搜索
[FreeCourseSite.com] Udemy - Data Science Transformers for Natural Language Processing
磁力链接/BT种子名称
[FreeCourseSite.com] Udemy - Data Science Transformers for Natural Language Processing
磁力链接/BT种子简介
种子哈希:
7b17af8497b4a3acfc8db716958d2c1a567b52cb
文件大小:
5.65G
已经下载:
5386
次
下载速度:
极快
收录时间:
2023-12-17
最近下载:
2025-01-02
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:7B17AF8497B4A3ACFC8DB716958D2C1A567B52CB
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
少女初夜
萝莉岛
最近搜索
手 技术
性感苗条包臀裙妹子骑在身上调情,镜头前扣逼口交抱起来操
足娇
blue 1993
美女戴
泽相南
guilt trip 2012 1080p
avatar the way of water.3d
stars-570
丝袜定制
rctd-105
english+psycho
sexart.16.02.17
烟台反差大学生
emilia.perez.2024.multi.1080p.bluray.x264
同事门
第十二期
美女主播潮
wwe raw 6 1 2024
cosplay自慰喷水
sm集合
この素晴らしい世界に祝福を
今晚双飞苗条嫩妹,左拥右抱一起舔弄口交摸逼
约性感
+k9dolls
姐妹花月经
颜值主播
射满子宫
孩子们秘密完整版
国产大尺度定制
文件列表
4. Fine-Tuning (Intermediate)/9. Fine-Tuning Sentiment Analysis in Python.mp4
137.1 MB
7. Question-Answering (Advanced)/13. From Logits to Answers in Python.mp4
126.5 MB
9. Implement Transformers From Scratch (Advanced)/10. How to Train a Causal Language Model From Scratch.mp4
126.2 MB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/14. POS Tagging & Custom Datasets (Solution).mp4
120.7 MB
9. Implement Transformers From Scratch (Advanced)/13. Implement a Seq2Seq Transformer From Scratch for Language Translation (pt 3).mp4
113.9 MB
13. Effective Learning Strategies for Machine Learning FAQ/4. Machine Learning and AI Prerequisite Roadmap (pt 2).mp4
113.4 MB
4. Fine-Tuning (Intermediate)/10. Fine-Tuning Transformers with Custom Dataset.mp4
112.0 MB
7. Question-Answering (Advanced)/7. Aligning the Targets in Python.mp4
108.4 MB
3. Beginner's Corner/4. Sentiment Analysis in Python.mp4
101.8 MB
7. Question-Answering (Advanced)/12. From Logits to Answers.mp4
100.2 MB
9. Implement Transformers From Scratch (Advanced)/12. Implement a Seq2Seq Transformer From Scratch for Language Translation (pt 2).mp4
99.8 MB
9. Implement Transformers From Scratch (Advanced)/11. Implement a Seq2Seq Transformer From Scratch for Language Translation (pt 1).mp4
98.6 MB
9. Implement Transformers From Scratch (Advanced)/3. How to Implement Multihead Attention From Scratch.mp4
97.9 MB
9. Implement Transformers From Scratch (Advanced)/7. Train and Evaluate Encoder From Scratch.mp4
93.7 MB
3. Beginner's Corner/18. Zero-Shot Classification in Python.mp4
91.9 MB
3. Beginner's Corner/6. Text Generation in Python.mp4
90.5 MB
4. Fine-Tuning (Intermediate)/4. Models and Tokenizers in Python.mp4
88.4 MB
13. Effective Learning Strategies for Machine Learning FAQ/3. Machine Learning and AI Prerequisite Roadmap (pt 1).mp4
83.5 MB
3. Beginner's Corner/2. From RNNs to Attention and Transformers - Intuition.mp4
82.0 MB
7. Question-Answering (Advanced)/9. Applying the Tokenizer in Python.mp4
80.2 MB
7. Question-Answering (Advanced)/5. Using the Tokenizer in Python.mp4
75.6 MB
12. Extra Help With Python Coding for Beginners FAQ/1. How to Code by Yourself (part 1).mp4
75.3 MB
3. Beginner's Corner/10. Named Entity Recognition (NER) in Python.mp4
73.7 MB
12. Extra Help With Python Coding for Beginners FAQ/3. Proof that using Jupyter Notebook is the same as not using it.mp4
72.8 MB
7. Question-Answering (Advanced)/6. Aligning the Targets.mp4
72.4 MB
3. Beginner's Corner/7. Masked Language Modeling (Article Spinner).mp4
70.6 MB
3. Beginner's Corner/8. Masked Language Modeling (Article Spinner) in Python.mp4
70.3 MB
4. Fine-Tuning (Intermediate)/3. Models and Tokenizers.mp4
67.7 MB
