搜索
[GigaCourse.Com] Udemy - Machine Learning Natural Language Processing in Python (V2)
磁力链接/BT种子名称
[GigaCourse.Com] Udemy - Machine Learning Natural Language Processing in Python (V2)
磁力链接/BT种子简介
种子哈希:
7d42b9e01db58ba1b6b1cda9a928de5809f9b8b4
文件大小:
6.67G
已经下载:
981
次
下载速度:
极快
收录时间:
2023-12-17
最近下载:
2024-12-02
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:7D42B9E01DB58BA1B6B1CDA9A928DE5809F9B8B4
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
最近搜索
vixen.22.06.25
国产新星『巨象娱乐』ssn-03
dom窒息-黑人巨物
rebdb-191
kelly o suze
洗浴中心
ely
jk幼女
精选高清无码(破坏版)
galaphile
留学生
shikkakumon no saikyou kenja
上海留学生小莹
真实女同
001-005
无套再续前缘
老师 良家
24-192
黑熟妇
重磅稀缺流出
eboart桑拿
latin girl
ap289
中午的星星
91沈先生
悪女
小loli
鸡教练
suzy
唯美肉丝
文件列表
18. Recurrent Neural Networks/9. Parts-of-Speech (POS) Tagging in Tensorflow.mp4
152.2 MB
3. Vector Models and Text Preprocessing/14. TF-IDF (Code).mp4
131.0 MB
16. Feedforward Artificial Neural Networks/13. CBOW in Tensorflow (Advanced).mp4
123.3 MB
21. Effective Learning Strategies for Machine Learning FAQ/4. Machine Learning and AI Prerequisite Roadmap (pt 2).mp4
113.4 MB
9. Spam Detection/6. Spam Detection in Python.mp4
112.8 MB
7. Cipher Decryption (Advanced)/4. Genetic Algorithms.mp4
110.3 MB
3. Vector Models and Text Preprocessing/10. Count Vectorizer (Code).mp4
106.9 MB
6. Article Spinner (Intermediate)/4. Article Spinner in Python (pt 1).mp4
100.6 MB
16. Feedforward Artificial Neural Networks/4. Activation Functions.mp4
93.7 MB
17. Convolutional Neural Networks/6. CNN Architecture.mp4
93.6 MB
11. Text Summarization/8. TextRank in Python (Advanced).mp4
86.3 MB
18. Recurrent Neural Networks/6. GRU and LSTM (pt 1).mp4
86.3 MB
13. Latent Semantic Analysis (Latent Semantic Indexing)/2. SVD (Singular Value Decomposition) Intuition.mp4
85.8 MB
15. The Neuron/4. Text Classification in Tensorflow.mp4
85.6 MB
17. Convolutional Neural Networks/2. What is Convolution.mp4
83.7 MB
3. Vector Models and Text Preprocessing/16. How to Build TF-IDF From Scratch.mp4
83.7 MB
21. Effective Learning Strategies for Machine Learning FAQ/3. Machine Learning and AI Prerequisite Roadmap (pt 1).mp4
83.5 MB
11. Text Summarization/4. Text Summarization in Python.mp4
81.9 MB
6. Article Spinner (Intermediate)/5. Article Spinner in Python (pt 2).mp4
79.0 MB
17. Convolutional Neural Networks/5. Convolution on Color Images.mp4
78.9 MB
3. Vector Models and Text Preprocessing/9. Stemming and Lemmatization Demo.mp4
78.5 MB
3. Vector Models and Text Preprocessing/6. Tokenization.mp4
77.1 MB
1. Introduction/1. Introduction and Outline.mp4
76.5 MB
12. Topic Modeling/6. Topic Modeling with Latent Dirichlet Allocation (LDA) in Python.mp4
75.9 MB
5. Markov Models (Intermediate)/8. Building a Text Classifier (Code pt 2).mp4
75.7 MB
20. Extra Help With Python Coding for Beginners FAQ/1. How to Code by Yourself (part 1).mp4
75.3 MB
20. Extra Help With Python Coding for Beginners FAQ/3. Proof that using Jupyter Notebook is the same as not using it.mp4
72.8 MB
15. The Neuron/2. Fitting a Line.mp4
71.9 MB
3. Vector Models and Text Preprocessing/18. Neural Word Embeddings Demo.mp4
70.1 MB
7. Cipher Decryption (Advanced)/3. Language Models (Review).mp4
68.7 MB
2. Getting Set Up/2. How to use Github & Extra Coding Tips (Optional).mp4
