搜索
Udacity - Artificial Intelligence AI for Trading v1.0.0
磁力链接/BT种子名称
Udacity - Artificial Intelligence AI for Trading v1.0.0
磁力链接/BT种子简介
种子哈希:
82f9d7fdd8f4b428c744961a9b0d08fdef23d5dd
文件大小:
5.86G
已经下载:
1077
次
下载速度:
极快
收录时间:
2024-03-11
最近下载:
2024-12-06
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:82F9D7FDD8F4B428C744961A9B0D08FDEF23D5DD
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
少女初夜
萝莉岛
最近搜索
狗日
bystanders
174
the riders
0832
瑜伽+少妇
网红雪乳正妹系列
?姐弟乱伦+灌醉高挑大长腿极品姐姐插b+附泄密照,射精在汤里给他姐喝超刺激,1月内容11文件夹整理好
男娘
日式露天温泉
cos去衣
淫乱史
私密养生spa
preteen secrets
749
072
2024+少女
onlyfans网红反差
摄
the karate kid
的张张
女老师+
精选厕
进境粮食
drkinla
约妹合集
赤裸羔羊电影
爱欲之岛
the ministry of
长腿女神p15
文件列表
Part 02-Module 01-Lesson 01_Welcome To Term II/03. AITND Term II Interview W Justin V2 V2-JOkwa1brNX8.mp4
50.6 MB
Part 02-Module 01-Lesson 05_Financial Statements/03. M5 SC 15 10Ks Walkthrough V1-0ytyZ4LVG6s.mp4
38.7 MB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/25. Kalman Filter Code Solution - Artificial Intelligence for Robotics-X7cixvcogl8.mp4
35.4 MB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/24. PyTorch - Part 8-S9F7MtJ5jls.mp4
30.9 MB
Part 03-Module 01-Lesson 02_Data Types and Operators/19. String Methods-Bv7CAxVOONs.mp4
24.9 MB
Part 01-Module 04-Lesson 01_Factors/12. Zipline Pipeline SC V1-DHTwIwVk_sc.mp4
24.6 MB
Part 07-Module 01-Lesson 03_Clustering/13. Sklearn-3zHUAXcoZ7c.mp4
24.4 MB
Part 01-Module 03-Lesson 04_Portfolio Optimization/12. L4 13 Limitations V2-UbbZa7-3iuk.mp4
24.3 MB
Part 02-Module 01-Lesson 05_Financial Statements/12. M5 SC 7 Metacharacters Part 2 V1-KK1xo8GDfvE.mp4
23.7 MB
Part 06-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-FV_hc3MzS_8.mp4
23.1 MB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-b2zvrFL8AUw.mp4
23.0 MB
Part 07-Module 01-Lesson 04_Decision Trees/01. MLND SL DT 00 Intro V2-l34ijtQhVNk.mp4
22.7 MB
Part 03-Module 01-Lesson 02_Data Types and Operators/10. Boolean Comparison and Logical Operators-iNNsUJIDtVU.mp4
22.7 MB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/12. PyTorch V2 Part 3 Solution V2-zBWlOeX2sQM.mp4
22.3 MB
Part 07-Module 01-Lesson 02_Naive Bayes/04. SL NB 03 Guess The Person Now V1 V2-pQgO1KF90yU.mp4
22.1 MB
Part 03-Module 01-Lesson 02_Data Types and Operators/08. Whitespace-UxkIwcOczQQ.mp4
22.0 MB
Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/09. Linear Transformations 1-99jYIxBRDww.mp4
21.8 MB
Part 02-Module 01-Lesson 05_Financial Statements/02. AIT M5L4A 02 Financial Statement V6-XYff0ROHzWo.mp4
21.4 MB
Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/11. Linear Transformations 3-g_yTyRwMzXU.mp4
21.1 MB
Part 03-Module 01-Lesson 03_Control Flow/07. Good And Bad Examples-95oLh3WtdhY.mp4
20.9 MB
Part 01-Module 04-Lesson 03_Risk Factor Models/18. MV When You Dont Believe In Yourself 1 V1-rjCr-Z7UhZE.mp4
20.8 MB
Part 01-Module 04-Lesson 01_Factors/02. M4 L1A 02 Intro V2-W7_llXQ2GhA.mp4
20.7 MB
Part 02-Module 01-Lesson 03_Text Processing/04. Cleaning-qawXp9DPV6I.mp4
20.5 MB
Part 03-Module 01-Lesson 04_Functions/14. Iterators And Generators-tYH8X4Zeh-0.mp4
19.9 MB
Part 01-Module 01-Lesson 06_Data Processing/11. M1L4 13 Exchange Traded Funds V4-Zx7v5GCfpvI.mp4
19.8 MB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/11. PyTorch V2 Part 3 V1-9ILiZwbi9dA.mp4
19.7 MB
Part 03-Module 01-Lesson 03_Control Flow/10. For Loops-UtX0PXSUCdY.mp4
19.3 MB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/20. 07 CharRNN Solution V1-ed33qePHrJM.mp4
19.2 MB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/16. MV 12 Embrace The Struggle V2-SGcgOm5kiKU.mp4
19.2 MB
Part 03-Module 01-Lesson 03_Control Flow/02. If Elif and Else-KZubH5XT0eU.mp4
19.2 MB
Part 06-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-CNpSrdnYvbo.mp4
18.9 MB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/08. Jonathan Larkin Careers-QhHNPxM_Ku4.mp4
18.8 MB
Part 02-Module 01-Lesson 05_Financial Statements/13. M5 SC 8 Metacharacters Part 3 V1-nDlxRlDUNHk.mp4
18.5 MB
Part 02-Module 01-Lesson 05_Financial Statements/14. M5 SC 9 Substitutions And Flags V1-9pxTGOlkLEY.mp4
18.4 MB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/25. PyTorch V2 Part 8 Solution V1-4n6T93hKRD4.mp4
18.3 MB
Part 03-Module 01-Lesson 03_Control Flow/31. List Comprehensions-6qxo-NV9v_s.mp4
18.2 MB
Part 02-Module 01-Lesson 01_Welcome To Term II/01. AITND TII 01 Recap Of Term 1 V1-uhIvBfhcyLM.mp4
18.1 MB
Part 03-Module 01-Lesson 02_Data Types and Operators/13. Strings-ySZDrs-nNqg.mp4
18.1 MB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/07. M4 L1B 06 Factor Models In Quant Finance V2-VeM2SudgZqc.mp4
18.1 MB
Part 03-Module 01-Lesson 03_Control Flow/02. If Statements-jWiIUMrwPqA.mp4
17.8 MB
Part 02-Module 01-Lesson 05_Financial Statements/05. AIT M5L4B 01 Introduction To Regex V4-WCXDD_n1ZuA.mp4
17.8 MB
Part 06-Module 01-Lesson 07_Bayes Rule/20. Bayes Rule Summary-RgXQ8GRsjfc.mp4
17.7 MB
Part 03-Module 01-Lesson 02_Data Types and Operators/05. L2 04b Variables II V3-4IJqbP8vi6A.mp4
17.6 MB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/10. PyTorch V2 Part 2 Solution 2 V1-8KRX7HvqfP0.mp4
17.5 MB
Part 01-Module 02-Lesson 04_Time Series Modeling/04. M2L4 05 Advanced Time Series Models V5-cj1RCBTDog8.mp4
17.4 MB
Part 06-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-GeINbOOYkF8.mp4
16.7 MB
Part 03-Module 01-Lesson 04_Functions/08. Documentation-_Vl9NJkA6JQ.mp4
16.7 MB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/17. PyTorch V2 Part 5 Solution V1-AjrXltxqsK4.mp4
16.6 MB
Part 06-Module 01-Lesson 06_Conditional Probability/15. Summary-yepMH9VswI8.mp4
16.6 MB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/17. 04 Implementing CharRNN V2-MMtgZXzFB10.mp4
16.5 MB
Part 03-Module 01-Lesson 03_Control Flow/28. Zip and Enumerate-bSJPzVArE7M.mp4
16.5 MB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/05. PyTorch V2 Part 1 Solution V1-mNJ8CujTtpo.mp4
16.4 MB
Part 01-Module 03-Lesson 04_Portfolio Optimization/11. L4 12 Rebalancing Strategies V2-8u5gBx-fYr8.mp4
16.4 MB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/25. M4 L1B 25 Other Alternative Data V1-hMw3AuPVSSs.mp4
16.2 MB
Part 03-Module 01-Lesson 04_Functions/02. Defining Functions-IP_tJYhynbc.mp4
16.2 MB
Part 03-Module 01-Lesson 02_Data Types and Operators/08. Números inteiros e floats-MiJ1vfWp-Ts.mp4
16.2 MB
Part 03-Module 01-Lesson 02_Data Types and Operators/05. Variables-7pxpUot4x0w.mp4
16.1 MB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/08. M4 L1B 07 Risk Factors V Alpha Factors V2-9KUpH1MDC1k.mp4
16.0 MB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/14. PCA Toy Problem SC V1-uyl44T12yU8.mp4
15.9 MB
Part 01-Module 02-Lesson 02_Outliers and Filtering/02. M2L2 02 Sources Of Outliers V8-gXKhKQ2_TaA.mp4
15.9 MB
Part 01-Module 02-Lesson 05_Volatility/12. M2L5 12 Using Volatility For Equity Trading V5-Vh9ajVRedvY.mp4
15.9 MB
Part 02-Module 01-Lesson 05_Financial Statements/18. M5 SC 16 HTML Structure V1-R3QLtHxedXw.mp4
15.8 MB
Part 03-Module 01-Lesson 03_Control Flow/07. Complex Boolean Expressions-gWmIKWgzFqI.mp4
15.8 MB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/24. M4 L1B 24 NLP Used To Enhance Fundamental Analysis V1-9zMWuZ9j7rI.mp4
15.8 MB
Part 06-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-o2Tpws5C2Eg.mp4
15.7 MB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/19. PyTorch - Part 6-3ZJfo2bR-uw.mp4
15.7 MB
Part 01-Module 04-Lesson 06_Alpha Factors/53. M4 L3a 27 Interlude Pt 3 V2-v6cLkoJhujU.mp4
15.5 MB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/12. 02 Time Series Prediction V2-xV5jHLFfJbQ.mp4
15.5 MB
Part 01-Module 04-Lesson 06_Alpha Factors/52. M4 L3a 26 Interlude Pt 2 V2-1a60RPqhO8k.mp4
15.4 MB
Part 02-Module 02-Lesson 05_Embeddings Word2Vec/06. 4 Data Subsampling V1-7SJXv2BQzZA.mp4
15.4 MB
Part 02-Module 01-Lesson 05_Financial Statements/09. M5 SC 4 Searching For Simple Patte V1-7RAHoJ34gXI.mp4
15.4 MB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/20. PyTorch - Part 7-hFu7GTfRWks.mp4
15.3 MB
Part 07-Module 01-Lesson 02_Naive Bayes/07. SL NB 06 S False Positives V1 V3-Bg6_Tvcv81A.mp4
15.1 MB
Part 02-Module 02-Lesson 05_Embeddings Word2Vec/16. 12 CompleteModel CustomLoss V2-7SqNN_eUAdc.mp4
15.0 MB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/03. M4 L1B 03 Factor Returns As Latent Variables V3-LpHvJq6XTOQ.mp4
14.9 MB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/02. Jonathan Larkin - What Is A Quant-G22oM0qv0Hs.mp4
14.9 MB
Part 01-Module 03-Lesson 04_Portfolio Optimization/10. L4 11 Rebalancing A Portfolio V2-S5SPhBpG3b0.mp4
14.9 MB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/02. M4 L1B 02 What Is A Factor Model V4-K5QKPwU38Do.mp4
14.9 MB
Part 05-Module 01-Lesson 02_NumPy/05. NumPy 2 V1-KR3hHf9Zxxg.mp4
14.9 MB
Part 04-Module 01-Lesson 03_Linear Combination/02. Linear Combinations 2-RsKJNDTb8nw.mp4
14.9 MB
Part 01-Module 01-Lesson 06_Data Processing/05. M1L4 08 Missing Values V5-XaMaVFUIc_I.mp4
14.9 MB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/10. AffdexMe Demo-dpFtXDqakvY.mp4
14.6 MB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/06. Vision-based Emotion AI-7nKKWWn1sAc.mp4
14.4 MB
Part 02-Module 02-Lesson 05_Embeddings Word2Vec/11. 9 Model Validation Loss V2-GKDCq8J76tM.mp4
14.3 MB
Part 02-Module 01-Lesson 05_Financial Statements/10. M5 SC 5 Word Boundaries V1-3dWIHULqKog.mp4
14.3 MB
Part 01-Module 04-Lesson 01_Factors/01. M4 L3A 01 Intro To The Factors V2-OqhRUxHf6wo.mp4
14.2 MB
Part 01-Module 04-Lesson 06_Alpha Factors/05. M4 L3a 04 Researching Alphas From Academic Papers V4-te0UTxemLBE.mp4
14.2 MB
Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/10. Linear Transformations 2-imtEd8M6__s.mp4
14.1 MB
Part 03-Module 01-Lesson 02_Data Types and Operators/25. L2 06 Lists Methods V1-tz2Ja1Eaeqo.mp4
14.0 MB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/23. Kalman Filter Code - Artificial Intelligence for Robotics-3xBycKfnCOQ.mp4
13.9 MB
Part 03-Module 01-Lesson 02_Data Types and Operators/01. Introduction-4F7SC0C6tfQ.mp4
13.9 MB
Part 03-Module 01-Lesson 03_Control Flow/25. Break and Continue-F6qJAv9ts9Y.mp4
13.9 MB
Part 07-Module 01-Lesson 04_Decision Trees/14. Maximizing Information Gain-3FgJOpKfdY8.mp4
13.8 MB
Part 02-Module 01-Lesson 05_Financial Statements/23. M5 SC 14 Searching The Parse Tree Part 3 V1-PR--1dLqcTM.mp4
13.7 MB
Part 01-Module 04-Lesson 06_Alpha Factors/50. M4 L3a 23 Summary V3-FZYqdaqoiZk.mp4
13.6 MB
Part 01-Module 04-Lesson 06_Alpha Factors/34. M4 L3a 151 The Fundamental Law Of Active Management Part 1 V4-iCW_vqvrTlw.mp4
13.6 MB
Part 06-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-JIWv5fU3GLA.mp4
13.5 MB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/16. PyTorch V2 Part 5 V1 (1)-XACXlkIdS7Y.mp4
13.4 MB
Part 03-Module 01-Lesson 03_Control Flow/07. Truth Value Testing-e52uw7ejV8k.mp4
13.4 MB
Part 07-Module 01-Lesson 03_Clustering/02. Unsupervised Learning-Mx9f99bRB3Q.mp4
13.3 MB
Part 02-Module 01-Lesson 05_Financial Statements/16. AIT M5L4B 06 Introduction To Beautifulsoup V3-k8e-kB3qBng.mp4
13.3 MB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/15. M4 L1B 15 Volume Factors V1-1dTAV3Irxv4.mp4
13.2 MB
Part 07-Module 01-Lesson 04_Decision Trees/07. Entropy-piLpj1V1HEk.mp4
13.2 MB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/13. Formula Summary-zqo1RJEHT_0.mp4
13.2 MB
Part 06-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram-b8M9CWxRyQ4.mp4
13.1 MB
Part 01-Module 02-Lesson 05_Volatility/11. M2L5 11 Markets Volatility V3-jEHJkZUX9s4.mp4
13.1 MB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/21. 08 Making Predictions V3-BhrpV3kwATo.mp4
13.0 MB
Part 07-Module 01-Lesson 04_Decision Trees/09. MLND SL DT 08 Entropy Formula 2 MAIN V2-6GHg70hrSJw.mp4
12.9 MB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/04. PyTorch V2 Part 1 V1-6Z7WntXays8.mp4
12.9 MB
Part 01-Module 03-Lesson 02_ETFs/09. L2 11 2 Arbitrage Farmers Market V1-hHxp16mQNGA.mp4
12.8 MB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/21. M4 L1B 21 Analyst Ratings V1-cHkJo8qBKes.mp4
12.8 MB
Part 06-Module 01-Lesson 12_Hypothesis Testing/27. What If Our Sample Is Large-WoTCeSTL1eM.mp4
12.5 MB
Part 06-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-pOKmt4w8T3g.mp4
12.5 MB
Part 02-Module 01-Lesson 05_Financial Statements/21. M5 SC 12 Searching The Parse Tree Part 1 V1-RyJuvYTF3Ms.mp4
12.5 MB
Part 02-Module 01-Lesson 05_Financial Statements/07. M5 SC 2 Finding Words V1-wTOh9B6aHGk.mp4
12.3 MB
Part 01-Module 04-Lesson 06_Alpha Factors/24. M4 L3a 12 Return Denominator Leverage And Factor Returns V3-QxHrP5LoXAI.mp4
12.3 MB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/13. M4 L4 17 Path Dependency 1 V3-ok9rKYRtZLE.mp4
12.2 MB
Part 06-Module 01-Lesson 06_Conditional Probability/10. Total Probability-YSYpzFR4k1I.mp4
12.1 MB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/14. M4 L1B 14 PriceVolume Factors V2-zaG0PDc3wsA.mp4
12.1 MB
Part 06-Module 01-Lesson 12_Hypothesis Testing/09. Types Of Errors - Part II-mbdSQ5CjdFs.mp4
12.0 MB
Part 06-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1-_DjfTytro6I.mp4
12.0 MB
Part 03-Module 01-Lesson 05_Scripting/20. Importing Files-qjeSn6zZbR0.mp4
12.0 MB
Part 02-Module 02-Lesson 05_Embeddings Word2Vec/10. 8 Word2vec Model V2-7BEYWhym8lI.mp4
11.9 MB
Part 06-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.mp4
11.9 MB
Part 01-Module 04-Lesson 06_Alpha Factors/30. M4 L3A 141 Ranked Information Coefficient Part 1 V4-_huNulOIuB0.mp4
11.9 MB
Part 01-Module 02-Lesson 03_Regression/06. Testing For Normalilty-Sa1MJegyYfc.mp4
11.8 MB
Part 06-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.mp4
11.8 MB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/11. L3 09 Capital Market Line V2-BRO-vo3y0-U.mp4
11.8 MB
Part 06-Module 01-Lesson 04_Probability/16. One Of Three 2-27Ed1GI4j84.mp4
11.8 MB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/04. 04. Computer Vision Applications-aFJKp2NltCY.mp4
11.7 MB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-DjsL64Kjr1Q.mp4
11.7 MB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/12. M4 L3b 09 Winners And Losers Creating A Joint Factor V3-xmW05ii8Vxs.mp4
11.7 MB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/22. M4 L3b 18 IVol Value Fundamental Or Discretionary Investing V2-sKAE5Z8e7IM.mp4
11.7 MB
Part 01-Module 02-Lesson 04_Time Series Modeling/06. M2L4 07 Kalman Filter V4-CLJhgfMI4Ho.mp4
11.6 MB
Part 03-Module 01-Lesson 02_Data Types and Operators/02. Arithmetic Operators-M8TIOK2P2yw.mp4
11.6 MB
Part 06-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-R4zq6mPPMxs.mp4
11.6 MB
Part 02-Module 01-Lesson 05_Financial Statements/20. M5 SC 11 Navigating The Parse Tree V1-NzOB9Vyy0l4.mp4
11.5 MB
Part 06-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-hoVOT8qcQ7c.mp4
11.5 MB
Part 03-Module 01-Lesson 03_Control Flow/20. L3 08 While Loops V3-7Sf5tcPlKQw.mp4
11.4 MB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/05. 05. Emotional Intelligence-D_LzJsJH5qk.mp4
11.4 MB
Part 03-Module 01-Lesson 05_Scripting/17. Reading And Writing Files-w-ZG6DMkVi4.mp4
11.3 MB
Part 06-Module 01-Lesson 12_Hypothesis Testing/14. Common Types of Hypothesis Tests-8hv8KnvQ6JY.mp4
11.3 MB
Part 01-Module 04-Lesson 03_Risk Factor Models/01. M4 L2A 01 Intro V1-DgsD3yL9Yy0.mp4
11.3 MB
Part 06-Module 01-Lesson 05_Binomial Distribution/08. Formula-DTdS-LlMTQ0.mp4
11.3 MB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/14. M4 L3b 10 Skewness And Momentum Attentional Bias V3-3ZkFRBUmSQ0.mp4
11.3 MB
Part 03-Module 01-Lesson 02_Data Types and Operators/31. L2 02 Dictionaries And Identiy Operators V3-QR8HTxCTWi0.mp4
11.2 MB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/09. M4 L4 10 Estimation Error V4-WdrMIRhScN0.mp4
11.2 MB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/02. Introduction-XZL934YQ-FQ.mp4
11.2 MB
Part 06-Module 01-Lesson 12_Hypothesis Testing/02. Hypothesis Testing-9GbHHpiK6wk.mp4
11.2 MB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/05. M4 L3b 04 Overnight Returns Data Universe Methods V2-Y_lBDa1hRco.mp4
11.1 MB
Part 03-Module 01-Lesson 05_Scripting/21. The Standard Library-Fw3vf0tDrJM.mp4
11.1 MB
Part 07-Module 01-Lesson 03_Clustering/11. K-Means Clustering Visualization 2-fQXXa-CAoS0.mp4
11.0 MB
Part 01-Module 02-Lesson 02_Outliers and Filtering/04. M2L2 03 Outliers Signals And Strategies V5-zyVgpsRy-mU.mp4
11.0 MB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/10. M4 L1B 09 Risk Factors V Alpha Factors Part 3 V1-UmdOVhcRCVU.mp4
11.0 MB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/20. M4 L1B 20 Pre And Post Event V1-Olz9QZQaBxs.mp4
11.0 MB
Part 01-Module 03-Lesson 04_Portfolio Optimization/03. L4 03 Optimization With Constraints V3-91WzhG6dti8.mp4
10.9 MB
Part 02-Module 01-Lesson 01_Welcome To Term II/02. AITND TII 02 Overview Of Term 2 V1-dVz-lVGvadY.mp4
10.8 MB
Part 06-Module 01-Lesson 05_Binomial Distribution/16. Binomial Distribution Conclusion-9gjCYs8f_PU.mp4
10.7 MB
Part 01-Module 01-Lesson 09_Project 1 Trading with Momentum/01. MV 03 Transition To Project 01 V1-dcps5Bg4bZE.mp4
10.7 MB
Part 01-Module 02-Lesson 03_Regression/01. M2L3 01 Intro V4-C7vWJH05tKA.mp4
10.7 MB
Part 03-Module 01-Lesson 02_Data Types and Operators/05. Assignment Operators-p_qfzL-x3Cs.mp4
10.6 MB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/08. Career Services-cuKecPpZ7PM.mp4
10.6 MB
Part 01-Module 04-Lesson 06_Alpha Factors/01. M4 L3a 01 Intro Efficient Market Hypothesis And Arbitrage Opportunities V3--YpXAt7zuh8.mp4
10.6 MB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/04. 3 Data PreProcessing V1-Xw1MWmql7no.mp4
10.6 MB
Part 01-Module 04-Lesson 06_Alpha Factors/46. M4 L3a 20 Transfer Coefficient V3-4rZ0MWQzlIs.mp4
10.6 MB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/08. PyTorch V2 Part 2 V1-CSQOdOb2mlg.mp4
10.5 MB
Part 01-Module 04-Lesson 06_Alpha Factors/09. M4 L3a 06 Ranking Part 1 V4-4j2hIB7WHY4.mp4
10.5 MB
Part 06-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-vasdN2Gol0M.mp4
10.4 MB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/03. M1L1 Introducing The Instructors 1 V4-l5gG7r-BWYc.mp4
10.3 MB
Part 01-Module 02-Lesson 07_Project 2 Breakout Strategy/01. MV 7 Transition To Project 02 1 V1-nkAcx2X_lfs.mp4
10.3 MB
Part 01-Module 04-Lesson 06_Alpha Factors/39. M4 L3a 172 Factor Rank Autocorrelation Turnover V2-QBvbMiVW100.mp4
10.3 MB
Part 05-Module 01-Lesson 02_NumPy/08. NumPy 4 V1-jeU7lLgyMms.mp4
10.3 MB
Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/03. M2L6 04 Pairs Trading V3-7lEm_tFXcBk.mp4
10.2 MB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/04. M1L1 05 Program Overview V1-Ci0j_UwLlQQ.mp4
10.2 MB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/13. 03 Training Memory V1-sx7T_KP5v9I.mp4
10.0 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/01. MV 11 Intro To Module 03 Difficulties In Learning V1-kqjFkUVZwEc.mp4
10.0 MB
Part 02-Module 02-Lesson 05_Embeddings Word2Vec/12. 10 NegativeSampling V1-gnCwdegYNsQ.mp4
10.0 MB
Part 01-Module 03-Lesson 02_ETFs/12. MV 11 Guided Meditation V1-njp1mnEEv9s.mp4
9.9 MB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/12. M4 L1B 12 How An Alpha Factor Becomes A Risk Factor Part 2 V1-9waaTtRaU-Y.mp4
9.9 MB
Part 03-Module 01-Lesson 02_Data Types and Operators/16. Type Type Conversion-yN6Fam_vZrU.mp4
9.9 MB
Part 02-Module 01-Lesson 06_Project 5 NLP on Financial Statements/01. Intro Term II V2-jSK9Pr7wFQo.mp4
9.8 MB
Part 07-Module 01-Lesson 02_Naive Bayes/10. SL NB 09 Bayesian Learning 3 V1 V4-u-Hj4RsJn1o.mp4
9.8 MB
Part 01-Module 04-Lesson 06_Alpha Factors/51. M4 L3a 25 Interlude Pt 1 V2-SMQwc5kwSr0.mp4
9.7 MB
Part 06-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-yYqN9Mf4jqw.mp4
9.7 MB
Part 06-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-mOPFQlKBg2M.mp4
9.7 MB
Part 07-Module 01-Lesson 04_Decision Trees/13. Information Gain-k9iZL53PAmw.mp4
9.7 MB
Part 07-Module 01-Lesson 04_Decision Trees/15. MLND SL DT 13 Random Forests MAIN V1-n5DhXhcYKcw.mp4
9.6 MB
Part 01-Module 04-Lesson 06_Alpha Factors/49. M4 L3a 22 Conditional Factors V2-2J1aUwGq6tc.mp4
9.6 MB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/19. 06 Defining Model V2-_LWzyqq4hCY.mp4
9.5 MB
Part 06-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.mp4
9.5 MB
Part 03-Module 01-Lesson 04_Functions/05. Variable Scope-rYubQlAM-gw.mp4
9.5 MB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/09. 8 TensorDataset Batching V1-Oxuf2QIPjj4.mp4
9.5 MB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/05. M4 L1B 04 Factor Model Assumptions V3-qEu3m_3eGWk.mp4
9.4 MB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/23. M4 L1B 23 Sentiment Analysis On News And Social Media V1-Jph7h2Yl0yg.mp4
9.3 MB
Part 03-Module 01-Lesson 04_Functions/01. Introduction-p5L4rTV1Pgk.mp4
9.3 MB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/09. PyTorch V2 Part 2 Solution V1-zym36ihtOMY.mp4
9.2 MB
Part 07-Module 01-Lesson 01_Linear Regression/22. Regularization-PyFNIcsNma0.mp4
9.2 MB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/13. M4 L2b 14 Explained Variance V3-OdHeReNUqoQ.mp4
9.1 MB
Part 02-Module 01-Lesson 05_Financial Statements/11. M5 SC 6 Metacharacters Part 1 V1-Jay3euM62NQ.mp4
9.0 MB
Part 04-Module 01-Lesson 01_Introduction/03. Essence Of Linear Algebra Intro -EHcxDZpeGFg.mp4
9.0 MB
Part 06-Module 01-Lesson 12_Hypothesis Testing/23. Connecting Errors and P-Values-hFNjd5l9CLs.mp4
9.0 MB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/16. M4 L3b 12 Skewness And Momentum Momentum Enhances Or Weakened By Skew V2-S73J_h8DHsE.mp4
9.0 MB
Part 01-Module 02-Lesson 07_Project 2 Breakout Strategy/04. MV 10 Transition From Project 02 Int V1-DYjOsL3VYfY.mp4
8.9 MB
Part 01-Module 02-Lesson 02_Outliers and Filtering/07. M2L2 06 Spotting Outliers In Signal Returns V4-BSLGZz0RzTg.mp4
8.9 MB
Part 05-Module 01-Lesson 02_NumPy/07. NumPy 3 V1-Rt4aydeo9F8.mp4
8.9 MB
Part 07-Module 01-Lesson 02_Naive Bayes/02. SL NB 01 Guess The Person V1 V1-tAOAjI-7ins.mp4
8.9 MB
Part 03-Module 01-Lesson 01_Why Python Programming/04. L1 02 Course Overview V4-vFxXSIV5cHM.mp4
8.8 MB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/09. Maximize Gaussian - Artificial Intelligence for Robotics-fRYtUP0P4Lg.mp4
8.7 MB
Part 04-Module 01-Lesson 03_Linear Combination/01. Linear Combinations 1-fmal7UE7dEE.mp4
8.7 MB
Part 06-Module 01-Lesson 11_Confidence Intervals/08. Statistical vs. Practical Differences-RKHD1wzxxPA.mp4
8.7 MB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/15. PyTorch V2 Part 4 Solution V1-R6Y4hPLVQWM.mp4
8.6 MB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/17. M4 L1B 17 Fundamental Ratios V2-Eo-faV9CsP8.mp4
8.6 MB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/14. M4 L4 19 What Is Optimization Doing To OUr Alphas V3-6Yqb91Xahvg.mp4
8.6 MB
Part 01-Module 02-Lesson 01_Quant Workflow/05. M2L1 04 Anatomy Of A Strategy Part 3 V1-vSxnkduTWWY.mp4
8.6 MB
Part 06-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-9R44IyZ-aQI.mp4
8.6 MB
Part 07-Module 01-Lesson 03_Clustering/16. Counterintuitive Clusters-StmEUgT1XSY.mp4
8.5 MB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/03. M4 L4 03 Setting Up The Problem Risk V4-2vcULOlXTzc.mp4
8.5 MB
Part 01-Module 02-Lesson 05_Volatility/08. M2L5 07 Exponentially Weighted Moving Average V4-VBPitTHzYRI.mp4
8.5 MB
Part 05-Module 01-Lesson 03_Pandas/12. Pandas 7 V1-ruTYp-twXO0.mp4
8.5 MB
Part 01-Module 04-Lesson 06_Alpha Factors/31. M4 L3A 142 Ranked Information Coefficient Part 2 V5-WKGmog0Nzgo.mp4
8.5 MB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/09. 09. Training a Model-m4GVfwVkj74.mp4
8.4 MB
Part 07-Module 01-Lesson 04_Decision Trees/10. Entropy Formula-w73JTBVeyjE.mp4
8.4 MB
Part 03-Module 01-Lesson 04_Functions/11. L4 08 Lambda Expressions V3-wkEmPz1peJM.mp4
8.4 MB
Part 01-Module 02-Lesson 02_Outliers and Filtering/06. M2L2 05 Handling Outliers In Raw Data V3-3l6kQZqlVJA.mp4
8.3 MB
Part 06-Module 01-Lesson 11_Confidence Intervals/10. Traditional Confidence Interval Methods-DmZwYHuz2eM.mp4
8.3 MB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/06. M4 L4 07 Leverage Constraint V5-zJ9gon4rFQc.mp4
8.3 MB
Part 05-Module 01-Lesson 03_Pandas/10. Pandas 6 V1-GS1kj04XQcM.mp4
8.3 MB
Part 05-Module 01-Lesson 03_Pandas/09. Pandas 5 V1-lClsJnZn_7w.mp4
8.2 MB
Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/04. M2L6 07 Finding Pairs To Trade V4-6hQtoElcnGM.mp4
8.2 MB
Part 01-Module 04-Lesson 06_Alpha Factors/04. M4 L3a 03 Definition Of Key Words V4-zySdIQTPTGo.mp4
8.2 MB
Part 01-Module 02-Lesson 03_Regression/11. M2L3 10 Linear Regression V4-GRY4eakMBJ8.mp4
8.2 MB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/01. Welcome to Computer Vision-GgA3_-MMT_I.mp4
8.1 MB
Part 01-Module 04-Lesson 06_Alpha Factors/35. M4 L3a 152 The Fundamental Law Of Active Management Part 2 V7-CMc4ujA8Ahs.mp4
8.1 MB
Part 01-Module 02-Lesson 04_Time Series Modeling/08. M2L4 09 Recurrent Neural Networks V5-5cYAAHyRHDo.mp4
8.1 MB
Part 06-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-TtmQ7YCw_1Y.mp4
8.1 MB
Part 01-Module 02-Lesson 05_Volatility/01. M2L5 01 What Is Volatility V3-brGVwpDSuG4.mp4
8.1 MB
Part 01-Module 04-Lesson 06_Alpha Factors/06. M4 L3a 051 Controlling For Risk Within An Alpha Factor Part 1 V3-raeVfAbBXnA.mp4
8.1 MB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/09. M4 L1B 08 Risk Factors V Alpha Factors Part 2 V2-AApfsuSpnMY.mp4
8.1 MB
Part 06-Module 01-Lesson 12_Hypothesis Testing/05. Setting Up Hypotheses - Part II-nByvHz77GiA.mp4
8.0 MB
Part 03-Module 01-Lesson 03_Control Flow/02. Indentation-G8qUNOTHtrM.mp4
8.0 MB
Part 02-Module 01-Lesson 05_Financial Statements/22. M5 SC 13 Searching The Parse Tree Part 2 V1-WS_bkGCk7qk.mp4
8.0 MB
Part 06-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.mp4
8.0 MB
Part 01-Module 04-Lesson 06_Alpha Factors/36. M4 L3a 161 Real World Constraints Liquidity V3-eu0YZRMu_3w.mp4
8.0 MB
Part 01-Module 01-Lesson 05_Market Mechanics/02. M1L3 02 Farmers Market V3-i_itXOdetCc.mp4
7.9 MB
Part 01-Module 03-Lesson 02_ETFs/06. L2 08 Authorized Participant And The Create Process V4-u4thSf3Uxsc.mp4
7.9 MB
Part 02-Module 02-Lesson 04_Training Neural Networks/07. Regularization-ndYnUrx8xvs.mp4
7.9 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/02. Introduction-tn-CrUTkCUc.mp4
7.9 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/02. Introduction-tn-CrUTkCUc.mp4
7.9 MB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/10. M4 L4 12 Infeasible Problems V4-ljg25Rj511Q.mp4
7.9 MB
Part 05-Module 01-Lesson 02_NumPy/04. NumPy 1 V1-EOHW29kDg7w.mp4
7.9 MB
Part 06-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-69je8wHh2mQ.mp4
7.9 MB
Part 06-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-dOa4Cl0wM0s.mp4
7.8 MB
Part 06-Module 01-Lesson 12_Hypothesis Testing/24. Conclusions In Hypothesis Testing-I0Mo7hcxahY.mp4
7.8 MB
Part 01-Module 04-Lesson 06_Alpha Factors/13. M4 L3a 08 Z Score V3-6_cKCoLa92o.mp4
7.8 MB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/24. M4 L3b 20 IVol Volatility Enhanced Price Earnings Ratio V2-x-1nqTEPGcA.mp4
7.8 MB
Part 03-Module 01-Lesson 05_Scripting/06. Programming Environment Setup-EKxDnCK0NAk.mp4
7.8 MB
Part 01-Module 04-Lesson 01_Factors/03. M4 L1A 03 Example Of A Factor V4-MJrwJDjWlAg.mp4
7.8 MB
Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/01. M2L6 01 Intro V3-CQ6QGAxbUF8.mp4
7.8 MB
Part 06-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram-aUFWZ2uJuBE.mp4
7.7 MB
Part 03-Module 01-Lesson 05_Scripting/26. Third Party Libraries And Package Managers-epOze9gC6T4.mp4
7.7 MB
Part 06-Module 01-Lesson 12_Hypothesis Testing/28. Multiple Testing Corrections-DuMgeHrkIF0.mp4
7.7 MB
Part 01-Module 02-Lesson 01_Quant Workflow/02. M2L1 01 Starting From A Hypothesis V3-yjlt4yerB9I.mp4
7.7 MB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/06. M4 L2b 06 The Core Idea V3-0KwLkaKHAvg.mp4
7.7 MB
Part 07-Module 01-Lesson 03_Clustering/03. Clustering Movies-g8PKffm8IRY.mp4
7.7 MB
Part 01-Module 02-Lesson 05_Volatility/02. M2L5 02 Historical Volatility V3-BOPhsYLHkUU.mp4
7.7 MB
Part 01-Module 02-Lesson 02_Outliers and Filtering/08. M2L2 07 Handling Outliers In Signal Returns V4-ILdnNi4CgZM.mp4
7.7 MB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-1R44jvxIPJY.mp4
7.6 MB
Part 06-Module 01-Lesson 12_Hypothesis Testing/19. What Is A P-value Anyway-eU6pUZjqviA.mp4
7.6 MB
Part 07-Module 01-Lesson 03_Clustering/17. Counterintuitive Clusters 2-HyjBus7S2gY.mp4
7.6 MB
Part 07-Module 01-Lesson 02_Naive Bayes/05. SL NB 04 Bayes Theorem V1 V2-nVbPJmf53AI.mp4
7.6 MB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/12. Normalizer-mQ_IjrtmmAk.mp4
7.6 MB
Part 01-Module 04-Lesson 06_Alpha Factors/19. M4 L3a 10 Factor Returns V5-enyeTpyCS-o.mp4
7.6 MB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/10. L3 08 The Efficient Frontier V3-tEEyhU23bI4.mp4
7.6 MB
Part 01-Module 04-Lesson 06_Alpha Factors/07. M4 L3a 052 Controlling For Risk Within An Alpha Factor Part 2 V2-Ks8HiHcflPs.mp4
7.6 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/14. Error Functions-jfKShxGAbok.mp4
7.6 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/14. Error Functions-jfKShxGAbok.mp4
7.6 MB
Part 06-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-YIELbuet-ZE.mp4
7.5 MB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/01. M1L1 01 Welcome V1-W2R32yXgwcg.mp4
7.5 MB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/02. Jupyter-qiYDWFLyXvg.mp4
7.5 MB
Part 02-Module 02-Lesson 05_Embeddings Word2Vec/03. 3 Word2Vec Notebook V2-4cWzv3YiF_w.mp4
7.5 MB
Part 06-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-OdVAt79eQak.mp4
7.4 MB
Part 01-Module 01-Lesson 07_Stock Returns/05. M1L5 06 Distribution Of Stock Prices Part 2 V1-cGoXGiO1DYk.mp4
7.4 MB
Part 01-Module 01-Lesson 05_Market Mechanics/03. M1L3 03 Trading Stocks V3-GHoRtfUrUMc.mp4
7.4 MB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/21. M4 L3b 17 IVol Idiosyncratic Volatility V2-B8hOR4G9CJk.mp4
7.4 MB
Part 06-Module 01-Lesson 12_Hypothesis Testing/29. How Do Confidence Intervals Hypothesis Tests Compare-KEmsEViOoMA.mp4
7.3 MB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/01. M4 L2b 01 PCA Statistical Risk Model V1-lDxqJ0JYUzs.mp4
7.3 MB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/01. L3 01 Intro V1-PxLJniuGyC0.mp4
7.3 MB
Part 05-Module 01-Lesson 03_Pandas/08. Pandas 4 V1-eMHUn9v9dds.mp4
7.3 MB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/06. M4 L1B 05 Covariance Matrix Using Factor Model V3-_qfTLXoifsM.mp4
7.3 MB
Part 07-Module 01-Lesson 03_Clustering/12. K-Means Clustering Visualization 3-WfwX3B4d8_I.mp4
7.3 MB
Part 01-Module 01-Lesson 06_Data Processing/04. M1L4 06 Technical Indicators V6-jo740Kq3YN4.mp4
7.2 MB
Part 02-Module 01-Lesson 05_Financial Statements/06. M5 SC 1 Raw Strings V1-WhL1VbulThY.mp4
7.2 MB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/21. PyTorch V2 Part 7 Solution V1-d_NhvI1yEf0.mp4
7.1 MB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/08. Standard Deviation Calculation-H5zA1A-XPoY.mp4
7.1 MB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/02. 02. What Is Vision-_99V1rUNFa4.mp4
7.1 MB
Part 01-Module 02-Lesson 05_Volatility/03. M2L5 03 Annualized Volatility V8-yakh1pjP7uY.mp4
7.1 MB
Part 06-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-omC0zbJyzUY.mp4
7.0 MB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/02. M4 L4 02 Setting Up The Problem Alphas V5-6GeyU-thC4U.mp4