8. Transformers and Attention Theory (Advanced)/3. Self-Attention & Scaled Dot-Product Attention.mp4
67.4 MB
3. Beginner's Corner/14. Neural Machine Translation in Python.mp4
67.2 MB
2. Getting Setup/2. How to use Github & Extra Coding Tips (Optional).mp4
67.0 MB
4. Fine-Tuning (Intermediate)/2. Text Preprocessing and Tokenization Review.mp4
66.2 MB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/6. Target Alignment (Code).mp4
64.6 MB
4. Fine-Tuning (Intermediate)/5. Transfer Learning & Fine-Tuning (pt 1).mp4
62.7 MB
4. Fine-Tuning (Intermediate)/8. Fine-Tuning Sentiment Analysis and the GLUE Benchmark.mp4
61.3 MB
3. Beginner's Corner/5. Text Generation.mp4
59.9 MB
4. Fine-Tuning (Intermediate)/7. Transfer Learning & Fine-Tuning (pt 3).mp4
59.4 MB
4. Fine-Tuning (Intermediate)/13. Fine-Tuning Transformers with Multiple Inputs in Python.mp4
59.4 MB
3. Beginner's Corner/3. Sentiment Analysis.mp4
56.2 MB
11. Setting Up Your Environment FAQ/1. Anaconda Environment Setup.mp4
55.2 MB
6. Seq2Seq and Neural Machine Translation (Intermediate)/7. Model Inputs (Code).mp4
53.9 MB
1. Welcome/2. Outline.mp4
53.1 MB
3. Beginner's Corner/1. Beginner's Corner Section Introduction.mp4
52.2 MB
8. Transformers and Attention Theory (Advanced)/10. Decoder Architecture.mp4
52.0 MB
4. Fine-Tuning (Intermediate)/6. Transfer Learning & Fine-Tuning (pt 2).mp4
51.7 MB
12. Extra Help With Python Coding for Beginners FAQ/2. How to Code by Yourself (part 2).mp4
51.5 MB
3. Beginner's Corner/16. Question Answering in Python.mp4
50.5 MB
3. Beginner's Corner/12. Text Summarization in Python.mp4
47.7 MB
7. Question-Answering (Advanced)/8. Applying the Tokenizer.mp4
47.2 MB
7. Question-Answering (Advanced)/15. Computing Metrics in Python.mp4
46.4 MB
11. Setting Up Your Environment FAQ/2. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4
45.7 MB
2. Getting Setup/1. Get Your Hands Dirty, Practical Coding Experience, Data Links.mp4
45.7 MB
6. Seq2Seq and Neural Machine Translation (Intermediate)/9. Translation Metrics (BLEU Score & BERT Score) (Code).mp4
45.4 MB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/4. Target Alignment (Code Preparation).mp4
45.1 MB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/3. Data & Tokenizer (Code).mp4
44.8 MB
2. Getting Setup/5. How to Succeed in This Course.mp4
43.2 MB
4. Fine-Tuning (Intermediate)/11. Hugging Face AutoConfig.mp4
42.8 MB
3. Beginner's Corner/15. Question Answering.mp4
42.0 MB
14. Appendix FAQ Finale/2. BONUS.mp4
41.9 MB
7. Question-Answering (Advanced)/3. Exploring the Dataset (SQuAD) in Python.mp4
41.8 MB
8. Transformers and Attention Theory (Advanced)/11. Encoder-Decoder Architecture.mp4
41.6 MB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/10. Metrics (Code).mp4
41.2 MB
9. Implement Transformers From Scratch (Advanced)/8. How to Implement Causal Self-Attention From Scratch.mp4
41.1 MB
13. Effective Learning Strategies for Machine Learning FAQ/2. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4
40.9 MB
7. Question-Answering (Advanced)/17. Train and Evaluate in Python.mp4
39.6 MB
6. Seq2Seq and Neural Machine Translation (Intermediate)/5. Aside Seq2Seq Basics (Optional).mp4
38.9 MB
8. Transformers and Attention Theory (Advanced)/2. Basic Self-Attention.mp4
38.8 MB
9. Implement Transformers From Scratch (Advanced)/5. How to Implement Positional Encoding From Scratch.mp4
37.6 MB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/1. Token Classification Section Introduction.mp4
37.6 MB
6. Seq2Seq and Neural Machine Translation (Intermediate)/11. Train & Evaluate (Code).mp4
