搜索
[FreeCourseSite.com] Udemy - Data Science and Machine Learning Bootcamp with R
磁力链接/BT种子名称
[FreeCourseSite.com] Udemy - Data Science and Machine Learning Bootcamp with R
磁力链接/BT种子简介
种子哈希:
8213bd1833377401f1f40725b041faddaf11a518
文件大小:
2.86G
已经下载:
647
次
下载速度:
极快
收录时间:
2021-04-02
最近下载:
2025-01-02
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:8213BD1833377401F1F40725B041FADDAF11A518
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
少女初夜
萝莉岛
最近搜索
宫子
2022年06月
紫色面具
小学后台
小洛丽塔
淫骚小甜甜
女厕
第一部露脸作品
gali_diva_marci_koltermann_seduciendo_a_dos_milfs_
姐姐妹花
copland organ symphonies
noripachi
小女友就爽的叫
3370
假屌插菊
粉嫩奶头诱惑
【泰国】
有逼不插
陈新
ei hoyo 2
推特大咖【印象】
cp iene
xxxomas+
牛仔裤高跟鞋新人苗条御姐啪啪+腰细美臀特写深喉口交+翘起屁股第一视角后入+抽插猛操搞完手指扣逼
拍同事
5kporn.
sisu
寂静+
2024年11月,人气泡良大神,【狮子座】,最新两个良家,
chusex_y
文件列表
4. Mac OS Installation Set-Up/1. Mac OS Installation Procedure.mp4
74.9 MB
18. Capstone Data Project/2. Capstone Project Solutions Walkthrough.mp4
66.4 MB
19. Introduction to Machine Learning with R/2. Introduction to Machine Learning.mp4
62.6 MB
21. Machine Learning Project - Linear Regression/2. ML - Linear Regression Project - Solutions Part 1.mp4
62.4 MB
14. Data Manipulation with R/8. Guide to Using Tidyr.mp4
60.5 MB
15. Data Visualization with R/2. Histograms.mp4
59.7 MB
23. Machine Learning Project - Logistic Regression/2. Logistic Regression Project Solutions - Part 1.mp4
59.0 MB
20. Machine Learning with R - Linear Regression/2. Linear Regression with R - Part 1.mp4
58.3 MB
33. Machine Learning with R - Neural Nets/2. Neural Nets with R.mp4
57.4 MB
20. Machine Learning with R - Linear Regression/3. Linear Regression with R - Part 2.mp4
56.6 MB
22. Machine Learning with R - Logistic Regression/3. Logistic Regression with R - Part 2.mp4
49.9 MB
24. Machine Learning with R - K Nearest Neighbors/2. K Nearest Neighbors with R.mp4
49.0 MB
21. Machine Learning Project - Linear Regression/1. Introduction to Linear Regression Project.mp4
48.8 MB
22. Machine Learning with R - Logistic Regression/2. Logistic Regression with R - Part 1.mp4
48.6 MB
1. Course Introduction/4.1 R-Course-HTML-Notes.zip
47.8 MB
6. Development Environment Overview/2.1 R-Course-HTML-Notes.zip
47.8 MB
18. Capstone Data Project/1. Introduction to Capstone Project.mp4
47.7 MB
15. Data Visualization with R/3. Scatterplots.mp4
47.4 MB
12. R Programming Basics/10. Functions Training Exercise - Solutions.mp4
45.5 MB
32. Machine Learning with R - Natural Language Processing/3. Natural Language Processing with R - Part 2.mp4
44.9 MB
17. Interactive Visualizations with Plotly/1. Overview of Plotly and Interactive Visualizations.mp4
44.6 MB
16. Data Visualization Project/2. Data Visualization Project - Solutions Walkthrough - Part 1.mp4
44.1 MB
16. Data Visualization Project/3. Data Visualization Project Solutions Walkthrough - Part 2.mp4
43.5 MB
12. R Programming Basics/8. Functions.mp4
42.6 MB
28. Machine Learning with R - Support Vector Machines/2. Support Vector Machines with R.mp4
41.5 MB
9. R Data Frames/5. Overview of Data Frame Operations - Part 2.mp4
40.8 MB
27. Machine Learning Project - Decision Trees and Random Forests/2. Tree Methods Project Solutions - Part 1.mp4
40.7 MB
23. Machine Learning Project - Logistic Regression/3. Logistic Regression Project Solutions - Part 2.mp4
40.5 MB
31. Machine Learning Project - K-means Clustering/2. K Means Clustering Project - Solutions Walkthrough.mp4
40.1 MB
23. Machine Learning Project - Logistic Regression/4. Logistic Regression Project - Solutions Part 3.mp4