7.0 MB
Part 03-Module 01-Lesson 05_Scripting/02. Python Installation-2_P05aYChqQ.mp4
7.0 MB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/15. Summary-VP-PMcgqhc8.mp4
7.0 MB
Part 01-Module 01-Lesson 04_Stock Prices/02. M1L2 02 Stock Prices V7-l_PilXVuh8I.mp4
7.0 MB
Part 06-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Iz4ViIg9ZlQ.mp4
6.9 MB
Part 05-Module 01-Lesson 02_NumPy/11. NumPy 6 V1-wtLRuGK0kW4.mp4
6.9 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/21. CrossEntropy V1-1BnhC6e0TFw.mp4
6.9 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/21. CrossEntropy V1-1BnhC6e0TFw.mp4
6.9 MB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-02v8ui9riew.mp4
6.9 MB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/06. PyTorch V2 Part 1 Solution 2 V1-QLaGMz8Ca3E.mp4
6.9 MB
Part 06-Module 01-Lesson 06_Conditional Probability/01. Introduction to Conditional Probability-Ok8948Wcbmo.mp4
6.9 MB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/11. Why the Standard Deviation-XlTBvjQ2t8w.mp4
6.9 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/34. Backpropagation V2-1SmY3TZTyUk.mp4
6.8 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/34. Backpropagation V2-1SmY3TZTyUk.mp4
6.8 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/25. L1 29 Open End Funds Holding Cash For Withdrawals V3-RU8-ZRBJ2Cw.mp4
6.8 MB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/19. M4 L1B 19 Index Changes V1-C7QNfPZBXXo.mp4
6.8 MB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/05. 4 EncodingWords Sol V1-4RYyn3zv1Hg.mp4
6.8 MB
Part 02-Module 02-Lesson 04_Training Neural Networks/04. Underfitting And Overfitting-xj4PlXMsN-Y.mp4
6.7 MB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/15. M4 L3b 11 Skewness And Momentum Defining Skew V2-6PgqIpmJBJ8.mp4
6.7 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/26. L1 30 ClosedEnd Mutual Funds V3-y2VhtrF6vdc.mp4
6.7 MB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/07. 6 Cleaning And Padding V1-UgPo1_cq-0g.mp4
6.7 MB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/12. Notation Parameters vs. Statistics-webref_dLrA.mp4
6.6 MB
Part 07-Module 01-Lesson 04_Decision Trees/04. Recommending Apps-nEvW8B1HNq4.mp4
6.6 MB
Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/09. M2L6 13 Trade Pairs Of Stocks V6-i1yVMrgjtB0.mp4
6.6 MB
Part 06-Module 01-Lesson 13_Case Study AB tests/02. AB Testing-EcWvhbIjT9o.mp4
6.6 MB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/17. New Mean and Variance Solution - Artificial Intelligence for Robotics-SwxRWZaC1FM.mp4
6.6 MB
Part 06-Module 01-Lesson 11_Confidence Intervals/12. Other Language Associated With Confidence Intervals-9KYVRx7-llg.mp4
6.6 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/02. L1 01 Stocks V2-XHo5iyxDxOQ.mp4
6.6 MB
Part 04-Module 01-Lesson 02_Vectors/03. Vectors 3-mWV_MpEjz9c.mp4
6.6 MB
Part 06-Module 01-Lesson 07_Bayes Rule/29. Generalizing-SdMk3aROgSc.mp4
6.6 MB
Part 01-Module 01-Lesson 08_Momentum Trading/09. M1L6 09 Statistical Analysis V10-_p1m_q8jE6E.mp4
6.6 MB
Part 06-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-07vOaYwecII.mp4
6.6 MB
Part 01-Module 02-Lesson 03_Regression/04. M2L3 04 Parameters Of A Distribution V3--akdmiLDny4.mp4
6.6 MB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/05. M4 L4 06 Standard Constraints V4-OPBKsNQPr6I.mp4
6.5 MB
Part 01-Module 04-Lesson 06_Alpha Factors/03. M4 L3a 02 Alpha Factors Versus Risk Factor Modeling V2-qsahBvhVTkk.mp4
6.5 MB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/27. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.mp4
6.5 MB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/02. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.mp4
6.5 MB
Part 01-Module 02-Lesson 03_Regression/02. M2L3 02 Distributions V2-ZlRGxq5I9BU.mp4
6.4 MB
Part 07-Module 01-Lesson 02_Naive Bayes/08. SL NB 07 Q Bayesian Learning 1 V1 V4-J4BmsKXPnkA.mp4
6.4 MB
Part 06-Module 01-Lesson 11_Confidence Intervals/07. Confidence Intervals Applications-C0wgmeRx9yE.mp4
6.4 MB
Part 02-Module 02-Lesson 05_Embeddings Word2Vec/09. 7 Batching Data Solution V1-nu2rjLzt1HI.mp4
6.4 MB
Part 03-Module 01-Lesson 02_Data Types and Operators/22. L2 08 Lists And Membership Operators V2-JAbZdZg5_x8.mp4
6.4 MB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/09. MV 05 Time Management V1-22PdQNlhCt8.mp4
6.3 MB
Part 01-Module 04-Lesson 03_Risk Factor Models/15. M4 L2A 10 Portfolio Variance Using Factor Model V4-V06aCZUvgbo.mp4
6.3 MB
Part 02-Module 02-Lesson 05_Embeddings Word2Vec/02. M4L52 HSA Embedding Weight Matrix V3 RENDER V2-KVCcG5v8fi0.mp4
6.3 MB
Part 02-Module 01-Lesson 05_Financial Statements/01. AIT M5L4A 01 Intro V1-BS4n9rRYGtw.mp4
6.3 MB
Part 01-Module 01-Lesson 07_Stock Returns/03. M1L5 03 Log Returns V5-62fZN1QnGjc.mp4
6.2 MB
Part 01-Module 04-Lesson 01_Factors/05. M4 L1A 04 Standardizing A Factor V5-sLZY2SQ4uME.mp4
6.2 MB
Part 03-Module 01-Lesson 02_Data Types and Operators/29. L2 03 Sets V2-eIHNFgTFfnA.mp4
6.2 MB
Part 03-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Part II-1GRv1S6K8gQ.mp4
6.2 MB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/07. PyTorch V2 Part 1 Solution 3 V1-iMIo9p5iSbE.mp4
6.2 MB
Part 03-Module 01-Lesson 03_Control Flow/01. Introduction-eUrvACMMJ5w.mp4
6.2 MB
Part 01-Module 02-Lesson 03_Regression/15. M2L3 14 Regression In Trading V2-bcOGRWxg7qQ.mp4
6.1 MB
Part 06-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.mp4
6.1 MB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/10. M4 L3b 08 Winners And Losers Approximating Curves With Polynomials V4-Nw6v2EeECt0.mp4
6.1 MB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/18. 05 Batching Data V1-9Eg0wf3eW-k.mp4
6.1 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/27. L1 31 Transaction Costs V2-JGYAv7tQpyY.mp4
6.1 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/12. L1 13 Hang Seng Index Construction V2-rdGdC-meRLU.mp4
6.0 MB
Part 01-Module 01-Lesson 08_Momentum Trading/02. M1L6 02 Momentumbased Signals V4-RedwbmYg6e4.mp4
6.0 MB
Part 01-Module 04-Lesson 01_Factors/09. M4 L1A 08 Rescale Part 2 V3-8Ix10U6MEug.mp4
6.0 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 1-1yJx-QtlvNI.mp4
6.0 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 1-1yJx-QtlvNI.mp4
6.0 MB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/20. Outliers-HKIsvkZUZfo.mp4
6.0 MB
Part 06-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.mp4
6.0 MB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/16. M4 L1B 16 Fundamentals V1-rPii5-ry8nc.mp4
6.0 MB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/23. M4 L3b 19 IVol Quantamental Investing V2-K6Ud6gams-U.mp4
6.0 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.mp4
6.0 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.mp4
6.0 MB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/27. MV When Those Around You Dont Believe In You V1--vKspTOIXY0.mp4
6.0 MB
Part 03-Module 01-Lesson 02_Data Types and Operators/22. L2 09 Lists And Membership Operators V2-rNV_E50wcWM.mp4
5.9 MB
Part 02-Module 02-Lesson 05_Embeddings Word2Vec/08. 6 Defining Context Targets V1-DJN9MzD7ctY.mp4
5.9 MB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/02. L3 02 Diversification V3-tyzqlXddXd8.mp4
5.9 MB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/20. Notation for Random Variables-8NxTW1u4s-Y.mp4
5.9 MB
Part 03-Module 01-Lesson 04_Functions/02. Default Arguments-cG6UfBZX2KI.mp4
5.9 MB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/10. 9 DefiningModel V1-SpvIZl1YQRI.mp4
5.9 MB
Part 01-Module 03-Lesson 02_ETFs/02. L2 12 Shortcomings Of Mutual Funds V2-oEqsaex31Qg.mp4
5.9 MB
Part 01-Module 02-Lesson 05_Volatility/10. M2L5 09 Forecasting Volatility V3-82v4v_PKDAE.mp4
5.9 MB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/06. M4 L3b 05 Overnight Returns Methods Quantile Analysis V3-4Js3mghq2mU.mp4
5.9 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/24. L1 27 OpenEnd Mutual Funds V2-T4_mmjEKUAo.mp4
5.9 MB
Part 03-Module 01-Lesson 05_Scripting/27. Experimenting With An Interpreter-hspPtnQwMPg.mp4
5.9 MB
Part 01-Module 02-Lesson 03_Regression/18. MV 14 What Happens In Your Brain V1-ioDP7ndd40Y.mp4
5.9 MB
Part 02-Module 01-Lesson 04_Feature Extraction/09. T-SNE-xxcK8oZ6_WE.mp4
5.8 MB
Part 06-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3-m1LSU9SPZ2k.mp4
5.8 MB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/01. M4 L3b 01 Case Studies Intro V3-oWWrWbzDi2k.mp4
5.8 MB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/03. M4 L3b 02 Overnight Returns Abstract V2-q5xidwa5W8w.mp4
5.8 MB
Part 01-Module 04-Lesson 01_Factors/06. M4 L1A 05 Demean Part 1 V3-R3N8bd8U6TM.mp4
5.8 MB
Part 01-Module 04-Lesson 06_Alpha Factors/38. M4 L3a 171 Turnover As Proxy For Real World Constraints V2-6xo8sZjoSVk.mp4
5.8 MB
Part 06-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.mp4
5.8 MB
Part 01-Module 03-Lesson 02_ETFs/01. L2 01 Intro V2-utlPzT8MEsM.mp4
5.7 MB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/08. 7 PaddedFeatures Sol V1-sYOd1IDmep8.mp4
5.7 MB
Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/06. M2L6 09 Cointegration V6-N4ZI5SyFMOc.mp4
5.7 MB
Part 01-Module 04-Lesson 06_Alpha Factors/45. M4 L3a 19 Quantiles Academic Research Vs Practitioners V2-AwL7cV2VyhM.mp4
5.7 MB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/13. Calculating the Mean-1nzZxmJ8xvU.mp4
5.7 MB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/15. M4 L4 20 Outro V1-c3J8t6q2BGo.mp4
5.7 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/06. L1 07 Ratios V2-Dfbwep-tkok.mp4
5.7 MB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/08. M4 L2b 08 Writing It Down Pt 1 V3-NyDNFqm8c_s.mp4
5.7 MB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/07. M4 L4 08 Factor Exposure And Position Constraints V3-wMY4zI5zLSM.mp4
5.7 MB
Part 07-Module 01-Lesson 04_Decision Trees/06. Student Admissions-TdgBi6LtOB8.mp4
5.7 MB
Part 07-Module 01-Lesson 02_Naive Bayes/06. SL NB 05 Q False Positives V1 V2-ngA6v09eP08.mp4
5.7 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/03. L1 02 Indices V2-BRv5B78YBGs.mp4
5.7 MB
Part 01-Module 04-Lesson 06_Alpha Factors/23. M4 L3a 11 Universe Construction Rule V3-Cr0-k7gUSNg.mp4
5.7 MB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/04. L3 04 Portfolio Variance V2-LlxRypakop4.mp4
5.7 MB
Part 01-Module 04-Lesson 09_Project 4 Alpha Research and Factor Modeling/01. M4 01 Intro To Project 4 V1-7goOG7CdUjU.mp4
5.7 MB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/25. Background Of Bootstrapping-6Vg5kGoDl7k.mp4
5.6 MB
Part 01-Module 02-Lesson 01_Quant Workflow/04. M2L1 03 Flavors Of Trading Strategies V4-uCCx8I9u_Nk.mp4
5.6 MB
Part 06-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-GO6kbL3QRBE.mp4
5.6 MB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/02. Structured Languages-NsmqUIHlk6U.mp4
5.6 MB
Part 10-Module 01-Lesson 01_Intro to NLP/03. Structured Languages-NsmqUIHlk6U.mp4
5.6 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/15. Discrete vs. Continuous-Rm2KxFaPiJg.mp4
5.6 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs. Continuous-Rm2KxFaPiJg.mp4
5.6 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.mp4
5.6 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.mp4
5.6 MB
Part 03-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules-jPGyFgcIvsM.mp4
5.6 MB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/12. Variance Standard Deviation Final Points-vXUgp2375j4.mp4
5.6 MB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/04. M4 L2b 04 Bases As Languages V3-yEL0-AE3mjo.mp4
5.6 MB
Part 03-Module 01-Lesson 02_Data Types and Operators/25. L2 05 Lists Methods V1-WXkPm4rv6ng.mp4
5.5 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/11. L1 12 How An Index Is Constructed V2-dsbi4dvdU9c.mp4
5.5 MB
Part 06-Module 01-Lesson 04_Probability/19. Probability Conclusion-dsVKoXymYDU.mp4
5.5 MB
Part 03-Module 01-Lesson 05_Scripting/08. Scripting With Raw Input-Fs9uLV2qfgI.mp4
5.5 MB
Part 01-Module 01-Lesson 07_Stock Returns/01. M1L5 02 Returns V6-PngIo6G73Z8.mp4
5.5 MB
Part 06-Module 01-Lesson 07_Bayes Rule/35. Using Sensor Data-vhl-SADfti8.mp4
5.5 MB
Part 03-Module 01-Lesson 01_Why Python Programming/02. L1 01 Intro V3-yyNtiUyI5Tw.mp4
5.5 MB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/07. What is the Standard Deviation Measuring-IbwUJ3ORZ5s.mp4
5.5 MB
Part 02-Module 02-Lesson 05_Embeddings Word2Vec/01. M4L51 HSA Word Embeddings V3 RENDER V1-ZsLhh1mly9k.mp4
5.4 MB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/04. M4 L3b 03 Overnight Returns Possible Alpha Factors V2-QBCDr9q2rLo.mp4
5.4 MB
Part 07-Module 01-Lesson 01_Linear Regression/06. Absolute Trick-DJWjBAqSkZw.mp4
5.4 MB
Part 06-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1--TBAfU1cjRU.mp4
5.4 MB
Part 01-Module 01-Lesson 06_Data Processing/03. M1L4 04 Corporate Actions V5-S60WArbQK7k.mp4
5.4 MB
Part 07-Module 01-Lesson 02_Naive Bayes/11. MLND SL NB Naive Bayes Algorithm-CQBMB9jwcp8.mp4
5.4 MB
Part 07-Module 01-Lesson 03_Clustering/08. Match Points (again)-5j6VZr8sHo8.mp4
5.4 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.mp4
5.4 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.mp4
5.4 MB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/25. Aggregations-ADx1x2ljFB4.mp4
5.4 MB
Part 05-Module 01-Lesson 02_NumPy/09. NumPy 5 V1-vGjI-WTnEbY.mp4
5.3 MB
Part 06-Module 01-Lesson 12_Hypothesis Testing/03. Setting Up Hypotheses - Part I-NpZxJg4S6X4.mp4
5.3 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/14. L1 16 Funds V2-s9f2Bzc9lnk.mp4
5.3 MB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-9I8ysrRlmbA.mp4
5.3 MB
Part 03-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules Part II-aASigWQ_XU0.mp4
5.2 MB
Part 01-Module 02-Lesson 01_Quant Workflow/05. M2L1 04 Anatomy Of A Strategy Part 2 V1-v3w4JZKQixc.mp4
5.2 MB
Part 01-Module 02-Lesson 01_Quant Workflow/01. MV 05 Intro To Module 2 V1-92JzOXda9Q8.mp4
5.2 MB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/01. Welcome to NLP-g-AlFF61p0I.mp4
5.2 MB
Part 10-Module 01-Lesson 01_Intro to NLP/02. Welcome to NLP-g-AlFF61p0I.mp4
5.2 MB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/11. M4 L4 14 Transaction Costs V3-yxwqTvbJhhc.mp4
5.2 MB
Part 01-Module 03-Lesson 04_Portfolio Optimization/02. L4 02 What Is Optimization V2-ISRlP1GeOjU.mp4
5.2 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/15. L1 18 Alpha And Beta V3-CcVdfrr5nD8.mp4
5.2 MB
Part 02-Module 01-Lesson 03_Text Processing/10. Stemming And Lemmatization-7Gjf81u5hmw.mp4
5.2 MB
Part 01-Module 04-Lesson 06_Alpha Factors/37. M4 L3a 162 Real World Constraints Transaction Costs V2-HAif7xSh8z0.mp4
5.1 MB
Part 06-Module 01-Lesson 05_Binomial Distribution/01. Binomial-3koDdc9r73E.mp4
5.1 MB
Part 02-Module 02-Lesson 04_Training Neural Networks/05. Model Complexity Graph-NnS0FJyVcDQ.mp4
5.1 MB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/21. Working with Outliers-4RnQjtJB8t8.mp4
5.1 MB
Part 04-Module 01-Lesson 02_Vectors/01. Vectors 1-oPBz-MLVUHk.mp4
5.1 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/21. L1 24 Hedging Strategies V3-8bzw4ZMGpWU.mp4
5.1 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/23. Error Function-V5kkHldUlVU.mp4
5.1 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/23. Error Function-V5kkHldUlVU.mp4
5.1 MB
Part 03-Module 01-Lesson 02_Data Types and Operators/22. L2 07 Lists And Membership Operators II V3-3Nj-b-ZzqH8.mp4
5.1 MB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/19. What is Notation-MaHV5cKfcmE.mp4
5.1 MB
Part 01-Module 02-Lesson 03_Regression/10. M2L3 09 Transforming Data V3-N8Fhq8wiQZU.mp4
5.1 MB
Part 06-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-cDub-OOrIRE.mp4
5.0 MB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/20. When Does the CLT Not Work-uZGTVUEMfrU.mp4
5.0 MB
Part 07-Module 01-Lesson 04_Decision Trees/02. MLND SL DT 01 Recommending Apps 1 MAIN V3-uI_yNrqqKVg.mp4
5.0 MB
Part 01-Module 03-Lesson 02_ETFs/03. L2 05 International ETFs V2-OL2p8S-82mY.mp4
5.0 MB
Part 01-Module 02-Lesson 05_Volatility/06. M2L5 06 Rolling Windows V3-4EuMKqeNXA0.mp4
5.0 MB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/03. KALMAN Tracking Intro RENDER V2-C73G7vfVNQc.mp4
5.0 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/28. L1 32 Summary V1-Pt2sVftdwS0.mp4
5.0 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/32. Combinando modelos-Boy3zHVrWB4.mp4
5.0 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/32. Combinando modelos-Boy3zHVrWB4.mp4
5.0 MB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/09. M4 L3b 07 Winners And Losers Accelerated And Decelerated Gains And Losses V2-cdSdKl4uxVM.mp4
4.9 MB
Part 02-Module 01-Lesson 04_Feature Extraction/08. Embeddings For Deep Learning-gj8u1KG0H2w.mp4
4.9 MB
Part 06-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-Jp2xJOtNQZ0.mp4
4.9 MB
Part 02-Module 02-Lesson 05_Embeddings Word2Vec/15. 11 SkipGram Negative V1-e7ZrzpyXNDs.mp4
4.9 MB
Part 07-Module 01-Lesson 03_Clustering/15. Limitations of K-Means-4Fkfu37el_k.mp4
4.9 MB
Part 06-Module 01-Lesson 11_Confidence Intervals/02. Sampling To Distributions To Confidence Intervals-QYMLkDToigc.mp4
4.9 MB
Part 06-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-55eZrE82TqA.mp4
4.9 MB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-HjpgML5zsUE.mp4
4.9 MB
Part 01-Module 03-Lesson 02_ETFs/05. L2 07 ETF Sponsor V2-v5vfAP1nJ10.mp4
4.9 MB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/18. M4 L1B 18 EventDriven Factors V1-2mnwjChH2hg.mp4
4.9 MB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/04. Unstructured Text-OmwSdaec5vU.mp4
4.9 MB
Part 10-Module 01-Lesson 01_Intro to NLP/05. Unstructured Text-OmwSdaec5vU.mp4
4.9 MB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/06. Context-J-4pfu2w1C0.mp4
4.8 MB
Part 10-Module 01-Lesson 01_Intro to NLP/07. Context-J-4pfu2w1C0.mp4
4.8 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/20. L1 22 Relative Returns V2-m4MvYRlyPoU.mp4
4.8 MB
Part 06-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.mp4
4.8 MB
Part 06-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-QIQBb4nLsHc.mp4
4.8 MB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/03. 03. Role In AI Render-xm1TXnNe5Pw.mp4
4.8 MB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/18. M4 L3b 14 IVol Value And Idiosyncratic Volatility Overview V2-h7vamh2FPMs.mp4
4.8 MB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/06. 5 GettingRid ZeroLength V1-Hs6ithuvDJg.mp4
4.8 MB
Part 07-Module 01-Lesson 03_Clustering/06. Optimizing Centers (Rubber Bands)-nNR4hjhhGBc.mp4
4.8 MB
Part 01-Module 04-Lesson 06_Alpha Factors/27. M4 L3a 13 Sharpe Ratio V4-W8nfg1fkloA.mp4
4.8 MB
Part 01-Module 01-Lesson 08_Momentum Trading/13. M1L6 12 Finding Alpha V1-r8lfWVhfQC0.mp4
4.7 MB
Part 06-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-tI0J14yQr1s.mp4
4.7 MB
Part 01-Module 04-Lesson 01_Factors/08. M4 L1A 07 Rescale Part 1 V2-BcsxA0vy3jA.mp4
4.7 MB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/16. M4 L2A 27 Summary V1-rdqINNkTlqs.mp4
4.7 MB
Part 01-Module 01-Lesson 06_Data Processing/08. M1L4 11 Survivor Bias V2-39MeCCw5ndM.mp4
4.7 MB
Part 06-Module 01-Lesson 13_Case Study AB tests/16. Drawing Conclusions-s-4ghG9vrGQ.mp4
4.7 MB
Part 06-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.mp4
4.7 MB
Part 03-Module 01-Lesson 04_Functions/18. Conclusion-QRnLr7pwHyk.mp4
4.7 MB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/22. Random Observed Values-KFIt2OC3wCI.mp4
4.7 MB
Part 06-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-n_OrWrZ8tKY.mp4
4.7 MB
Part 01-Module 01-Lesson 08_Momentum Trading/06. M1L6 06 Trading Strategy V2-rrCHC20FkIc.mp4
4.6 MB
Part 01-Module 02-Lesson 04_Time Series Modeling/02. M2L4 02 Autoregressive Models V5-9jE7S4b-oIU.mp4
4.6 MB
Part 06-Module 01-Lesson 07_Bayes Rule/32. Reducing Uncertainty-zuFMhmKQ--o.mp4
4.6 MB
Part 01-Module 03-Lesson 05_Project 3 Smart Beta and Portfolio Optimization/01. MV 12 Transition To Project 03 V1-ClzlNlWqMQI.mp4
4.6 MB
Part 01-Module 03-Lesson 02_ETFs/03. L2 03 Commodity Futures V3-qvSubjxMGJ0.mp4
4.6 MB
Part 01-Module 01-Lesson 05_Market Mechanics/08. M1L3 10 Volume V3-DFp7kp0xRCo.mp4
4.6 MB
Part 06-Module 01-Lesson 12_Hypothesis Testing/32. Hypothesis Testing Conclusion-nQFchD4XPPs.mp4
4.6 MB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/04. 29 Number Summary-gzUN5zKLHjQ.mp4
4.6 MB
Part 05-Module 01-Lesson 02_NumPy/03. NumPy 0 V1-vyjMs8KFHlE.mp4
4.6 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/07. L1 08 SP Index Categories V2-D3VGIvti71g.mp4
4.5 MB
Part 01-Module 04-Lesson 09_Project 4 Alpha Research and Factor Modeling/04. M4 03 Coming In Term II V1-2jF5J8MIdqc.mp4
4.5 MB
Part 01-Module 04-Lesson 06_Alpha Factors/41. M4 L3a 181 Quantile Analysis Part 1 V2-oT5GFbg0G8g.mp4
4.5 MB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/04. M4 L4 04 Regularization V4-fq-CanyDHuw.mp4
4.5 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/17. L1 19 Smart Beta V2-Rc9NEmNMzk8.mp4
4.5 MB
Part 07-Module 01-Lesson 04_Decision Trees/08. Entropy Formula-iZiSYrOKvpo.mp4
4.5 MB
Part 06-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2-WYA5Zbf8HC4.mp4
4.5 MB
Part 07-Module 01-Lesson 01_Linear Regression/08. Gradient Descent-4s4x9h6AN5Y.mp4
4.5 MB
Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/14. M2L6 20 Summary V2-wuzha8SU2jw.mp4
4.5 MB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/05. M4 L2A 16 Fama French Size Factor V2-94a2ugitC_E.mp4
4.4 MB
Part 03-Module 01-Lesson 05_Scripting/13. Handling Errors Try Except Finally-S6hwBZG0KwM.mp4
4.4 MB
Part 03-Module 01-Lesson 05_Scripting/01. Scripting-Qxe_gCiXUDg.mp4
4.4 MB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/22. Bootstrapping-42j3YclcZ4Q.mp4
4.4 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/20. Cross Entropy 1-iREoPUrpXvE.mp4
4.4 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/20. Cross Entropy 1-iREoPUrpXvE.mp4
4.4 MB
Part 01-Module 02-Lesson 02_Outliers and Filtering/05. M2L2 04 Spotting Outliers In Raw Data V3-kFIB0YIW1TQ.mp4
4.4 MB
Part 01-Module 04-Lesson 06_Alpha Factors/48. M4 L3a 21 Its All Relative V2-VBcOrT7TuFA.mp4
4.4 MB
Part 02-Module 02-Lesson 04_Training Neural Networks/08. Dropout-Ty6K6YiGdBs.mp4
4.4 MB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/13. M4 L2A 24 Categorical Variable Estimation V4-50hvTluqz3U.mp4
4.4 MB
Part 06-Module 01-Lesson 04_Probability/01. Introduction to Probability-HeoQccoqfTk.mp4
4.4 MB
Part 03-Module 01-Lesson 02_Data Types and Operators/35. L2 01 Compound Data Structures V1-jmQ8IKvQgBU.mp4
4.4 MB
Part 01-Module 01-Lesson 08_Momentum Trading/01. M1L6 01 Designing A Trading Strategy V4-O7c6bPXBUsU.mp4
4.4 MB
Part 07-Module 01-Lesson 04_Decision Trees/03. MLND SL DT 02 Recommending Apps 2 MAIN V3-KSrIYqKZwCA.mp4
4.4 MB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/14. Other Sampling Distributions-Bxl0DonzX8c.mp4
4.4 MB
Part 06-Module 01-Lesson 13_Case Study AB tests/04. Business Example-Wzz7omSDfEk.mp4
4.4 MB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/16. M4 L2b 15 PCA As A Factor Model Pt 1 V3-4E3C5E-MmkI.mp4
4.4 MB
Part 07-Module 01-Lesson 04_Decision Trees/05. MLND SL DT 04 Q Student Admissions V3 MAIN V1-MOa335cQGI4.mp4
4.4 MB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/15. Two Useful Theorems-jQ5i7CALdRQ.mp4
4.4 MB
Part 01-Module 03-Lesson 02_ETFs/08. L2 10 Lower Operational Costs And Taxes V2-UlJusglK0h0.mp4
4.4 MB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/01. 矩阵介绍-Ugx3mldc0lE.mp4
4.4 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/09. L1 10 Market Cap Weighting V2-7qVVA5yLFnY.mp4
4.4 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/10. L1 11 Adding Or Removing From An Index V2-_bWIZWa20j8.mp4
4.3 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.mp4
4.3 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.mp4
4.3 MB
Part 07-Module 01-Lesson 03_Clustering/16. Counterintuitive Clusters-aveIz1JYeAg.mp4
4.3 MB
Part 01-Module 01-Lesson 06_Data Processing/13. M1L4 16 Alternate Data V2-DFwu2ysGY8c.mp4
4.3 MB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/26. Why Are Sampling Distributions Important-aDFDOCJKoH0.mp4
4.3 MB
Part 01-Module 01-Lesson 06_Data Processing/14. MV 06 Our Goal Is To Help You Meet Your Goals V1--pSppDzJRu8.mp4
4.3 MB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/23. Bootstrapping the Central Limit Theorem-GJGUwNr_82s.mp4
4.3 MB
Part 03-Module 01-Lesson 01_Why Python Programming/03. L1 03 Programming In Python V4-O1cTNYAjeeg.mp4
4.2 MB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/03. LSTM Basics-gjb68a4XsqE.mp4
4.2 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/16. DL 18 Q Softmax V2-RC_A9Tu99y4.mp4
4.2 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 Q Softmax V2-RC_A9Tu99y4.mp4
4.2 MB
Part 02-Module 01-Lesson 04_Feature Extraction/02. Bag Of Words-A7M1z8yLl0w.mp4
4.2 MB
Part 06-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.mp4
4.2 MB
Part 01-Module 03-Lesson 02_ETFs/03. L2 02 Commodities V2-gc_GMqbCC2Q.mp4
4.2 MB
Part 02-Module 01-Lesson 05_Financial Statements/08. M5 SC 3 Finding Metacharacters V1-RiSVD9E823Q.mp4
4.2 MB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/12. Introduction to Summary Statistics-PCZmHCrcMcw.mp4
4.2 MB
Part 01-Module 04-Lesson 03_Risk Factor Models/17. M4 L2A 11 Types Of Risk Models V1-SHj2VzJggAE.mp4
4.2 MB
Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/02. M2L6 02 Mean Reversion V5-zQ08lFcZa_A.mp4
4.2 MB
Part 01-Module 04-Lesson 03_Risk Factor Models/12. M4 L2A 08 Variance Of 2 Stocks Part 1 V3-PlPusmuR20k.mp4
4.2 MB
Part 03-Module 01-Lesson 02_Data Types and Operators/27. L2 04 Tuples V3-33xN-AbTMoc.mp4
4.2 MB
Part 02-Module 02-Lesson 04_Training Neural Networks/13. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.mp4
4.1 MB
Part 06-Module 01-Lesson 04_Probability/17. Even Roll-M3L0a5V4Nf0.mp4
4.1 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/03. L1 03 Indices Are Virtual Portfolios V2-oAd_szbBNWc.mp4
4.1 MB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/02. M4 L2b 02 Vector Two Ways V3-mlw6FnCUloU.mp4
4.1 MB
Part 06-Module 01-Lesson 12_Hypothesis Testing/12. Types Of Errors - Part III-Z-srkCPsdaM.mp4
4.1 MB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/09. M4 L2A 20 Fama French Risk Model V3-tepvGkpNKrI.mp4
4.1 MB
Part 06-Module 01-Lesson 12_Hypothesis Testing/16. How Do We Choose Between Hypotheses-JkXTwS-5Daw.mp4
4.1 MB
Part 01-Module 04-Lesson 01_Factors/07. M4 L1A 06 Demean Part 2 V2-aaj1QVsSCIs.mp4
4.1 MB
Part 06-Module 01-Lesson 13_Case Study AB tests/07. Metric - Click Through Rate-EpfoKAwV_Eg.mp4
4.1 MB
Part 07-Module 01-Lesson 01_Linear Regression/01. Welcome To Linear Regression-zxZkTkM34BY.mp4
4.1 MB
Part 06-Module 01-Lesson 11_Confidence Intervals/11. Traditional vs. Bootstrapping Confidence Intervals-eZ8lyiumXDY.mp4
4.1 MB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/07. Example of Sampling Distributions - Part II-PKf3Nu6zAxM.mp4
4.1 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/15. L1 17 Active Vs Passive V2-QzoHmUzJ5zw.mp4
4.1 MB
Part 07-Module 01-Lesson 01_Linear Regression/11. Minimizing Error Functions-RbT2TXN_6tY.mp4
4.0 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/05. Linear Boundaries-X-uMlsBi07k.mp4
4.0 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/05. Linear Boundaries-X-uMlsBi07k.mp4
4.0 MB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/22. Outliers Advice-BhhDoTgYQmI.mp4
4.0 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 2-6nUUeQ9AeUA.mp4
4.0 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 2-6nUUeQ9AeUA.mp4
4.0 MB
Part 06-Module 01-Lesson 08_Python Probability Practice/02. Simulating Coin Flips-7YtQNZ3iy6o.mp4
4.0 MB
Part 01-Module 01-Lesson 08_Momentum Trading/14. MV 13 Global Talent Is Equally Distributed V1-QwDJbbBl_48.mp4
4.0 MB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/15. The Median-WlT3eeW0rb0.mp4
4.0 MB
Part 02-Module 01-Lesson 04_Feature Extraction/07. GloVe-KK3PMIiIn8o.mp4
4.0 MB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/08. Continuous vs. Discrete Data-BzgZebZD9kk.mp4
4.0 MB
Part 05-Module 01-Lesson 03_Pandas/04. Pandas 1 V1-iXnYN8cnhzs.mp4
4.0 MB
Part 06-Module 01-Lesson 07_Bayes Rule/01. Bayes Rules-CohZnkZMOxE.mp4
4.0 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/02. L1 00 Intro V2-JA4WBd6sHF4.mp4
4.0 MB
Part 01-Module 04-Lesson 06_Alpha Factors/10. M4 L3a 07 Ranking Part 2 V2-uwPUV5LBhWY.mp4
4.0 MB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/18. Data in the Real World-HmipezTjTDY.mp4
4.0 MB
Part 05-Module 01-Lesson 03_Pandas/05. Pandas 2 V1-B7MuFIwboKU.mp4
4.0 MB
Part 01-Module 02-Lesson 04_Time Series Modeling/03. M2L4 03 Moving Average Models V5-1FkCP_dwxjI.mp4
3.9 MB
Part 01-Module 01-Lesson 04_Stock Prices/02. M1L2 01 Stock Pt II V1-SGb54HLbk1g.mp4
3.9 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/24. Gradient Descent-rhVIF-nigrY.mp4
3.9 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/24. Gradient Descent-rhVIF-nigrY.mp4
3.9 MB
Part 06-Module 01-Lesson 12_Hypothesis Testing/17. Simulating From the Null-sL2yJtHZd8Y.mp4
3.9 MB
Part 06-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-GlmS_jox08s.mp4
3.9 MB
Part 06-Module 01-Lesson 11_Confidence Intervals/03. Sampling Distributions Confidence Intervals-gICzUhMVymo.mp4
3.9 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/13. L1 15 Calculating Index After Add Or Delete V2-hiAHRE6JY0k.mp4
3.9 MB
Part 06-Module 01-Lesson 11_Confidence Intervals/16. Confidence Intervals And Hypothesis Tests-T2d9AUnWl-I.mp4
3.9 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/04. L1 05 Market Cap V2-PE0UgUc0f0U.mp4
3.9 MB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/26. M4 L3b 22 Summary V2-Tq8yVPEHxXs.mp4
3.9 MB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-36KLIHioAvA.mp4
3.8 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.mp4
3.8 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.mp4
3.8 MB
Part 06-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.mp4
3.8 MB
Part 02-Module 01-Lesson 05_Financial Statements/19. M5 SC 10 Parsing An HTML File V1-Ybl4fI92cYE.mp4
3.8 MB
Part 06-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.mp4
3.8 MB
Part 06-Module 01-Lesson 12_Hypothesis Testing/20. Calculating the p-value-_W3Jg7jQ8jI.mp4
3.8 MB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/11. M4 L1B 11 How An Alpha Factor Becomes A Risk Factor Part 1 V3-p0cTudt8kXI.mp4
3.8 MB
Part 01-Module 01-Lesson 06_Data Processing/03. M1L4 04b Dividends V2-OVZw9tci55w.mp4
3.8 MB
Part 06-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-qDGSvvabN18.mp4
3.8 MB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/06. M4 L2A 17 Fama French Size Factor V3-FXZuHsn0bx4.mp4
3.8 MB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/11. Emotion as a Service-2jAP3rP3USM.mp4
3.8 MB
Part 06-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-nUxwwMNKIYo.mp4
3.8 MB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/02. RNN Vs LSTM-70MgF-IwAr8.mp4
3.8 MB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/13. M4 L1B 13 Momentum Or Reversal V3-izTAHVF6V_g.mp4
3.7 MB
Part 01-Module 03-Lesson 02_ETFs/04. L2 06 Hedging V3-4k1bdohhawI.mp4
3.7 MB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/08. Example of Sampling Distributions - Part 3-E_4lvTWkSNI.mp4