37.5 MB
1. Welcome/1. Introduction.mp4
36.3 MB
7. Question-Answering (Advanced)/4. Using the Tokenizer.mp4
36.2 MB
6. Seq2Seq and Neural Machine Translation (Intermediate)/4. Data & Tokenizer (Code).mp4
35.8 MB
8. Transformers and Attention Theory (Advanced)/6. Multi-Head Attention.mp4
35.3 MB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/9. Metrics (Code Preparation).mp4
35.1 MB
6. Seq2Seq and Neural Machine Translation (Intermediate)/6. Model Inputs (Code Preparation).mp4
34.0 MB
8. Transformers and Attention Theory (Advanced)/13. GPT.mp4
32.7 MB
3. Beginner's Corner/17. Zero-Shot Classification.mp4
31.6 MB
8. Transformers and Attention Theory (Advanced)/14. GPT-2.mp4
31.1 MB
8. Transformers and Attention Theory (Advanced)/7. Transformer Block.mp4
30.9 MB
8. Transformers and Attention Theory (Advanced)/8. Positional Encodings.mp4
30.4 MB
4. Fine-Tuning (Intermediate)/12. Fine-Tuning with Multiple Inputs (Textual Entailment).mp4
29.8 MB
3. Beginner's Corner/13. Neural Machine Translation.mp4
29.5 MB
9. Implement Transformers From Scratch (Advanced)/9. How to Implement a Transformer Decoder (GPT) From Scratch.mp4
28.6 MB
3. Beginner's Corner/20. Suggestion Box.mp4
28.5 MB
9. Implement Transformers From Scratch (Advanced)/6. How to Implement Transformer Encoder From Scratch.mp4
28.3 MB
2. Getting Setup/4. Are You Beginner, Intermediate, or Advanced All are OK!.mp4
28.0 MB
9. Implement Transformers From Scratch (Advanced)/1. Implementation Section Introduction.mp4
26.8 MB
8. Transformers and Attention Theory (Advanced)/9. Encoder Architecture.mp4
26.4 MB
7. Question-Answering (Advanced)/14. Computing Metrics.mp4
26.2 MB
6. Seq2Seq and Neural Machine Translation (Intermediate)/2. Data & Tokenizer (Code Preparation).mp4
25.7 MB
3. Beginner's Corner/11. Text Summarization.mp4
25.3 MB
8. Transformers and Attention Theory (Advanced)/15. GPT-3.mp4
25.2 MB
8. Transformers and Attention Theory (Advanced)/12. BERT.mp4
24.4 MB
3. Beginner's Corner/19. Beginner's Corner Section Summary.mp4
24.3 MB
9. Implement Transformers From Scratch (Advanced)/2. Encoder Implementation Plan & Outline.mp4
24.1 MB
7. Question-Answering (Advanced)/11. Question-Answering Metrics in Python.mp4
24.0 MB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/12. Model and Trainer (Code).mp4
23.3 MB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/7. Data Collator (Code Preparation).mp4
23.2 MB
3. Beginner's Corner/9. Named Entity Recognition (NER).mp4
23.1 MB
8. Transformers and Attention Theory (Advanced)/4. Attention Efficiency.mp4
22.6 MB
7. Question-Answering (Advanced)/1. Question-Answering Section Introduction.mp4
22.6 MB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/13. POS Tagging & Custom Datasets (Exercise Prompt).mp4
22.4 MB
6. Seq2Seq and Neural Machine Translation (Intermediate)/10. Train & Evaluate (Code Preparation).mp4
22.3 MB
8. Transformers and Attention Theory (Advanced)/16. Theory Section Summary.mp4
22.0 MB
4. Fine-Tuning (Intermediate)/1. Fine-Tuning Section Introduction.mp4
21.1 MB
7. Question-Answering (Advanced)/2. Exploring the Dataset (SQuAD).mp4
21.1 MB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/2. Data & Tokenizer (Code Preparation).mp4
20.3 MB
6. Seq2Seq and Neural Machine Translation (Intermediate)/8. Translation Metrics (BLEU Score & BERT Score) (Code Preparation).mp4
20.2 MB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/5. Create Tokenized Dataset (Code Preparation).mp4
19.2 MB