67.0 MB
10. Sentiment Analysis/2. Logistic Regression Intuition (pt 1).mp4
66.7 MB
10. Sentiment Analysis/6. Sentiment Analysis in Python (pt 1).mp4
66.2 MB
5. Markov Models (Intermediate)/11. Language Model (Code pt 1).mp4
65.9 MB
9. Spam Detection/4. Aside Class Imbalance, ROC, AUC, and F1 Score (pt 1).mp4
63.1 MB
12. Topic Modeling/5. Latent Dirichlet Allocation (LDA) - Intuition (Advanced).mp4
63.1 MB
3. Vector Models and Text Preprocessing/12. TF-IDF (Theory).mp4
61.4 MB
3. Vector Models and Text Preprocessing/8. Stemming and Lemmatization.mp4
60.7 MB
5. Markov Models (Intermediate)/7. Building a Text Classifier (Code pt 1).mp4
60.5 MB
13. Latent Semantic Analysis (Latent Semantic Indexing)/4. Latent Semantic Analysis Latent Semantic Indexing in Python.mp4
60.4 MB
3. Vector Models and Text Preprocessing/5. Count Vectorizer (Theory).mp4
60.2 MB
18. Recurrent Neural Networks/5. RNNs Paying Attention to Shapes.mp4
59.9 MB
16. Feedforward Artificial Neural Networks/3. The Geometrical Picture.mp4
59.3 MB
3. Vector Models and Text Preprocessing/21. How To Do NLP In Other Languages.mp4
58.7 MB
12. Topic Modeling/2. Latent Dirichlet Allocation (LDA) - Essentials.mp4
57.9 MB
9. Spam Detection/5. Aside Class Imbalance, ROC, AUC, and F1 Score (pt 2).mp4
56.6 MB
19. Setting Up Your Environment FAQ/2. Anaconda Environment Setup.mp4
55.2 MB
12. Topic Modeling/7. Non-Negative Matrix Factorization (NMF) Intuition.mp4
55.0 MB
5. Markov Models (Intermediate)/12. Language Model (Code pt 2).mp4
55.0 MB
10. Sentiment Analysis/7. Sentiment Analysis in Python (pt 2).mp4
54.5 MB
15. The Neuron/6. How does a model learn.mp4
54.1 MB
9. Spam Detection/2. Naive Bayes Intuition.mp4
53.8 MB
19. Setting Up Your Environment FAQ/3. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4
53.4 MB
18. Recurrent Neural Networks/7. GRU and LSTM (pt 2).mp4
52.8 MB
16. Feedforward Artificial Neural Networks/8. Text Preprocessing Code Preparation.mp4
52.4 MB
11. Text Summarization/6. TextRank - How It Really Works (Advanced).mp4
51.7 MB
20. Extra Help With Python Coding for Beginners FAQ/2. How to Code by Yourself (part 2).mp4
51.6 MB
3. Vector Models and Text Preprocessing/3. What is a Vector.mp4
51.3 MB
3. Vector Models and Text Preprocessing/15. Word-to-Index Mapping.mp4
49.9 MB
16. Feedforward Artificial Neural Networks/2. Forward Propagation.mp4
49.0 MB
11. Text Summarization/5. TextRank Intuition.mp4
48.2 MB
18. Recurrent Neural Networks/8. RNN for Text Classification in Tensorflow.mp4
48.2 MB
5. Markov Models (Intermediate)/3. The Markov Model.mp4
48.1 MB
3. Vector Models and Text Preprocessing/17. Neural Word Embeddings.mp4
47.8 MB
15. The Neuron/5. The Neuron.mp4
47.4 MB
11. Text Summarization/9. Text Summarization in Python - The Easy Way (Beginner).mp4
47.4 MB
3. Vector Models and Text Preprocessing/11. Vector Similarity.mp4
47.3 MB
5. Markov Models (Intermediate)/9. Language Model (Theory).mp4
47.1 MB
16. Feedforward Artificial Neural Networks/5. Multiclass Classification.mp4
46.6 MB
2. Getting Set Up/1. Get Your Hands Dirty, Practical Coding Experience, Data Links.mp4
45.7 MB
10. Sentiment Analysis/1. Sentiment Analysis - Problem Description.mp4
44.8 MB
16. Feedforward Artificial Neural Networks/10. Embeddings.mp4
44.3 MB