3.7 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/03. L1 04 Indices Describe The Market V2-jNzwxE3el7I.mp4
3.7 MB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/13. PyTorch V2 Part 3 Solution 2 V1-ExyFG2MjsKs.mp4
3.7 MB
Part 01-Module 03-Lesson 02_ETFs/10. L2 12 Misaligned ETF Pricing V3-5-pBZ3fyv6I.mp4
3.7 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/13. Error Functions-YfUUunxWIJw.mp4
3.7 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/13. Error Functions-YfUUunxWIJw.mp4
3.7 MB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/06. Example of Sampling Distributions - Part I-1XezzP6kxUE.mp4
3.7 MB
Part 01-Module 01-Lesson 05_Market Mechanics/01. M1L3 01 Intro V4-LE-4Xf8lzHk.mp4
3.7 MB
Part 01-Module 03-Lesson 02_ETFs/09. L2 11 Arbitrage V2-yp-CcGrMzYQ.mp4
3.7 MB
Part 01-Module 02-Lesson 04_Time Series Modeling/01. M2L4 01 Time Series Modeling V4-QeIu7GMZl20.mp4
3.7 MB
Part 05-Module 01-Lesson 03_Pandas/06. Pandas 3 V1-yhMT0X6YPFA.mp4
3.7 MB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-MEbJxfw3NVs.mp4
3.7 MB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/01. M4 L2A 12 Time Series Risk Model Factor Variance V2-hjVBXeZmA0w.mp4
3.7 MB
Part 06-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-btGdX0ZpkNU.mp4
3.7 MB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/01. M4 L1B 01 Intro To Lesson V1-ff0paDNA75U.mp4
3.7 MB
Part 01-Module 04-Lesson 03_Risk Factor Models/10. M4 L2A 06 Variance Of One Stock V3-rxaABg4wVZo.mp4
3.7 MB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/10. M4 L2A 21 Cross Sectional Risk Model V3-mpnRAt8qUus.mp4
3.6 MB
Part 01-Module 04-Lesson 03_Risk Factor Models/05. M4 L2A 03 Factor Model Of Asset Return V2-7UnllxDmLj8.mp4
3.6 MB
Part 01-Module 04-Lesson 03_Risk Factor Models/07. M4 L2A 04 Factor Model Of Portfolio Return V3-HEoPljS1wD0.mp4
3.6 MB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/10. Feature Extraction-UgENzCmfFWE.mp4
3.6 MB
Part 10-Module 01-Lesson 01_Intro to NLP/11. Feature Extraction-UgENzCmfFWE.mp4
3.6 MB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/15. M4 L2A 26 Fundamental Factors V2-fndhL2Tolac.mp4
3.6 MB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/26. M4 L1B 26 Summary V1-yuLQA24Thms.mp4
3.6 MB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/01. M4 L4 01 Intro V1-9NzZFszX2E4.mp4
3.6 MB
Part 10-Module 01-Lesson 01_Intro to NLP/01. Intro Arpan-MW5MWOLj064.mp4
3.6 MB
Part 02-Module 02-Lesson 05_Embeddings Word2Vec/07. 5 Subsampling Solution V1-YXruURuFD7g.mp4
3.6 MB
Part 06-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.mp4
3.6 MB
Part 06-Module 01-Lesson 08_Python Probability Practice/04. Simulating Many Coin Flips-AqpWQIj2V5Y.mp4
3.6 MB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/07. Natural Language Processing-UQBxJzoCp-I.mp4
3.6 MB
Part 10-Module 01-Lesson 01_Intro to NLP/08. Natural Language Processing-UQBxJzoCp-I.mp4
3.6 MB
Part 03-Module 01-Lesson 05_Scripting/11. Errors And Exceptions-DmthSiy2d0U.mp4
3.5 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/05. L1 06 Growth Vs Value V2-ZCjre5YTD0s.mp4
3.5 MB
Part 06-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-Qm4KTLfFMzo.mp4
3.5 MB
Part 06-Module 01-Lesson 04_Probability/05. Loaded Coin 2-dGffszQYzqc.mp4
3.5 MB
Part 06-Module 01-Lesson 11_Confidence Intervals/14. Correct Interpretations of Confidence Intervals-IhYv_SlN7e8.mp4
3.5 MB
Part 01-Module 02-Lesson 01_Quant Workflow/05. M2L1 04 Anatomy Of A Strategy Part 1 V5-cnJK8c2zfq4.mp4
3.5 MB
Part 06-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-lmuonrQp_lM.mp4
3.5 MB
Part 07-Module 01-Lesson 03_Clustering/10. K-Means Cluster Visualization-iCTPBcowJRY.mp4
3.5 MB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/14. PyTorch - Part 4-AEJV_RKZ7VU.mp4
3.5 MB
Part 06-Module 01-Lesson 13_Case Study AB tests/11. Metric - Average Reading Duration-w6Y9ZxHDEbw.mp4
3.5 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/34. Calculating The Gradient 1 -tVuZDbUrzzI.mp4
3.5 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/34. Calculating The Gradient 1 -tVuZDbUrzzI.mp4
3.5 MB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/06. M1L1 MV 01 Intro In The First Five V1-magg5AVJRVA.mp4
3.5 MB
Part 07-Module 01-Lesson 01_Linear Regression/07. Square Trick-AGZEq-yQgRM.mp4
3.4 MB
Part 01-Module 01-Lesson 04_Stock Prices/01. M1L2 01 Stocks V6-23sv5ey0ySs.mp4
3.4 MB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/11. Introduction To Notation-ISkBSUVH49M.mp4
3.4 MB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/24. There Must Be A Better Way-oBp8YX2AgJw.mp4
3.4 MB
Part 07-Module 01-Lesson 02_Naive Bayes/01. Naive Bayes Intro V2-vNOiQXghgRY.mp4
3.4 MB
Part 02-Module 01-Lesson 03_Text Processing/06. Tokenization-4Ieotbeh4u8.mp4
3.4 MB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/22. M4 L1B 22 Alternative Data V1-p6NxGZnkrdc.mp4
3.4 MB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/17. M4 L2b 16 PCA As A Factor Model Pt 2 V2-sDbmO0kHx9A.mp4
3.4 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.mp4
3.4 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.mp4
3.4 MB
Part 01-Module 03-Lesson 02_ETFs/11. L2 14 Summary V1-E5br2PiH8kY.mp4
3.4 MB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/17. Shape of Distributions-UnN99AAYf8k.mp4
3.3 MB
Part 03-Module 01-Lesson 05_Scripting/13. Handling Error Specifying Exceptions-EHW5I7shdJg.mp4
3.3 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/19. L1 21 Hedge Funds V4-AgGPqvDFTHw.mp4
3.3 MB
Part 02-Module 01-Lesson 03_Text Processing/05. Normalization-eOV2UUY8vtM.mp4
3.3 MB
Part 01-Module 04-Lesson 06_Alpha Factors/16. M4 L3a 09 Smoothing V2-mAfrjpZOf7Q.mp4
3.3 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/32. Layers-pg99FkXYK0M.mp4
3.3 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/32. Layers-pg99FkXYK0M.mp4
3.3 MB
Part 03-Module 01-Lesson 03_Control Flow/34. Congrats!-vDoqpwCHxs4.mp4
3.3 MB
Part 01-Module 01-Lesson 05_Market Mechanics/05. M1L3 08 Tick Data V4-2O0eSKmI6YQ.mp4
3.2 MB
Part 06-Module 01-Lesson 12_Hypothesis Testing/07. Types Of Errors - Part I-aw6GMxIvENc.mp4
3.2 MB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/18. KALMAN QUIZ Gaussian Motion 01 RENDER V2-LFPT0R3VaPs.mp4
3.2 MB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/20. M4 L3b 16 IVol Arbitrage Risk V3-rKtJ3iAYYns.mp4
3.2 MB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/26. Notation for the Mean-3EF15AoRxyM.mp4
3.2 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/19. Quiz - Cross 1--xxrisIvD0E.mp4
3.2 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz - Cross 1--xxrisIvD0E.mp4
3.2 MB
Part 06-Module 01-Lesson 13_Case Study AB tests/05. Experiment I-JLKAdT2JESk.mp4
3.2 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/18. L1 20 Mutual Funds V2-LgaylDkS92Y.mp4
3.2 MB
Part 06-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.mp4
3.1 MB
Part 02-Module 01-Lesson 04_Feature Extraction/06. Word2Vec-7jjappzGRe0.mp4
3.1 MB
Part 06-Module 01-Lesson 04_Probability/11. Two Flips 4-bNoS6LQEFrI.mp4
3.1 MB
Part 02-Module 02-Lesson 04_Training Neural Networks/02. Training Optimization-UiGKhx9pUYc.mp4
3.1 MB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/09. Text Processing-pqheVyctkNQ.mp4
3.1 MB
Part 10-Module 01-Lesson 01_Intro to NLP/10. Text Processing-pqheVyctkNQ.mp4
3.1 MB
Part 06-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-lPrKmvckG4E.mp4
3.1 MB
Part 06-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-5Tbd3_a5Vug.mp4
3.1 MB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/12. M4 L2A 23 Categorical Factors V2-F76juAxHVIk.mp4
3.1 MB
Part 06-Module 01-Lesson 07_Bayes Rule/33. Bayes' Rule and Robotics-meNSO42JF6I.mp4
3.1 MB
Part 01-Module 04-Lesson 06_Alpha Factors/42. M4 L3a 182 Quantile Analysis Part 2 V3-NF18kx0sfBE.mp4
3.0 MB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/17. M4 L3b 13 Skewness And Momentum Conditional Factor V2-cMLTVZFKEm0.mp4
3.0 MB
Part 01-Module 03-Lesson 02_ETFs/03. L2 04 Commodity ETFs V2-UpgX6INJ6nU.mp4
3.0 MB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/06. 5 Number Summary to Variance-Ljhau0hrZ1g.mp4
3.0 MB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/07. L3 06 The Covariance Matrix And Quadratic Forms V1-as5lafBZ2CA.mp4
3.0 MB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/01. Instructors Introduction-lIvm8urf4GE.mp4
3.0 MB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/14. Character-Wise RNN-dXl3eWCGLdU.mp4
3.0 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/11. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.mp4
3.0 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/11. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.mp4
3.0 MB
Part 01-Module 01-Lesson 08_Momentum Trading/04. M1L6 04 Long And Short Positions V3-TCOFgM-hxkQ.mp4
3.0 MB
Part 06-Module 01-Lesson 12_Hypothesis Testing/01. Hypothesis Testing Introduction-Qi6F2rJAmrA.mp4
3.0 MB
Part 06-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-CMQBKuYjPBM.mp4
3.0 MB
Part 07-Module 01-Lesson 01_Linear Regression/18. Closed Form Solution-G3fRVgLa5gI.mp4
3.0 MB
Part 03-Module 01-Lesson 05_Scripting/29. Conclusion-rEMrswkLvh8.mp4
3.0 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.mp4
3.0 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.mp4
3.0 MB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/25. M4 L3b 21 IVol Generalizing The Volatility Factor V2-Lt1JPjKHPmk.mp4
3.0 MB
Part 07-Module 01-Lesson 03_Clustering/14. Some challenges of k-means-e2CdlG5P4WA.mp4
3.0 MB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/04. What is Data-ldTDAjrVsA8.mp4
3.0 MB
Part 06-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-05upwXtARuo.mp4
2.9 MB
Part 01-Module 01-Lesson 05_Market Mechanics/09. M1L3 12 Gaps In Market Data V3-jMT3VbUGiZI.mp4
2.9 MB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/07. 08. Computer Vision Pipeline-64hFcqhnNow.mp4
2.9 MB
Part 07-Module 01-Lesson 03_Clustering/04. How Many Clusters-R6oIvdBtsZw.mp4
2.9 MB
Part 01-Module 02-Lesson 04_Time Series Modeling/07. M2L4 08 Particle Filter V4-4KhDUAvwI74.mp4
2.9 MB
Part 01-Module 01-Lesson 05_Market Mechanics/10. M1L3 14 Markets In Different Timezones V3-wmmEpPM-HVs.mp4
2.9 MB
Part 06-Module 01-Lesson 11_Confidence Intervals/01. Confidence Intervals Introduction-crleT4000ak.mp4
2.9 MB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/18. PyTorch V2 Part 5 Solution 2 V1-3Py2SbtZLbc.mp4
2.9 MB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/09. M4 L2b 09 Writing It Down Pt 2 V2-TSH3hTAHsIg.mp4
2.9 MB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/07. M4 L2A 18 Fama French Value Factor V4-IcbsQ4QRGbs.mp4
2.9 MB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/19. M4 L3b 15 IVol Arbitrage And Efficient Pricing Of Stocks V3-7Fqe5DP6iG8.mp4
2.9 MB
Part 06-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-mvJUNYfHngY.mp4
2.9 MB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/01. Introduction-SvdlBB-ZjcQ.mp4
2.9 MB
Part 07-Module 01-Lesson 03_Clustering/05. Match Points with Clusters-wJV1cRjmIYY.mp4
2.9 MB
Part 01-Module 01-Lesson 06_Data Processing/02. M1L4 02 Market Data V5-9aEp374GsgQ.mp4
2.9 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/09. DL 08 AND And OR Perceptrons-Y-ImuxNpS40.mp4
2.9 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/09. DL 08 AND And OR Perceptrons-Y-ImuxNpS40.mp4
2.9 MB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/17. Two Useful Theorems - Central Limit Theorem-L79u8ywRmG8.mp4
2.9 MB
Part 01-Module 04-Lesson 03_Risk Factor Models/08. M4 L2A 05 Covariance Matrix Of Factors V3-llA1A0vjSuI.mp4
2.9 MB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/05. KALMAN Gaussian Intro RENDER 1 1 V3-S2v1CExswT4.mp4
2.8 MB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/08. M4 L2A 19 Fama French SMB And HML V2-fnncnimScFc.mp4
2.8 MB
Part 06-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-mFfbts1lAEo.mp4
2.8 MB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-MZoYGBZTh-g.mp4
2.8 MB
Part 07-Module 01-Lesson 01_Linear Regression/16. Higher Dimensions--UvpQV1qmiE.mp4
2.8 MB
Part 06-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.mp4
2.8 MB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/05. M4 L2b 05 Translating Between Bases V4-lrE4VOJ2RCA.mp4
2.8 MB
Part 01-Module 02-Lesson 05_Volatility/13. M2L5 13 Breakout Strategies V4-9eamk40DMu0.mp4
2.8 MB
Part 07-Module 01-Lesson 02_Naive Bayes/03. SL NB 02 Known And Inferred V1 V2-DrYfZXiDLQI.mp4
2.7 MB
Part 01-Module 04-Lesson 03_Risk Factor Models/03. M4 L2A 02 Motivation For Risk Factor Model V2-jAQRjxK8PyQ.mp4
2.7 MB
Part 01-Module 03-Lesson 04_Portfolio Optimization/13. L4 14 Recap V1-e3qJYCQfJD0.mp4
2.7 MB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-Ny2vcRZ6Aws.mp4
2.7 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/06. 09 Higher Dimensions-eBHunImDmWw.mp4
2.7 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/06. 09 Higher Dimensions-eBHunImDmWw.mp4
2.7 MB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/02. Histograms-4t10RgUv2Fc.mp4
2.7 MB
Part 07-Module 01-Lesson 01_Linear Regression/09. Mean Absolute Error-vLKiY0Ehors.mp4
2.7 MB
Part 06-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-41HCYR-NW-w.mp4
2.7 MB
Part 03-Module 01-Lesson 05_Scripting/05. Running A Python Script-vMKemwCderg.mp4
2.7 MB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-YSMWpFM92S0.mp4
2.7 MB
Part 03-Module 01-Lesson 02_Data Types and Operators/38. Conclusion-LLEZadlXM8A.mp4
2.7 MB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/26. KALMAN QUIZ Kalman Prediction V1-d8Gx4-RghD0.mp4
2.7 MB
Part 04-Module 01-Lesson 02_Vectors/02. Vectors 2-R7WiQYixvRQ.mp4
2.6 MB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-vMAl1m8ZtoI.mp4
2.6 MB
Part 06-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-8jcCGD986jk.mp4
2.6 MB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/10. M4 L2b 10 Writing It Down Pt 3 V3-kSl0j4QIMIU.mp4
2.6 MB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/06. M1L1 MV 04b Project Reviews V1-KJbx9f9VKJE.mp4
2.6 MB
Part 06-Module 01-Lesson 03_Admissions Case Study/11. Dangers Of Statistics-UYZXqP562qg.mp4
2.6 MB
Part 06-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-VLLG0rYC7To.mp4
2.6 MB
Part 06-Module 01-Lesson 12_Hypothesis Testing/16. Using A Confidence Interval to Make A Decision-MghT95b6LbQ.mp4
2.6 MB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/16. L3 13 Summary V1-I7XKJf8t_0s.mp4
2.6 MB
Part 06-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-RBfFHxEjsIU.mp4
2.5 MB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/12. M4 L2b 13 Principal Components V3-XtecKk58CLs.mp4
2.5 MB
Part 02-Module 01-Lesson 03_Text Processing/03. Capturing Text Data-Z4mnMN1ApG4.mp4
2.5 MB
Part 06-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-ys9w-NNKCcU.mp4
2.5 MB
Part 06-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-t22oDruXhuo.mp4
2.5 MB
Part 01-Module 01-Lesson 05_Market Mechanics/06. M1L3 09 Open High Low Close V4-FgNY4YgVWFk.mp4
2.5 MB
Part 06-Module 01-Lesson 13_Case Study AB tests/09. Experiment II-fq4eO7CybA4.mp4
2.4 MB
Part 02-Module 02-Lesson 04_Training Neural Networks/12. Other Activation Functions-kA-1vUt6cvQ.mp4
2.4 MB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/15. Sequence-Batching-Z4OiyU0Cldg.mp4
2.4 MB
Part 06-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-udduksMWMB4.mp4
2.4 MB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/03. L3 03 Portfolio Mean V3-vozlctvug7I.mp4
2.4 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/15. Discrete vs Continuous-rdP-RPDFkl0.mp4
2.4 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs Continuous-rdP-RPDFkl0.mp4
2.4 MB
Part 02-Module 01-Lesson 04_Feature Extraction/01. Feature Extraction-Bd6TJB8eVLQ.mp4
2.4 MB
Part 06-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.mp4
2.4 MB
Part 01-Module 01-Lesson 05_Market Mechanics/04. M1L3 04 Liquidity V4-KNVQeH6Y_YA.mp4
2.4 MB
Part 06-Module 01-Lesson 13_Case Study AB tests/14. Analyzing Multiple Metrics-DtZghKNa7Ak.mp4
2.4 MB
Part 06-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-9SbUxcyDTaQ.mp4
2.3 MB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/05. Learn Gate-aVHVI7ovbHY.mp4
2.3 MB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/09. Data Types Summary-T-KrQoAJUpI.mp4
2.3 MB
Part 06-Module 01-Lesson 11_Confidence Intervals/05. Confidence Interval for a Difference In Means-8hrWGzjyhck.mp4
2.3 MB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/01. 1 SentimentRNN Intro V1-bQWUuaMc9ZI.mp4
2.3 MB
Part 01-Module 01-Lesson 07_Stock Returns/01. M1L5 01 Intro V2-mE8OOxkgzy8.mp4
2.3 MB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/03. What Is Coming Up-oDJsnQcCPr4.mp4
2.3 MB
Part 01-Module 03-Lesson 04_Portfolio Optimization/01. L4 01 Intro V1-CtIcmmR0YTs.mp4
2.3 MB
Part 06-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-V_Gqm42WodI.mp4
2.3 MB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/03. M4 L2A 14 Time Series Risk Model Specific Variance V2-I0uJLfh_OgQ.mp4
2.3 MB
Part 06-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-YkaVgZ-yFrM.mp4
2.3 MB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/02. M4 L2A 13 Time Series Risk Model Factor Exposure V4-WPBSMptBrfw.mp4
2.3 MB
Part 07-Module 01-Lesson 04_Decision Trees/12. MLND SL DT 10 Q Information Gain MAIN V1-tVLOLPEtLFw.mp4
2.3 MB
Part 02-Module 01-Lesson 03_Text Processing/08. Part-of-Speech Tagging-WFEu8bXI5OA.mp4
2.3 MB
Part 01-Module 02-Lesson 03_Regression/09. M2L3 08 Heteroskedasticity V2-wias9OZ1tU4.mp4
2.3 MB
Part 06-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.mp4
2.3 MB
Part 06-Module 01-Lesson 13_Case Study AB tests/18. Conclusion-qmGjRpMVBz8.mp4
2.2 MB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/03. Grammar-Jw3dA7xmoQ4.mp4
2.2 MB
Part 10-Module 01-Lesson 01_Intro to NLP/04. Grammar-Jw3dA7xmoQ4.mp4
2.2 MB
Part 02-Module 02-Lesson 04_Training Neural Networks/15. Momentum-r-rYz_PEWC8.mp4
2.2 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/30. Non-Linear Data-F7ZiE8PQiSc.mp4
2.2 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/30. Non-Linear Data-F7ZiE8PQiSc.mp4
2.2 MB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/14. M4 L2A 25 Specific Variance V2-JwA9g3NBglE.mp4
2.2 MB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/14. KALMAN QUIZ Parameter Update 01 RENDER V3-UUXETqShme4.mp4
2.2 MB
Part 06-Module 01-Lesson 13_Case Study AB tests/01. Case Study Introduction-J5uvdPxHIfs.mp4
2.2 MB
Part 01-Module 01-Lesson 06_Data Processing/01. M1L4 01 Stock Data V2-sN0_IqmMGGA.mp4
2.2 MB
Part 01-Module 02-Lesson 02_Outliers and Filtering/01. M2L2 01 Intro V1-OGx1aYHMgbs.mp4
2.2 MB
Part 01-Module 02-Lesson 03_Regression/17. M2L3 15 Summary V1-n2VxcEcw0GY.mp4
2.2 MB
Part 06-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Rf6WfB_1EJQ.mp4
2.2 MB
Part 06-Module 01-Lesson 03_Admissions Case Study/01. Admissions Case Study Introduction-FGbxq1hQgtk.mp4
2.2 MB
Part 06-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-FnNveASivMA.mp4
2.2 MB
Part 06-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.mp4
2.2 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/21. Formula For Cross 1-qvr_ego_d6w.mp4
2.2 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/21. Formula For Cross 1-qvr_ego_d6w.mp4
2.2 MB
Part 06-Module 01-Lesson 07_Bayes Rule/07. Total Probability-fAaE5K9OZJc.mp4
2.2 MB
Part 01-Module 02-Lesson 02_Outliers and Filtering/09. M2L2 08 Generating Robust Trading Signals V3-1ikkZmVkjl0.mp4
2.2 MB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/05. Data Types-gT6EYlsLZkE.mp4
2.2 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/03. Exemplo de classificação-Dh625piH7Z0.mp4
2.2 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/03. Exemplo de classificação-Dh625piH7Z0.mp4
2.2 MB
Part 06-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-NRPcnpmFCg8.mp4
2.2 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/22. L1 25 Net Asset Value V2-hBnY2DmEFo4.mp4
2.2 MB
Part 06-Module 01-Lesson 08_Python Probability Practice/08. Python Probability Conclusion-4JYar5GykXk.mp4
2.2 MB
Part 02-Module 01-Lesson 04_Feature Extraction/03. TF-IDF-XZBiBIRcACE.mp4
2.2 MB
Part 06-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-7k5oAaZamCA.mp4
2.1 MB
Part 06-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-aBBmlnd7okQ.mp4
2.1 MB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/08. M4 L3b 06 Winners And Losers In Momentum Investing V2-84ygzbLENbE.mp4
2.1 MB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-yimIE9fCvi8.mp4
2.1 MB
Part 02-Module 02-Lesson 04_Training Neural Networks/03. Testing-EeBZpb-PSac.mp4
2.1 MB
Part 07-Module 01-Lesson 03_Clustering/17. Counterintuitive Clusters 2-xSQTzAeeoEc.mp4
2.1 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/25. Gradient Descent Algorithm-snxmBgi_GeU.mp4
2.1 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/25. Gradient Descent Algorithm-snxmBgi_GeU.mp4
2.1 MB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/02. M1L1 02 Interview W Jonathan V1-AeranuDRL7k.mp4
2.1 MB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/19. M4 L2b 19 Outro V1-nfVnAkndJCY.mp4
2.1 MB
Part 01-Module 04-Lesson 03_Risk Factor Models/13. M4 L2A 09 Variance Of 2 Stocks Part 2 V4-tSMutw0f6OE.mp4
2.1 MB
Part 06-Module 01-Lesson 03_Admissions Case Study/14. Conclusion-XiR_37bYA84.mp4
2.1 MB
Part 01-Module 01-Lesson 05_Market Mechanics/11. M1L3 15 Outro V2-XVvfToYCsmo.mp4
2.1 MB
Part 02-Module 01-Lesson 03_Text Processing/07. Stop Word Removal-WAU_Ij0GJbw.mp4
2.1 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/16. DL 18 S Softmax-n8S-v_LCTms.mp4
2.0 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 S Softmax-n8S-v_LCTms.mp4
2.0 MB
Part 06-Module 01-Lesson 05_Binomial Distribution/01. Binomial-x1yamZeOMPY.mp4
2.0 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/10. Perceptron Algorithm--zhTROHtscQ.mp4
2.0 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/10. Perceptron Algorithm--zhTROHtscQ.mp4
2.0 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/20. L1 23 Absolute Returns V3-wbb6WSyXLdU.mp4
2.0 MB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/11. M4 L2b 11 Writing It Down Pt 4 V3-7XO-syqIpCE.mp4
2.0 MB
Part 03-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Using With-OQ-Y0mMjm00.mp4
2.0 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/08. L1 09 Price Weighting V2-2SFbwJ19NhA.mp4
2.0 MB
Part 06-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-lhhUjxnbad8.mp4
2.0 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/32. Multiclass Classification-uNTtvxwfox0.mp4
2.0 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/32. Multiclass Classification-uNTtvxwfox0.mp4
2.0 MB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/31. Descriptive Statistics Summary-Fe7Gta2SfLA.mp4
2.0 MB
Part 01-Module 04-Lesson 03_Risk Factor Models/11. M4 L2A 07 Taking Constants Out Of Variance And Covariance Optional V3-M9R9870m_o0.mp4
2.0 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/19. Quiz Cross Entropy-njq6bYrPqSU.mp4
2.0 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz Cross Entropy-njq6bYrPqSU.mp4
2.0 MB
Part 06-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-Uy7b3aMPnEY.mp4
1.9 MB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/10. KALMAN QUIZ Shifting The Mean 01 RENDER 1 V2-gfBdoCFborg.mp4
1.9 MB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/06. M1L1 MV 04a Knowledge V1-lX_is8cq0Bg.mp4
1.9 MB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/11. M4 L2A 22 Cross Sectional Risk Model A Different Approach V2-LauZ7h4bgKE.mp4
1.9 MB
Part 07-Module 01-Lesson 01_Linear Regression/10. Mean Squared Error-MRyxmZDngI4.mp4
1.9 MB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/01. 26 Spread Part 1-zb76Z_viYLY.mp4
1.9 MB
Part 07-Module 01-Lesson 02_Naive Bayes/09. SL NB 08 S Bayesian Learning 2 V1 V6-3rIYZgCXVXY.mp4
1.9 MB
Part 07-Module 01-Lesson 03_Clustering/06. Optimizing Centers (Rubber Bands)-TN1rQMrx65c.mp4
1.9 MB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-z_eElEkVOPY.mp4
1.9 MB
Part 06-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-JWl8lPGhlbY.mp4
1.9 MB
Part 02-Module 01-Lesson 03_Text Processing/01. Text Processing-6LO6I5M18PQ.mp4
1.9 MB
Part 01-Module 03-Lesson 02_ETFs/10. L2 13 Realigning ETF Share Prices V2-aRXJxjQQSiI.mp4
1.8 MB
Part 06-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-PGG9agooCvw.mp4
1.8 MB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/07. Categorical Ordinal Nominal Data-k5bLaPGY2Vw.mp4
1.8 MB
Part 06-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-CQHRYIU6v9Q.mp4
1.8 MB
Part 02-Module 02-Lesson 04_Training Neural Networks/16. Error Functions Around the World-34AAcTECu2A.mp4
1.8 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/16. Quiz - Softmax-NNoezNnAMTY.mp4
1.8 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/16. Quiz - Softmax-NNoezNnAMTY.mp4
1.8 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.mp4
1.8 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.mp4
1.8 MB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/10. Other Architectures-MsxFDuYlTuQ.mp4
1.8 MB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-tiv8VKPL7jg.mp4
1.8 MB
Part 06-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-pL8Bf6tck_A.mp4
1.8 MB
Part 06-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.mp4
1.8 MB
Part 06-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6--lC9xztr4zA.mp4
1.8 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/17. One-Hot Encoding-AePvjhyvsBo.mp4
1.7 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/17. One-Hot Encoding-AePvjhyvsBo.mp4
1.7 MB
Part 06-Module 01-Lesson 08_Python Probability Practice/01. Python Probability Introduction-tFMdvAN7WDY.mp4
1.7 MB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/img/arpan-happy-results.png
1.7 MB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/img/screen-shot-2017-03-17-at-5.09.53-pm.png
1.7 MB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-w5qcGO8krMw.mp4
1.7 MB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/img/arpan-happy-emoji.png
1.7 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/04. 分类问题 2 -46PywnGa_cQ.mp4
1.7 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/04. 分类问题 2 -46PywnGa_cQ.mp4
1.7 MB
Part 06-Module 01-Lesson 07_Bayes Rule/37. Bayes Rule Conclusion-vlfDGCD8w0s.mp4
1.7 MB
Part 06-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-a61GPGk-Qy4.mp4
1.7 MB
Part 07-Module 01-Lesson 03_Clustering/05. Match Points with Clusters-lS5DfbsWH34.mp4
1.7 MB
Part 01-Module 02-Lesson 05_Volatility/14. M2L5 15 Outro V1-FMXL37CkTgg.mp4
1.7 MB
Part 06-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-vLhdJtXx060.mp4
1.7 MB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-N-wpkttwcoA.mp4
1.7 MB
Part 06-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-4LVRNqpdxsw.mp4
1.7 MB
Part 07-Module 01-Lesson 03_Clustering/04. How Many Clusters-8Ygq5dRV0Kk.mp4
1.7 MB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/img/arpan-happy-features.png
1.7 MB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/09. Putting It All Together-IF8FlKW-Zo0.mp4
1.7 MB
Part 06-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-hXyXlk0gYzk.mp4
1.7 MB
Part 07-Module 01-Lesson 01_Linear Regression/23. Conclusion-pyeojf0NniQ.mp4
1.6 MB
Part 06-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.mp4
1.6 MB
Part 01-Module 01-Lesson 03_Get Help with Your Account/img/screen-shot-2018-11-09-at-7.48.22-pm.png
1.6 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/25. L1 28 Open End Mutual Funds Handling Withdrawals V2-46NGAQHY-Mc.mp4
1.6 MB
Part 01-Module 04-Lesson 01_Factors/10. M4 L1A 09 Overview For Standardizing A Factor V3-0clT0lnrTrU.mp4
1.6 MB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/06. M1L1 MV 04 Study Groups V1-vmjk1EKR6mM.mp4
1.6 MB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/09. Maximize Gaussian Solution - Artificial Intelligence for Robotics-2cD8T65E-jM.mp4
1.6 MB
Part 06-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.mp4
1.6 MB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/08. LSTM 7 Use Gate-5Ifolm1jTdY.mp4
1.6 MB
Part 01-Module 02-Lesson 01_Quant Workflow/03. M2L1 02 Quant Workflow V3-lZfCCRv2rEE.mp4
1.6 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.mp4
1.6 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.mp4
1.6 MB
Part 06-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-FQM7i07EqGo.mp4
1.6 MB
Part 06-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-VEfOdACY9rA.mp4
1.6 MB
Part 06-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-DeWp0hnRq4g.mp4
1.6 MB
Part 06-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3--6l4_oprDOk.mp4
1.6 MB
Part 07-Module 01-Lesson 01_Linear Regression/02. DLND REG 01 Quiz Housing Prices V2-8CSBiVKu35Q.mp4
1.6 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/34. Chain Rule-YAhIBOnbt54.mp4
1.5 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/34. Chain Rule-YAhIBOnbt54.mp4
1.5 MB
Part 06-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-S87Z5DgPJeo.mp4
1.5 MB
Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/08. M2L6 11 Clustering Stocks V3-LkgCK_qPqWE.mp4
1.5 MB
Part 06-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-SYnYIjLpbjE.mp4
1.5 MB
Part 07-Module 01-Lesson 02_Naive Bayes/12. MLND SL NB Solution Naive Bayes Algorithm-QDj3xzjuYmo.mp4
1.5 MB
Part 01-Module 02-Lesson 03_Regression/14. M2L3 12 Multivariate Linear Regression V3-WbCGVF7SAN0.mp4
1.5 MB
Part 02-Module 01-Lesson 04_Feature Extraction/10. NLP Summary-B9ul8fsQYOA.mp4
1.5 MB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/img/arpan-shocked.png
1.4 MB
Part 01-Module 03-Lesson 02_ETFs/07. L2 09 Redeeming Shares V3-ZSVgU7DBarc.mp4
1.4 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/23. L1 26 Expense Ratios V2-SHZ0AhJq134.mp4
1.4 MB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/22. Predict Function Solution - Artificial Intelligence for Robotics-AMFig-sYGfM.mp4
1.4 MB
Part 06-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.mp4
1.4 MB
Part 01-Module 02-Lesson 04_Time Series Modeling/09. M2L4 11 Outro V1-6sheR92KUU8.mp4
1.4 MB
Part 07-Module 01-Lesson 03_Clustering/07. Moving Centers 2-FY0DXe0lfrI.mp4
1.4 MB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/04. M4 L2A 15 Time Series Risk Model V2-Lz3RMLmov8o.mp4
1.4 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/12. Non-Linear Regions-B8UrWnHh1Wc.mp4
1.4 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/12. Non-Linear Regions-B8UrWnHh1Wc.mp4
1.4 MB
Part 02-Module 02-Lesson 04_Training Neural Networks/11. Vanishing Gradient-W_JJm_5syFw.mp4
1.4 MB
Part 01-Module 02-Lesson 02_Outliers and Filtering/10. M2L2 09 Outro V1-r1SWu-7Rzf0.mp4
1.4 MB
Part 06-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-jPspIs-fNxg.mp4
1.4 MB
Part 06-Module 01-Lesson 05_Binomial Distribution/08. Formula-yTr8zCHdo5M.mp4
1.3 MB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/08. NLP M1-L1 01 NLP Pipeline-vJx6oKlu_MM.mp4
1.3 MB
Part 10-Module 01-Lesson 01_Intro to NLP/09. NLP M1-L1 01 NLP Pipeline-vJx6oKlu_MM.mp4
1.3 MB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/img/screen-shot-2017-03-17-at-5.18.10-pm.png