6. Seq2Seq and Neural Machine Translation (Intermediate)/1. Translation Section Introduction.mp4
19.1 MB
13. Effective Learning Strategies for Machine Learning FAQ/1. How to Succeed in this Course (Long Version).mp4
18.7 MB
2. Getting Setup/3. Where to get the code, notebooks, and data.mp4
18.6 MB
8. Transformers and Attention Theory (Advanced)/1. Theory Section Introduction.mp4
18.0 MB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/8. Data Collator (Code).mp4
17.8 MB
7. Question-Answering (Advanced)/10. Question-Answering Metrics.mp4
17.3 MB
14. Appendix FAQ Finale/1. What is the Appendix.mp4
17.2 MB
4. Fine-Tuning (Intermediate)/14. Fine-Tuning Section Summary.mp4
16.5 MB
8. Transformers and Attention Theory (Advanced)/5. Attention Mask.mp4
15.8 MB
9. Implement Transformers From Scratch (Advanced)/4. How to Implement the Transformer Block From Scratch.mp4
15.7 MB
7. Question-Answering (Advanced)/18. Question-Answering Section Summary.mp4
14.9 MB
7. Question-Answering (Advanced)/16. Train and Evaluate.mp4
14.8 MB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/11. Model and Trainer (Code Preparation).mp4
11.3 MB
9. Implement Transformers From Scratch (Advanced)/14. Implementation Section Summary.mp4
11.1 MB
6. Seq2Seq and Neural Machine Translation (Intermediate)/12. Translation Section Summary.mp4
10.2 MB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/15. Token Classification Section Summary.mp4
8.4 MB
6. Seq2Seq and Neural Machine Translation (Intermediate)/3. Things Move Fast.mp4
6.4 MB
13. Effective Learning Strategies for Machine Learning FAQ/2. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.srt
33.5 kB
7. Question-Answering (Advanced)/12. From Logits to Answers.srt
28.4 kB
3. Beginner's Corner/2. From RNNs to Attention and Transformers - Intuition.srt
24.6 kB
8. Transformers and Attention Theory (Advanced)/3. Self-Attention & Scaled Dot-Product Attention.srt
24.5 kB
13. Effective Learning Strategies for Machine Learning FAQ/4. Machine Learning and AI Prerequisite Roadmap (pt 2).srt
24.5 kB
12. Extra Help With Python Coding for Beginners FAQ/1. How to Code by Yourself (part 1).srt
23.7 kB
3. Beginner's Corner/4. Sentiment Analysis in Python.srt
21.6 kB
4. Fine-Tuning (Intermediate)/3. Models and Tokenizers.srt
21.1 kB
11. Setting Up Your Environment FAQ/1. Anaconda Environment Setup.srt
20.6 kB
9. Implement Transformers From Scratch (Advanced)/10. How to Train a Causal Language Model From Scratch.srt
20.6 kB
7. Question-Answering (Advanced)/6. Aligning the Targets.srt
19.8 kB
4. Fine-Tuning (Intermediate)/9. Fine-Tuning Sentiment Analysis in Python.srt
19.7 kB
7. Question-Answering (Advanced)/7. Aligning the Targets in Python.srt
19.3 kB
4. Fine-Tuning (Intermediate)/2. Text Preprocessing and Tokenization Review.srt
18.7 kB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/14. POS Tagging & Custom Datasets (Solution).srt
18.3 kB
9. Implement Transformers From Scratch (Advanced)/13. Implement a Seq2Seq Transformer From Scratch for Language Translation (pt 3).srt
17.9 kB
13. Effective Learning Strategies for Machine Learning FAQ/3. Machine Learning and AI Prerequisite Roadmap (pt 1).srt
17.6 kB
7. Question-Answering (Advanced)/13. From Logits to Answers in Python.srt
17.3 kB
4. Fine-Tuning (Intermediate)/8. Fine-Tuning Sentiment Analysis and the GLUE Benchmark.srt
17.3 kB
3. Beginner's Corner/18. Zero-Shot Classification in Python.srt
16.8 kB
3. Beginner's Corner/7. Masked Language Modeling (Article Spinner).srt
16.5 kB
11. Setting Up Your Environment FAQ/2. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.srt