18. Recurrent Neural Networks/4. RNN Code Preparation.mp4
44.2 MB
17. Convolutional Neural Networks/8. Convolutional Neural Network for NLP in Tensorflow.mp4
44.1 MB
6. Article Spinner (Intermediate)/1. Article Spinning - Problem Description.mp4
44.0 MB
2. Getting Set Up/4. How to Succeed in This Course.mp4
43.2 MB
18. Recurrent Neural Networks/3. Simple RNN Elman Unit (pt 2).mp4
43.2 MB
7. Cipher Decryption (Advanced)/10. Code pt 5.mp4
43.0 MB
18. Recurrent Neural Networks/2. Simple RNN Elman Unit (pt 1).mp4
42.8 MB
17. Convolutional Neural Networks/7. CNNs for Text.mp4
42.5 MB
22. Appendix FAQ Finale/2. BONUS.mp4
41.8 MB
10. Sentiment Analysis/4. Logistic Regression Training and Interpretation (pt 3).mp4
41.6 MB
7. Cipher Decryption (Advanced)/11. Code pt 6.mp4
41.3 MB
7. Cipher Decryption (Advanced)/7. Code pt 2.mp4
41.0 MB
21. Effective Learning Strategies for Machine Learning FAQ/2. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4
40.9 MB
16. Feedforward Artificial Neural Networks/1. ANN - Section Introduction.mp4
40.5 MB
16. Feedforward Artificial Neural Networks/15. Aside How to Choose Hyperparameters (Optional).mp4
39.9 MB
16. Feedforward Artificial Neural Networks/7. Text Classification ANN in Tensorflow.mp4
37.9 MB
12. Topic Modeling/8. Topic Modeling with Non-Negative Matrix Factorization (NMF) in Python.mp4
37.8 MB
13. Latent Semantic Analysis (Latent Semantic Indexing)/3. LSA LSI Applying SVD to NLP.mp4
36.1 MB
5. Markov Models (Intermediate)/4. Probability Smoothing and Log-Probabilities.mp4
35.7 MB
15. The Neuron/3. Classification Code Preparation.mp4
34.5 MB
5. Markov Models (Intermediate)/2. The Markov Property.mp4
33.8 MB
18. Recurrent Neural Networks/10. Named Entity Recognition (NER) in Tensorflow.mp4
33.1 MB
9. Spam Detection/1. Spam Detection - Problem Description.mp4
32.9 MB
16. Feedforward Artificial Neural Networks/9. Text Preprocessing in Tensorflow.mp4
32.4 MB
17. Convolutional Neural Networks/4. What is Convolution (Weight Sharing).mp4
31.3 MB
8. Machine Learning Models (Introduction)/1. Machine Learning Models (Introduction).mp4
31.0 MB
7. Cipher Decryption (Advanced)/8. Code pt 3.mp4
31.0 MB
5. Markov Models (Intermediate)/6. Building a Text Classifier (Exercise Prompt).mp4
30.8 MB
13. Latent Semantic Analysis (Latent Semantic Indexing)/5. LSA LSI Exercises.mp4
30.5 MB
5. Markov Models (Intermediate)/5. Building a Text Classifier (Theory).mp4
30.3 MB
5. Markov Models (Intermediate)/10. Language Model (Exercise Prompt).mp4
30.2 MB
3. Vector Models and Text Preprocessing/2. Basic Definitions for NLP.mp4
29.7 MB
6. Article Spinner (Intermediate)/6. Case Study Article Spinning Gone Wrong.mp4
29.6 MB
3. Vector Models and Text Preprocessing/22. Suggestion Box.mp4
28.5 MB
4. Probabilistic Models (Introduction)/1. Probabilistic Models (Introduction).mp4
28.2 MB
1. Introduction/2. Are You Beginner, Intermediate, or Advanced All are OK!.mp4
28.0 MB
7. Cipher Decryption (Advanced)/1. Section Introduction.mp4
27.6 MB
11. Text Summarization/2. Text Summarization Using Vectors.mp4
27.0 MB
11. Text Summarization/1. Text Summarization Section Introduction.mp4
27.0 MB
7. Cipher Decryption (Advanced)/9. Code pt 4.mp4
26.9 MB
17. Convolutional Neural Networks/1. CNN - Section Introduction.mp4