1.3 MB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/03. What is the Difference-I3tQvrCgNrQ.mp4
1.3 MB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-5zkupL6EWh8.mp4
1.3 MB
Part 06-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.mp4
1.3 MB
Part 06-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-V96RcbbVP7Q.mp4
1.3 MB
Part 02-Module 01-Lesson 04_Feature Extraction/05. Word Embeddings-4mM_S9L2_JQ.mp4
1.3 MB
Part 06-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-4YY-hmqSz30.mp4
1.3 MB
Part 06-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.mp4
1.3 MB
Part 06-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-cdFrLeXIkZU.mp4
1.3 MB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/20. Predict Function - Artificial Intelligence for Robotics-DV2cX9W0tT8.mp4
1.3 MB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/11. Modeling-P4w_2rkxBvE.mp4
1.2 MB
Part 10-Module 01-Lesson 01_Intro to NLP/12. Modeling-P4w_2rkxBvE.mp4
1.2 MB
Part 02-Module 01-Lesson 03_Text Processing/09. Named Entity Recognition-QUQu2nsE7vE.mp4
1.2 MB
Part 07-Module 01-Lesson 03_Clustering/10. K-Means Cluster Visualization-ZMfwPUrOFsE.mp4
1.2 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/29. Continuous Perceptrons-07-JJ-aGEfM.mp4
1.2 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/29. Continuous Perceptrons-07-JJ-aGEfM.mp4
1.2 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/31. Non-Linear Models-HWuBKCZsCo8.mp4
1.2 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/31. Non-Linear Models-HWuBKCZsCo8.mp4
1.2 MB
Part 07-Module 01-Lesson 01_Linear Regression/04. Fitting A Line-gkdoknEEcaI.mp4
1.2 MB
Part 06-Module 01-Lesson 04_Probability/10. Two Flips 3-3NSPqjp6pFY.mp4
1.2 MB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-z2xsu2Kehyo.mp4
1.2 MB
Part 06-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-iyX0-eXStbw.mp4
1.1 MB
Part 02-Module 01-Lesson 04_Feature Extraction/04. One-Hot Encoding-a0j1CDXFYZI.mp4
1.1 MB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/04. LSTM Architecture-ycwthhdx8ws.mp4
1.1 MB
Part 06-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-d_fbDqAGVdE.mp4
1.1 MB
Part 07-Module 01-Lesson 03_Clustering/08. Match Points (again)-9J3IwQFXveI.mp4
1.1 MB
Part 06-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-d4LWnxyvrTQ.mp4
1.1 MB
Part 06-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.mp4
1.1 MB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/06. Forget Gate-iWxpfxLUPSU.mp4
1.1 MB
Part 06-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-yo55zJtJQwo.mp4
1.1 MB
Part 02-Module 02-Lesson 04_Training Neural Networks/06. DL 53 Q Regularization-KxROxcRsHL8.mp4
1.1 MB
Part 06-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-yof0QiP2mzk.mp4
1.1 MB
Part 06-Module 01-Lesson 05_Binomial Distribution/img/48713571.gif
1.0 MB
Part 07-Module 01-Lesson 01_Linear Regression/03. Solution Housing Prices-uhdTulw9-Nc.mp4
1.0 MB
Part 07-Module 01-Lesson 03_Clustering/15. Limitations of K-Means-nvLhUSSUhiY.mp4
1.0 MB
Part 06-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.mp4
1.0 MB
Part 07-Module 01-Lesson 01_Linear Regression/21. Polynomial Regression-DBhWG-PagEQ.mp4
1.0 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/08. 为何是神经网络-zAkzOZntK6Y.mp4
1.0 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/08. 为何是神经网络-zAkzOZntK6Y.mp4
1.0 MB
Part 07-Module 01-Lesson 01_Linear Regression/05. Moving A Line-8EIHFyL2Log.mp4
1.0 MB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/img/screen-shot-2017-03-17-at-5.25.16-pm.png
1.0 MB
Part 06-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-hyAQ28MYmc4.mp4
1.0 MB
Part 02-Module 01-Lesson 03_Text Processing/11. Summary-zKYEvRd2XmI.mp4
1.0 MB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/17. Measures of Center - The Mode-NE81NZgECqg.mp4
977.5 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/14. Learning Rate-TwJ8aSZoh2U.mp4
949.3 kB
Part 06-Module 01-Lesson 04_Probability/10. Two Flips 3-uimwo-puQWY.mp4
942.9 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LconwqN7hJs.mp4
914.7 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/img/screen-shot-2017-11-07-at-2.17.08-pm.png
903.8 kB
Part 07-Module 01-Lesson 01_Linear Regression/14. DLND REG 13 Absolute Vs Squared Error 3 V1 (1)-bIVGf_dDkrY.mp4
894.1 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-GzRNoodJZxk.mp4
884.7 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/img/screen-shot-2017-11-07-at-2.18.27-pm.png
852.0 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4-GD6cQhkoqS4.mp4
851.7 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-1PHs2w_NNTg.mp4
844.7 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/img/screen-shot-2017-03-17-at-5.20.52-pm.png
841.1 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/09. Local Minima-gF_sW_nY-xw.mp4
839.5 kB
Part 06-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.mp4
824.8 kB
Part 07-Module 01-Lesson 03_Clustering/07. Moving Centers 2-uC1Xwc7warg.mp4
823.0 kB
Part 06-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-cw_zgQbAWNU.mp4
823.0 kB
Part 06-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.mp4
817.0 kB
Part 07-Module 01-Lesson 03_Clustering/09. Handoff to Katie-knrPsGtpyQY.mp4
800.8 kB
Part 07-Module 01-Lesson 03_Clustering/img/sebastian-katie-jay.png
798.5 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-rjpcSymYulE.mp4
790.4 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/12. KALMAN QUIZ Predicting The Peak 01 RENDER V1-_fGH3xJMxdM.mp4
786.5 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/img/get-hired-with-the-udacity-career-portal.gif
774.9 kB
Part 06-Module 01-Lesson 07_Bayes Rule/12. Normalizer-W5i-gRAvZxs.mp4
772.6 kB
Part 06-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-UERKMwmkAsM.mp4
771.1 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-udXhxyls5Dw.mp4
769.9 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/img/student-quiz.png
767.0 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/img/student-quiz.png
767.0 kB
Part 06-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-GsneDVJB75E.mp4
765.6 kB
Part 06-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-E1ph6NP3_v4.mp4
765.1 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-xhpEqsHTf3g.mp4
736.7 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/img/screen-shot-2018-04-23-at-4.10.20-pm.png
733.8 kB
Part 07-Module 01-Lesson 01_Linear Regression/14. DLND REG 12 Absolute Vs Squared Error 2 V1 (1)-7El1OH17Oi4.mp4
709.4 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/13. KALMAN QUIZ Predicting The Peak 02 RENDER V1-mcwr6FcP2Vc.mp4
693.7 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/07. Remember Gate-0qlm86HaXuU.mp4
693.2 kB
Part 06-Module 01-Lesson 07_Bayes Rule/07. Total Probability-_hXCgF-aMB0.mp4
688.4 kB
Part 06-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2--pOzdj6pnbA.mp4
688.1 kB
Part 06-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.mp4
679.3 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LNzmJUj8K8w.mp4
677.0 kB
Part 07-Module 01-Lesson 01_Linear Regression/14. Absolute Vs Squared Error-csvdjaqt1GM.mp4
676.1 kB
Part 06-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-etrUbOAoh1U.mp4
666.1 kB
Part 06-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6-iyE5h48qPFQ.mp4
655.0 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/img/and-to-or.png
620.7 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/img/and-to-or.png
620.7 kB
Part 06-Module 01-Lesson 07_Bayes Rule/12. Normalizer-G9yQ_URDrDQ.mp4
617.8 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/15. KALMAN QUIZ Parameter Update 02 RENDER V2-vl6GkkEgY4M.mp4
588.4 kB
Part 04-Module 01-Lesson 01_Introduction/img/grant.png
583.6 kB
Part 01-Module 01-Lesson 02_Get Help from Peers and Mentors/img/screen-shot-2018-11-07-at-9.59.16-pm.png
541.9 kB
Part 06-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-fqt7NIvMB0s.mp4
541.6 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.mp4
535.6 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/img/screen-shot-2018-11-19-at-11.32.05-am.png
533.6 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-zB2Y-5YEIec.mp4
531.5 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/09. DL 09 XOR Perceptron--z9K49fdE3g.mp4
524.1 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/09. DL 09 XOR Perceptron--z9K49fdE3g.mp4
524.1 kB
Part 03-Module 01-Lesson 01_Why Python Programming/img/screen-shot-2018-03-19-at-2.30.59-pm.png
519.6 kB
Part 05-Module 01-Lesson 02_NumPy/img/screen-shot-2018-03-19-at-2.30.59-pm.png
519.6 kB
Part 05-Module 01-Lesson 03_Pandas/img/screen-shot-2018-03-19-at-2.30.59-pm.png
519.6 kB
Part 06-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-tIrqdYTT_9Q.mp4
518.2 kB
Part 07-Module 01-Lesson 01_Linear Regression/img/house.png
503.3 kB
Part 06-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-Se-ddM2Wdac.mp4
496.3 kB
Part 06-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-7ZLe_JP5wRY.mp4
491.1 kB
Part 06-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-goEMc0w58xM.mp4
484.7 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/img/screen-shot-2018-03-19-at-3.49.28-pm.png
482.9 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/img/screen-shot-2018-03-19-at-3.49.28-pm.png
482.9 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/img/screen-shot-2018-03-19-at-3.49.28-pm.png
482.9 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.mp4
478.6 kB
assets/img/udacimak.png
472.1 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/img/screen-shot-2017-03-17-at-4.03.20-pm.png
462.7 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/11. KALMAN QUIZ Shifting The Mean 02 RENDER V1-L8vNIKvpJ1s.mp4
462.1 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-8j5hria6Rc8.mp4
458.7 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/img/screen-shot-2018-03-19-at-2.49.57-pm.png
453.1 kB
Part 01-Module 01-Lesson 02_Get Help from Peers and Mentors/img/image4.png
446.9 kB
Part 06-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-PfEYA6z-19w.mp4
433.9 kB
Part 07-Module 01-Lesson 03_Clustering/img/3013998667.gif
414.3 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/img/screen-shot-2018-04-23-at-4.14.19-pm.png
404.9 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/10. Random Restart-idyBBCzXiqg.mp4
404.5 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/img/or-quiz.png
403.1 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/img/or-quiz.png
403.1 kB
Part 06-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-4qW7a5E74No.mp4
400.3 kB
Part 01-Module 04-Lesson 01_Factors/img/screen-shot-2018-10-29-at-5.40.03-pm.png
398.7 kB
Part 01-Module 01-Lesson 03_Get Help with Your Account/img/screen-shot-2018-11-09-at-7.49.50-pm.png
384.6 kB
Part 01-Module 01-Lesson 02_Get Help from Peers and Mentors/img/screen-shot-2018-11-07-at-10.23.07-pm.png
374.8 kB
Part 04-Module 01-Lesson 01_Introduction/img/screen-shot-2018-01-19-at-1.14.23-pm.png
367.2 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/img/screen-shot-2018-05-26-at-3.45.03-pm.png
360.0 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/img/screen-shot-2018-05-26-at-3.22.39-pm.png
355.1 kB
Part 05-Module 01-Lesson 02_NumPy/img/screen-shot-2018-03-19-at-3.21.24-pm.png
348.1 kB
Part 05-Module 01-Lesson 03_Pandas/img/screen-shot-2018-03-19-at-3.21.24-pm.png
348.1 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.mp4
347.4 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/media/Markdown+cells.mp4
338.3 kB
Part 04-Module 01-Lesson 03_Linear Combination/img/screen-shot-2018-01-26-at-11.05.49-pm.png
331.7 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.mp4
330.8 kB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/img/dancing-beemo.gif
325.8 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/img/screen-shot-2018-02-10-at-8.59.39-pm.png
322.0 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/img/screen-shot-2018-05-26-at-4.51.08-pm.png
320.9 kB
Part 06-Module 01-Lesson 04_Probability/09. Two Flips 2-pT0FXiH_5nI.mp4
320.1 kB
Part 03-Module 01-Lesson 05_Scripting/img/generate-messages-output.png
318.0 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/img/48665990.gif
316.7 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/img/screen-shot-2017-03-17-at-5.12.46-pm.png
313.2 kB
Part 07-Module 01-Lesson 04_Decision Trees/img/trees.png
307.2 kB
Part 01-Module 01-Lesson 02_Get Help from Peers and Mentors/img/screen-shot-2018-11-09-at-6.28.07-pm.png
307.2 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/img/screen-shot-2018-09-10-at-7.38.39-pm.png
303.4 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/img/screen-shot-2018-09-10-at-7.38.39-pm.png
303.4 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/img/screen-shot-2018-02-10-at-9.00.30-pm.png
303.0 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/img/48745039.gif
298.2 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/img/screen-shot-2018-04-23-at-4.05.20-pm.png
296.6 kB
Part 06-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-ztkKTrMZHXg.mp4
291.7 kB
index.html
290.4 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/img/screen-shot-2018-08-20-at-4.07.31-pm.png
288.8 kB
Part 04-Module 01-Lesson 01_Introduction/img/screen-shot-2018-01-19-at-1.05.48-pm.png
286.4 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/img/48736116.gif
273.8 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/img/and-quiz.png
272.2 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/img/and-quiz.png
272.2 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.mp4
266.2 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.mp4
266.2 kB
Part 01-Module 04-Lesson 01_Factors/img/screen-shot-2018-10-29-at-5.35.49-pm.png
261.5 kB
Part 01-Module 01-Lesson 03_Get Help with Your Account/img/screen-shot-2018-11-09-at-7.49.34-pm.png
244.7 kB
assets/js/katex.min.js
236.8 kB
Part 07-Module 01-Lesson 03_Clustering/img/2956218691.gif
235.0 kB
Part 01-Module 01-Lesson 02_Get Help from Peers and Mentors/img/image8.png
233.5 kB
Part 01-Module 01-Lesson 02_Get Help from Peers and Mentors/img/screen-shot-2018-11-07-at-9.55.40-pm.png
227.5 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/img/screen-shot-2018-01-30-at-5.14.39-pm.png
225.6 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-tPSj6_m-0_M.mp4
225.6 kB
Part 04-Module 01-Lesson 01_Introduction/img/screen-shot-2018-01-19-at-2.24.21-pm.png
224.0 kB
Part 06-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-clFL503NPyY.mp4
223.5 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/img/screen-shot-2018-10-29-at-3.04.01-pm.png
222.7 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/media/notebook+interface.mp4
220.6 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/img/xor.png
220.1 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/img/xor.png
220.1 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/img/stop-sign-classification.png
216.6 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/img/meme.png
214.1 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/img/meme.png
214.1 kB
Part 07-Module 01-Lesson 02_Naive Bayes/img/meme.png
214.1 kB
Part 07-Module 01-Lesson 03_Clustering/img/meme.png
214.1 kB
Part 07-Module 01-Lesson 04_Decision Trees/img/meme.png
214.1 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/img/meme.png
214.1 kB
Part 04-Module 01-Lesson 02_Vectors/img/screen-shot-2018-01-24-at-3.13.49-pm.png
209.5 kB
Part 07-Module 01-Lesson 03_Clustering/img/3081768538.gif
207.7 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/img/screen-shot-2018-05-26-at-3.51.18-pm.png
203.0 kB
Part 07-Module 01-Lesson 01_Linear Regression/img/batch-stochastic.png
201.6 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/img/screen-shot-2017-03-13-at-12.36.54-pm.png
197.6 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/img/screen-shot-2018-10-29-at-2.59.42-pm.png
197.0 kB
Part 07-Module 01-Lesson 03_Clustering/img/3050028596.gif
196.8 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/img/screen-shot-2018-05-26-at-3.37.30-pm.png
196.7 kB
Part 07-Module 01-Lesson 04_Decision Trees/img/table.png
196.7 kB
Part 07-Module 01-Lesson 03_Clustering/img/3056738546.gif
188.1 kB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/img/mat-headshot.png
184.3 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/img/mat-headshot.png
184.3 kB
Part 07-Module 01-Lesson 01_Linear Regression/img/quiz.jpg
178.4 kB
Part 07-Module 01-Lesson 03_Clustering/img/3034378634.gif
177.3 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/img/screen-shot-2018-01-24-at-12.03.45-am.png
174.9 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/media/command+palette.mp4
173.2 kB
Part 01-Module 04-Lesson 01_Factors/img/screen-shot-2018-10-29-at-11.08.44-pm.png
168.9 kB
Part 07-Module 01-Lesson 03_Clustering/img/3004978616.gif
168.5 kB
Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/img/08-identify-pairs-to-trade.png
166.3 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/img/screen-shot-2018-05-26-at-4.29.49-pm.png
164.6 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/img/screen-shot-2018-10-29-at-2.48.16-pm.png
161.7 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/img/screen-shot-2018-10-29-at-2.51.35-pm.png
161.5 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/img/magic-timeit.png
161.1 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/img/m4l2a-01-image-v1.png
160.9 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/img/server-shutdown.png
159.2 kB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/img/screen-shot-2018-11-05-at-11.33.57-am.png
157.6 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/img/screen-shot-2018-05-26-at-4.32.19-pm.png
156.2 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/img/screen-shot-2018-05-11-at-11.03.34-am.png
154.6 kB
Part 07-Module 01-Lesson 03_Clustering/img/3040398570.gif
152.3 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/img/screen-shot-2018-10-29-at-2.42.15-pm.png
149.0 kB
Part 01-Module 02-Lesson 03_Regression/img/screen-shot-2018-04-19-at-1.17.37-pm.png
145.9 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/img/screen-shot-2018-10-29-at-2.28.21-pm.png
144.3 kB
Part 07-Module 01-Lesson 04_Decision Trees/img/recommending-apps.png
143.9 kB
assets/css/bootstrap.min.css
140.9 kB
Part 07-Module 01-Lesson 01_Linear Regression/img/minibatch.png
140.0 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/img/screen-shot-2018-05-26-at-5.00.26-pm.png
138.9 kB
Part 07-Module 01-Lesson 02_Naive Bayes/img/spamham.png
138.3 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/img/screen-shot-2018-05-26-at-4.37.05-pm.png
129.9 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/img/screen-shot-2018-10-29-at-2.47.08-pm.png
129.8 kB
assets/js/plyr.polyfilled.min.js
129.2 kB
Part 04-Module 01-Lesson 01_Introduction/img/screen-shot-2018-01-19-at-1.58.00-pm.png
129.1 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/img/screen-shot-2018-10-29-at-4.03.59-pm.png
128.3 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/img/screen-shot-2018-10-29-at-4.27.07-pm.png
128.0 kB
Part 07-Module 01-Lesson 03_Clustering/img/3058428551.gif
127.7 kB
Part 06-Module 01-Lesson 07_Bayes Rule/img/screen-shot-2017-08-02-at-11.49.10-am.png
123.2 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/img/screen-shot-2018-10-15-at-8.35.15-pm.png
122.8 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/img/screen-shot-2018-10-29-at-3.36.06-pm.png
122.7 kB
Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/img/screen-shot-2018-02-14-at-6.07.26-pm.png
120.3 kB
Part 04-Module 01-Lesson 01_Introduction/img/screen-shot-2018-01-19-at-1.57.42-pm.png
117.0 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/img/screen-shot-2018-05-26-at-4.15.46-pm.png
116.2 kB
Part 04-Module 01-Lesson 02_Vectors/img/screen-shot-2018-01-24-at-2.27.07-pm.png
115.9 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/img/screen-shot-2018-05-26-at-4.04.18-pm.png
114.5 kB
Part 07-Module 01-Lesson 04_Decision Trees/img/screen-shot-2018-01-06-at-9.41.01-pm.png
113.4 kB
Part 01-Module 01-Lesson 03_Get Help with Your Account/img/screen-shot-2018-11-09-at-7.38.47-pm.png
113.2 kB
Part 01-Module 02-Lesson 03_Regression/img/distributions.png
113.1 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/img/screen-shot-2018-05-26-at-4.06.03-pm.png
112.6 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/img/conda-tab.png
112.6 kB
Part 06-Module 01-Lesson 07_Bayes Rule/img/screen-shot-2017-08-02-at-11.40.37-am.png
110.8 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/img/screen-shot-2018-10-29-at-4.20.49-pm.png
108.8 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/img/screen-shot-2018-10-29-at-4.37.50-pm.png
107.8 kB
Part 01-Module 04-Lesson 01_Factors/img/screen-shot-2018-10-29-at-5.29.38-pm.png
107.4 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/img/screen-shot-2018-05-26-at-4.05.55-pm.png
107.1 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/img/notebook-server.png
105.8 kB
Part 01-Module 04-Lesson 01_Factors/img/screen-shot-2018-10-29-at-5.27.30-pm.png
105.5 kB
Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/img/screen-shot-2018-02-14-at-3.59.39-pm.png
105.4 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/img/new-notebook.png
104.2 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/img/screen-shot-2018-10-29-at-3.23.22-pm.png
102.4 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/img/screen-shot-2018-10-29-at-2.48.34-pm.png
102.4 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/img/waffle.png
100.7 kB
Part 04-Module 01-Lesson 01_Introduction/img/screen-shot-2018-04-02-at-4.25.41-pm.png
99.9 kB
Part 06-Module 01-Lesson 06_Conditional Probability/img/48271967.gif
98.4 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/img/screen-shot-2018-01-30-at-4.39.42-pm.png
97.8 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/img/notebook-json.png
97.6 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/img/xor-quiz.png
96.4 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/img/xor-quiz.png
96.4 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/img/perceptronquiz.png
95.9 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/img/perceptronquiz.png
95.9 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/img/screen-shot-2018-10-29-at-3.55.55-pm.png
95.8 kB
Part 04-Module 01-Lesson 02_Vectors/img/screen-shot-2018-01-23-at-11.30.13-am.png
95.0 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/img/48728202.gif
94.4 kB
Part 07-Module 01-Lesson 04_Decision Trees/img/student-data.png
94.1 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/img/48684686.gif
93.8 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/img/48698526.gif
93.2 kB
Part 06-Module 01-Lesson 06_Conditional Probability/img/48734324.gif
93.0 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/img/magic-matplotlib.png
92.9 kB
Part 04-Module 01-Lesson 01_Introduction/img/screen-shot-2018-01-19-at-2.28.03-pm.png
92.9 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/img/48721292.gif
92.7 kB
Part 01-Module 01-Lesson 07_Stock Returns/img/aapl-returns-log-returns.jpeg
92.2 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/img/48698525.gif
91.3 kB
Part 06-Module 01-Lesson 07_Bayes Rule/img/48240997.gif
90.7 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/img/regularization-quiz.png
90.0 kB
Part 06-Module 01-Lesson 07_Bayes Rule/img/48310768.gif
89.8 kB
Part 06-Module 01-Lesson 07_Bayes Rule/img/48743074.gif
89.2 kB
Part 06-Module 01-Lesson 06_Conditional Probability/img/48271966.gif
88.8 kB
Part 06-Module 01-Lesson 07_Bayes Rule/img/48480561.gif
88.0 kB
assets/js/jquery-3.3.1.min.js
86.9 kB
Part 06-Module 01-Lesson 06_Conditional Probability/img/48716290.gif
86.8 kB
Part 06-Module 01-Lesson 07_Bayes Rule/img/48726280.gif
86.7 kB
Part 06-Module 01-Lesson 04_Probability/img/48667978.gif
86.5 kB
Part 04-Module 01-Lesson 03_Linear Combination/img/screen-shot-2018-01-29-at-11.51.35-am.png
86.3 kB
Part 06-Module 01-Lesson 07_Bayes Rule/img/screen-shot-2017-08-02-at-4.57.01-pm.png
86.0 kB
Part 06-Module 01-Lesson 06_Conditional Probability/img/48739228.gif
86.0 kB
Part 06-Module 01-Lesson 07_Bayes Rule/img/48646780.gif
85.9 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/img/screen-shot-2018-10-29-at-4.12.27-pm.png
85.4 kB
Part 06-Module 01-Lesson 07_Bayes Rule/img/48445276.gif
85.2 kB
Part 06-Module 01-Lesson 06_Conditional Probability/img/48641639.gif
85.1 kB
Part 06-Module 01-Lesson 07_Bayes Rule/img/48311832.gif
84.9 kB
Part 06-Module 01-Lesson 07_Bayes Rule/img/48198839.gif
84.8 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/img/screen-shot-2018-10-29-at-2.34.18-pm.png
84.5 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/img/48688787.gif
84.4 kB
Part 06-Module 01-Lesson 04_Probability/img/48752009.gif
84.4 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/img/48741083.gif
84.1 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/img/48750011.gif
84.0 kB
Part 06-Module 01-Lesson 07_Bayes Rule/img/48198838.gif
84.0 kB
Part 06-Module 01-Lesson 07_Bayes Rule/img/48011955.gif
83.9 kB
Part 06-Module 01-Lesson 07_Bayes Rule/img/48704300.gif
82.6 kB
Part 06-Module 01-Lesson 07_Bayes Rule/img/48240998.gif
82.5 kB
Part 06-Module 01-Lesson 07_Bayes Rule/img/48311831.gif
82.3 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/img/48658976.gif
82.1 kB
Part 06-Module 01-Lesson 06_Conditional Probability/img/48632848.gif
81.7 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/img/notebook-download.png
81.5 kB
Part 06-Module 01-Lesson 07_Bayes Rule/img/48230510.gif
81.1 kB
Part 06-Module 01-Lesson 04_Probability/img/48750031.gif
80.5 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/img/screen-shot-2017-11-07-at-2.16.14-pm.png
80.2 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/img/48678737.gif
79.6 kB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/img/var-diagram.jpg
79.2 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/img/screen-shot-2017-06-26-at-3.47.37-pm.png
79.1 kB
Part 06-Module 01-Lesson 07_Bayes Rule/img/48737119.gif
79.0 kB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/img/screen-shot-2018-11-06-at-2.30.04-pm.png
77.8 kB
Part 06-Module 01-Lesson 07_Bayes Rule/img/48686674.gif
77.6 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/img/screen-shot-2018-10-29-at-2.30.49-pm.png
76.9 kB
Part 06-Module 01-Lesson 07_Bayes Rule/img/48241000.gif
76.5 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/img/48692636.gif
76.0 kB
Part 06-Module 01-Lesson 07_Bayes Rule/img/48709280.gif
75.7 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/img/48721315.gif
75.5 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/img/48678758.gif
75.3 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/img/nbconvert-example.png
75.1 kB
Part 06-Module 01-Lesson 06_Conditional Probability/img/48652467.gif
74.5 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/img/48746014.gif
74.4 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/img/48687733.gif
73.6 kB
Part 06-Module 01-Lesson 07_Bayes Rule/img/48296523.gif
73.5 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/img/48632799.gif
73.1 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/img/screen-shot-2018-10-29-at-4.34.30-pm.png
73.1 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/img/48697566.gif
73.0 kB
Part 06-Module 01-Lesson 07_Bayes Rule/img/48629196.gif
72.6 kB
Part 06-Module 01-Lesson 07_Bayes Rule/img/48609553.gif
72.4 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/img/48683704.gif
72.4 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/img/48692663.gif
72.3 kB
Part 06-Module 01-Lesson 04_Probability/img/48667979.gif
72.1 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/img/screen-shot-2017-06-26-at-2.11.18-pm.png
71.9 kB
assets/css/fonts/KaTeX_AMS-Regular.ttf
71.4 kB
Part 06-Module 01-Lesson 07_Bayes Rule/img/48480558.gif
71.0 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/img/48725208.gif
70.5 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/img/magic-pdb.png
70.3 kB
Part 07-Module 01-Lesson 01_Linear Regression/img/just-a-2d-reg.png
70.1 kB
assets/css/fonts/KaTeX_Main-Regular.ttf
70.1 kB
Part 06-Module 01-Lesson 06_Conditional Probability/img/48734186.gif
70.0 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/img/48680638.gif
70.0 kB
Part 07-Module 01-Lesson 02_Naive Bayes/img/spam.png
69.4 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/img/screen-shot-2018-10-29-at-4.11.07-pm.png
68.5 kB
Part 07-Module 01-Lesson 04_Decision Trees/img/screen-shot-2018-01-06-at-9.30.27-pm.png
68.0 kB
Part 04-Module 01-Lesson 03_Linear Combination/img/screen-shot-2018-01-29-at-11.49.47-am.png
67.0 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/img/screen-shot-2018-10-29-at-3.28.20-pm.png
66.9 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/img/48739104.gif
65.4 kB
Part 04-Module 01-Lesson 01_Introduction/img/cp1a9390.jpg
65.2 kB
Part 06-Module 01-Lesson 04_Probability/img/48695597.gif
64.8 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/img/points.png
64.7 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/img/points.png
64.7 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/img/48716247.gif
64.3 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/img/notebook-shutdown.png
63.8 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/img/slides-cell-toolbar-menu.png
62.8 kB
Part 06-Module 01-Lesson 04_Probability/img/48698583.gif
62.6 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/img/48738100.gif
62.5 kB
Part 06-Module 01-Lesson 06_Conditional Probability/img/48632846.gif
62.1 kB
Part 06-Module 01-Lesson 07_Bayes Rule/img/48230509.gif
61.8 kB
assets/css/fonts/KaTeX_Main-Bold.ttf
61.7 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/img/48692666.gif
61.0 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/img/cezanne-head.jpg
61.0 kB
Part 06-Module 01-Lesson 06_Conditional Probability/img/48716288.gif
60.8 kB
Part 06-Module 01-Lesson 07_Bayes Rule/img/48292975.gif
60.2 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/img/48750006.gif
60.0 kB
Part 06-Module 01-Lesson 04_Probability/img/48693692.gif
59.9 kB
Part 01-Module 02-Lesson 03_Regression/img/screen-shot-2018-04-20-at-3.04.04-pm.png
59.9 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/img/48204962.gif
59.7 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/img/48635652.gif
59.5 kB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/img/screen-shot-2018-11-06-at-2.48.40-pm.png
59.4 kB
Part 06-Module 01-Lesson 04_Probability/img/48688828.gif
59.4 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/img/48746015.gif
59.4 kB
Part 06-Module 01-Lesson 04_Probability/img/48687795.gif
58.7 kB
Part 06-Module 01-Lesson 04_Probability/img/48684742.gif
58.5 kB
Part 06-Module 01-Lesson 04_Probability/img/48742066.gif
57.7 kB
Part 01-Module 03-Lesson 04_Portfolio Optimization/img/cvxpy-example.jpeg
57.6 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/img/magic-timeit2.png
57.5 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/img/48741058.gif
57.4 kB
Part 01-Module 03-Lesson 04_Portfolio Optimization/img/two-asset-variance.jpeg
57.1 kB
Part 06-Module 01-Lesson 06_Conditional Probability/img/48720246.gif
56.6 kB