16.2 kB
2. Getting Setup/2. How to use Github & Extra Coding Tips (Optional).srt
16.1 kB
9. Implement Transformers From Scratch (Advanced)/3. How to Implement Multihead Attention From Scratch.srt
15.9 kB
3. Beginner's Corner/5. Text Generation.srt
15.8 kB
6. Seq2Seq and Neural Machine Translation (Intermediate)/5. Aside Seq2Seq Basics (Optional).srt
15.6 kB
4. Fine-Tuning (Intermediate)/10. Fine-Tuning Transformers with Custom Dataset.srt
15.5 kB
3. Beginner's Corner/1. Beginner's Corner Section Introduction.srt
15.4 kB
9. Implement Transformers From Scratch (Advanced)/12. Implement a Seq2Seq Transformer From Scratch for Language Translation (pt 2).srt
15.3 kB
12. Extra Help With Python Coding for Beginners FAQ/3. Proof that using Jupyter Notebook is the same as not using it.srt
15.3 kB
3. Beginner's Corner/6. Text Generation in Python.srt
15.3 kB
8. Transformers and Attention Theory (Advanced)/10. Decoder Architecture.srt
15.0 kB
4. Fine-Tuning (Intermediate)/6. Transfer Learning & Fine-Tuning (pt 2).srt
14.9 kB
3. Beginner's Corner/3. Sentiment Analysis.srt
14.9 kB
13. Effective Learning Strategies for Machine Learning FAQ/1. How to Succeed in this Course (Long Version).srt
14.9 kB
4. Fine-Tuning (Intermediate)/4. Models and Tokenizers in Python.srt
14.5 kB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/4. Target Alignment (Code Preparation).srt
14.1 kB
4. Fine-Tuning (Intermediate)/7. Transfer Learning & Fine-Tuning (pt 3).srt
14.0 kB
1. Welcome/2. Outline.srt
13.8 kB
9. Implement Transformers From Scratch (Advanced)/11. Implement a Seq2Seq Transformer From Scratch for Language Translation (pt 1).srt
13.7 kB
12. Extra Help With Python Coding for Beginners FAQ/2. How to Code by Yourself (part 2).srt
13.6 kB
7. Question-Answering (Advanced)/5. Using the Tokenizer in Python.srt
13.4 kB
2. Getting Setup/5. How to Succeed in This Course.srt
13.3 kB
4. Fine-Tuning (Intermediate)/5. Transfer Learning & Fine-Tuning (pt 1).srt
13.0 kB
8. Transformers and Attention Theory (Advanced)/2. Basic Self-Attention.srt
12.7 kB
9. Implement Transformers From Scratch (Advanced)/7. Train and Evaluate Encoder From Scratch.srt
12.6 kB
7. Question-Answering (Advanced)/8. Applying the Tokenizer.srt
12.6 kB
7. Question-Answering (Advanced)/9. Applying the Tokenizer in Python.srt
12.3 kB
2. Getting Setup/1. Get Your Hands Dirty, Practical Coding Experience, Data Links.srt
12.3 kB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/6. Target Alignment (Code).srt
12.1 kB
8. Transformers and Attention Theory (Advanced)/11. Encoder-Decoder Architecture.srt
11.6 kB
6. Seq2Seq and Neural Machine Translation (Intermediate)/6. Model Inputs (Code Preparation).srt
11.5 kB
7. Question-Answering (Advanced)/4. Using the Tokenizer.srt
11.1 kB
4. Fine-Tuning (Intermediate)/12. Fine-Tuning with Multiple Inputs (Textual Entailment).srt
10.6 kB
3. Beginner's Corner/15. Question Answering.srt
10.3 kB
3. Beginner's Corner/14. Neural Machine Translation in Python.srt
10.0 kB
3. Beginner's Corner/10. Named Entity Recognition (NER) in Python.srt
9.9 kB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/1. Token Classification Section Introduction.srt
9.8 kB
8. Transformers and Attention Theory (Advanced)/7. Transformer Block.srt
9.8 kB
8. Transformers and Attention Theory (Advanced)/8. Positional Encodings.srt
9.7 kB
8. Transformers and Attention Theory (Advanced)/6. Multi-Head Attention.srt
9.6 kB
3. Beginner's Corner/8. Masked Language Modeling (Article Spinner) in Python.srt
