANNs Artificial Neural Networks/51 - Why multilayer linear models dont exist Vietnamese.vtt
10.2 kB
12 - More on data/124 - Getting data into colab Vietnamese.vtt
10.1 kB
31 - Python intro Text and plots/264 - Export plots in low and high resolution English.vtt
10.1 kB
10 - Metaparameters activations optimizers/92 - CodeChallenge Compare relu variants English.vtt
10.1 kB
11 - FFNs FeedForward Networks/113 - Scrambled MNIST English.vtt
10.0 kB
8 - Overfitting and crossvalidation/63 - Generalization Vietnamese.vtt
10.0 kB
12 - More on data/120 - What to do about unbalanced designs English.vtt
9.9 kB
2 - Download all course materials/3 - Downloading and using the code Vietnamese.vtt
9.9 kB
29 - Python intro Functions/243 - Getting help on functions English.vtt
9.9 kB
10 - Metaparameters activations optimizers/87 - Batch normalization in practice English.vtt
9.8 kB
23 - Generative adversarial networks/211 - CodeChallenge Gaussians with fewer layers Vietnamese.vtt
9.8 kB
14 - FFN milestone projects/138 - Project 2 Predicting heart disease English.vtt
9.8 kB
14 - FFN milestone projects/136 - Project 1 A gratuitously complex adding machine English.vtt
9.6 kB
20 - CNN milestone projects/189 - Project 1 Import and classify CIFAR10 English.vtt
9.5 kB
5 - Math numpy PyTorch/14 - Terms and datatypes in math and computers English.vtt
9.5 kB
29 - Python intro Functions/240 - Inputs and outputs English.vtt
9.4 kB
22 - Style transfer/206 - CodeChallenge Style transfer with AlexNet English.vtt
9.3 kB
21 - Transfer learning/197 - Famous CNN architectures Vietnamese.vtt
9.3 kB
10 - Metaparameters activations optimizers/102 - CodeChallenge Adam with L2 regularization English.vtt
9.3 kB
13 - Measuring model performance/128 - Two perspectives of the world English.vtt
9.1 kB
9 - Regularization/70 - train and eval modes English.vtt
9.1 kB
12 - More on data/127 - Where to find online datasets Vietnamese.vtt
9.1 kB
18 - Convolution and transformations/166 - CodeChallenge Choose the parameters English.vtt
9.1 kB
30 - Python intro Flow control/252 - Continue English.vtt
9.0 kB
5 - Math numpy PyTorch/16 - Vector and matrix transpose English.vtt
8.9 kB
11 - FFNs FeedForward Networks/112 - CodeChallenge Optimizers and MNIST English.vtt
8.9 kB
19 - Understand and design CNNs/186 - CodeChallenge How low can you go English.vtt
8.9 kB
17 - Running models on a GPU/160 - CodeChallenge Run an experiment on the GPU English.vtt
8.7 kB
7 - ANNs Artificial Neural Networks/58 - CodeChallenge convert sequential to class English.vtt
8.7 kB
5 - Math numpy PyTorch/15 - Converting reality to numbers English.vtt
8.5 kB
10 - Metaparameters activations optimizers/88 - CodeChallenge Batchnormalize the qwerties Vietnamese.vtt
8.4 kB
9 - Regularization/79 - The importance of equal batch sizes English.vtt
8.4 kB
6 - Gradient descent/35 - CodeChallenge 2D gradient ascent Vietnamese.vtt
8.4 kB
10 - Metaparameters activations optimizers/101 - CodeChallenge Optimizers and something English.vtt
8.4 kB
29 - Python intro Functions/246 - Copies and referents of variables Vietnamese.vtt
8.4 kB
2 - Download all course materials/3 - Downloading and using the code English.vtt
8.4 kB
13 - Measuring model performance/130 - APRF in code English.vtt
8.4 kB
11 - FFNs FeedForward Networks/108 - CodeChallenge Binarized MNIST images Vietnamese.vtt
8.3 kB
23 - Generative adversarial networks/212 - CNN GAN with FMNIST English.vtt
8.2 kB
25 - Ethics of deep learning/224 - Example case studies English.vtt
8.2 kB
7 - ANNs Artificial Neural Networks/51 - Why multilayer linear models dont exist English.vtt
8.2 kB
9 - Regularization/73 - Dropout example 2 English.vtt
8.2 kB