Part 06-Module 01-Lesson 04_Probability/img/48699581.gif
56.5 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/img/48729170.gif
55.7 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/img/slides-choose-slide-type.png
54.6 kB
Part 06-Module 01-Lesson 04_Probability/img/48698595.gif
54.3 kB
Part 06-Module 01-Lesson 04_Probability/img/48667981.gif
53.8 kB
Part 06-Module 01-Lesson 04_Probability/img/48741099.gif
53.6 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/img/screen-shot-2018-10-29-at-2.34.00-pm.png
53.6 kB
Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/img/screen-shot-2018-02-14-at-10.47.52-am.png
52.7 kB
Part 01-Module 03-Lesson 04_Portfolio Optimization/img/l2-norm.jpeg
52.6 kB
Part 07-Module 01-Lesson 04_Decision Trees/img/screen-shot-2018-01-06-at-8.13.20-pm.png
52.0 kB
assets/js/bootstrap.min.js
51.0 kB
Part 04-Module 01-Lesson 02_Vectors/img/screen-shot-2018-03-21-at-2.40.42-pm.png
49.7 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/img/screen-shot-2018-10-29-at-4.09.18-pm.png
48.9 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/img/48632800.gif
48.8 kB
Part 06-Module 01-Lesson 04_Probability/img/48738115.gif
48.7 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/img/screen-shot-2018-02-01-at-12.10.40-am.png
48.7 kB
assets/css/fonts/KaTeX_Main-Italic.ttf
48.0 kB
Part 01-Module 03-Lesson 04_Portfolio Optimization/img/pythagorean-theroem.jpeg
46.8 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/img/screen-shot-2017-11-16-at-4.31.41-pm.png
46.0 kB
Part 04-Module 01-Lesson 03_Linear Combination/img/screen-shot-2018-01-26-at-10.16.48-pm.png
45.6 kB
Part 04-Module 01-Lesson 03_Linear Combination/img/screen-shot-2018-01-26-at-11.16.45-pm.png
45.5 kB
assets/js/jquery.mCustomScrollbar.concat.min.js
45.5 kB
Part 04-Module 01-Lesson 03_Linear Combination/img/screen-shot-2018-01-26-at-11.21.42-pm.png
45.3 kB
assets/css/fonts/KaTeX_Main-BoldItalic.ttf
44.8 kB
Part 03-Module 01-Lesson 05_Scripting/img/step6-testrun.png
44.5 kB
Part 04-Module 01-Lesson 03_Linear Combination/img/screen-shot-2018-01-26-at-11.48.02-pm.png
44.4 kB
Part 04-Module 01-Lesson 02_Vectors/img/screen-shot-2018-01-23-at-10.49.16-am.png
43.4 kB
assets/css/jquery.mCustomScrollbar.min.css
42.8 kB
Part 01-Module 03-Lesson 04_Portfolio Optimization/img/cvxpy-visual.jpeg
42.4 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/img/screen-shot-2017-11-16-at-4.26.22-pm.png
42.2 kB
assets/css/fonts/KaTeX_Math-Italic.ttf
41.4 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/img/conda-environments.png
41.1 kB
Part 01-Module 01-Lesson 07_Stock Returns/img/aapl-adj-close.jpeg
40.9 kB
assets/css/fonts/KaTeX_AMS-Regular.woff
40.2 kB
assets/css/fonts/KaTeX_Math-BoldItalic.ttf
39.7 kB
assets/css/fonts/KaTeX_Main-Regular.woff
39.4 kB
Part 01-Module 02-Lesson 05_Volatility/09. Quiz Estimate Volatility.html
39.1 kB
assets/css/fonts/KaTeX_Main-Bold.woff
36.8 kB
assets/css/fonts/KaTeX_Typewriter-Regular.ttf
36.3 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/img/histogram-nonnormal.png
36.2 kB
Part 05-Module 01-Lesson 03_Pandas/12. Loading Data into a Pandas DataFrame.html
36.0 kB
assets/css/fonts/KaTeX_Fraktur-Bold.ttf
36.0 kB
assets/css/fonts/KaTeX_Fraktur-Regular.ttf
34.7 kB
assets/css/fonts/KaTeX_SansSerif-Bold.ttf
34.0 kB
Part 05-Module 01-Lesson 03_Pandas/10. Dealing with NaN.html
33.7 kB
assets/css/fonts/KaTeX_AMS-Regular.woff2
33.2 kB
Part 04-Module 01-Lesson 03_Linear Combination/img/screen-shot-2018-03-28-at-5.15.59-pm.png
32.9 kB
assets/css/fonts/KaTeX_Main-Regular.woff2
32.9 kB
Part 04-Module 01-Lesson 03_Linear Combination/img/screen-shot-2018-03-28-at-5.11.09-pm.png
32.8 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/img/screen-shot-2018-07-27-at-1.24.38-pm.png
31.6 kB
Part 04-Module 01-Lesson 03_Linear Combination/img/screen-shot-2018-03-28-at-4.44.34-pm.png
31.5 kB
assets/css/fonts/KaTeX_SansSerif-Italic.ttf
31.3 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/img/notebook-components.png
31.0 kB
assets/css/fonts/KaTeX_Main-Bold.woff2
30.6 kB
assets/css/fonts/KaTeX_SansSerif-Regular.ttf
30.2 kB
Part 05-Module 01-Lesson 03_Pandas/09. Accessing Elements in Pandas DataFrames.html
30.1 kB
Part 07-Module 01-Lesson 01_Linear Regression/img/lin-reg-no-outliers.png
29.3 kB
Part 05-Module 01-Lesson 02_NumPy/05. Using Built-in Functions to Create ndarrays.html
28.9 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/img/screen-shot-2017-11-16-at-4.27.58-pm.png
28.4 kB
Part 07-Module 01-Lesson 01_Linear Regression/img/lin-reg-w-outliers.png
28.2 kB
Part 04-Module 01-Lesson 01_Introduction/img/img-4646.jpg
27.8 kB
assets/css/fonts/KaTeX_Main-Italic.woff
27.2 kB
Part 07-Module 01-Lesson 01_Linear Regression/img/just-a-simple-lin-reg.png
26.6 kB
assets/css/fonts/KaTeX_Main-BoldItalic.woff
26.2 kB
Part 01-Module 01-Lesson 07_Stock Returns/img/numerical-stability-example.jpg
25.7 kB
assets/css/fonts/KaTeX_Script-Regular.ttf
24.9 kB
assets/css/plyr.css
24.2 kB
Part 07-Module 01-Lesson 01_Linear Regression/img/quadraticlinearregression.png
24.1 kB
Part 01-Module 02-Lesson 05_Volatility/05. Quiz Volatility.html
23.9 kB
assets/css/fonts/KaTeX_Math-Italic.woff
23.8 kB
assets/css/fonts/KaTeX_Fraktur-Bold.woff
23.4 kB
assets/css/fonts/KaTeX_Math-BoldItalic.woff
23.2 kB
assets/css/fonts/KaTeX_Main-Italic.woff2
23.1 kB
assets/css/fonts/KaTeX_Fraktur-Regular.woff
22.8 kB
assets/css/fonts/KaTeX_Main-BoldItalic.woff2
22.2 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/11. Quiz Types of Errors - Part II(b).html
22.1 kB
assets/css/katex.min.css
22.1 kB
Part 05-Module 01-Lesson 03_Pandas/08. Creating Pandas DataFrames.html
22.0 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/30. Notebook + Quiz Other Things to Consider.html
21.4 kB
Part 03-Module 01-Lesson 05_Scripting/img/step3-path.png
21.3 kB
assets/css/fonts/KaTeX_Typewriter-Regular.woff
20.9 kB
assets/css/fonts/KaTeX_Fraktur-Bold.woff2
20.5 kB
assets/css/fonts/KaTeX_Math-Italic.woff2
20.4 kB
Part 01-Module 01-Lesson 08_Momentum Trading/img/momentum-quiz.jpeg
20.2 kB
assets/css/fonts/KaTeX_Math-BoldItalic.woff2
20.0 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/09. Perceptrons as Logical Operators.html
19.9 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/09. Perceptrons as Logical Operators.html
19.9 kB
assets/css/fonts/KaTeX_Fraktur-Regular.woff2
19.9 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/18. Notebook + Quiz Simulating from the Null.html
19.6 kB
assets/css/fonts/KaTeX_Caligraphic-Bold.ttf
19.6 kB
Part 04-Module 01-Lesson 01_Introduction/img/screen-shot-2018-02-21-at-6.41.35-pm.png
19.2 kB
assets/css/fonts/KaTeX_SansSerif-Bold.woff
19.2 kB
assets/css/fonts/KaTeX_Caligraphic-Regular.ttf
19.0 kB
Part 05-Module 01-Lesson 02_NumPy/04. Creating and Saving NumPy ndarrays.html
18.4 kB
Part 06-Module 01-Lesson 07_Bayes Rule/31. Learning Objectives - Conditional Probability.html
18.3 kB
Part 03-Module 01-Lesson 05_Scripting/img/step4-alias.png
18.3 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/31. Notebook + Quiz Other Things to Consider.html
18.3 kB
assets/css/fonts/KaTeX_SansSerif-Italic.woff
18.1 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/13. Case Study in Python.html
18.1 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/29. Quiz Descriptive vs. Inferential (Bagels).html
17.8 kB
Part 05-Module 01-Lesson 02_NumPy/11. Arithmetic operations and Broadcasting.html
17.7 kB
assets/css/fonts/KaTeX_Typewriter-Regular.woff2
17.5 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/04. Quiz Descriptive vs. Inferential (Bagels).html
17.4 kB
Part 05-Module 01-Lesson 02_NumPy/07. Accessing, Deleting, and Inserting Elements Into ndarrays.html
17.3 kB
Part 03-Module 01-Lesson 03_Control Flow/08. Quiz Boolean Expressions for Conditions.html
17.3 kB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/24. PyTorch - Part 8-S9F7MtJ5jls.en.vtt
17.2 kB
Part 03-Module 01-Lesson 05_Scripting/18. Quiz Reading and Writing Files.html
17.1 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/06. Quiz Setting Up Hypothesis Tests.html
17.1 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/12. [Preview] Project Mimic Me!.html
17.0 kB
Part 07-Module 01-Lesson 01_Linear Regression/15. Linear Regression in scikit-learn.html
17.0 kB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/24. PyTorch - Part 8-S9F7MtJ5jls.pt-BR.vtt
17.0 kB
Part 03-Module 01-Lesson 05_Scripting/22. Quiz The Standard Library.html
17.0 kB
Part 06-Module 01-Lesson 07_Bayes Rule/36. Learning Objectives - Bayes' Rule.html
16.9 kB
Part 03-Module 01-Lesson 03_Control Flow/02. Conditional Statements.html
16.9 kB
Part 01-Module 01-Lesson 07_Stock Returns/04. Quiz Log Returns and Compounding.html
16.9 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/33. Quiz + Text Recap.html
16.8 kB
assets/css/fonts/KaTeX_SansSerif-Regular.woff
16.8 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/24. Gradient Descent.html
16.8 kB
Part 03-Module 01-Lesson 05_Scripting/img/step2-pwd.png
16.8 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/24. Gradient Descent.html
16.8 kB
Part 03-Module 01-Lesson 03_Control Flow/13. Quiz For Loops.html
16.7 kB
Part 05-Module 01-Lesson 02_NumPy/08. Slicing ndarrays.html
16.6 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/04. Notebook + Quiz Building Confidence Intervals.html
16.6 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/06. Notebook + Quiz Difference in Means.html
16.4 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/32. Quiz Dictionaries and Identity Operators.html
16.4 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/11. Perceptron Algorithm.html
16.2 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/11. Perceptron Algorithm.html
16.2 kB
Part 07-Module 01-Lesson 04_Decision Trees/17. Decision Trees in sklearn.html
16.2 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/img/iris-box-plot.png
16.2 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/17. Quiz Type and Type Conversion.html
16.2 kB
Part 01-Module 04-Lesson 06_Alpha Factors/11. Ranking in Zipline.html
16.1 kB
Part 06-Module 01-Lesson 13_Case Study AB tests/06. Quiz Experiment I.html
16.0 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/img/screen-shot-2017-11-06-at-1.14.05-pm.png
16.0 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/14. Quiz Strings.html
16.0 kB
assets/css/fonts/KaTeX_SansSerif-Bold.woff2
16.0 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/15. Quiz More Hypothesis Testing Practice.html
16.0 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/23. Quiz Shape and Outliers (Comparing Distributions).html
16.0 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/06. Quiz Data Types (Quantitative vs. Categorical).html
15.9 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/22. Lists and Membership Operators.html
15.9 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/25. Quiz Shape and Outliers (Final Quiz).html
15.9 kB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/12. PyTorch V2 Part 3 Solution V2-zBWlOeX2sQM.en.vtt
15.7 kB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/11. PyTorch V2 Part 3 V1-9ILiZwbi9dA.en.vtt
15.6 kB
Part 03-Module 01-Lesson 05_Scripting/img/step5-source.png
15.6 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/25. Quiz Connecting Errors and P-Values.html
15.6 kB
Part 01-Module 03-Lesson 04_Portfolio Optimization/06. Formulating Portfolio Optimization Problems.html
15.5 kB
Part 03-Module 01-Lesson 03_Control Flow/07. Boolean Expressions for Conditions.html
15.5 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/36. Quiz Compound Data Structures.html
15.5 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/18. Measures of Center (Mode).html
15.5 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/27. Quiz + Text Recap Next Steps.html
15.4 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/09. Notebook + Quiz Sampling Distributions Python.html
15.4 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/13. Quiz Types of Errors - Part III.html
15.4 kB
assets/css/fonts/KaTeX_SansSerif-Italic.woff2
15.2 kB
Part 03-Module 01-Lesson 04_Functions/02. Defining Functions.html
15.1 kB
Part 06-Module 01-Lesson 13_Case Study AB tests/17. Quiz Difficulties in AB Testing.html
15.1 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/10. Text + Quiz Data Types (Ordinal vs. Nominal).html
15.1 kB
Part 03-Module 01-Lesson 05_Scripting/img/step1-cd.png
15.0 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/39. Summary.html
15.0 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/24. Quiz Shape and Outliers (Visuals).html
14.9 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/26. Notebook + Quiz Drawing Conclusions.html
14.9 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/05. Variables and Assignment Operators.html
14.9 kB
Part 03-Module 01-Lesson 05_Scripting/04. [For Windows] Configuring Git Bash to Run Python.html
14.8 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/14. Quiz Applied Standard Deviation and Variance.html
14.8 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/23. Quiz Lists and Membership Operators.html
14.7 kB
Part 03-Module 01-Lesson 03_Control Flow/29. Quiz Zip and Enumerate.html
14.6 kB
Part 07-Module 01-Lesson 01_Linear Regression/19. (Optional) Closed form Solution Math.html
14.6 kB
Part 06-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1.html
14.6 kB
Part 01-Module 04-Lesson 01_Factors/12. Zipline Pipeline SC V1-DHTwIwVk_sc.en.vtt
14.6 kB
Part 03-Module 01-Lesson 03_Control Flow/10. For Loops.html
14.6 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/26. Quiz List Methods.html
14.5 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/21. Quiz What is a p-value Anyway.html
14.5 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/06. Quiz Variables and Assignment Operators.html
14.4 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/28. Quiz Notation for the Mean.html
14.3 kB
Part 03-Module 01-Lesson 05_Scripting/28. Online Resources.html
14.3 kB
Part 03-Module 01-Lesson 03_Control Flow/18. Quiz Iterating Through Dictionaries.html
14.2 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/15. Homework 1 Final Quiz on Measures Spread.html
14.1 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/34. Quiz More With Dictionaries.html
14.0 kB
Part 05-Module 01-Lesson 03_Pandas/05. Accessing and Deleting Elements in Pandas Series.html
14.0 kB
assets/css/fonts/KaTeX_SansSerif-Regular.woff2
14.0 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/28. Quiz Tuples.html
14.0 kB
Part 03-Module 01-Lesson 03_Control Flow/16. Building Dictionaries.html
13.9 kB
assets/css/fonts/KaTeX_Script-Regular.woff
13.9 kB
Part 05-Module 01-Lesson 03_Pandas/06. Arithmetic Operations on Pandas Series.html
13.8 kB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/25. PyTorch V2 Part 8 Solution V1-4n6T93hKRD4.en.vtt
13.8 kB
Part 04-Module 01-Lesson 03_Linear Combination/06. Solving a Simplified Set of Equations.html
13.8 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/10. Quiz Types of Errors - Part II(a).html
13.7 kB
Part 05-Module 01-Lesson 02_NumPy/05. NumPy 2 V1-KR3hHf9Zxxg.pt-BR.vtt
13.7 kB
Part 05-Module 01-Lesson 02_NumPy/09. Boolean Indexing, Set Operations, and Sorting.html
13.5 kB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/24. PyTorch - Part 8-S9F7MtJ5jls.zh-CN.vtt
13.5 kB
Part 07-Module 01-Lesson 01_Linear Regression/17. Multiple Linear Regression.html
13.5 kB
Part 01-Module 04-Lesson 06_Alpha Factors/02. install libraries.html
13.5 kB
Part 01-Module 04-Lesson 06_Alpha Factors/20. Factor returns quiz.html
13.5 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/19. String Methods.html
13.4 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/32. Neural Network Architecture.html
13.4 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/32. Neural Network Architecture.html
13.4 kB
Part 03-Module 01-Lesson 03_Control Flow/15. Quiz Match Inputs To Outputs.html
13.3 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/25. List Methods.html
13.3 kB
Part 03-Module 01-Lesson 03_Control Flow/23. Quiz While Loops.html
13.2 kB
Part 03-Module 01-Lesson 05_Scripting/26. Third-Party Libraries.html
13.2 kB
assets/css/fonts/KaTeX_Size1-Regular.ttf
13.2 kB
Part 03-Module 01-Lesson 05_Scripting/17. Reading and Writing Files.html
13.1 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/10. Text Introduction to the Standard Deviation and Variance.html
13.1 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/16. Softmax.html
13.0 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/16. Softmax.html
13.0 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/20. String Methods.html
13.0 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/21. Notebook + Quiz Central Limit Theorem - Part III.html
13.0 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/08. Integers and Floats.html
12.9 kB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/14. Inference, Solution.html
12.9 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/26. Text Descriptive Statistics Summary .html
12.8 kB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/12. Training the Model.html
12.8 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/34. Backpropagation.html
12.8 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/34. Backpropagation.html
12.8 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/03. Quiz Arithmetic Operators.html
12.8 kB
Part 07-Module 01-Lesson 04_Decision Trees/16. Hyperparameters.html
12.7 kB
Part 01-Module 04-Lesson 06_Alpha Factors/21. get_clean_factor_and_forward_returns.html
12.7 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/13. Advanced Standard Deviation and Variance.html
12.7 kB
Part 01-Module 04-Lesson 06_Alpha Factors/35. The Fundamental Law of Active Management Part 2.html
12.6 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/02. What are Jupyter notebooks.html
12.6 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/18. Notebook + Quiz Central Limit Theorem.html
12.6 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/19. Quiz Shape and Outliers (What's the Impact).html
12.5 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/19. Notebook + Quiz Central Limit Theorem - Part II.html
12.5 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/10. Perceptron Trick.html
12.5 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/10. Perceptron Trick.html
12.5 kB
Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/12. Linear Transformation Quiz Answers.html
12.5 kB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/11. Complete Sentiment RNN.html
12.5 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/09. Quiz Integers and Floats.html
12.4 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/13. Strings.html
12.4 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/24. Notebook + Quiz Bootstrapping.html
12.4 kB
assets/css/fonts/KaTeX_Size2-Regular.ttf
12.4 kB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/10. PyTorch V2 Part 2 Solution 2 V1-8KRX7HvqfP0.en.vtt
12.4 kB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/01. Welcome!.html
12.4 kB
Part 03-Module 01-Lesson 03_Control Flow/05. Quiz Conditional Statements.html
12.4 kB
Part 01-Module 04-Lesson 06_Alpha Factors/17. Smoothing Quiz 1.html
12.4 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/13. Quiz Notation.html
12.3 kB
Part 06-Module 01-Lesson 08_Python Probability Practice/06. Cancer Test Results.html
12.3 kB
Part 01-Module 04-Lesson 06_Alpha Factors/43. mean returns by quantile quiz.html
12.3 kB
assets/css/fonts/KaTeX_Script-Regular.woff2
12.3 kB
Part 03-Module 01-Lesson 05_Scripting/12. Errors and Exceptions.html
12.3 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/30. Quiz Sets.html
12.3 kB
Part 01-Module 01-Lesson 07_Stock Returns/05. Distributions of Returns and Prices.html
12.2 kB
Part 01-Module 04-Lesson 06_Alpha Factors/25. Making dollar neutral and leverage ratio equal to one.html
12.1 kB
assets/css/fonts/KaTeX_Caligraphic-Bold.woff
12.1 kB
Part 03-Module 01-Lesson 03_Control Flow/25. Break, Continue.html
12.1 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/16. Text Measures of Center and Spread Summary.html
12.1 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/12. Video Notation for Parameters vs. Statistics.html
12.1 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/22. Quiz Calculating a p-value.html
12.1 kB
Part 01-Module 04-Lesson 06_Alpha Factors/32. Quiz factor_information_coefficient.html
12.0 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/31. Dictionaries and Identity Operators.html
12.0 kB
Part 05-Module 01-Lesson 02_NumPy/05. NumPy 2 V1-KR3hHf9Zxxg.en.vtt
12.0 kB
Part 01-Module 03-Lesson 04_Portfolio Optimization/07. cvxpy.html
12.0 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/23. Quiz Introduction to Notation.html
12.0 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/09. Time Management.html
12.0 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/08. Career Support.html
12.0 kB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/14. The Capital Assets Pricing Model.html
11.9 kB
Part 06-Module 01-Lesson 07_Bayes Rule/34. Learning from Sensor Data.html
11.9 kB
Part 01-Module 04-Lesson 06_Alpha Factors/04. Definition of key words.html
11.9 kB
assets/css/fonts/KaTeX_Caligraphic-Regular.woff
11.9 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/17. 04 Implementing CharRNN V2-MMtgZXzFB10.en.vtt
11.8 kB
Part 01-Module 04-Lesson 06_Alpha Factors/47. Transfer Coefficient Coding Exercise.html
11.8 kB
Part 01-Module 04-Lesson 06_Alpha Factors/22. Factor and forward returns exercise.html
11.8 kB
Part 01-Module 04-Lesson 06_Alpha Factors/26. Factor returns coding exercise.html
11.8 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/25. Video Summation.html
11.8 kB
Part 01-Module 04-Lesson 06_Alpha Factors/28. Sharpe Ratio Coding Exercise.html
11.8 kB
Part 01-Module 04-Lesson 06_Alpha Factors/44. Quantile analysis exercise.html
11.8 kB
Part 01-Module 04-Lesson 06_Alpha Factors/08. Sector Neutral Exercise.html
11.8 kB
Part 01-Module 04-Lesson 06_Alpha Factors/33. Rank IC coding exercise.html
11.8 kB
Part 01-Module 04-Lesson 06_Alpha Factors/18. Smoothing Exercise.html
11.8 kB
Part 01-Module 04-Lesson 06_Alpha Factors/40. Turnover Exercise.html
11.8 kB
Part 01-Module 04-Lesson 06_Alpha Factors/12. Ranking exercise.html
11.8 kB
Part 01-Module 04-Lesson 06_Alpha Factors/15. z-score exercise.html
11.8 kB
Part 01-Module 04-Lesson 06_Alpha Factors/14. z-score quiz.html
11.7 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/27. Quiz Summation.html
11.7 kB
Part 03-Module 01-Lesson 03_Control Flow/32. Quiz List Comprehensions.html
11.7 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/10. Booleans, Comparison Operators, and Logical Operators.html
11.7 kB
Part 03-Module 01-Lesson 05_Scripting/20. Importing Local Scripts.html
11.7 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/20. 07 CharRNN Solution V1-ed33qePHrJM.en.vtt
11.7 kB
Part 01-Module 04-Lesson 06_Alpha Factors/42. Quantile Analysis Part 2.html
11.6 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/11. Quiz Booleans, Comparison Operators, and Logical Operators.html
11.6 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/22. Video Capital vs. Lower.html
11.6 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/img/screen-shot-2017-10-27-at-1.49.58-pm.png
11.6 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/28. Quiz Descriptive vs. Inferential (Udacity Students).html
11.6 kB
Part 03-Module 01-Lesson 03_Control Flow/17. Iterating Through Dictionaries with For Loops.html
11.6 kB
Part 01-Module 02-Lesson 03_Regression/03. Exercise Visualize Distributions.html
11.6 kB
Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/13. Details of Johansen Test (optional).html
11.5 kB
Part 03-Module 01-Lesson 05_Scripting/13. Handling Errors.html
11.5 kB
Part 06-Module 01-Lesson 07_Bayes Rule/02. Cancer Test.html
11.5 kB
Part 03-Module 01-Lesson 03_Control Flow/09. Solution Boolean Expressions for Conditions.html
11.5 kB
Part 03-Module 01-Lesson 03_Control Flow/21. Practice While Loops.html
11.4 kB
Part 01-Module 04-Lesson 06_Alpha Factors/29. Halfway There!.html
11.4 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/19. What is a p-value Anyway.html
11.4 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/20. 07 CharRNN Solution V1-ed33qePHrJM.pt-BR.vtt
11.4 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/20. Video Random Variables.html
11.4 kB
Part 01-Module 04-Lesson 06_Alpha Factors/01. Intro Efficient Market hypothesis and Arbitrage opportunities.html
11.4 kB
Part 06-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities.html
11.3 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/18. iVol Value and Idiosyncratic volatility Overview.html
11.3 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/04. Setting Up Hypotheses.html
11.3 kB
Part 01-Module 04-Lesson 06_Alpha Factors/06. Controlling for Risk within an Alpha Factor Part 1.html
11.3 kB
Part 01-Module 04-Lesson 06_Alpha Factors/07. Controlling for Risk within an Alpha Factor Part 2.html
11.3 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/07. Solution Variables and Assignment Operators.html
11.3 kB
Part 01-Module 04-Lesson 06_Alpha Factors/34. The Fundamental Law of Active Management Part 1.html
11.3 kB
Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/07. ADF and roots.html
11.3 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/08. Quiz Types of Errors - Part I.html
11.3 kB
Part 01-Module 04-Lesson 06_Alpha Factors/24. Return Denominator, Leverage, and Factor Returns.html
11.3 kB
assets/css/fonts/KaTeX_Size4-Regular.ttf
11.3 kB
Part 01-Module 04-Lesson 06_Alpha Factors/38. Turnover as a Proxy for Real World Constraints.html
11.3 kB
Part 01-Module 04-Lesson 06_Alpha Factors/45. Quantiles Academic Research vs. Practitioners.html
11.3 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/06. Video + Quiz Introduction to Sampling Distributions Part I.html
11.3 kB
Part 01-Module 04-Lesson 06_Alpha Factors/30. Ranked Information Coefficient (Rank IC) Part 1.html
11.3 kB
Part 01-Module 04-Lesson 06_Alpha Factors/31. Ranked Information Coefficient (Rank IC) Part 2.html
11.3 kB
Part 06-Module 01-Lesson 08_Python Probability Practice/07. Conditional Probability Bayes Rule Quiz.html
11.3 kB
Part 01-Module 04-Lesson 06_Alpha Factors/03. Alpha Factors versus Risk Factor Modeling.html
11.3 kB
Part 01-Module 04-Lesson 06_Alpha Factors/37. Real World Constraints Transaction Costs.html
11.3 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/21. Cross-Entropy 2.html
11.3 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/21. Cross-Entropy 2.html
11.3 kB
Part 01-Module 04-Lesson 06_Alpha Factors/05. Researching Alphas from Academic Papers.html
11.2 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/17. Text Recap + Next Steps.html
11.2 kB
Part 01-Module 04-Lesson 06_Alpha Factors/39. Factor Rank Autocorrelation (Turnover).html
11.2 kB
Part 03-Module 01-Lesson 05_Scripting/02. Python Installation.html
11.2 kB
Part 03-Module 01-Lesson 05_Scripting/24. Techniques for Importing Modules.html
11.2 kB
Part 03-Module 01-Lesson 03_Control Flow/30. Solution Zip and Enumerate.html
11.2 kB
Part 01-Module 04-Lesson 06_Alpha Factors/36. Real World Constraints Liquidity.html
11.2 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/27. Other Things to Consider - What if Our Sample is Large.html
11.2 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/03. Quiz Descriptive vs. Inferential (Udacity Students).html
11.2 kB
Part 01-Module 04-Lesson 06_Alpha Factors/51. Interlude Reading Academic Research Papers, Part 1.html
11.2 kB
Part 01-Module 04-Lesson 06_Alpha Factors/52. Interlude Reading Academic Research Papers, Part 2.html
11.2 kB
Part 01-Module 04-Lesson 06_Alpha Factors/53. Interlude Reading Academic Research Papers, Part 3.html
11.2 kB
Part 01-Module 04-Lesson 06_Alpha Factors/23. Universe construction rule.html
11.2 kB
Part 01-Module 04-Lesson 06_Alpha Factors/41. Quantile Analysis Part 1.html
11.2 kB
Part 06-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability.html
11.2 kB
Part 01-Module 04-Lesson 06_Alpha Factors/46. Transfer Coefficient.html
11.2 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/16. How Do We Choose Between Hypotheses.html
11.2 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/07. Video + Quiz Introduction to Sampling Distributions Part II.html
11.2 kB
Part 01-Module 04-Lesson 06_Alpha Factors/49. Conditional Factors.html
11.2 kB
Part 01-Module 04-Lesson 06_Alpha Factors/48. It’s all Relative.html
11.1 kB
Part 07-Module 01-Lesson 01_Linear Regression/22. Regularization-PyFNIcsNma0.en.vtt
11.1 kB
Part 02-Module 02-Lesson 05_Embeddings Word2Vec/10. 8 Word2vec Model V2-7BEYWhym8lI.en.vtt
11.1 kB
Part 06-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior.html
11.1 kB
Part 01-Module 04-Lesson 06_Alpha Factors/09. Ranking Part 1.html
11.1 kB
Part 01-Module 04-Lesson 06_Alpha Factors/10. Ranking Part 2.html
11.1 kB
Part 01-Module 04-Lesson 06_Alpha Factors/19. Factor Returns.html
11.1 kB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/20. PyTorch - Part 7-hFu7GTfRWks.pt-BR.vtt
11.1 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/12. 02 Time Series Prediction V2-xV5jHLFfJbQ.en.vtt
11.1 kB
Part 01-Module 04-Lesson 06_Alpha Factors/27. Sharpe Ratio.html
11.1 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/14. Common Types of Hypothesis Tests.html
11.1 kB
Part 06-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1.html
11.1 kB
Part 06-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8.html
11.1 kB
Part 01-Module 04-Lesson 06_Alpha Factors/16. Smoothing.html
11.1 kB
Part 01-Module 04-Lesson 06_Alpha Factors/13. Z score.html
11.1 kB
Part 01-Module 04-Lesson 06_Alpha Factors/50. Summary.html
11.1 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/08. Winners and Losers in Momentum Investing.html
11.1 kB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/img/sml-chart.png
11.0 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood.html
11.0 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood.html
11.0 kB
Part 05-Module 01-Lesson 02_NumPy/05. NumPy 2 V1-KR3hHf9Zxxg.zh-CN.vtt
11.0 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/27. Tuples.html
11.0 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/17. 04 Implementing CharRNN V2-MMtgZXzFB10.pt-BR.vtt
11.0 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/05. Setting Up Hypothesis Tests - Part II.html
11.0 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/35. Compound Data Structures.html
11.0 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/21. Another String Method - Split.html
10.9 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/04. Launching the notebook server.html
10.9 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/30. Text Descriptive vs. Inferential Summary.html
10.9 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/14. Measures of Center (Mean).html
10.9 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/15. Discrete vs Continuous.html
10.9 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs Continuous.html
10.9 kB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/20. PyTorch - Part 7-hFu7GTfRWks.en.vtt