9.5 kB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/3. Data & Tokenizer (Code).srt
9.4 kB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/9. Metrics (Code Preparation).srt
9.4 kB
8. Transformers and Attention Theory (Advanced)/13. GPT.srt
8.9 kB
8. Transformers and Attention Theory (Advanced)/9. Encoder Architecture.srt
8.8 kB
9. Implement Transformers From Scratch (Advanced)/1. Implementation Section Introduction.srt
8.7 kB
9. Implement Transformers From Scratch (Advanced)/2. Encoder Implementation Plan & Outline.srt
8.6 kB
8. Transformers and Attention Theory (Advanced)/14. GPT-2.srt
8.5 kB
3. Beginner's Corner/13. Neural Machine Translation.srt
8.3 kB
14. Appendix FAQ Finale/2. BONUS.srt
8.1 kB
6. Seq2Seq and Neural Machine Translation (Intermediate)/7. Model Inputs (Code).srt
8.0 kB
3. Beginner's Corner/17. Zero-Shot Classification.srt
7.8 kB
3. Beginner's Corner/12. Text Summarization in Python.srt
7.7 kB
6. Seq2Seq and Neural Machine Translation (Intermediate)/2. Data & Tokenizer (Code Preparation).srt
7.7 kB
2. Getting Setup/4. Are You Beginner, Intermediate, or Advanced All are OK!.srt
7.3 kB
3. Beginner's Corner/11. Text Summarization.srt
7.3 kB
3. Beginner's Corner/16. Question Answering in Python.srt
7.1 kB
8. Transformers and Attention Theory (Advanced)/1. Theory Section Introduction.srt
7.0 kB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/13. POS Tagging & Custom Datasets (Exercise Prompt).srt
7.0 kB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/2. Data & Tokenizer (Code Preparation).srt
7.0 kB
7. Question-Answering (Advanced)/14. Computing Metrics.srt
6.8 kB
4. Fine-Tuning (Intermediate)/13. Fine-Tuning Transformers with Multiple Inputs in Python.srt
6.8 kB
8. Transformers and Attention Theory (Advanced)/15. GPT-3.srt
6.7 kB
6. Seq2Seq and Neural Machine Translation (Intermediate)/4. Data & Tokenizer (Code).srt
6.6 kB
3. Beginner's Corner/19. Beginner's Corner Section Summary.srt
6.5 kB
6. Seq2Seq and Neural Machine Translation (Intermediate)/1. Translation Section Introduction.srt
6.5 kB
6. Seq2Seq and Neural Machine Translation (Intermediate)/9. Translation Metrics (BLEU Score & BERT Score) (Code).srt
6.5 kB
8. Transformers and Attention Theory (Advanced)/16. Theory Section Summary.srt
6.4 kB
9. Implement Transformers From Scratch (Advanced)/5. How to Implement Positional Encoding From Scratch.srt
6.4 kB
3. Beginner's Corner/9. Named Entity Recognition (NER).srt
6.4 kB
4. Fine-Tuning (Intermediate)/1. Fine-Tuning Section Introduction.srt
6.3 kB
8. Transformers and Attention Theory (Advanced)/12. BERT.srt
6.3 kB
7. Question-Answering (Advanced)/1. Question-Answering Section Introduction.srt
6.3 kB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/10. Metrics (Code).srt
6.2 kB
7. Question-Answering (Advanced)/15. Computing Metrics in Python.srt
6.2 kB
4. Fine-Tuning (Intermediate)/11. Hugging Face AutoConfig.srt
6.2 kB
8. Transformers and Attention Theory (Advanced)/4. Attention Efficiency.srt
6.0 kB
7. Question-Answering (Advanced)/2. Exploring the Dataset (SQuAD).srt
5.8 kB
9. Implement Transformers From Scratch (Advanced)/8. How to Implement Causal Self-Attention From Scratch.srt
5.8 kB
1. Welcome/1. Introduction.srt
5.8 kB
6. Seq2Seq and Neural Machine Translation (Intermediate)/10. Train & Evaluate (Code Preparation).srt
5.8 kB
7. Question-Answering (Advanced)/18. Question-Answering Section Summary.srt
5.2 kB
8. Transformers and Attention Theory (Advanced)/5. Attention Mask.srt