26.9 MB
6. Article Spinner (Intermediate)/3. Article Spinner Exercise Prompt.mp4
25.8 MB
17. Convolutional Neural Networks/3. What is Convolution (Pattern Matching).mp4
25.8 MB
14. Deep Learning (Introduction)/1. Deep Learning Introduction (Intermediate-Advanced).mp4
25.7 MB
7. Cipher Decryption (Advanced)/13. Section Conclusion.mp4
25.4 MB
10. Sentiment Analysis/3. Multiclass Logistic Regression (pt 2).mp4
24.8 MB
3. Vector Models and Text Preprocessing/7. Stopwords.mp4
24.6 MB
19. Setting Up Your Environment FAQ/1. Pre-Installation Check.mp4
23.9 MB
2. Getting Set Up/5. Temporary 403 Errors.mp4
23.1 MB
13. Latent Semantic Analysis (Latent Semantic Indexing)/1. LSA LSI Section Introduction.mp4
22.0 MB
18. Recurrent Neural Networks/1. RNN - Section Introduction.mp4
21.9 MB
3. Vector Models and Text Preprocessing/19. Vector Models & Text Preprocessing Summary.mp4
21.9 MB
7. Cipher Decryption (Advanced)/5. Code Preparation.mp4
21.6 MB
16. Feedforward Artificial Neural Networks/6. ANN Code Preparation.mp4
21.1 MB
11. Text Summarization/10. Text Summarization Section Summary.mp4
21.1 MB
21. Effective Learning Strategies for Machine Learning FAQ/1. How to Succeed in this Course (Long Version).mp4
18.7 MB
2. Getting Set Up/3. Where to get the code, notebooks, and data.mp4
18.6 MB
3. Vector Models and Text Preprocessing/1. Vector Models & Text Preprocessing Intro.mp4
18.4 MB
7. Cipher Decryption (Advanced)/2. Ciphers.mp4
18.1 MB
12. Topic Modeling/1. Topic Modeling Section Introduction.mp4
17.9 MB
10. Sentiment Analysis/5. Sentiment Analysis - Exercise Prompt.mp4
17.4 MB
22. Appendix FAQ Finale/1. What is the Appendix.mp4
17.2 MB
7. Cipher Decryption (Advanced)/6. Code pt 1.mp4
16.8 MB
6. Article Spinner (Intermediate)/2. Article Spinning - N-Gram Approach.mp4
16.7 MB
16. Feedforward Artificial Neural Networks/11. CBOW (Advanced).mp4
16.5 MB
5. Markov Models (Intermediate)/13. Markov Models Section Summary.mp4
16.3 MB
7. Cipher Decryption (Advanced)/12. Cipher Decryption - Additional Discussion.mp4
15.4 MB
18. Recurrent Neural Networks/11. Exercise Return to CNNs (Advanced).mp4
15.3 MB
12. Topic Modeling/3. LDA - Code Preparation.mp4
15.2 MB
3. Vector Models and Text Preprocessing/4. Bag of Words.mp4
14.5 MB
3. Vector Models and Text Preprocessing/13. (Interactive) Recommender Exercise Prompt.mp4
14.0 MB
5. Markov Models (Intermediate)/1. Markov Models Section Introduction.mp4
13.7 MB
15. The Neuron/1. The Neuron - Section Introduction.mp4
11.5 MB
15. The Neuron/7. The Neuron - Section Summary.mp4
10.8 MB
12. Topic Modeling/9. Topic Modeling Section Summary.mp4
10.3 MB
18. Recurrent Neural Networks/12. RNN - Section Summary.mp4
9.5 MB
12. Topic Modeling/4. LDA - Maybe Useful Picture (Optional).mp4
9.4 MB
9. Spam Detection/3. Spam Detection - Exercise Prompt.mp4
9.2 MB
17. Convolutional Neural Networks/9. CNN - Section Summary.mp4
8.6 MB
11. Text Summarization/3. Text Summarization Exercise Prompt.mp4
8.5 MB
16. Feedforward Artificial Neural Networks/14. ANN - Section Summary.mp4
8.0 MB
11. Text Summarization/7. TextRank Exercise Prompt (Advanced).mp4
7.8 MB
3. Vector Models and Text Preprocessing/20. Text Summarization Preview.mp4
6.6 MB
16. Feedforward Artificial Neural Networks/12. CBOW Exercise Prompt.mp4