39.5 MB
6. Development Environment Overview/3. Guide to RStudio.mp4
36.8 MB
9. R Data Frames/4. Overview of Data Frame Operations - Part 1.mp4
36.3 MB
26. Machine Learning with R - Decision Trees and Random Forests/2. Decision Trees and Random Forests with R.mp4
36.1 MB
9. R Data Frames/7. Data Frame Training Exercises - Solutions Walkthrough.mp4
35.7 MB
11. Data Input and Output with R/5. SQL with R.mp4
35.1 MB
21. Machine Learning Project - Linear Regression/3. ML - Linear Regression Project - Solutions Part 2.mp4
34.3 MB
13. Advanced R Programming/3. Apply.mp4
32.9 MB
6. Development Environment Overview/2. Course Notes.mp4
32.6 MB
15. Data Visualization with R/10. ggplot2 Exercise Solutions.mp4
32.0 MB
25. Machine Learning Project - K Nearest Neighbors/2. K Nearest Neighbors Project Solutions.mp4
31.9 MB
14. Data Manipulation with R/2. Guide to Using Dplyr.mp4
30.9 MB
12. R Programming Basics/3. if, else, and else if Statements.mp4
30.6 MB
29. Machine Learning Project - Support Vector Machines/2. Support Vector Machines Project - Solutions Part 1.mp4
29.9 MB
8. R Matrices/8. Matrix Training Exercises - Solutions Walkthrough.mp4
29.5 MB
15. Data Visualization with R/7. Coordinates and Faceting.mp4
29.4 MB
13. Advanced R Programming/6. Dates and Timestamps.mp4
29.2 MB
11. Data Input and Output with R/4. Excel Files with R.mp4
29.0 MB
12. R Programming Basics/7. For Loops.mp4
27.8 MB
20. Machine Learning with R - Linear Regression/4. Linear Regression with R - Part 3.mp4
27.6 MB
34. Machine Learning Project - Neural Nets/2. Neural Nets Project - Solutions.mp4
26.8 MB
15. Data Visualization with R/6. 2 Variable Plotting.mp4
25.9 MB
3. Windows Installation Set-Up/1. Windows Installation Procedure.mp4
25.7 MB
29. Machine Learning Project - Support Vector Machines/3. Support Vector Machines Project - Solutions Part 2.mp4
25.5 MB
12. R Programming Basics/5. Conditional Statements Training Exercise - Solutions Walkthrough.mp4
25.4 MB
14. Data Manipulation with R/3. Guide to Using Dplyr - Part 2.mp4
25.3 MB
11. Data Input and Output with R/6. Web Scraping with R.mp4
23.9 MB
30. Machine Learning with R - K-means Clustering/2. K Means Clustering with R.mp4
23.6 MB
22. Machine Learning with R - Logistic Regression/1. Introduction to Logistic Regression.mp4
23.0 MB
10. R Lists/1. List Basics.mp4
23.0 MB
9. R Data Frames/2. Data Frame Basics.mp4
22.5 MB
8. R Matrices/2. Creating a Matrix.mp4
22.3 MB
13. Advanced R Programming/2. Built-in R Features.mp4
21.4 MB
15. Data Visualization with R/4. Barplots.mp4
20.9 MB
9. R Data Frames/3. Data Frame Indexing and Selection.mp4
19.9 MB
7. Introduction to R Basics/8. Vector Indexing and Slicing.mp4
18.8 MB
1. Course Introduction/1. Introduction to Course.mp4
18.2 MB
8. R Matrices/6. Factor and Categorical Matrices.mp4
17.8 MB
15. Data Visualization with R/5. Boxplots.mp4
17.5 MB
14. Data Manipulation with R/4. Pipe Operator.mp4
17.4 MB
12. R Programming Basics/2. Logical Operators.mp4
17.0 MB
14. Data Manipulation with R/7. Dplyr Training Exercise - Solutions Walkthrough.mp4
16.4 MB
7. Introduction to R Basics/5. Vector Basics.mp4
16.0 MB
16. Data Visualization Project/1. Data Visualization Project.mp4
16.0 MB
7. Introduction to R Basics/11. R Basics Training Exercise - Solutions Walkthrough.mp4
15.5 MB
25. Machine Learning Project - K Nearest Neighbors/1. Introduction K Nearest Neighbors Project.mp4
15.4 MB
11. Data Input and Output with R/2. CSV Files with R.mp4
14.7 MB
12. R Programming Basics/6. While Loops.mp4