5.2 kB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/5. Create Tokenized Dataset (Code Preparation).srt
5.1 kB
6. Seq2Seq and Neural Machine Translation (Intermediate)/8. Translation Metrics (BLEU Score & BERT Score) (Code Preparation).srt
5.1 kB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/7. Data Collator (Code Preparation).srt
5.0 kB
9. Implement Transformers From Scratch (Advanced)/9. How to Implement a Transformer Decoder (GPT) From Scratch.srt
5.0 kB
3. Beginner's Corner/20. Suggestion Box.srt
4.9 kB
9. Implement Transformers From Scratch (Advanced)/6. How to Implement Transformer Encoder From Scratch.srt
4.9 kB
7. Question-Answering (Advanced)/10. Question-Answering Metrics.srt
4.8 kB
7. Question-Answering (Advanced)/17. Train and Evaluate in Python.srt
4.8 kB
7. Question-Answering (Advanced)/3. Exploring the Dataset (SQuAD) in Python.srt
4.8 kB
6. Seq2Seq and Neural Machine Translation (Intermediate)/11. Train & Evaluate (Code).srt
4.7 kB
2. Getting Setup/3. Where to get the code, notebooks, and data.srt
4.4 kB
4. Fine-Tuning (Intermediate)/14. Fine-Tuning Section Summary.srt
4.2 kB
14. Appendix FAQ Finale/1. What is the Appendix.srt
4.0 kB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/8. Data Collator (Code).srt
3.8 kB
7. Question-Answering (Advanced)/16. Train and Evaluate.srt
3.4 kB
6. Seq2Seq and Neural Machine Translation (Intermediate)/12. Translation Section Summary.srt
3.4 kB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/12. Model and Trainer (Code).srt
3.2 kB
7. Question-Answering (Advanced)/11. Question-Answering Metrics in Python.srt
3.0 kB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/11. Model and Trainer (Code Preparation).srt
3.0 kB
5. Named Entity Recognition (NER) and POS Tagging (Intermediate)/15. Token Classification Section Summary.srt
2.7 kB
9. Implement Transformers From Scratch (Advanced)/4. How to Implement the Transformer Block From Scratch.srt
2.4 kB
6. Seq2Seq and Neural Machine Translation (Intermediate)/3. Things Move Fast.srt
2.4 kB
9. Implement Transformers From Scratch (Advanced)/14. Implementation Section Summary.srt
2.0 kB
10. Extras/1. Data Links.html
256 Bytes
2. Getting Setup/1.1 Data Links.html
157 Bytes
2. Getting Setup/3.2 Data Links.html
157 Bytes
2. Getting Setup/1.2 Github Link.html
145 Bytes
2. Getting Setup/3.3 Github Link.html
145 Bytes
0. Websites you may like/[FreeCourseSite.com].url
127 Bytes
13. Effective Learning Strategies for Machine Learning FAQ/0. Websites you may like/[FreeCourseSite.com].url
127 Bytes
4. Fine-Tuning (Intermediate)/0. Websites you may like/[FreeCourseSite.com].url
127 Bytes
8. Transformers and Attention Theory (Advanced)/0. Websites you may like/[FreeCourseSite.com].url
127 Bytes
2. Getting Setup/3.1 Code Link.html
125 Bytes
0. Websites you may like/[CourseClub.Me].url
122 Bytes
13. Effective Learning Strategies for Machine Learning FAQ/0. Websites you may like/[CourseClub.Me].url
122 Bytes
4. Fine-Tuning (Intermediate)/0. Websites you may like/[CourseClub.Me].url
122 Bytes
8. Transformers and Attention Theory (Advanced)/0. Websites you may like/[CourseClub.Me].url
122 Bytes
0. Websites you may like/[GigaCourse.Com].url
49 Bytes
13. Effective Learning Strategies for Machine Learning FAQ/0. Websites you may like/[GigaCourse.Com].url
49 Bytes
4. Fine-Tuning (Intermediate)/0. Websites you may like/[GigaCourse.Com].url
49 Bytes
8. Transformers and Attention Theory (Advanced)/0. Websites you may like/[GigaCourse.Com].url
49 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>