5.3 MB
21. Effective Learning Strategies for Machine Learning FAQ/2. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.srt
33.2 kB
7. Cipher Decryption (Advanced)/4. Genetic Algorithms.srt
29.9 kB
17. Convolutional Neural Networks/6. CNN Architecture.srt
29.4 kB
3. Vector Models and Text Preprocessing/14. TF-IDF (Code).srt
25.4 kB
21. Effective Learning Strategies for Machine Learning FAQ/4. Machine Learning and AI Prerequisite Roadmap (pt 2).srt
24.2 kB
18. Recurrent Neural Networks/6. GRU and LSTM (pt 1).srt
23.8 kB
16. Feedforward Artificial Neural Networks/4. Activation Functions.srt
23.5 kB
20. Extra Help With Python Coding for Beginners FAQ/1. How to Code by Yourself (part 1).srt
23.2 kB
18. Recurrent Neural Networks/9. Parts-of-Speech (POS) Tagging in Tensorflow.srt
23.2 kB
10. Sentiment Analysis/2. Logistic Regression Intuition (pt 1).srt
23.1 kB
17. Convolutional Neural Networks/5. Convolution on Color Images.srt
21.4 kB
6. Article Spinner (Intermediate)/4. Article Spinner in Python (pt 1).srt
21.2 kB
17. Convolutional Neural Networks/2. What is Convolution.srt
21.2 kB
7. Cipher Decryption (Advanced)/3. Language Models (Review).srt
21.0 kB
16. Feedforward Artificial Neural Networks/13. CBOW in Tensorflow (Advanced).srt
20.8 kB
12. Topic Modeling/5. Latent Dirichlet Allocation (LDA) - Intuition (Advanced).srt
20.7 kB
19. Setting Up Your Environment FAQ/2. Anaconda Environment Setup.srt
20.6 kB
3. Vector Models and Text Preprocessing/6. Tokenization.srt
20.3 kB
9. Spam Detection/6. Spam Detection in Python.srt
19.7 kB
3. Vector Models and Text Preprocessing/5. Count Vectorizer (Theory).srt
19.6 kB
3. Vector Models and Text Preprocessing/10. Count Vectorizer (Code).srt
19.6 kB
3. Vector Models and Text Preprocessing/16. How to Build TF-IDF From Scratch.srt
19.0 kB
15. The Neuron/2. Fitting a Line.srt
18.8 kB
3. Vector Models and Text Preprocessing/12. TF-IDF (Theory).srt
18.7 kB
11. Text Summarization/8. TextRank in Python (Advanced).srt
17.5 kB
9. Spam Detection/4. Aside Class Imbalance, ROC, AUC, and F1 Score (pt 1).srt
17.2 kB
21. Effective Learning Strategies for Machine Learning FAQ/3. Machine Learning and AI Prerequisite Roadmap (pt 1).srt
17.0 kB
5. Markov Models (Intermediate)/3. The Markov Model.srt
16.9 kB
3. Vector Models and Text Preprocessing/8. Stemming and Lemmatization.srt
16.2 kB
2. Getting Set Up/2. How to use Github & Extra Coding Tips (Optional).srt
16.1 kB
1. Introduction/1. Introduction and Outline.srt
15.8 kB
13. Latent Semantic Analysis (Latent Semantic Indexing)/2. SVD (Singular Value Decomposition) Intuition.srt
15.8 kB
9. Spam Detection/2. Naive Bayes Intuition.srt
15.6 kB
12. Topic Modeling/2. Latent Dirichlet Allocation (LDA) - Essentials.srt
15.5 kB
3. Vector Models and Text Preprocessing/11. Vector Similarity.srt
15.5 kB
18. Recurrent Neural Networks/7. GRU and LSTM (pt 2).srt
15.5 kB
11. Text Summarization/4. Text Summarization in Python.srt
15.4 kB
16. Feedforward Artificial Neural Networks/8. Text Preprocessing Code Preparation.srt
15.2 kB
3. Vector Models and Text Preprocessing/3. What is a Vector.srt
15.2 kB
3. Vector Models and Text Preprocessing/15. Word-to-Index Mapping.srt
15.2 kB