14.2 MB
23. Machine Learning Project - Logistic Regression/1. Introduction to Logistic Regression Project.mp4
14.0 MB
15. Data Visualization with R/8. Themes.mp4
14.0 MB
15. Data Visualization with R/1. Overview of ggplot2.mp4
14.0 MB
8. R Matrices/5. Matrix Selection and Indexing.mp4
14.0 MB
13. Advanced R Programming/4. Math Functions with R.mp4
13.6 MB
8. R Matrices/4. Matrix Operations.mp4
13.5 MB
33. Machine Learning with R - Neural Nets/1. Introduction to Neural Nets.mp4
13.3 MB
32. Machine Learning with R - Natural Language Processing/2. Natural Language Processing with R - Part 1.mp4
13.2 MB
26. Machine Learning with R - Decision Trees and Random Forests/1. Introduction to Tree Methods.mp4
13.1 MB
7. Introduction to R Basics/7. Comparison Operators.mp4
12.4 MB
20. Machine Learning with R - Linear Regression/1. Introduction to Linear Regression.mp4
12.1 MB
29. Machine Learning Project - Support Vector Machines/1. Introduction to SVM Project.mp4
12.1 MB
34. Machine Learning Project - Neural Nets/1. Introduction to Neural Nets Project.mp4
11.6 MB
13. Advanced R Programming/5. Regular Expressions.mp4
11.6 MB
27. Machine Learning Project - Decision Trees and Random Forests/3. Tree Methods Project Solutions - Part 2.mp4
11.0 MB
27. Machine Learning Project - Decision Trees and Random Forests/1. Introduction to Decision Trees and Random Forests Project.mp4
10.7 MB
7. Introduction to R Basics/4. R Basic Data Types.mp4
10.4 MB
7. Introduction to R Basics/3. Variables.mp4
10.4 MB
30. Machine Learning with R - K-means Clustering/1. Introduction to K-Means Clustering.mp4
10.0 MB
24. Machine Learning with R - K Nearest Neighbors/1. Introduction to K Nearest Neighbors.mp4
9.7 MB
28. Machine Learning with R - Support Vector Machines/1. Introduction to Support Vector Machines.mp4
9.4 MB
8. R Matrices/3. Matrix Arithmetic.mp4
9.3 MB
31. Machine Learning Project - K-means Clustering/1. Introduction to K Means Clustering Project.mp4
9.2 MB
12. R Programming Basics/9. Functions Training Exercise.mp4
9.0 MB
7. Introduction to R Basics/2. Arithmetic in R.mp4
8.9 MB
7. Introduction to R Basics/6. Vector Operations.mp4
8.9 MB
15. Data Visualization with R/9. ggplot2 Exercises.mp4
8.7 MB
32. Machine Learning with R - Natural Language Processing/1. Introduction to Natural Language Processing.mp4
8.7 MB
1. Course Introduction/3. What is Data Science.mp4
8.2 MB
7. Introduction to R Basics/9. Getting Help with R and RStudio.mp4
7.1 MB
1. Course Introduction/2. Course Curriculum.mp4
7.0 MB
7. Introduction to R Basics/10. R Basics Training Exercise.mp4
6.8 MB
7. Introduction to R Basics/1. Introduction to R Basics.mp4
6.8 MB
9. R Data Frames/6. Data Frame Training Exercise.mp4
5.2 MB
12. R Programming Basics/4. Conditional Statements Training Exercise.mp4
4.6 MB
8. R Matrices/7. Matrix Training Exercise.mp4
4.0 MB
14. Data Manipulation with R/6. Dplyr Training Exercise.mp4
3.2 MB
19. Introduction to Machine Learning with R/2.1 Machine Learning Slides.zip
3.0 MB
12. R Programming Basics/1. Introduction to Programming Basics.mp4
2.0 MB
13. Advanced R Programming/1. Introduction to Advanced R Programming.mp4
1.9 MB
8. R Matrices/1. Introduction to R Matrices.mp4
1.7 MB
9. R Data Frames/1. Introduction to R Data Frames.mp4
1.6 MB
14. Data Manipulation with R/1. Data Manipulation Overview.mp4
1.3 MB
6. Development Environment Overview/1. Development Environment Overview.mp4
1.2 MB
11. Data Input and Output with R/1. Introduction to Data Input and Output with R.mp4