10.9 kB
Part 03-Module 01-Lesson 03_Control Flow/28. Zip and Enumerate.html
10.9 kB
Part 06-Module 01-Lesson 13_Case Study AB tests/12. Metric - Average Classroom Time.html
10.9 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/29. Text Summary on Notation.html
10.9 kB
Part 03-Module 01-Lesson 05_Scripting/27. Experimenting with an Interpreter.html
10.9 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/12. Video Important Final Points.html
10.9 kB
Part 03-Module 01-Lesson 05_Scripting/25. Quiz Techniques for Importing Modules.html
10.9 kB
Part 03-Module 01-Lesson 03_Control Flow/11. Practice For Loops.html
10.8 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/13. Other Language Associated with Confidence Intervals.html
10.8 kB
Part 07-Module 01-Lesson 01_Linear Regression/14. Absolute Error vs Squared Error.html
10.8 kB
Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/06. Cointegration.html
10.8 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/29. Sets.html
10.8 kB
Part 06-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6.html
10.8 kB
Part 03-Module 01-Lesson 03_Control Flow/31. List Comprehensions.html
10.8 kB
Part 06-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5.html
10.8 kB
Part 06-Module 01-Lesson 07_Bayes Rule/07. Total Probability.html
10.8 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/05. Quiz 5 Number Summary Practice.html
10.8 kB
Part 02-Module 02-Lesson 05_Embeddings Word2Vec/06. 4 Data Subsampling V1-7SJXv2BQzZA.en.vtt
10.8 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/12. 02 Time Series Prediction V2-xV5jHLFfJbQ.pt-BR.vtt
10.7 kB
Part 03-Module 01-Lesson 03_Control Flow/20. While Loops.html
10.7 kB
Part 06-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test.html
10.7 kB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/12. The Sharpe Ratio.html
10.7 kB
Part 06-Module 01-Lesson 08_Python Probability Practice/03. Probability Quiz.html
10.7 kB
Part 06-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3.html
10.7 kB
Part 06-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2.html
10.7 kB
Part 06-Module 01-Lesson 13_Case Study AB tests/10. Metric - Enrollment Rate.html
10.7 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/04. Video Introduction to Five Number Summary.html
10.7 kB
Part 06-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1.html
10.7 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/03. Setting Up Hypothesis Tests - Part I.html
10.7 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/26. Pre-Notebook Gradient Descent.html
10.7 kB
Part 06-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3.html
10.7 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/26. Pre-Notebook Gradient Descent.html
10.7 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/12. Types of Errors - Part III.html
10.7 kB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/05. PyTorch V2 Part 1 Solution V1-mNJ8CujTtpo.en.vtt
10.7 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/24. Solution List and Membership Operators.html
10.7 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/19. Video What is Notation.html
10.7 kB
Part 02-Module 02-Lesson 05_Embeddings Word2Vec/16. 12 CompleteModel CustomLoss V2-7SqNN_eUAdc.pt-BR.vtt
10.7 kB
Part 01-Module 01-Lesson 08_Momentum Trading/11. Quiz Test Returns for Statistical Significance.html
10.6 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/20. Relative and Absolute Returns.html
10.6 kB
Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/02. Mean Reversion.html
10.6 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/17. Video Shape.html
10.6 kB
Part 07-Module 01-Lesson 01_Linear Regression/22. Regularization-PyFNIcsNma0.pt-BR.vtt
10.6 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/21. Quiz Variable Types.html
10.6 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/02. install libraries.html
10.6 kB
assets/css/fonts/KaTeX_Caligraphic-Bold.woff2
10.6 kB
Part 06-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2.html
10.6 kB
Part 02-Module 02-Lesson 05_Embeddings Word2Vec/16. 12 CompleteModel CustomLoss V2-7SqNN_eUAdc.en.vtt
10.6 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/09. Types of Errors - Part II.html
10.6 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/16. Type and Type Conversion.html
10.6 kB
Part 06-Module 01-Lesson 08_Python Probability Practice/05. Binomial Distributions Quiz.html
10.5 kB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/08. Alternative Ways of Setting Up the Problem.html
10.5 kB
Part 05-Module 01-Lesson 03_Pandas/11. Manipulate a DataFrame.html
10.5 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/22. Video Working With Outliers My Advice.html
10.5 kB
Part 06-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6.html
10.5 kB
Part 06-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5.html
10.5 kB
Part 06-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7.html
10.5 kB
Part 03-Module 01-Lesson 03_Control Flow/14. Solution For Loops Quiz.html
10.5 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/07. Quiz Variance and Preferred Gaussian.html
10.5 kB
Part 02-Module 02-Lesson 05_Embeddings Word2Vec/06. 4 Data Subsampling V1-7SJXv2BQzZA.pt-BR.vtt
10.5 kB
Part 02-Module 02-Lesson 05_Embeddings Word2Vec/10. 8 Word2vec Model V2-7BEYWhym8lI.pt-BR.vtt
10.5 kB
Part 06-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2.html
10.5 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/19. Maximizing Probabilities.html
10.5 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/19. Maximizing Probabilities.html
10.5 kB
Part 06-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3.html
10.5 kB
Part 06-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4.html
10.5 kB
Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/05. Multiplication of a Square Matrices.html
10.5 kB
Part 06-Module 01-Lesson 13_Case Study AB tests/03. AB Testing.html
10.5 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem.html
10.4 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/14. Skewness and Momentum Attentional Bias.html
10.4 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/02. Arithmetic Operators.html
10.4 kB
Part 05-Module 01-Lesson 03_Pandas/04. Creating Pandas Series.html
10.4 kB
assets/css/fonts/KaTeX_Caligraphic-Regular.woff2
10.4 kB
Part 03-Module 01-Lesson 03_Control Flow/03. Practice Conditional Statements.html
10.4 kB
Part 06-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4.html
10.4 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/03. Overnight Returns Abstract.html
10.4 kB
Part 01-Module 02-Lesson 03_Regression/06. Testing For Normalilty-Sa1MJegyYfc.en.vtt
10.4 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/15. Video Two Useful Theorems - Law of Large Numbers.html
10.4 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/23. Video Bootstrapping The Central Limit Theorem.html
10.3 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/27. Video Descriptive vs. Inferential Statistics.html
10.3 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/23. Logistic Regression.html
10.3 kB
Part 06-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home.html
10.3 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/23. Logistic Regression.html
10.3 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/09. Measures of Spread (Calculation and Units).html
10.3 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/16. Notebook + Quiz Law of Large Numbers.html
10.3 kB
Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/07. Matrix Multiplication - General.html
10.3 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/14. Log-loss Error Function.html
10.3 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/14. Log-loss Error Function.html
10.3 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/28. Other Things to Consider - What if Test More Than Once.html
10.3 kB
Part 03-Module 01-Lesson 05_Scripting/14. Practice Handling Input Errors.html
10.2 kB
Part 03-Module 01-Lesson 05_Scripting/09. Quiz Scripting with Raw Input.html
10.2 kB
Part 03-Module 01-Lesson 03_Control Flow/04. Solution Conditional Statements.html
10.2 kB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/13. Other Risk Measures.html
10.2 kB
Part 06-Module 01-Lesson 07_Bayes Rule/12. Normalizer.html
10.2 kB
Part 03-Module 01-Lesson 03_Control Flow/24. Solution While Loops Quiz.html
10.2 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/16. Measures of Center (Median).html
10.2 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/07. Video Introduction to Standard Deviation and Variance.html
10.2 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/17. Video Simulating from the Null.html
10.2 kB
Part 04-Module 01-Lesson 01_Introduction/05. Working with Equations.html
10.2 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/09. Magic keywords.html
10.1 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/10. Text Sampling Distribution Notes.html
10.1 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/01. Introduction.html
10.1 kB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/14. PCA Toy Problem SC V1-uyl44T12yU8.en.vtt
10.1 kB
Part 03-Module 01-Lesson 05_Scripting/03. Install Python Using Anaconda.html
10.1 kB
Part 01-Module 04-Lesson 09_Project 4 Alpha Research and Factor Modeling/Project Rubric - Multi-factor Model.html
10.1 kB
Part 01-Module 01-Lesson 06_Data Processing/09. Fundamental Information.html
10.1 kB
Part 07-Module 01-Lesson 04_Decision Trees/02. Recommending Apps 1.html
10.1 kB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/13. Testing.html
10.1 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/23. Connecting Errors and P-Values.html
10.1 kB
Part 03-Module 01-Lesson 05_Scripting/06. Programming Environment Setup.html
10.0 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/29. Other Things to Consider - How Do CIs and HTs Compare.html
10.0 kB
Part 03-Module 01-Lesson 03_Control Flow/26. Quiz Break, Continue.html
10.0 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/13. Video Measures of Center (Mean).html
10.0 kB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/19. PyTorch - Part 6-3ZJfo2bR-uw.pt-BR.vtt
10.0 kB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/04. PyTorch V2 Part 1 V1-6Z7WntXays8.en.vtt
10.0 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/21. Video Working With Outliers.html
10.0 kB
Part 03-Module 01-Lesson 03_Control Flow/10. For Loops-UtX0PXSUCdY.ar.vtt
10.0 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/02. Video Descriptive vs. Inferential Statistics.html
10.0 kB
Part 06-Module 01-Lesson 13_Case Study AB tests/13. Metric - Completion Rate.html
10.0 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/18. Video The Shape For Data In The World.html
9.9 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/17. Video Two Useful Theorems - Central Limit Theorem.html
9.9 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/33. Feedforward.html
9.9 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/33. Feedforward.html
9.9 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/24. Conclusions in Hypothesis Testing.html
9.9 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/26. Video Notation for the Mean.html
9.9 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/11. Data Types (Continuous vs. Discrete).html
9.9 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/01. Introduction.html
9.9 kB
Part 06-Module 01-Lesson 04_Probability/14. One Head 2.html
9.9 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/03. Classification Problems 1.html
9.9 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/03. Classification Problems 1.html
9.9 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/20. Video Shape and Outliers.html
9.9 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/06. Higher Dimensions.html
9.8 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/05. Text Descriptive vs. Inferential Statistics.html
9.8 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/06. Higher Dimensions.html
9.8 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/22. Multi-Class Cross Entropy.html
9.8 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/22. Multi-Class Cross Entropy.html
9.8 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/15. Video Measures of Center (Median).html
9.8 kB
Part 07-Module 01-Lesson 03_Clustering/05. Match Points with Clusters.html
9.8 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/01. Video What are Measures of Spread.html
9.8 kB
Part 03-Module 01-Lesson 04_Functions/05. Variable Scope.html
9.8 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/15. Solution Strings.html
9.8 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/04. Computer Vision Applications.html
9.8 kB
Part 04-Module 01-Lesson 03_Linear Combination/03. Linear Combination and Span.html
9.8 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/01. Introduction.html
9.8 kB
Part 01-Module 03-Lesson 02_ETFs/03. How ETFs are Used.html
9.8 kB
Part 02-Module 01-Lesson 05_Financial Statements/04. Quiz 10-Ks and EDGAR.html
9.8 kB
Part 03-Module 01-Lesson 03_Control Flow/33. Solution List Comprehensions.html
9.8 kB
Part 03-Module 01-Lesson 03_Control Flow/06. Solution Conditional Statements.html
9.8 kB
Part 07-Module 01-Lesson 03_Clustering/08. Match Points (again).html
9.8 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/20. Video When Does the Central Limit Theorem Not Work.html
9.7 kB
Part 03-Module 01-Lesson 04_Functions/15. [Optional] Quiz Iterators and Generators.html
9.7 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/25. Handling Withdrawals.html
9.7 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/07. Markdown cells.html
9.7 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/11. Winners and Losers Content Quiz.html
9.7 kB
Part 01-Module 03-Lesson 04_Portfolio Optimization/04. Two-Asset Portfolio Optimization.html
9.7 kB
Part 03-Module 01-Lesson 05_Scripting/05. Running a Python Script.html
9.7 kB
Part 07-Module 01-Lesson 02_Naive Bayes/08. Bayesian Learning 1.html
9.7 kB
Part 03-Module 01-Lesson 04_Functions/03. Quiz Defining Functions.html
9.7 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/35. Pre-Notebook Analyzing Student Data.html
9.7 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/35. Pre-Notebook Analyzing Student Data.html
9.7 kB
Part 03-Module 01-Lesson 04_Functions/12. Quiz Lambda Expressions.html
9.7 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/14. Error Functions-jfKShxGAbok.en.vtt
9.7 kB
Part 06-Module 01-Lesson 04_Probability/10. Two Flips 3.html
9.7 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/14. Error Functions-jfKShxGAbok.en.vtt
9.7 kB
Part 04-Module 01-Lesson 02_Vectors/04. Vectors- Mathematical definition .html
9.7 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/17. Smart Beta.html
9.6 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/05. Notebook interface.html
9.6 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/02. Video Histograms.html
9.6 kB
Part 03-Module 01-Lesson 05_Scripting/08. Scripting with Raw Input.html
9.6 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/20. Video Calculating the p-value.html
9.6 kB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/19. PyTorch - Part 6-3ZJfo2bR-uw.en.vtt
9.6 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/33. Solution Dictionaries and Identity Operators.html
9.5 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/09. Gaussian Function and Maximum.html
9.5 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/18. Quiz Gaussian Motion.html
9.5 kB
Part 06-Module 01-Lesson 13_Case Study AB tests/15. Quiz Analyzing Multiple Metrics.html
9.5 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/08. Video Standard Deviation Calculation.html
9.5 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/04. Solution Arithmetic Operators.html
9.5 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/12. Solution Booleans, Comparison and Logical Operators.html
9.5 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/15. Correct Interpretations of Confidence Intervals.html
9.5 kB
Part 04-Module 01-Lesson 03_Linear Combination/img/screen-shot-2018-03-28-at-4.52.09-pm.png
9.5 kB
Part 03-Module 01-Lesson 03_Control Flow/19. Solution Iterating Through Dictionaries.html
9.5 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/14. Quiz Parameter Update.html
9.5 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/37. Solution Compound Data Structions.html
9.5 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/07. Perceptrons.html
9.5 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/07. Perceptrons.html
9.5 kB
Part 01-Module 03-Lesson 04_Portfolio Optimization/02. What is Optimization.html
9.5 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/25. Video The Background of Bootstrapping.html
9.4 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/05. Gaussian Intro.html
9.4 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/03. Indices.html
9.4 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/17. Video Measures of Center (Mode).html
9.4 kB
Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/08. Matrix Multiplication Quiz.html
9.4 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/11. How an Index is Constructed.html
9.4 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/08. Video Introduction to Sampling Distributions Part III.html
9.4 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/05. Linear Boundaries.html
9.4 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/05. Linear Boundaries.html
9.4 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/24. Video Better Way.html
9.4 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/14. Error Functions-jfKShxGAbok.pt-BR.vtt
9.4 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/14. Error Functions-jfKShxGAbok.pt-BR.vtt
9.4 kB
Part 06-Module 01-Lesson 04_Probability/02. Flipping Coins.html
9.4 kB
Part 10-Module 01-Lesson 01_Intro to NLP/06. Counting Words.html
9.4 kB
Part 01-Module 03-Lesson 04_Portfolio Optimization/12. L4 13 Limitations V2-UbbZa7-3iuk.en.vtt
9.3 kB
Part 03-Module 01-Lesson 03_Control Flow/22. Solution While Loops Practice.html
9.3 kB
Part 03-Module 01-Lesson 04_Functions/14. [Optional] Iterators and Generators.html
9.3 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/38. Conclusion.html
9.3 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/22. Video Bootstrapping.html
9.3 kB
Part 06-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram.html
9.3 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/06. Video What if We Only Want One Number.html
9.3 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/03. Video Weekdays vs. Weekends What is the Difference.html
9.3 kB
Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/04. Scalar Multiplication of Matrix and Quiz.html
9.3 kB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/05. Counting Words.html
9.3 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/11. Video Why the Standard Deviation.html
9.3 kB
Part 02-Module 01-Lesson 03_Text Processing/04. Cleaning-qawXp9DPV6I.pt-BR.vtt
9.3 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/31. Video Summary.html
9.3 kB
Part 06-Module 01-Lesson 04_Probability/04. Loaded Coin 1.html
9.3 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/07. Computer Vision Pipeline.html
9.3 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/18. Solution Type and Type Conversion.html
9.3 kB
Part 01-Module 02-Lesson 03_Regression/06. Testing for Normality.html
9.3 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/08. Video Data Types (Continuous vs. Discrete).html
9.3 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/10. Quiz Shifting the Mean.html
9.2 kB
Part 01-Module 01-Lesson 08_Momentum Trading/12. Quiz Statistical Analysis.html
9.2 kB
Part 03-Module 01-Lesson 03_Control Flow/01. Introduction.html
9.2 kB
Part 04-Module 01-Lesson 02_Vectors/12. Vectors Quiz 3.html
9.2 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/15. Portfolio Variance using Factor Model.html
9.2 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/07. Video Data Types (Ordinal vs. Nominal).html
9.2 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/12. Quiz Predicting the Peak.html
9.2 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/img/codecogseqn-60-2.png
9.2 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/img/codecogseqn-60-2.png
9.2 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/21. 08 Making Predictions V3-BhrpV3kwATo.pt-BR.vtt
9.1 kB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/16. PyTorch V2 Part 5 V1 (1)-XACXlkIdS7Y.en.vtt
9.1 kB
Part 01-Module 03-Lesson 02_ETFs/10. Arbitrage for Efficient ETF Pricing.html
9.1 kB
Part 07-Module 01-Lesson 03_Clustering/13. Sklearn-3zHUAXcoZ7c.ar.vtt
9.1 kB
Part 04-Module 01-Lesson 02_Vectors/06. Magnitude and Direction .html
9.1 kB
Part 07-Module 01-Lesson 01_Linear Regression/11. Minimizing Error Functions.html
9.1 kB
Part 03-Module 01-Lesson 03_Control Flow/12. Solution For Loops Practice.html
9.1 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/10. Video Traditional Confidence Intervals.html
9.1 kB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/07. The Covariance Matrix and Quadratic Forms.html
9.1 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/32. Hypothesis Testing Conclusion.html
9.1 kB
Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/06. Square Matrix Multiplication Quiz.html
9.1 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/08. Quiz Pipeline Steps.html
9.1 kB
Part 06-Module 01-Lesson 04_Probability/15. One Of Three 1.html
9.1 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/36. Notebook Analyzing Student Data.html
9.1 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/36. Notebook Analyzing Student Data.html
9.1 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/03. Tracking Intro.html
9.1 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/07. Types of Errors - Part I.html
9.1 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/27. Notebook Gradient Descent.html
9.1 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/27. Notebook Gradient Descent.html
9.1 kB
Part 03-Module 01-Lesson 05_Scripting/19. Solution Reading and Writing Files.html
9.0 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/02. install libraries.html
9.0 kB
Part 06-Module 01-Lesson 04_Probability/06. Loaded Coin 3.html
9.0 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/01. Case Studies Intro.html
9.0 kB
Part 03-Module 01-Lesson 03_Control Flow/27. Solution Break, Continue.html
9.0 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/09. Market Cap Weighting.html
9.0 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/26. Video Why are Sampling Distributions Important.html
9.0 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1.html
9.0 kB
Part 06-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram.html
9.0 kB
Part 06-Module 01-Lesson 04_Probability/17. Even Roll.html
9.0 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/02. Hypothesis Testing.html
9.0 kB
Part 02-Module 02-Lesson 05_Embeddings Word2Vec/11. 9 Model Validation Loss V2-GKDCq8J76tM.en.vtt
9.0 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/28. Perceptron vs Gradient Descent.html
9.0 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/28. Perceptron vs Gradient Descent.html
9.0 kB
Part 06-Module 01-Lesson 04_Probability/08. Two Flips 1.html
9.0 kB
Part 06-Module 01-Lesson 04_Probability/12. Two Flips 5.html
9.0 kB
Part 07-Module 01-Lesson 04_Decision Trees/12. Quiz Information Gain.html
9.0 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/07. Regularization-ndYnUrx8xvs.pt-BR.vtt
9.0 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/21. 08 Making Predictions V3-BhrpV3kwATo.en.vtt
9.0 kB
Part 06-Module 01-Lesson 04_Probability/13. One Head 1.html
9.0 kB
Part 07-Module 01-Lesson 01_Linear Regression/20. Linear Regression Warnings.html
9.0 kB
Part 03-Module 01-Lesson 04_Functions/08. Documentation.html
9.0 kB
Part 06-Module 01-Lesson 04_Probability/16. One Of Three 2.html
9.0 kB
Part 06-Module 01-Lesson 04_Probability/03. Fair Coin.html
9.0 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/05. Video Data Types (Quantitative vs. Categorical).html
8.9 kB
Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/02. Matrix Addition.html
8.9 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/13. Winners and Losers in Momentum Exercise.html
8.9 kB
Part 06-Module 01-Lesson 04_Probability/05. Loaded Coin 2.html
8.9 kB
Part 03-Module 01-Lesson 05_Scripting/11. Errors and Exceptions.html
8.9 kB
Part 06-Module 01-Lesson 07_Bayes Rule/01. Bayes Rule.html
8.9 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/14. Video Other Sampling Distributions.html
8.9 kB
Part 03-Module 01-Lesson 05_Scripting/20. Importing Files-qjeSn6zZbR0.ar.vtt
8.9 kB
Part 05-Module 01-Lesson 02_NumPy/02. Introduction to NumPy.html
8.9 kB
Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/12. 3 or more stocks (optional).html
8.9 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/07. Overnight Returns exercise.html
8.9 kB
Part 06-Module 01-Lesson 04_Probability/18. Doubles.html
8.9 kB
Part 06-Module 01-Lesson 07_Bayes Rule/20. Bayes Rule Summary.html
8.9 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/11. Video Introduction to Notation.html
8.9 kB
Part 06-Module 01-Lesson 04_Probability/11. Two Flips 4.html
8.9 kB
Part 06-Module 01-Lesson 04_Probability/09. Two Flips 2.html
8.9 kB
Part 02-Module 01-Lesson 05_Financial Statements/17. Parsers.html
8.9 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/12. Hang Seng Index Construction.html
8.9 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/22. Net Asset Value.html
8.9 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/20. Cross-Entropy 1.html
8.9 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/20. Cross-Entropy 1.html
8.9 kB
Part 06-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8.html
8.8 kB
Part 06-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7.html
8.8 kB
Part 10-Module 01-Lesson 01_Intro to NLP/03. Structured Languages.html
8.8 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/01. Kalman Filters and Linear Algebra.html
8.8 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/06. Student Support.html
8.8 kB
Part 01-Module 04-Lesson 06_Alpha Factors/index.html
8.8 kB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/02. Pre-Notebook.html
8.8 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/12. How an alpha factor becomes a risk factor part 2.html
8.8 kB
Part 06-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1.html
8.8 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/16. Notebook Character-Level RNN.html
8.8 kB
Part 06-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4.html
8.8 kB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/20. PyTorch - Part 7-hFu7GTfRWks.zh-CN.vtt
8.8 kB
Part 03-Module 01-Lesson 05_Scripting/07. Editing a Python Script.html
8.8 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/13. Training Memory.html
8.8 kB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/02. Structured Languages.html
8.8 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/01. Instructor.html
8.7 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/01. Instructor.html
8.7 kB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/26. Tips, Tricks, and Other Notes.html
8.7 kB
Part 06-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3.html
8.7 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/02. Text Optional Lessons Note.html
8.7 kB
Part 07-Module 01-Lesson 04_Decision Trees/11. Multiclass Entropy.html
8.7 kB
Part 06-Module 01-Lesson 07_Bayes Rule/29. Generalizing.html
8.7 kB
Part 03-Module 01-Lesson 05_Scripting/16. Accessing Error Messages.html
8.7 kB
Part 02-Module 02-Lesson 05_Embeddings Word2Vec/04. Pre-Notebook Word2Vec, SkipGram.html
8.7 kB
Part 01-Module 01-Lesson 06_Data Processing/10. Price Earnings Ratio.html
8.7 kB
Part 01-Module 01-Lesson 08_Momentum Trading/07. Quiz Momentum-based Portfolio.html
8.7 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/27. Transaction Costs.html
8.7 kB
Part 06-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2.html
8.7 kB
Part 07-Module 01-Lesson 01_Linear Regression/13. Mini-batch Gradient Descent.html
8.7 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/25. Logistic Regression Algorithm.html
8.7 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/25. Logistic Regression Algorithm.html
8.7 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2.html
8.7 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum.html
8.7 kB
Part 05-Module 01-Lesson 03_Pandas/02. Introduction to Pandas.html
8.7 kB
Part 03-Module 01-Lesson 03_Control Flow/34. Conclusion.html
8.7 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/08. Why Neural Networks.html
8.7 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/08. Why Neural Networks.html
8.7 kB
Part 01-Module 02-Lesson 04_Time Series Modeling/04. Advanced Time Series Models.html
8.7 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/29. Continuous Perceptrons.html
8.6 kB
Part 03-Module 01-Lesson 05_Scripting/01. Introduction.html
8.6 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/29. Continuous Perceptrons.html
8.6 kB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/05. Reducing Risk.html
8.6 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/08. Formula.html
8.6 kB
Part 06-Module 01-Lesson 07_Bayes Rule/33. Bayes' Rule and Robotics.html
8.6 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/12. Non-Linear Regions.html
8.6 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/12. Non-Linear Regions.html
8.6 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/04. Classification Problems 2.html
8.6 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/04. Classification Problems 2.html
8.6 kB
Part 06-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4.html
8.6 kB
Part 06-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5.html
8.6 kB
Part 06-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6.html
8.6 kB
Part 06-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2.html
8.6 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/31. Non-Linear Models.html
8.6 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/20. Char-RNN, Solution.html
8.6 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/31. Non-Linear Models.html
8.6 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/08. Risk Factors v. Alpha Factors.html
8.6 kB
Part 05-Module 01-Lesson 02_NumPy/08. NumPy 4 V1-jeU7lLgyMms.pt-BR.vtt
8.6 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/17. One-Hot Encoding.html
8.6 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/17. One-Hot Encoding.html
8.6 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/13. Error Functions.html
8.6 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/30. Non-linear Data.html
8.6 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/13. Error Functions.html
8.6 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/30. Non-linear Data.html
8.6 kB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/08. Calculate a Covariance Matrix.html