19. Setting Up Your Environment FAQ/3. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.srt
15.0 kB
3. Vector Models and Text Preprocessing/21. How To Do NLP In Other Languages.srt
14.9 kB
21. Effective Learning Strategies for Machine Learning FAQ/1. How to Succeed in this Course (Long Version).srt
14.9 kB
9. Spam Detection/5. Aside Class Imbalance, ROC, AUC, and F1 Score (pt 2).srt
14.8 kB
15. The Neuron/6. How does a model learn.srt
14.7 kB
20. Extra Help With Python Coding for Beginners FAQ/3. Proof that using Jupyter Notebook is the same as not using it.srt
14.7 kB
3. Vector Models and Text Preprocessing/9. Stemming and Lemmatization Demo.srt
14.2 kB
5. Markov Models (Intermediate)/8. Building a Text Classifier (Code pt 2).srt
14.1 kB
12. Topic Modeling/7. Non-Negative Matrix Factorization (NMF) Intuition.srt
14.1 kB
11. Text Summarization/6. TextRank - How It Really Works (Advanced).srt
13.8 kB
3. Vector Models and Text Preprocessing/17. Neural Word Embeddings.srt
13.8 kB
20. Extra Help With Python Coding for Beginners FAQ/2. How to Code by Yourself (part 2).srt
13.6 kB
5. Markov Models (Intermediate)/9. Language Model (Theory).srt
13.6 kB
12. Topic Modeling/6. Topic Modeling with Latent Dirichlet Allocation (LDA) in Python.srt
13.6 kB
5. Markov Models (Intermediate)/11. Language Model (Code pt 1).srt
13.5 kB
2. Getting Set Up/4. How to Succeed in This Course.srt
13.3 kB
18. Recurrent Neural Networks/3. Simple RNN Elman Unit (pt 2).srt
13.2 kB
3. Vector Models and Text Preprocessing/18. Neural Word Embeddings Demo.srt
13.0 kB
15. The Neuron/5. The Neuron.srt
13.0 kB
16. Feedforward Artificial Neural Networks/10. Embeddings.srt
12.9 kB
16. Feedforward Artificial Neural Networks/2. Forward Propagation.srt
12.9 kB
18. Recurrent Neural Networks/4. RNN Code Preparation.srt
12.9 kB
6. Article Spinner (Intermediate)/5. Article Spinner in Python (pt 2).srt
12.7 kB
2. Getting Set Up/1. Get Your Hands Dirty, Practical Coding Experience, Data Links.srt
12.3 kB
5. Markov Models (Intermediate)/7. Building a Text Classifier (Code pt 1).srt
12.1 kB
16. Feedforward Artificial Neural Networks/3. The Geometrical Picture.srt
12.1 kB
15. The Neuron/4. Text Classification in Tensorflow.srt
12.0 kB
10. Sentiment Analysis/6. Sentiment Analysis in Python (pt 1).srt
11.9 kB
18. Recurrent Neural Networks/2. Simple RNN Elman Unit (pt 1).srt
11.8 kB
16. Feedforward Artificial Neural Networks/5. Multiclass Classification.srt
11.6 kB
5. Markov Models (Intermediate)/12. Language Model (Code pt 2).srt
11.6 kB
11. Text Summarization/5. TextRank Intuition.srt
11.2 kB
10. Sentiment Analysis/4. Logistic Regression Training and Interpretation (pt 3).srt
11.1 kB
6. Article Spinner (Intermediate)/1. Article Spinning - Problem Description.srt
11.0 kB
5. Markov Models (Intermediate)/4. Probability Smoothing and Log-Probabilities.srt
10.5 kB
13. Latent Semantic Analysis (Latent Semantic Indexing)/3. LSA LSI Applying SVD to NLP.srt
10.5 kB
18. Recurrent Neural Networks/5. RNNs Paying Attention to Shapes.srt
10.4 kB
13. Latent Semantic Analysis (Latent Semantic Indexing)/4. Latent Semantic Analysis Latent Semantic Indexing in Python.srt
10.3 kB
10. Sentiment Analysis/1. Sentiment Analysis - Problem Description.srt
10.1 kB
17. Convolutional Neural Networks/7. CNNs for Text.srt