1.1 MB
33. Machine Learning with R - Neural Nets/2. Neural Nets with R.srt
32.1 kB
20. Machine Learning with R - Linear Regression/3. Linear Regression with R - Part 2.srt
30.6 kB
18. Capstone Data Project/2. Capstone Project Solutions Walkthrough.srt
30.3 kB
21. Machine Learning Project - Linear Regression/2. ML - Linear Regression Project - Solutions Part 1.srt
30.0 kB
12. R Programming Basics/10. Functions Training Exercise - Solutions.srt
29.2 kB
20. Machine Learning with R - Linear Regression/2. Linear Regression with R - Part 1.srt
28.9 kB
22. Machine Learning with R - Logistic Regression/2. Logistic Regression with R - Part 1.srt
28.6 kB
15. Data Visualization with R/2. Histograms.srt
28.6 kB
14. Data Manipulation with R/8. Guide to Using Tidyr.srt
28.4 kB
23. Machine Learning Project - Logistic Regression/2. Logistic Regression Project Solutions - Part 1.srt
28.4 kB
19. Introduction to Machine Learning with R/2. Introduction to Machine Learning.srt
27.7 kB
9. R Data Frames/5. Overview of Data Frame Operations - Part 2.srt
27.4 kB
12. R Programming Basics/8. Functions.srt
26.8 kB
24. Machine Learning with R - K Nearest Neighbors/2. K Nearest Neighbors with R.srt
25.9 kB
22. Machine Learning with R - Logistic Regression/3. Logistic Regression with R - Part 2.srt
25.4 kB
9. R Data Frames/4. Overview of Data Frame Operations - Part 1.srt
25.0 kB
15. Data Visualization with R/3. Scatterplots.srt
24.4 kB
31. Machine Learning Project - K-means Clustering/2. K Means Clustering Project - Solutions Walkthrough.srt
23.8 kB
27. Machine Learning Project - Decision Trees and Random Forests/2. Tree Methods Project Solutions - Part 1.srt
23.3 kB
23. Machine Learning Project - Logistic Regression/3. Logistic Regression Project Solutions - Part 2.srt
22.3 kB
28. Machine Learning with R - Support Vector Machines/2. Support Vector Machines with R.srt
21.2 kB
9. R Data Frames/7. Data Frame Training Exercises - Solutions Walkthrough.srt
21.2 kB
32. Machine Learning with R - Natural Language Processing/3. Natural Language Processing with R - Part 2.srt
20.7 kB
13. Advanced R Programming/3. Apply.srt
20.6 kB
12. R Programming Basics/3. if, else, and else if Statements.srt
20.3 kB
15. Data Visualization with R/10. ggplot2 Exercise Solutions.srt
19.7 kB
23. Machine Learning Project - Logistic Regression/4. Logistic Regression Project - Solutions Part 3.srt
19.7 kB
8. R Matrices/8. Matrix Training Exercises - Solutions Walkthrough.srt
19.7 kB
6. Development Environment Overview/3. Guide to RStudio.srt
19.5 kB
12. R Programming Basics/7. For Loops.srt
18.5 kB
14. Data Manipulation with R/2. Guide to Using Dplyr.srt
18.3 kB
11. Data Input and Output with R/4. Excel Files with R.srt
18.0 kB
12. R Programming Basics/5. Conditional Statements Training Exercise - Solutions Walkthrough.srt
17.8 kB
26. Machine Learning with R - Decision Trees and Random Forests/2. Decision Trees and Random Forests with R.srt
17.5 kB
22. Machine Learning with R - Logistic Regression/1. Introduction to Logistic Regression.srt
17.4 kB
13. Advanced R Programming/6. Dates and Timestamps.srt
16.9 kB
16. Data Visualization Project/2. Data Visualization Project - Solutions Walkthrough - Part 1.srt
16.9 kB
16. Data Visualization Project/3. Data Visualization Project Solutions Walkthrough - Part 2.srt
16.7 kB
11. Data Input and Output with R/5. SQL with R.srt
16.4 kB
20. Machine Learning with R - Linear Regression/4. Linear Regression with R - Part 3.srt
16.0 kB