8.6 kB
Part 02-Module 02-Lesson 05_Embeddings Word2Vec/13. Pre-Notebook Negative Sampling.html
8.6 kB
Part 06-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1.html
8.6 kB
Part 07-Module 01-Lesson 04_Decision Trees/08. Entropy Formula 1.html
8.6 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/37. Outro.html
8.6 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/03. Video Welcome!.html
8.6 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/37. Outro.html
8.6 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/02. Introduction.html
8.6 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/02. Introduction.html
8.6 kB
Part 06-Module 01-Lesson 07_Bayes Rule/37. Bayes Rule Conclusion.html
8.6 kB
Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/01. What is a Matrix.html
8.6 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3.html
8.6 kB
Part 06-Module 01-Lesson 07_Bayes Rule/32. Reducing Uncertainty.html
8.6 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/12. Video Introduction to Summary Statistics.html
8.6 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/14. Error Functions-jfKShxGAbok.zh-CN.vtt
8.6 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/14. Error Functions-jfKShxGAbok.zh-CN.vtt
8.6 kB
Part 07-Module 01-Lesson 03_Clustering/06. Optimizing Centers (Rubber Bands).html
8.6 kB
Part 07-Module 01-Lesson 03_Clustering/07. Moving Centers 2.html
8.5 kB
Part 06-Module 01-Lesson 07_Bayes Rule/35. Using Sensor Data.html
8.5 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/05. ScreenCast Difference In Means.html
8.5 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/09. Risk Factors v. Alpha Factors part 2.html
8.5 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3.html
8.5 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/08. Answer Variance and Preferred Gaussian.html
8.5 kB
Part 02-Module 02-Lesson 05_Embeddings Word2Vec/11. 9 Model Validation Loss V2-GKDCq8J76tM.pt-BR.vtt
8.5 kB
Part 03-Module 01-Lesson 05_Scripting/21. The Standard Library.html
8.5 kB
Part 06-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3.html
8.5 kB
Part 03-Module 01-Lesson 04_Functions/11. Lambda Expressions.html
8.5 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/09. Winners and Losers Accelerated and Decelerated Gains and Losses.html
8.5 kB
Part 02-Module 01-Lesson 03_Text Processing/04. Cleaning-qawXp9DPV6I.en.vtt
8.5 kB
Part 07-Module 01-Lesson 03_Clustering/10. K-Means Cluster Visualization.html
8.5 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics.html
8.5 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/16. Skewness and Momentum Momentum Enhanced or weakened by Skew.html
8.5 kB
Part 05-Module 01-Lesson 02_NumPy/03. Why Use NumPy.html
8.5 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/10. Winners and Losers approximating curves with polynomials.html
8.5 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/01. Introduce Instructors.html
8.5 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/12. Video Other Language Associated with Confidence Intervals.html
8.5 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2.html
8.4 kB
Part 06-Module 01-Lesson 13_Case Study AB tests/02. AB Testing.html
8.4 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/04. Answer Tracking Intro.html
8.4 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/24. iVol Joint Factor Volatility Enhanced Price Earnings Ratio.html
8.4 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited.html
8.4 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum.html
8.4 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/09. Video Data Types Summary.html
8.4 kB
Part 03-Module 01-Lesson 05_Scripting/10. Solution Scripting with Raw Input.html
8.4 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/22. iVol Value, Fundamental or Discretionary Investing.html
8.4 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/04. Video What is Data Why is it important.html
8.4 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/19. iVol Arbitrage and Efficient Pricing of Stocks.html
8.4 kB
Part 01-Module 01-Lesson 04_Stock Prices/02. Stock Prices.html
8.4 kB
Part 05-Module 01-Lesson 03_Pandas/07. Manipulate a Series.html
8.4 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/06. Overnight Returns Methods Quantile Analysis.html
8.4 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/15. Active vs. Passive.html
8.4 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/02. Shape.html
8.4 kB
Part 04-Module 01-Lesson 03_Linear Combination/04. Linear Combination -Quiz 1.html
8.4 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/12. Winners and Losers Creating a joint factor.html
8.4 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/17. Solution New Mean and Variance.html
8.4 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/17. Skewness and Momentum Conditional Factor.html
8.4 kB
Part 05-Module 01-Lesson 03_Pandas/08. Pandas 4 V1-eMHUn9v9dds.pt-BR.vtt
8.4 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/04. Terminology.html
8.4 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/04. Overnight Returns Possible Alpha Factors.html
8.4 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/05. Overnight Returns Data, Universe, Methods.html
8.4 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/25. iVol Generalizing the volatility Factor.html
8.4 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/02. Video From Sampling Distributions to Confidence Intervals.html
8.4 kB
assets/css/fonts/KaTeX_Size3-Regular.ttf
8.4 kB
Part 07-Module 01-Lesson 01_Linear Regression/02. Quiz Housing Prices.html
8.4 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/15. Skewness and Momentum Defining Skew.html
8.4 kB
Part 07-Module 01-Lesson 01_Linear Regression/12. Mean vs Total Error.html
8.4 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/04. Underfitting And Overfitting-xj4PlXMsN-Y.pt-BR.vtt
8.3 kB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/02. Pre-Notebook Sentiment RNN.html
8.3 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/09. Statistical vs. Practical Significance.html
8.3 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/09. Training a Model.html
8.3 kB
Part 02-Module 02-Lesson 05_Embeddings Word2Vec/06. Data Subsampling.html
8.3 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/14. Video Correct Interpretations of Confidence Intervals.html
8.3 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4.html
8.3 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/21. iVol Idiosyncratic Volatility.html
8.3 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/23. iVOL Quantamental Investing.html
8.3 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/08. Video Statistical vs. Practical Significance.html
8.3 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/03. Your Instructors.html
8.3 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/02. Introduction.html
8.3 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/24. NLP used to enhance Fundamental Analysis.html
8.3 kB
Part 05-Module 01-Lesson 02_NumPy/04. NumPy 1 V1-EOHW29kDg7w.pt-BR.vtt
8.3 kB
Part 04-Module 01-Lesson 01_Introduction/07. Try our workspace again!.html
8.3 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/23. Kalman Filter Code.html
8.3 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/20. iVol Arbitrage Risk.html
8.3 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/07. Regularization-ndYnUrx8xvs.en.vtt
8.3 kB
Part 07-Module 01-Lesson 03_Clustering/17. Counterintuitive Clusters 2.html
8.3 kB
Part 03-Module 01-Lesson 05_Scripting/23. Solution The Standard Library.html
8.3 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/25. Other Alternative Data.html
8.2 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/06. Answer Gaussian Intro.html
8.2 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias.html
8.2 kB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/14. Classifying Fashion-MNIST.html
8.2 kB
Part 06-Module 01-Lesson 13_Case Study AB tests/05. Experiment I.html
8.2 kB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/12. Network Architectures Solution.html
8.2 kB
Part 07-Module 01-Lesson 03_Clustering/16. Counterintuitive Clusters.html
8.2 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/27. Next Motion Models and State.html
8.2 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/21. CrossEntropy V1-1BnhC6e0TFw.en.vtt
8.2 kB
Part 07-Module 01-Lesson 04_Decision Trees/05. Quiz Student Admissions.html
8.2 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/21. CrossEntropy V1-1BnhC6e0TFw.en.vtt
8.2 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/16. Notebook New Mean and Variance.html
8.2 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/26. Summary.html
8.2 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/11. Taking constants out of Variance and Covariance (optional).html
8.2 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/21. Notebook Predict Function.html
8.2 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/24. Notebook 1D Kalman Filter.html
8.2 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/03. ScreenCast Sampling Distributions and Confidence Intervals.html
8.2 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2.html
8.2 kB
Part 04-Module 01-Lesson 03_Linear Combination/08. Linear Combination - Quiz 3.html
8.2 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1.html
8.2 kB
Part 05-Module 01-Lesson 02_NumPy/08. NumPy 4 V1-jeU7lLgyMms.en.vtt
8.2 kB
Part 07-Module 01-Lesson 03_Clustering/15. Limitations of K-Means.html
8.2 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/25. Answer 1D Kalman Filter.html
8.2 kB
Part 03-Module 01-Lesson 05_Scripting/15. Solution Handling Input Errors.html
8.2 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/22. Answer Predict Function.html
8.2 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/11. ScreenCast Traditional Confidence Interval Methods.html
8.2 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/img/codecogseqn-43.gif
8.2 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/img/codecogseqn-43.gif
8.2 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/27. Interlude.html
8.2 kB
Part 03-Module 01-Lesson 05_Scripting/29. Conclusion.html
8.1 kB
Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/03. Matrix Addition Quiz.html
8.1 kB
Part 07-Module 01-Lesson 04_Decision Trees/09. Entropy Formula 2.html
8.1 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads.html
8.1 kB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/11. Network Architectures in PyTorch.html
8.1 kB
Part 06-Module 01-Lesson 04_Probability/20. Text Recap + Next Steps.html
8.1 kB
Part 02-Module 01-Lesson 05_Financial Statements/21. Searching The Parse Tree Part 1.html
8.1 kB
Part 02-Module 01-Lesson 05_Financial Statements/22. Searching The Parse Tree Part 2.html
8.1 kB
Part 02-Module 01-Lesson 05_Financial Statements/23. Searching The Parse Tree Part 3.html
8.1 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/20. Predict Function.html
8.1 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads.html
8.1 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads.html
8.1 kB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/23. Notebook Workspace w GPU.html
8.1 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2.html
8.1 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3.html
8.1 kB
Part 02-Module 01-Lesson 05_Financial Statements/09. Searching For Simple Patterns.html
8.1 kB
Part 01-Module 02-Lesson 07_Project 2 Breakout Strategy/Project Rubric - Breakout Strategy.html
8.1 kB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/03. Notebook Workspace.html
8.1 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head.html
8.1 kB
Part 02-Module 01-Lesson 05_Financial Statements/20. Navigating The Parse Tree.html
8.1 kB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/10. Implementing Softmax Solution.html
8.1 kB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/05. Single layer neural networks solution.html
8.1 kB
Part 07-Module 01-Lesson 04_Decision Trees/03. Recommending Apps 2.html
8.1 kB
Part 02-Module 01-Lesson 05_Financial Statements/14. Substitutions and Flags.html
8.1 kB
Part 10-Module 01-Lesson 01_Intro to NLP/05. Unstructured Text.html
8.1 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2.html
8.1 kB
Part 02-Module 01-Lesson 05_Financial Statements/08. Finding MetaCharacters.html
8.1 kB
Part 02-Module 01-Lesson 05_Financial Statements/11. MetaCharacters Part 1.html
8.1 kB
Part 02-Module 01-Lesson 05_Financial Statements/12. MetaCharacters Part 2.html
8.1 kB
Part 02-Module 01-Lesson 05_Financial Statements/13. MetaCharacters Part 3.html
8.1 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula.html
8.1 kB
Part 02-Module 01-Lesson 05_Financial Statements/19. Parsing an HTML File.html
8.1 kB
Part 03-Module 01-Lesson 04_Functions/04. Solution Defining Functions.html
8.1 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/07. Aggregation.html
8.1 kB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/04. Single layer neural networks.html
8.1 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/11. Creating a slideshow.html
8.1 kB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/19. PyTorch - Part 6-3ZJfo2bR-uw.zh-CN.vtt
8.1 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/09. Arrangements.html
8.1 kB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/06. Networks Using Matrix Multiplication.html
8.1 kB
Part 02-Module 01-Lesson 05_Financial Statements/10. Word Boundaries.html
8.0 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/10. Risk Factors v. Alpha Factors part 3.html
8.0 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/13. 03 Training Memory V1-sx7T_KP5v9I.en.vtt
8.0 kB
Part 02-Module 01-Lesson 05_Financial Statements/07. Finding Words .html
8.0 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails.html
8.0 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4.html
8.0 kB
Part 02-Module 01-Lesson 05_Financial Statements/06. Raw Strings.html
8.0 kB
Part 01-Module 02-Lesson 03_Regression/12. Breusch Pagan in Depth (Optional).html
8.0 kB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/08. Neural Networks in PyTorch.html
8.0 kB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/16. Inference and Validation.html
8.0 kB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/06. Variance of a 3-Asset Portfolio.html
8.0 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5.html
8.0 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6.html
8.0 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3.html
8.0 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4.html
8.0 kB
Part 01-Module 02-Lesson 03_Regression/05. Quiz Standard Normal Distribution.html
8.0 kB
Part 04-Module 01-Lesson 02_Vectors/10. Vectors- Quiz 2.html
8.0 kB
Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/11. Variations of Pairs Trading and Mean Reversion Trading.html
8.0 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/06. Ratios.html
8.0 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/07. Index Categories.html
8.0 kB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/09. Neural Networks Solution.html
8.0 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/16. Quiz Rate of Returns Over Multiple Periods.html
8.0 kB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/04. Unstructured Text.html
8.0 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/21. CrossEntropy V1-1BnhC6e0TFw.pt-BR.vtt
8.0 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/21. CrossEntropy V1-1BnhC6e0TFw.pt-BR.vtt
8.0 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/01. Intro to RNNs.html
8.0 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/01. Binomial.html
8.0 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/07. Video Confidence Interval Applications.html
8.0 kB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/22. Pre-Notebook with GPU.html
8.0 kB
Part 01-Module 03-Lesson 05_Project 3 Smart Beta and Portfolio Optimization/Project Rubric - Smart Beta and Portfolio Optimization.html
8.0 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability.html
8.0 kB
Part 06-Module 01-Lesson 13_Case Study AB tests/08. Click Through Rate.html
8.0 kB
Part 07-Module 01-Lesson 03_Clustering/04. How Many Clusters.html
7.9 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/17. Text Recap + Next Steps.html
7.9 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/08. Price Weighting.html
7.9 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/15. Answer Parameter Update.html
7.9 kB
Part 03-Module 01-Lesson 04_Functions/16. [Optional] Solution Iterators and Generators.html
7.9 kB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/15. Quiz Portfolio Return with a 3-Asset Portfolio.html
7.9 kB
Part 01-Module 04-Lesson 01_Factors/11. Quiz dollar neutral and leverage ratio.html
7.9 kB
Part 04-Module 01-Lesson 03_Linear Combination/07. Linear Combination - Quiz 2.html
7.9 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/26. Close End Mutual Funds.html
7.9 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value.html
7.9 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value.html
7.9 kB
Part 02-Module 01-Lesson 05_Financial Statements/24. Exercise Get Headers and Paragraphs.html
7.9 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/09. Fama French Risk Model.html
7.9 kB
Part 02-Module 01-Lesson 05_Financial Statements/15. Applying Regexs to 10-Ks.html
7.8 kB
Part 02-Module 01-Lesson 05_Financial Statements/25. The Requests Library.html
7.8 kB
Part 02-Module 02-Lesson 05_Embeddings Word2Vec/08. Context Word Targets.html
7.8 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/24. Open End Mutual Funds.html
7.8 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/02. Intro to this lesson.html
7.8 kB
Part 07-Module 01-Lesson 02_Naive Bayes/11. Naive Bayes Algorithm 1.html
7.8 kB
Part 04-Module 01-Lesson 02_Vectors/05. Transpose.html
7.8 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/19. Answer Gaussian Motion.html
7.8 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/13. Answer Predicting the Peak.html
7.8 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/14. Price-Volume Factors.html
7.8 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/11. Answer Shifting the Mean.html
7.8 kB
Part 03-Module 01-Lesson 04_Functions/09. Quiz Documentation.html
7.8 kB
Part 01-Module 01-Lesson 05_Market Mechanics/03. M1L3 03 Trading Stocks V3-GHoRtfUrUMc.en.vtt
7.7 kB
Part 01-Module 01-Lesson 08_Momentum Trading/10. The Many Meanings of Alpha.html
7.7 kB
Part 06-Module 01-Lesson 13_Case Study AB tests/16. Drawing Conclusions.html
7.7 kB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/09. PyTorch V2 Part 2 Solution V1-zym36ihtOMY.en.vtt
7.7 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/26. Kalman Prediction.html
7.7 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/21. Making Predictions.html
7.7 kB
Part 04-Module 01-Lesson 02_Vectors/07. Vectors- Quiz 1.html
7.7 kB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/19. Saving and Loading Models.html
7.7 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/04. Underfitting And Overfitting-xj4PlXMsN-Y.en.vtt
7.7 kB
Part 05-Module 01-Lesson 03_Pandas/10. Pandas 6 V1-GS1kj04XQcM.pt-BR.vtt
7.7 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/11. How an alpha factor becomes a risk factor part 1.html
7.7 kB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/20. Loading Image Data.html
7.7 kB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/24. Transfer Learning.html
7.7 kB
Part 06-Module 01-Lesson 13_Case Study AB tests/11. Metric - Average Reading Duration.html
7.7 kB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/04. Portfolio Variance.html
7.6 kB
Part 02-Module 01-Lesson 03_Text Processing/04. Cleaning-qawXp9DPV6I.zh-CN.vtt
7.6 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/23. Sentiment Analysis on News and Social Media.html
7.6 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/19. Hedge Funds.html
7.6 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/02. What is Vision.html
7.6 kB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/17. PyTorch V2 Part 5 Solution V1-AjrXltxqsK4.en.vtt
7.6 kB
Part 06-Module 01-Lesson 13_Case Study AB tests/07. Metric - Click Through Rate.html
7.6 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/06. Covariance Matrix Using a Factor Model.html
7.6 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/13. 03 Training Memory V1-sx7T_KP5v9I.pt-BR.vtt
7.6 kB
Part 07-Module 01-Lesson 03_Clustering/01. Introduction.html
7.6 kB
Part 07-Module 01-Lesson 04_Decision Trees/13. Solution Information Gain.html
7.6 kB
Part 07-Module 01-Lesson 02_Naive Bayes/06. Quiz False Positives.html
7.6 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/03. Factor Returns as Latent Variables.html
7.6 kB
Part 02-Module 02-Lesson 05_Embeddings Word2Vec/12. 10 NegativeSampling V1-gnCwdegYNsQ.pt-BR.vtt
7.6 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/07. Factor Models in Quant Finance.html
7.6 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/23. Expense Ratios.html
7.6 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/12. Time-Series Prediction.html
7.6 kB
Part 03-Module 01-Lesson 04_Functions/07. Solution Variable Scope.html
7.6 kB
Part 05-Module 01-Lesson 02_NumPy/06. Create an ndarray.html
7.6 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/05. Factor Model Assumptions.html
7.5 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/02. What is a Factor Model.html
7.5 kB
Part 06-Module 01-Lesson 13_Case Study AB tests/09. Experiment II.html
7.5 kB
Part 03-Module 01-Lesson 05_Scripting/20. Importing Files-qjeSn6zZbR0.pt-BR.vtt
7.5 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/13. Momentum or Reversal.html
7.5 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/18. Event-Driven Factors.html
7.5 kB
Part 01-Module 01-Lesson 09_Project 1 Trading with Momentum/Project Rubric - Trading with Momentum.html
7.5 kB
Part 03-Module 01-Lesson 04_Functions/10. Solution Documentation.html
7.5 kB
Part 01-Module 01-Lesson 06_Data Processing/05. M1L4 08 Missing Values V5-XaMaVFUIc_I.en.vtt
7.5 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/17. Fundamental Ratios.html
7.5 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/20. Pre and Post Event.html
7.5 kB
Part 03-Module 01-Lesson 04_Functions/18. Conclusion.html
7.5 kB
Part 10-Module 01-Lesson 01_Intro to NLP/04. Grammar.html
7.5 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/22. Alternative Data.html
7.5 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/18. Mutual Funds.html
7.5 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/07. Feedback.html
7.5 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/01. Intro to Lesson.html
7.5 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/21. Analyst Ratings.html
7.5 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/15. Volume Factors.html
7.5 kB
Part 01-Module 02-Lesson 03_Regression/07. Quiz Normality .html
7.5 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/19. Index Changes.html
7.5 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/12. Variance of 2 stocks part 1.html
7.5 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/16. Fundamentals.html
7.5 kB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/07. Multilayer Networks Solution.html
7.5 kB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/13. Training a Network Solution.html
7.5 kB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/21. Loading Image Data Solution.html
7.5 kB
Part 01-Module 02-Lesson 04_Time Series Modeling/04. M2L4 05 Advanced Time Series Models V5-cj1RCBTDog8.en.vtt
7.5 kB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/25. Transfer Learning Solution.html
7.5 kB
Part 03-Module 01-Lesson 03_Control Flow/10. For Loops-UtX0PXSUCdY.pt-BR.vtt
7.5 kB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/15. Fashion-MNIST Solution.html
7.5 kB
Part 04-Module 01-Lesson 03_Linear Combination/05. Linear Dependency .html
7.5 kB
Part 02-Module 01-Lesson 06_Project 5 NLP on Financial Statements/Project Rubric - NLP on Financial Statements.html
7.5 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/16. Video Confidence Intervals Hypothesis Tests.html
7.5 kB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/14. PCA Toy Problem.html
7.5 kB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/17. Validation Solution.html
7.5 kB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/18. Dropout Solution.html
7.5 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/26. Summary.html
7.5 kB
Part 05-Module 01-Lesson 03_Pandas/03. Why Use Pandas.html
7.5 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/08. The Use Gate.html
7.4 kB
Part 07-Module 01-Lesson 02_Naive Bayes/04. SL NB 03 Guess The Person Now V1 V2-pQgO1KF90yU.pt-BR.vtt
7.4 kB
Part 01-Module 01-Lesson 06_Data Processing/02. When to Use Time Stamps.html
7.4 kB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/12. Will the Portfolios Be Different.html
7.4 kB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/03. Grammar.html
7.4 kB
Part 05-Module 01-Lesson 02_NumPy/10. Manipulating ndarrays.html
7.4 kB
Part 05-Module 01-Lesson 02_NumPy/07. NumPy 3 V1-Rt4aydeo9F8.pt-BR.vtt
7.4 kB
Part 07-Module 01-Lesson 02_Naive Bayes/13. Building a Spam Classifier.html
7.4 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/03. Role in AI.html
7.4 kB
Part 05-Module 01-Lesson 02_NumPy/08. NumPy 4 V1-jeU7lLgyMms.zh-CN.vtt
7.4 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/05. The Learn Gate.html
7.4 kB
Part 03-Module 01-Lesson 04_Functions/01. Introduction.html
7.4 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/13. Variance of 2 stocks part 2.html
7.4 kB
Part 07-Module 01-Lesson 02_Naive Bayes/04. SL NB 03 Guess The Person Now V1 V2-pQgO1KF90yU.en.vtt
7.4 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/06. Regularization.html
7.4 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/13. Index after Add or Delete.html
7.4 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/10. Adding or Removing from an Index.html
7.4 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/09. Factor Model of Portfolio Return Exercise.html
7.4 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/34. Backpropagation V2-1SmY3TZTyUk.en.vtt
7.4 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/34. Backpropagation V2-1SmY3TZTyUk.en.vtt
7.4 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/01. Intro Module 3.html
7.4 kB
Part 04-Module 01-Lesson 03_Linear Combination/02. Linear Combinations 2-RsKJNDTb8nw.en.vtt
7.4 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/06. Factor Model of Asset Return Exercise.html
7.4 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/14. Covariance Matrix of Assets Exercise.html
7.4 kB
Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/05. Quiz Identify Pairs to Trade.html
7.4 kB
Part 03-Module 01-Lesson 04_Functions/06. Variable Scope.html
7.4 kB
Part 06-Module 01-Lesson 13_Case Study AB tests/04. Business Example.html
7.4 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/13. Strings-ySZDrs-nNqg.ar.vtt
7.4 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/01. Video Introduction.html
7.4 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/05. Factor Model of Asset Return.html
7.4 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/04. Historical Variance Exercise.html
7.4 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/16. Portfolio Variance Exercise.html
7.4 kB
Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/03. Pairs Trading.html
7.4 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/07. Factor Model of Portfolio Return.html
7.4 kB
Part 01-Module 03-Lesson 04_Portfolio Optimization/05. Portfolio Optimization with 2 Stocks.html
7.4 kB
Part 01-Module 01-Lesson 06_Data Processing/07. Quiz Trading Experiment.html
7.4 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/34. Backpropagation V2-1SmY3TZTyUk.pt-BR.vtt
7.3 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/34. Backpropagation V2-1SmY3TZTyUk.pt-BR.vtt
7.3 kB
Part 03-Module 01-Lesson 04_Functions/13. Solution Lambda Expressions.html
7.3 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/06. The Forget Gate.html
7.3 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/21. Hedging Strategies.html
7.3 kB
Part 01-Module 02-Lesson 03_Regression/09. Heteroskedasticity.html
7.3 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/03. Motivation for Risk Factor Models.html
7.3 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/06. SMB.html
7.3 kB
Part 06-Module 01-Lesson 04_Probability/07. Complementary Outcomes.html
7.3 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/05. Growth V. Value.html
7.3 kB
Part 05-Module 01-Lesson 02_NumPy/12. Creating ndarrays with Broadcasting.html
7.3 kB
Part 04-Module 01-Lesson 02_Vectors/13. Vectors Quiz Answers.html
7.3 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/04. Market Cap.html
7.3 kB
Part 01-Module 02-Lesson 02_Outliers and Filtering/02. M2L2 02 Sources Of Outliers V8-gXKhKQ2_TaA.en.vtt
7.3 kB
Part 07-Module 01-Lesson 04_Decision Trees/18. Titanic Survival Model with Decision Trees.html
7.3 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/28. Summary.html
7.3 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/10. Other architectures.html
7.3 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/11. Implementing RNNs.html
7.3 kB
Part 07-Module 01-Lesson 03_Clustering/11. K-Means Clustering Visualization 2.html
7.3 kB
Part 07-Module 01-Lesson 04_Decision Trees/10. Entropy Formula 3.html
7.3 kB
Part 04-Module 01-Lesson 01_Introduction/03. Essence Of Linear Algebra Intro -EHcxDZpeGFg.pt-BR.vtt
7.3 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/14. Funds.html
7.3 kB
Part 02-Module 02-Lesson 05_Embeddings Word2Vec/03. 3 Word2Vec Notebook V2-4cWzv3YiF_w.pt-BR.vtt
7.2 kB
Part 07-Module 01-Lesson 04_Decision Trees/19. [Solution] Titanic Survival Model.html
7.2 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/08. Preview of Portfolio Variance Formula.html
7.2 kB
Part 04-Module 01-Lesson 02_Vectors/08. Operations in the Field.html
7.2 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/19. Defining the Model.html
7.2 kB
Part 06-Module 01-Lesson 06_Conditional Probability/16. Text Summary.html
7.2 kB
Part 05-Module 01-Lesson 02_NumPy/04. NumPy 1 V1-EOHW29kDg7w.en.vtt
7.2 kB
Part 01-Module 02-Lesson 03_Regression/13. Quiz Regression.html
7.2 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/07. The Remember Gate.html
7.2 kB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/09. TensorDataset Batching Data.html
7.2 kB
Part 04-Module 01-Lesson 03_Linear Combination/02. Linear Combinations 2-RsKJNDTb8nw.pt-BR.vtt
7.2 kB
Part 07-Module 01-Lesson 01_Linear Regression/18. Closed Form Solution.html
7.2 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/10. Converting notebooks.html
7.2 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/10. Variance of one stock.html
7.2 kB
Part 02-Module 02-Lesson 05_Embeddings Word2Vec/12. 10 NegativeSampling V1-gnCwdegYNsQ.en.vtt
7.2 kB