10.0 kB
10. Sentiment Analysis/7. Sentiment Analysis in Python (pt 2).srt
10.0 kB
15. The Neuron/3. Classification Code Preparation.srt
9.7 kB
5. Markov Models (Intermediate)/2. The Markov Property.srt
9.7 kB
5. Markov Models (Intermediate)/5. Building a Text Classifier (Theory).srt
9.7 kB
16. Feedforward Artificial Neural Networks/1. ANN - Section Introduction.srt
9.5 kB
7. Cipher Decryption (Advanced)/7. Code pt 2.srt
9.5 kB
5. Markov Models (Intermediate)/10. Language Model (Exercise Prompt).srt
9.2 kB
7. Cipher Decryption (Advanced)/10. Code pt 5.srt
9.0 kB
5. Markov Models (Intermediate)/6. Building a Text Classifier (Exercise Prompt).srt
9.0 kB
9. Spam Detection/1. Spam Detection - Problem Description.srt
8.9 kB
16. Feedforward Artificial Neural Networks/15. Aside How to Choose Hyperparameters (Optional).srt
8.8 kB
10. Sentiment Analysis/3. Multiclass Logistic Regression (pt 2).srt
8.7 kB
7. Cipher Decryption (Advanced)/13. Section Conclusion.srt
8.5 kB
17. Convolutional Neural Networks/4. What is Convolution (Weight Sharing).srt
8.3 kB
22. Appendix FAQ Finale/2. BONUS.srt
8.1 kB
8. Machine Learning Models (Introduction)/1. Machine Learning Models (Introduction).srt
8.0 kB
11. Text Summarization/9. Text Summarization in Python - The Easy Way (Beginner).srt
8.0 kB
6. Article Spinner (Intermediate)/3. Article Spinner Exercise Prompt.srt
7.8 kB
6. Article Spinner (Intermediate)/6. Case Study Article Spinning Gone Wrong.srt
7.7 kB
11. Text Summarization/1. Text Summarization Section Introduction.srt
7.7 kB
13. Latent Semantic Analysis (Latent Semantic Indexing)/5. LSA LSI Exercises.srt
7.5 kB
11. Text Summarization/2. Text Summarization Using Vectors.srt
7.5 kB
7. Cipher Decryption (Advanced)/11. Code pt 6.srt
7.4 kB
1. Introduction/2. Are You Beginner, Intermediate, or Advanced All are OK!.srt
7.4 kB
17. Convolutional Neural Networks/3. What is Convolution (Pattern Matching).srt
7.1 kB
14. Deep Learning (Introduction)/1. Deep Learning Introduction (Intermediate-Advanced).srt
6.9 kB
7. Cipher Decryption (Advanced)/5. Code Preparation.srt
6.9 kB
7. Cipher Decryption (Advanced)/1. Section Introduction.srt
6.8 kB
3. Vector Models and Text Preprocessing/2. Basic Definitions for NLP.srt
6.8 kB
19. Setting Up Your Environment FAQ/1. Pre-Installation Check.srt
6.8 kB
18. Recurrent Neural Networks/1. RNN - Section Introduction.srt
6.5 kB
3. Vector Models and Text Preprocessing/7. Stopwords.srt
6.5 kB
16. Feedforward Artificial Neural Networks/9. Text Preprocessing in Tensorflow.srt
6.4 kB
4. Probabilistic Models (Introduction)/1. Probabilistic Models (Introduction).srt
6.4 kB
7. Cipher Decryption (Advanced)/8. Code pt 3.srt
6.3 kB
18. Recurrent Neural Networks/10. Named Entity Recognition (NER) in Tensorflow.srt
6.3 kB
16. Feedforward Artificial Neural Networks/6. ANN Code Preparation.srt
6.1 kB
17. Convolutional Neural Networks/1. CNN - Section Introduction.srt
6.1 kB
18. Recurrent Neural Networks/8. RNN for Text Classification in Tensorflow.srt
5.7 kB
16. Feedforward Artificial Neural Networks/11. CBOW (Advanced).srt
5.4 kB
6. Article Spinner (Intermediate)/2. Article Spinning - N-Gram Approach.srt
5.3 kB
13. Latent Semantic Analysis (Latent Semantic Indexing)/1. LSA LSI Section Introduction.srt