29. Machine Learning Project - Support Vector Machines/2. Support Vector Machines Project - Solutions Part 1.srt
15.7 kB
21. Machine Learning Project - Linear Regression/3. ML - Linear Regression Project - Solutions Part 2.srt
15.5 kB
6. Development Environment Overview/2. Course Notes.srt
15.0 kB
8. R Matrices/2. Creating a Matrix.srt
14.9 kB
29. Machine Learning Project - Support Vector Machines/3. Support Vector Machines Project - Solutions Part 2.srt
14.7 kB
14. Data Manipulation with R/3. Guide to Using Dplyr - Part 2.srt
14.5 kB
30. Machine Learning with R - K-means Clustering/2. K Means Clustering with R.srt
14.4 kB
7. Introduction to R Basics/8. Vector Indexing and Slicing.srt
14.4 kB
15. Data Visualization with R/7. Coordinates and Faceting.srt
14.4 kB
21. Machine Learning Project - Linear Regression/1. Introduction to Linear Regression Project.srt
14.3 kB
25. Machine Learning Project - K Nearest Neighbors/2. K Nearest Neighbors Project Solutions.srt
13.8 kB
17. Interactive Visualizations with Plotly/1. Overview of Plotly and Interactive Visualizations.srt
13.4 kB
9. R Data Frames/3. Data Frame Indexing and Selection.srt
13.1 kB
10. R Lists/1. List Basics.srt
13.1 kB
18. Capstone Data Project/1. Introduction to Capstone Project.srt
13.0 kB
13. Advanced R Programming/2. Built-in R Features.srt
12.8 kB
34. Machine Learning Project - Neural Nets/2. Neural Nets Project - Solutions.srt
12.5 kB
9. R Data Frames/2. Data Frame Basics.srt
12.1 kB
15. Data Visualization with R/4. Barplots.srt
11.8 kB
8. R Matrices/6. Factor and Categorical Matrices.srt
11.7 kB
12. R Programming Basics/2. Logical Operators.srt
11.6 kB
15. Data Visualization with R/5. Boxplots.srt
11.0 kB
11. Data Input and Output with R/6. Web Scraping with R.srt
10.6 kB
12. R Programming Basics/6. While Loops.srt
10.6 kB
15. Data Visualization with R/6. 2 Variable Plotting.srt
10.6 kB
7. Introduction to R Basics/11. R Basics Training Exercise - Solutions Walkthrough.srt
10.5 kB
15. Data Visualization with R/1. Overview of ggplot2.srt
10.5 kB
3. Windows Installation Set-Up/1. Windows Installation Procedure.srt
10.4 kB
7. Introduction to R Basics/5. Vector Basics.srt
10.3 kB
14. Data Manipulation with R/7. Dplyr Training Exercise - Solutions Walkthrough.srt
10.1 kB
8. R Matrices/5. Matrix Selection and Indexing.srt
9.9 kB
7. Introduction to R Basics/7. Comparison Operators.srt
9.8 kB
14. Data Manipulation with R/4. Pipe Operator.srt
9.5 kB
11. Data Input and Output with R/2. CSV Files with R.srt
9.5 kB
33. Machine Learning with R - Neural Nets/1. Introduction to Neural Nets.srt
9.5 kB
26. Machine Learning with R - Decision Trees and Random Forests/1. Introduction to Tree Methods.srt
9.5 kB
4. Mac OS Installation Set-Up/1. Mac OS Installation Procedure.srt
8.9 kB
20. Machine Learning with R - Linear Regression/1. Introduction to Linear Regression.srt
8.3 kB
15. Data Visualization with R/8. Themes.srt
7.9 kB
32. Machine Learning with R - Natural Language Processing/2. Natural Language Processing with R - Part 1.srt
7.8 kB
7. Introduction to R Basics/4. R Basic Data Types.srt
7.8 kB
8. R Matrices/4. Matrix Operations.srt
7.8 kB
7. Introduction to R Basics/3. Variables.srt
7.6 kB
27. Machine Learning Project - Decision Trees and Random Forests/3. Tree Methods Project Solutions - Part 2.srt
7.3 kB
24. Machine Learning with R - K Nearest Neighbors/1. Introduction to K Nearest Neighbors.srt
7.3 kB
30. Machine Learning with R - K-means Clustering/1. Introduction to K-Means Clustering.srt
7.2 kB