10 - Metaparameters activations optimizers/81 - What are metaparameters Vietnamese.vtt
8.1 kB
11 - FFNs FeedForward Networks/105 - What are fullyconnected and feedforward networks Vietnamese.vtt
8.1 kB
6 - Gradient descent/38 - Vanishing and exploding gradients English.vtt
8.0 kB
12 - More on data/125 - Save and load trained models English.vtt
8.0 kB
23 - Generative adversarial networks/211 - CodeChallenge Gaussians with fewer layers English.vtt
8.0 kB
8 - Overfitting and crossvalidation/63 - Generalization English.vtt
7.9 kB
12 - More on data/124 - Getting data into colab English.vtt
7.9 kB
21 - Transfer learning/197 - Famous CNN architectures English.vtt
7.8 kB
20 - CNN milestone projects/191 - Project 2 CIFARautoencoder Vietnamese.vtt
7.6 kB
12 - More on data/127 - Where to find online datasets English.vtt
7.3 kB
19 - Understand and design CNNs/188 - So many possibilities How to create a CNN Vietnamese.vtt
7.3 kB
22 - Style transfer/202 - What is style transfer and how does it work Vietnamese.vtt
7.2 kB
15 - Weight inits and investigations/151 - Use default inits or apply your own Vietnamese.vtt
7.1 kB
4 - About the Python tutorial/10 - Should you watch the Python tutorial Vietnamese.vtt
6.7 kB
6 - Gradient descent/35 - CodeChallenge 2D gradient ascent English.vtt
6.7 kB
10 - Metaparameters activations optimizers/88 - CodeChallenge Batchnormalize the qwerties English.vtt
6.7 kB
10 - Metaparameters activations optimizers/81 - What are metaparameters English.vtt
6.6 kB
11 - FFNs FeedForward Networks/108 - CodeChallenge Binarized MNIST images English.vtt
6.6 kB
29 - Python intro Functions/246 - Copies and referents of variables English.vtt
6.5 kB
20 - CNN milestone projects/191 - Project 2 CIFARautoencoder English.vtt
6.3 kB
11 - FFNs FeedForward Networks/105 - What are fullyconnected and feedforward networks English.vtt
6.3 kB
19 - Understand and design CNNs/188 - So many possibilities How to create a CNN English.vtt
5.8 kB
20 - CNN milestone projects/192 - Project 3 FMNIST Vietnamese.vtt
5.8 kB
15 - Weight inits and investigations/151 - Use default inits or apply your own English.vtt
5.7 kB
22 - Style transfer/202 - What is style transfer and how does it work English.vtt
5.7 kB
4 - About the Python tutorial/10 - Should you watch the Python tutorial English.vtt
5.5 kB
21 - Transfer learning/199 - CodeChallenge VGG16 Vietnamese.vtt
5.5 kB
27 - Python intro Data types/230 - How to learn from the Python tutorial Vietnamese.vtt
5.3 kB
20 - CNN milestone projects/192 - Project 3 FMNIST English.vtt
4.7 kB
21 - Transfer learning/199 - CodeChallenge VGG16 English.vtt
4.5 kB
27 - Python intro Data types/230 - How to learn from the Python tutorial English.vtt
4.4 kB
32 - Bonus section/265 - Bonus content.html
3.9 kB
5 - Math numpy PyTorch/12 - Introduction to this section Vietnamese.vtt
3.3 kB
6 - Gradient descent/39 - Tangent Notebook revision history Vietnamese.vtt
3.1 kB
2 - Download all course materials/4 - My policy on codesharing Vietnamese.vtt
2.8 kB
5 - Math numpy PyTorch/12 - Introduction to this section English.vtt
2.6 kB
6 - Gradient descent/39 - Tangent Notebook revision history English.vtt
2.5 kB
2 - Download all course materials/4 - My policy on codesharing English.vtt
2.3 kB
5 - Math numpy PyTorch/11 - PyTorch or TensorFlow.html
1.1 kB
7 - ANNs Artificial Neural Networks/59 - Diversity of ANN visual representations.html
517 Bytes
0. Websites you may like/[FreeCourseSite.com].url
127 Bytes
0. Websites you may like/[CourseClub.Me].url
122 Bytes
2 - Download all course materials/3 - Code on my github site.txt
61 Bytes
0. Websites you may like/[GigaCourse.Com].url
49 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>