5.3 kB
10. Sentiment Analysis/5. Sentiment Analysis - Exercise Prompt.srt
5.2 kB
16. Feedforward Artificial Neural Networks/7. Text Classification ANN in Tensorflow.srt
5.2 kB
17. Convolutional Neural Networks/8. Convolutional Neural Network for NLP in Tensorflow.srt
5.1 kB
3. Vector Models and Text Preprocessing/1. Vector Models & Text Preprocessing Intro.srt
5.1 kB
12. Topic Modeling/3. LDA - Code Preparation.srt
5.0 kB
12. Topic Modeling/8. Topic Modeling with Non-Negative Matrix Factorization (NMF) in Python.srt
5.0 kB
7. Cipher Decryption (Advanced)/9. Code pt 4.srt
5.0 kB
7. Cipher Decryption (Advanced)/2. Ciphers.srt
4.9 kB
3. Vector Models and Text Preprocessing/19. Vector Models & Text Preprocessing Summary.srt
4.9 kB
3. Vector Models and Text Preprocessing/22. Suggestion Box.srt
4.9 kB
11. Text Summarization/10. Text Summarization Section Summary.srt
4.5 kB
2. Getting Set Up/3. Where to get the code, notebooks, and data.srt
4.4 kB
7. Cipher Decryption (Advanced)/6. Code pt 1.srt
4.2 kB
18. Recurrent Neural Networks/11. Exercise Return to CNNs (Advanced).srt
4.2 kB
12. Topic Modeling/1. Topic Modeling Section Introduction.srt
4.2 kB
7. Cipher Decryption (Advanced)/12. Cipher Decryption - Additional Discussion.srt
4.2 kB
5. Markov Models (Intermediate)/13. Markov Models Section Summary.srt
4.1 kB
22. Appendix FAQ Finale/1. What is the Appendix.srt
3.9 kB
2. Getting Set Up/5. Temporary 403 Errors.srt
3.8 kB
5. Markov Models (Intermediate)/1. Markov Models Section Introduction.srt
3.5 kB
3. Vector Models and Text Preprocessing/13. (Interactive) Recommender Exercise Prompt.srt
3.3 kB
3. Vector Models and Text Preprocessing/4. Bag of Words.srt
3.2 kB
15. The Neuron/1. The Neuron - Section Introduction.srt
3.0 kB
9. Spam Detection/3. Spam Detection - Exercise Prompt.srt
2.7 kB
12. Topic Modeling/4. LDA - Maybe Useful Picture (Optional).srt
2.6 kB
18. Recurrent Neural Networks/12. RNN - Section Summary.srt
2.4 kB
11. Text Summarization/3. Text Summarization Exercise Prompt.srt
2.4 kB
15. The Neuron/7. The Neuron - Section Summary.srt
2.2 kB
12. Topic Modeling/9. Topic Modeling Section Summary.srt
2.0 kB
16. Feedforward Artificial Neural Networks/14. ANN - Section Summary.srt
2.0 kB
11. Text Summarization/7. TextRank Exercise Prompt (Advanced).srt
1.8 kB
3. Vector Models and Text Preprocessing/20. Text Summarization Preview.srt
1.7 kB
17. Convolutional Neural Networks/9. CNN - Section Summary.srt
1.7 kB
16. Feedforward Artificial Neural Networks/12. CBOW Exercise Prompt.srt
970 Bytes
2. Getting Set Up/1.1 Data Links.html
157 Bytes
2. Getting Set Up/3.2 Data Links.html
157 Bytes
2. Getting Set Up/1.2 Github Link.html
139 Bytes
2. Getting Set Up/3.3 Github Link.html
139 Bytes
2. Getting Set Up/3.1 Code Link.html
125 Bytes
0. Websites you may like/[CourseClub.Me].url
122 Bytes
10. Sentiment Analysis/0. Websites you may like/[CourseClub.Me].url
122 Bytes
10. Sentiment Analysis/[CourseClub.Me].url
122 Bytes
[CourseClub.Me].url
122 Bytes
0. Websites you may like/[GigaCourse.Com].url
49 Bytes
10. Sentiment Analysis/0. Websites you may like/[GigaCourse.Com].url
49 Bytes
10. Sentiment Analysis/[GigaCourse.Com].url
49 Bytes
[GigaCourse.Com].url
49 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>