13. Advanced R Programming/5. Regular Expressions.srt
7.0 kB
7. Introduction to R Basics/2. Arithmetic in R.srt
6.7 kB
8. R Matrices/3. Matrix Arithmetic.srt
6.6 kB
7. Introduction to R Basics/6. Vector Operations.srt
6.5 kB
32. Machine Learning with R - Natural Language Processing/1. Introduction to Natural Language Processing.srt
6.3 kB
28. Machine Learning with R - Support Vector Machines/1. Introduction to Support Vector Machines.srt
6.2 kB
1. Course Introduction/3. What is Data Science.srt
5.9 kB
25. Machine Learning Project - K Nearest Neighbors/1. Introduction K Nearest Neighbors Project.srt
5.4 kB
13. Advanced R Programming/4. Math Functions with R.srt
5.0 kB
16. Data Visualization Project/1. Data Visualization Project.srt
4.8 kB
15. Data Visualization with R/9. ggplot2 Exercises.srt
4.7 kB
7. Introduction to R Basics/1. Introduction to R Basics.srt
4.2 kB
12. R Programming Basics/9. Functions Training Exercise.srt
4.0 kB
1. Course Introduction/1. Introduction to Course.srt
4.0 kB
29. Machine Learning Project - Support Vector Machines/1. Introduction to SVM Project.srt
4.0 kB
34. Machine Learning Project - Neural Nets/1. Introduction to Neural Nets Project.srt
3.6 kB
7. Introduction to R Basics/10. R Basics Training Exercise.srt
3.6 kB
31. Machine Learning Project - K-means Clustering/1. Introduction to K Means Clustering Project.srt
3.6 kB
1. Course Introduction/2. Course Curriculum.srt
3.5 kB
7. Introduction to R Basics/9. Getting Help with R and RStudio.srt
3.4 kB
23. Machine Learning Project - Logistic Regression/1. Introduction to Logistic Regression Project.srt
2.9 kB
27. Machine Learning Project - Decision Trees and Random Forests/1. Introduction to Decision Trees and Random Forests Project.srt
2.9 kB
12. R Programming Basics/4. Conditional Statements Training Exercise.srt
2.6 kB
2. Course Best Practices/1. How to Get Help in the Course!.html
2.0 kB
14. Data Manipulation with R/6. Dplyr Training Exercise.srt
2.0 kB
11. Data Input and Output with R/3. Note on R with Excel Download.html
1.9 kB
9. R Data Frames/6. Data Frame Training Exercise.srt
1.8 kB
12. R Programming Basics/1. Introduction to Programming Basics.srt
1.6 kB
8. R Matrices/7. Matrix Training Exercise.srt
1.6 kB
13. Advanced R Programming/1. Introduction to Advanced R Programming.srt
1.6 kB
5. Linux Installation/1. LinuxUnbuntu Installation Procedure.html
1.5 kB
1. Course Introduction/4. Course FAQ.html
1.3 kB
8. R Matrices/1. Introduction to R Matrices.srt
1.3 kB
9. R Data Frames/1. Introduction to R Data Frames.srt
1.1 kB
14. Data Manipulation with R/1. Data Manipulation Overview.srt
1.0 kB
17. Interactive Visualizations with Plotly/2. Resources for Plotly and ggplot2.html
962 Bytes
35. Bonus Section/1. Bonus Lecture.html
532 Bytes
11. Data Input and Output with R/1. Introduction to Data Input and Output with R.srt
494 Bytes
6. Development Environment Overview/1. Development Environment Overview.srt
483 Bytes
19. Introduction to Machine Learning with R/1. ISLR PDF.html
393 Bytes
2. Course Best Practices/3. Installation and Set-Up.html
335 Bytes
14. Data Manipulation with R/5. Quick note on Dpylr exercise.html
309 Bytes
2. Course Best Practices/2. Welcome to the Course..html
159 Bytes
0. Websites you may like/[FCS Forum].url
133 Bytes
0. Websites you may like/[FreeCourseSite.com].url
127 Bytes
0. Websites you may like/[CourseClub.ME].url
122 Bytes
8. R Matrices/4.1 Reference of Built-in Functions.html
117 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>