Part 04-Module 01-Lesson 01_Introduction/03. Essence Of Linear Algebra Intro -EHcxDZpeGFg.en.vtt
7.2 kB
Part 01-Module 02-Lesson 04_Time Series Modeling/06. Kalman Filter.html
7.2 kB
Part 05-Module 01-Lesson 03_Pandas/09. Pandas 5 V1-lClsJnZn_7w.pt-BR.vtt
7.2 kB
Part 04-Module 01-Lesson 03_Linear Combination/01. Linear Combinations 1-fmal7UE7dEE.pt-BR.vtt
7.2 kB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/18. PCA as a Factor Model Coding Exercise.html
7.2 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/01. Time Series Model Factor Variance.html
7.2 kB
Part 05-Module 01-Lesson 02_NumPy/01. Instructors.html
7.2 kB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/15. PCA Coding Exercise.html
7.1 kB
Part 01-Module 02-Lesson 03_Regression/04. Parameters of a Distribution.html
7.1 kB
Part 02-Module 01-Lesson 05_Financial Statements/16. Introduction to BeautifulSoup.html
7.1 kB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/07. PCA Exercise.html
7.1 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/07. Regularization-ndYnUrx8xvs.zh-CN.vtt
7.1 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/17. Implementing a Char-RNN.html
7.1 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/index.html
7.1 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/index.html
7.1 kB
Part 06-Module 01-Lesson 13_Case Study AB tests/14. Analyzing Multiple Metrics.html
7.1 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/05. Emotional Intelligence.html
7.1 kB
Part 01-Module 03-Lesson 02_ETFs/08. Lower Operational Costs Taxes.html
7.1 kB
Part 02-Module 01-Lesson 05_Financial Statements/05. Introduction to Regexes.html
7.1 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/02. Time Series Model Factor Exposure.html
7.1 kB
Part 02-Module 01-Lesson 05_Financial Statements/02. Financial Statements.html
7.1 kB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/04. 3 Data PreProcessing V1-Xw1MWmql7no.en.vtt
7.1 kB
Part 01-Module 02-Lesson 03_Regression/16. Exercise regression with two stocks.html
7.1 kB
Part 02-Module 01-Lesson 05_Financial Statements/03. 10-K Walkthrough.html
7.1 kB
Part 05-Module 01-Lesson 02_NumPy/07. NumPy 3 V1-Rt4aydeo9F8.en.vtt
7.1 kB
Part 02-Module 01-Lesson 05_Financial Statements/18. HTML Structure.html
7.1 kB
Part 05-Module 01-Lesson 03_Pandas/08. Pandas 4 V1-eMHUn9v9dds.en.vtt
7.1 kB
Part 07-Module 01-Lesson 01_Linear Regression/03. Solution Housing Prices.html
7.1 kB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/10. The Efficient Frontier.html
7.1 kB
Part 01-Module 02-Lesson 03_Regression/08. Exercise Normality.html
7.1 kB
Part 01-Module 04-Lesson 01_Factors/04. Quiz factor values and weights.html
7.0 kB
Part 02-Module 01-Lesson 05_Financial Statements/01. Introduction.html
7.0 kB
Part 07-Module 01-Lesson 04_Decision Trees/06. Solution Student Admissions.html
7.0 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/13. Categorical Variable Estimation.html
7.0 kB
Part 04-Module 01-Lesson 01_Introduction/04. Structure of this lesson.html
7.0 kB
Part 07-Module 01-Lesson 01_Linear Regression/21. Polynomial Regression.html
7.0 kB
Part 02-Module 02-Lesson 05_Embeddings Word2Vec/03. 3 Word2Vec Notebook V2-4cWzv3YiF_w.en.vtt
7.0 kB
Part 07-Module 01-Lesson 01_Linear Regression/01. Intro.html
7.0 kB
Part 07-Module 01-Lesson 01_Linear Regression/09. Mean Absolute Error.html
7.0 kB
Part 07-Module 01-Lesson 01_Linear Regression/04. Fitting a Line Through Data.html
7.0 kB
Part 07-Module 01-Lesson 01_Linear Regression/10. Mean Squared Error.html
7.0 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/10. Cross Sectional Model.html
7.0 kB
Part 07-Module 01-Lesson 01_Linear Regression/16. Higher Dimensions.html
7.0 kB
Part 06-Module 01-Lesson 13_Case Study AB tests/01. Introduction.html
7.0 kB
Part 07-Module 01-Lesson 01_Linear Regression/08. Gradient Descent.html
7.0 kB
Part 01-Module 01-Lesson 08_Momentum Trading/04. Long and Short Positions.html
7.0 kB
Part 07-Module 01-Lesson 01_Linear Regression/06. Absolute Trick.html
7.0 kB
Part 07-Module 01-Lesson 01_Linear Regression/22. Regularization.html
7.0 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/12. Categorical Factors.html
7.0 kB
Part 07-Module 01-Lesson 01_Linear Regression/05. Moving a Line.html
7.0 kB
Part 07-Module 01-Lesson 01_Linear Regression/07. Square Trick.html
7.0 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/index.html
7.0 kB
assets/css/fonts/KaTeX_Size1-Regular.woff
7.0 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/17. Types of Risk Models.html
7.0 kB
Part 07-Module 01-Lesson 01_Linear Regression/23. Outro.html
7.0 kB
Part 05-Module 01-Lesson 02_NumPy/14. Mini-Project Mean Normalization and Data Separation.html
7.0 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/08. Fama French SMB and HML.html
6.9 kB
Part 02-Module 02-Lesson 05_Embeddings Word2Vec/05. Notebook Word2Vec, SkipGram.html
6.9 kB
Part 04-Module 01-Lesson 03_Linear Combination/01. Linear Combinations 1-fmal7UE7dEE.en.vtt
6.9 kB
Part 02-Module 02-Lesson 05_Embeddings Word2Vec/14. Notebook Negative Sampling.html
6.9 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/14. Cross Section Specific Variance.html
6.9 kB
Part 03-Module 01-Lesson 04_Functions/17. [Optional] Generator Expressions.html
6.9 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.pt-BR.vtt
6.9 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.pt-BR.vtt
6.9 kB
Part 01-Module 01-Lesson 08_Momentum Trading/03. Quiz Momentum-based Signals.html
6.9 kB
Part 04-Module 01-Lesson 01_Introduction/02. Instructors.html
6.9 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/01. Intro.html
6.9 kB
Part 04-Module 01-Lesson 02_Vectors/09. Vector Addition.html
6.9 kB
Part 06-Module 01-Lesson 08_Python Probability Practice/04. Simulating Many Coin Flips.html
6.9 kB
Part 03-Module 01-Lesson 03_Control Flow/10. For Loops-UtX0PXSUCdY.en.vtt
6.9 kB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/17. Feedback.html
6.9 kB
Part 04-Module 01-Lesson 01_Introduction/06. Try our workspace out!.html
6.9 kB
Part 03-Module 01-Lesson 04_Functions/19. Further Learning.html
6.9 kB
Part 07-Module 01-Lesson 04_Decision Trees/15. Random Forests.html
6.9 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/09. Putting it All Together.html
6.9 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/index.html
6.9 kB
Part 07-Module 01-Lesson 04_Decision Trees/14. Maximizing Information Gain.html
6.9 kB
Part 07-Module 01-Lesson 04_Decision Trees/20. Outro.html
6.9 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/03. Time Series Model specific variance.html
6.9 kB
Part 01-Module 03-Lesson 02_ETFs/06. Authorized Participant and the Create Process.html
6.9 kB
Part 01-Module 01-Lesson 02_Get Help from Peers and Mentors/03. Knowledge.html
6.9 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/05. Size.html
6.9 kB
Part 06-Module 01-Lesson 08_Python Probability Practice/02. Simulating Coin Flips.html
6.9 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/14. Character-wise RNNs.html
6.8 kB
Part 01-Module 01-Lesson 06_Data Processing/03. Corporate Actions Stock Splits.html
6.8 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/04. Architecture of LSTM.html
6.8 kB
Part 01-Module 02-Lesson 03_Regression/01. Intro.html
6.8 kB
Part 01-Module 01-Lesson 08_Momentum Trading/06. Trading Strategy.html
6.8 kB
Part 05-Module 01-Lesson 03_Pandas/14. Mini-Project Statistics From Stock Data.html
6.8 kB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/13. Explained Variance.html
6.8 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/15. Sequence Batching.html
6.8 kB
Part 01-Module 01-Lesson 06_Data Processing/04. M1L4 06 Technical Indicators V6-jo740Kq3YN4.en.vtt
6.8 kB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/09. Quiz np.cov.html
6.8 kB
Part 01-Module 04-Lesson 01_Factors/12. Zipline Pipeline.html
6.8 kB
Part 06-Module 01-Lesson 06_Conditional Probability/10. Total Probability.html
6.8 kB
Part 07-Module 01-Lesson 02_Naive Bayes/14. Project.html
6.8 kB
Part 06-Module 01-Lesson 13_Case Study AB tests/18. Conclusion.html
6.8 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/21. CrossEntropy V1-1BnhC6e0TFw.zh-CN.vtt
6.8 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/21. CrossEntropy V1-1BnhC6e0TFw.zh-CN.vtt
6.8 kB
Part 07-Module 01-Lesson 02_Naive Bayes/04. Guess the Person Now.html
6.8 kB
Part 07-Module 01-Lesson 03_Clustering/12. K-Means Clustering Visualization 3.html
6.8 kB
Part 03-Module 01-Lesson 04_Functions/02. Defining Functions-IP_tJYhynbc.ar.vtt
6.8 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/03. Basics of LSTM.html
6.8 kB
Part 05-Module 01-Lesson 03_Pandas/13. Getting Set Up for the Mini-Project.html
6.8 kB
Part 07-Module 01-Lesson 03_Clustering/13. Sklearn-3zHUAXcoZ7c.en.vtt
6.8 kB
Part 07-Module 01-Lesson 04_Decision Trees/04. Recommending Apps 3.html
6.8 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/02. RNN vs LSTM.html
6.8 kB
Part 07-Module 01-Lesson 04_Decision Trees/01. Intro.html
6.8 kB
Part 01-Module 01-Lesson 08_Momentum Trading/08. Quiz Calculate Top and Bottom Performing.html
6.8 kB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/11. Capital Market Line.html
6.8 kB
Part 01-Module 01-Lesson 05_Market Mechanics/03. Trading Stocks.html
6.8 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/01. Welcome to Computer Vision.html
6.8 kB
Part 04-Module 01-Lesson 02_Vectors/11. Scalar by Vector Multiplication.html
6.8 kB
Part 01-Module 01-Lesson 06_Data Processing/11. M1L4 13 Exchange Traded Funds V4-Zx7v5GCfpvI.en.vtt
6.8 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/08. Números inteiros e floats-MiJ1vfWp-Ts.ar.vtt
6.8 kB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/09. 8 TensorDataset Batching V1-Oxuf2QIPjj4.en.vtt
6.8 kB
Part 07-Module 01-Lesson 03_Clustering/14. Some challenges of k-means.html
6.8 kB
Part 01-Module 01-Lesson 05_Market Mechanics/04. Liquidity.html
6.7 kB
Part 01-Module 01-Lesson 06_Data Processing/12. Index vs ETF.html
6.7 kB
Part 07-Module 01-Lesson 02_Naive Bayes/15. Spam Classifier - Workspace.html
6.7 kB
Part 06-Module 01-Lesson 04_Probability/01. Introduction to Probability.html
6.7 kB
Part 07-Module 01-Lesson 01_Linear Regression/06. Absolute Trick-DJWjBAqSkZw.en.vtt
6.7 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/18. Batching Data, Solution.html
6.7 kB
Part 01-Module 01-Lesson 08_Momentum Trading/05. Quiz Dtype.html
6.7 kB
Part 07-Module 01-Lesson 04_Decision Trees/07. Entropy.html
6.7 kB
Part 01-Module 02-Lesson 05_Volatility/04. Scale of Volatility.html
6.7 kB
Part 06-Module 01-Lesson 06_Conditional Probability/15. Summary.html
6.7 kB
Part 02-Module 02-Lesson 05_Embeddings Word2Vec/03. Word2Vec Notebook.html
6.7 kB
Part 07-Module 01-Lesson 03_Clustering/02. Unsupervised Learning.html
6.7 kB
Part 05-Module 01-Lesson 02_NumPy/13. Getting Set Up for the Mini-Project.html
6.7 kB
Part 06-Module 01-Lesson 04_Probability/19. Probability Conclusion.html
6.7 kB
Part 07-Module 01-Lesson 02_Naive Bayes/10. Bayesian Learning 3.html
6.7 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/04. Underfitting And Overfitting-xj4PlXMsN-Y.zh-CN.vtt
6.7 kB
Part 02-Module 02-Lesson 05_Embeddings Word2Vec/16. Complete Model Custom Loss.html
6.7 kB
Part 01-Module 04-Lesson 01_Factors/06. De-mean part 1.html
6.7 kB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/03. Refresh Linear Algebra.html
6.7 kB
Part 07-Module 01-Lesson 02_Naive Bayes/07. SL NB 06 S False Positives V1 V3-Bg6_Tvcv81A.pt-BR.vtt
6.7 kB
assets/css/fonts/KaTeX_Size2-Regular.woff
6.7 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/12. Other Activation Functions.html
6.7 kB
Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/09. Linear Transformation and Matrices . Part 1.html
6.7 kB
Part 01-Module 01-Lesson 06_Data Processing/04. Technical Indicators.html
6.7 kB
Part 05-Module 01-Lesson 03_Pandas/01. Instructors.html
6.7 kB
Part 07-Module 01-Lesson 03_Clustering/03. Clustering Movies.html
6.7 kB
Part 01-Module 02-Lesson 05_Volatility/12. M2L5 12 Using Volatility For Equity Trading V5-Vh9ajVRedvY.en.vtt
6.7 kB
Part 07-Module 01-Lesson 03_Clustering/09. Handoff to Katie.html
6.7 kB
Part 01-Module 02-Lesson 01_Quant Workflow/05. Anatomy of a Strategy.html
6.7 kB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/03. Notebook Sentiment RNN.html
6.7 kB
Part 05-Module 01-Lesson 03_Pandas/12. Pandas 7 V1-ruTYp-twXO0.pt-BR.vtt
6.7 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.pt-BR.vtt
6.7 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.pt-BR.vtt
6.7 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/15. Fundamental Factors.html
6.7 kB
Part 01-Module 03-Lesson 02_ETFs/07. Redeeming Shares.html
6.7 kB
Part 01-Module 01-Lesson 08_Momentum Trading/09. Statistical Analysis.html
6.6 kB
Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/10. Exercise finding pairs.html
6.6 kB
Part 01-Module 02-Lesson 02_Outliers and Filtering/03. Outliers Due to Real Events.html
6.6 kB
Part 01-Module 03-Lesson 04_Portfolio Optimization/09. Exercise cvxpy advanced optimization.html
6.6 kB
Part 07-Module 01-Lesson 02_Naive Bayes/11. MLND SL NB Naive Bayes Algorithm-CQBMB9jwcp8.en.vtt
6.6 kB
Part 03-Module 01-Lesson 05_Scripting/20. Importing Files-qjeSn6zZbR0.en.vtt
6.6 kB
Part 07-Module 01-Lesson 03_Clustering/13. Sklearn-3zHUAXcoZ7c.pt-BR.vtt
6.6 kB
Part 01-Module 02-Lesson 05_Volatility/07. Quiz Rolling Windows.html
6.6 kB
Part 07-Module 01-Lesson 02_Naive Bayes/07. SL NB 06 S False Positives V1 V3-Bg6_Tvcv81A.en.vtt
6.6 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/12. Text Recap + Next Steps.html
6.6 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/index.html
6.6 kB
Part 01-Module 01-Lesson 06_Data Processing/06. Trading Days.html
6.6 kB
Part 07-Module 01-Lesson 03_Clustering/13. Sklearn.html
6.6 kB
Part 01-Module 04-Lesson 01_Factors/10. Overview for standardizing a factor.html
6.6 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/18. Interlude.html
6.6 kB
Part 01-Module 04-Lesson 01_Factors/09. Rescale Part 2.html
6.6 kB
Part 01-Module 03-Lesson 04_Portfolio Optimization/08. Exercise cvxpy.html
6.6 kB
Part 03-Module 01-Lesson 01_Why Python Programming/04. Course Overview.html
6.6 kB
Part 07-Module 01-Lesson 01_Linear Regression/06. Absolute Trick-DJWjBAqSkZw.pt-BR.vtt
6.6 kB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/17. PCA as a Factor Model Part 2.html
6.6 kB
Part 03-Module 01-Lesson 03_Control Flow/index.html
6.6 kB
Part 01-Module 03-Lesson 02_ETFs/09. Arbitrage.html
6.6 kB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/05. Translating Between Bases.html
6.6 kB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/01. Statistical Risk Model.html
6.5 kB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/16. PCA as a Factor Model.html
6.5 kB
Part 06-Module 01-Lesson 06_Conditional Probability/01. Introduction to Conditional Probability.html
6.5 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/34. Backpropagation V2-1SmY3TZTyUk.zh-CN.vtt
6.5 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/34. Backpropagation V2-1SmY3TZTyUk.zh-CN.vtt
6.5 kB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/12. The Principal Components.html
6.5 kB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/08. Writing it Down Part 1.html
6.5 kB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/09. Writing it Down Part 2.html
6.5 kB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/10. Writing it Down Part 3.html
6.5 kB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/11. Writing it Down Part 4.html
6.5 kB
Part 02-Module 02-Lesson 05_Embeddings Word2Vec/02. Embedding Weight MatrixLookup Table.html
6.5 kB
Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/10. Linear Transformation and Matrices. Part 2.html
6.5 kB
Part 01-Module 04-Lesson 01_Factors/13. Zipline Coding Exercises.html
6.5 kB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/04. Bases as Languages.html
6.5 kB
Part 01-Module 01-Lesson 04_Stock Prices/03. Terminology.html
6.5 kB
Part 04-Module 01-Lesson 03_Linear Combination/02. Linear Combinations 2-RsKJNDTb8nw.zh-CN.vtt
6.5 kB
Part 02-Module 01-Lesson 03_Text Processing/05. Normalization.html
6.5 kB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/02. Vectors Two Ways.html
6.5 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/index.html
6.5 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/index.html
6.5 kB
Part 05-Module 01-Lesson 03_Pandas/10. Pandas 6 V1-GS1kj04XQcM.en.vtt
6.5 kB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/06. The Core Idea.html
6.5 kB
Part 05-Module 01-Lesson 02_NumPy/07. NumPy 3 V1-Rt4aydeo9F8.zh-CN.vtt
6.5 kB
Part 01-Module 02-Lesson 03_Regression/14. Multivariate Linear Regression.html
6.5 kB
Part 03-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Part II-1GRv1S6K8gQ.ar.vtt
6.5 kB
Part 02-Module 02-Lesson 05_Embeddings Word2Vec/01. Word Embeddings.html
6.5 kB
Part 05-Module 01-Lesson 02_NumPy/04. NumPy 1 V1-EOHW29kDg7w.zh-CN.vtt
6.5 kB
assets/css/fonts/KaTeX_Size4-Regular.woff
6.5 kB
Part 01-Module 01-Lesson 02_Get Help from Peers and Mentors/04. Student Hub.html
6.5 kB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/19. Outro.html
6.5 kB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/14. What Is Optimization Doing to Our Alphas.html
6.4 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/16. Binomial Conclusion.html
6.4 kB
Part 01-Module 02-Lesson 03_Regression/18. Interlude Your Brain.html
6.4 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/13. Batch vs Stochastic Gradient Descent.html
6.4 kB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/07. Factor Exposure and Position Constraints.html
6.4 kB
Part 07-Module 01-Lesson 02_Naive Bayes/12. Naive Bayes Algorithm 2.html
6.4 kB
Part 01-Module 02-Lesson 03_Regression/15. Regression in Trading.html
6.4 kB
Part 02-Module 02-Lesson 05_Embeddings Word2Vec/09. Batching Data, Solution.html
6.4 kB
Part 01-Module 04-Lesson 01_Factors/08. Rescale part 1.html
6.4 kB
Part 02-Module 02-Lesson 05_Embeddings Word2Vec/15. SkipGramNeg, Model Definition.html
6.4 kB
Part 02-Module 02-Lesson 05_Embeddings Word2Vec/11. Model Validations.html
6.4 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/04. Program Overview.html
6.4 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/16. Error Functions Around the World.html
6.4 kB
Part 01-Module 02-Lesson 03_Regression/10. Transforming Data.html
6.4 kB
Part 01-Module 02-Lesson 03_Regression/11. Linear Regression.html
6.4 kB
Part 02-Module 02-Lesson 05_Embeddings Word2Vec/07. Subsampling Solution.html
6.4 kB
Part 07-Module 01-Lesson 02_Naive Bayes/09. Bayesian Learning 2.html
6.4 kB
Part 02-Module 02-Lesson 05_Embeddings Word2Vec/12. Negative Sampling.html
6.4 kB
Part 01-Module 02-Lesson 03_Regression/02. Distributions.html
6.4 kB
Part 07-Module 01-Lesson 02_Naive Bayes/07. Solution False Positives.html
6.4 kB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/11. L3 09 Capital Market Line V2-BRO-vo3y0-U.en.vtt
6.4 kB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/02. Setting Up the Problem Alphas.html
6.4 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/04. Overfitting and Underfitting.html
6.4 kB
Part 07-Module 01-Lesson 02_Naive Bayes/03. Known and Inferred.html
6.4 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/index.html
6.4 kB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/03. Setting Up the Problem Risk.html
6.4 kB
Part 02-Module 02-Lesson 05_Embeddings Word2Vec/10. Word2Vec Model.html
6.4 kB
Part 07-Module 01-Lesson 02_Naive Bayes/11. MLND SL NB Naive Bayes Algorithm-CQBMB9jwcp8.pt-BR.vtt
6.4 kB
Part 02-Module 01-Lesson 03_Text Processing/08. Part-of-Speech Tagging.html
6.4 kB
Part 07-Module 01-Lesson 02_Naive Bayes/02. Guess the Person.html
6.4 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/13. Formula Summary.html
6.4 kB
Part 01-Module 01-Lesson 08_Momentum Trading/09. M1L6 09 Statistical Analysis V10-_p1m_q8jE6E.en.vtt
6.4 kB
Part 01-Module 02-Lesson 03_Regression/17. Summary.html
6.4 kB
Part 07-Module 01-Lesson 02_Naive Bayes/05. Bayes Theorem.html
6.4 kB
Part 03-Module 01-Lesson 03_Control Flow/10. For Loops-UtX0PXSUCdY.zh-CN.vtt
6.3 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/20. Notation for Random Variables-8NxTW1u4s-Y.ar.vtt
6.3 kB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/05. Standard Constraints.html
6.3 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/02. Training Optimization.html
6.3 kB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/06. Leverage Constraint.html
6.3 kB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/10. Infeasible Problems.html
6.3 kB
Part 03-Module 01-Lesson 05_Scripting/20. Importing Files-qjeSn6zZbR0.zh-CN.vtt
6.3 kB
Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/11. Linear Transformation and Matrices. Part 3.html
6.3 kB
Part 02-Module 01-Lesson 03_Text Processing/03. Capturing Text Data.html
6.3 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/11. A different approach.html
6.3 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/05. Early Stopping.html
6.3 kB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/11. Transaction Costs.html
6.3 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/01. Instructor.html
6.3 kB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/13. Path Dependency.html
6.3 kB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/09. Estimation Error.html
6.3 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/11. Vanishing Gradient.html
6.3 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/12. Normalizer.html
6.3 kB
Part 03-Module 01-Lesson 05_Scripting/06. Programming Environment Setup-EKxDnCK0NAk.ar.vtt
6.3 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.en.vtt
6.3 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.en.vtt
6.3 kB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/04. Regularization.html
6.3 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/01. Admissions Case Study Introduction.html
6.3 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.en.vtt
6.3 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.en.vtt
6.3 kB
Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/09. Trade Pairs of Stocks.html
6.3 kB
Part 01-Module 03-Lesson 04_Portfolio Optimization/12. Limitations of the Classical Approach.html
6.3 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/25. Kalman Filter Code Solution - Artificial Intelligence for Robotics-X7cixvcogl8.es-ES.vtt
6.3 kB
Part 04-Module 01-Lesson 02_Vectors/02. Vectors, what even are they Part 2.html
6.3 kB
Part 04-Module 01-Lesson 02_Vectors/03. Vectors, what even are they Part 3.html
6.3 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/14. Learning Rate Decay.html
6.3 kB
Part 06-Module 01-Lesson 07_Bayes Rule/index.html
6.3 kB
Part 07-Module 01-Lesson 02_Naive Bayes/01. Intro.html
6.3 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/07. Regularization 2.html
6.3 kB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/15. PyTorch V2 Part 4 Solution V1-R6Y4hPLVQWM.en.vtt
6.3 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/10. Random Restart.html
6.3 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/15. Summary.html
6.3 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/01. Welcome!.html
6.3 kB
Part 03-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules-jPGyFgcIvsM.ar.vtt
6.3 kB
Part 07-Module 01-Lesson 02_Naive Bayes/16. Outro.html
6.3 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/09. Local Minima.html
6.3 kB
Part 05-Module 01-Lesson 03_Pandas/08. Pandas 4 V1-eMHUn9v9dds.zh-CN.vtt
6.3 kB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/01. Intro.html
6.3 kB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/15. Outro.html
6.3 kB
Part 04-Module 01-Lesson 01_Introduction/03. Essence Of Linear Algebra Intro -EHcxDZpeGFg.zh-CN.vtt
6.3 kB
Part 04-Module 01-Lesson 02_Vectors/01. What's a Vector.html
6.3 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/04. Time Series Risk Model.html
6.3 kB
Part 01-Module 03-Lesson 04_Portfolio Optimization/11. Rebalancing Strategies.html
6.3 kB
Part 01-Module 02-Lesson 02_Outliers and Filtering/04. M2L2 03 Outliers Signals And Strategies V5-zyVgpsRy-mU.en.vtt
6.3 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/15. Momentum.html
6.2 kB
Part 01-Module 01-Lesson 06_Data Processing/01. Market Data.html
6.2 kB
Part 01-Module 03-Lesson 02_ETFs/05. ETF Sponsors.html
6.2 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/03. Testing.html
6.2 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/08. Dropout.html
6.2 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/07. Value (HML).html
6.2 kB
Part 07-Module 01-Lesson 04_Decision Trees/img/screen-shot-2018-05-22-at-12.25.34-pm.png
6.2 kB
Part 02-Module 01-Lesson 03_Text Processing/04. Cleaning.html
6.2 kB
Part 02-Module 01-Lesson 03_Text Processing/02. Exercise Text Processing .html
6.2 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/06. Code cells.html
6.2 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/11. Dangers of Statistics.html
6.2 kB
Part 10-Module 01-Lesson 01_Intro to NLP/07. Context Is Everything.html
6.2 kB
Part 07-Module 01-Lesson 02_Naive Bayes/04. SL NB 03 Guess The Person Now V1 V2-pQgO1KF90yU.zh-CN.vtt
6.2 kB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/02. Diversification.html
6.2 kB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/03. Portfolio Mean.html
6.2 kB
Part 01-Module 03-Lesson 02_ETFs/04. Hedging.html
6.2 kB
Part 01-Module 04-Lesson 01_Factors/05. Standardizing a factor.html
6.2 kB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/16. Interlude.html
6.2 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/14. M4 L1B 14 PriceVolume Factors V2-zaG0PDc3wsA.en.vtt
6.2 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/16. Summary.html
6.2 kB
Part 01-Module 01-Lesson 08_Momentum Trading/14. Interlude Global Talent.html
6.2 kB
Part 01-Module 01-Lesson 08_Momentum Trading/01. Designing a Trading Strategy.html
6.2 kB
Part 01-Module 01-Lesson 05_Market Mechanics/07. Quiz Resample Data.html
6.2 kB
Part 03-Module 01-Lesson 05_Scripting/index.html
6.2 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/01. Instructor.html
6.2 kB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/16. Summary.html
6.2 kB
Part 01-Module 04-Lesson 01_Factors/07. De-mean part 2.html
6.1 kB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/01. Intro.html
6.1 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/10. AffdexMe Demo.html
6.1 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/19. 06 Defining Model V2-_LWzyqq4hCY.pt-BR.vtt
6.1 kB
Part 10-Module 01-Lesson 01_Intro to NLP/11. Feature Extraction.html
6.1 kB
Part 01-Module 01-Lesson 08_Momentum Trading/02. Momentum-based Signals.html
6.1 kB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/06. Context Is Everything.html
6.1 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/14. Conclusion.html
6.1 kB
Part 05-Module 01-Lesson 03_Pandas/09. Pandas 5 V1-lClsJnZn_7w.en.vtt
6.1 kB
Part 03-Module 01-Lesson 04_Functions/02. Defining Functions-IP_tJYhynbc.pt-BR.vtt
6.1 kB
Part 01-Module 01-Lesson 08_Momentum Trading/13. Finding Alpha.html
6.1 kB
Part 01-Module 02-Lesson 05_Volatility/08. Exponentially Weighted Moving Average.html
6.1 kB
Part 10-Module 01-Lesson 01_Intro to NLP/10. Text Processing.html
6.1 kB
Part 01-Module 02-Lesson 05_Volatility/12. Using Volatility for Equity Trading.html
6.1 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/02. What is a Quant.html
6.1 kB
Part 01-Module 02-Lesson 04_Time Series Modeling/05. Exercise ARMA and ARIMA.html
6.1 kB
Part 02-Module 01-Lesson 03_Text Processing/06. Tokenization.html
6.1 kB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/10. Feature Extraction.html
6.1 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/08. Keyboard shortcuts.html
6.1 kB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/06. Getting Rid of Zero-Length.html
6.0 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.en.vtt
6.0 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.en.vtt
6.0 kB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/07. Cleaning Padding Data.html
6.0 kB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/01. Sentiment RNN, Introduction.html
6.0 kB
Part 01-Module 01-Lesson 05_Market Mechanics/09. Gaps in Market Data.html
6.0 kB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/08. Padded Features, Solution.html
6.0 kB
Part 03-Module 01-Lesson 03_Control Flow/25. Break and Continue-F6qJAv9ts9Y.ar.vtt
6.0 kB
Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/04. Finding Pairs to Trade.html
6.0 kB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/05. Encoding Words, Solution.html
6.0 kB
Part 01-Module 03-Lesson 04_Portfolio Optimization/03. Optimization with Constraints.html
6.0 kB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/04. Data Pre-Processing.html
6.0 kB
Part 01-Module 02-Lesson 05_Volatility/10. Forecasting Volatility.html
6.0 kB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/09. Text Processing.html
6.0 kB
Part 01-Module 02-Lesson 05_Volatility/11. Markets Volatility.html
6.0 kB
Part 04-Module 01-Lesson 03_Linear Combination/01. Linear Combinations 1-fmal7UE7dEE.zh-CN.vtt
6.0 kB
Part 01-Module 02-Lesson 05_Volatility/02. Historical Volatility.html
6.0 kB
Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/08. Clustering Stocks.html
6.0 kB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/10. Defining the Model.html
6.0 kB
Part 01-Module 02-Lesson 05_Volatility/13. Breakout Strategies.html
6.0 kB
Part 01-Module 02-Lesson 05_Volatility/01. What is Volatility.html
6.0 kB
Part 04-Module 01-Lesson 02_Vectors/03. Vectors 3-mWV_MpEjz9c.en.vtt
6.0 kB
Part 01-Module 03-Lesson 04_Portfolio Optimization/10. Rebalancing a Portfolio.html
6.0 kB
Part 01-Module 01-Lesson 06_Data Processing/14. Interlude Your Goals.html
6.0 kB
Part 01-Module 02-Lesson 01_Quant Workflow/05. M2L1 04 Anatomy Of A Strategy Part 3 V1-vSxnkduTWWY.en.vtt
6.0 kB
Part 01-Module 02-Lesson 05_Volatility/06. Rolling Windows.html
6.0 kB
Part 03-Module 01-Lesson 01_Why Python Programming/02. Welcome to the Course!.html
6.0 kB
Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/03. M2L6 04 Pairs Trading V3-7lEm_tFXcBk.en.vtt
6.0 kB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/08. PyTorch V2 Part 2 V1-CSQOdOb2mlg.en.vtt
6.0 kB
Part 01-Module 01-Lesson 07_Stock Returns/06. Why Log Returns.html
6.0 kB
Part 05-Module 01-Lesson 02_NumPy/11. NumPy 6 V1-wtLRuGK0kW4.pt-BR.vtt
6.0 kB
Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/09. Linear Transformations 1-99jYIxBRDww.pt-BR.vtt
5.9 kB
Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/14. Summary.html
5.9 kB
Part 01-Module 01-Lesson 05_Market Mechanics/10. Markets in Different Timezones.html
5.9 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/03. Installing Jupyter Notebook.html
5.9 kB
Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/01. Intro.html
5.9 kB
Part 01-Module 01-Lesson 06_Data Processing/11. Exchange Traded Funds.html
5.9 kB
Part 01-Module 02-Lesson 05_Volatility/14. Summary.html
5.9 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/index.html
5.9 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/25. Kalman Filter Code Solution - Artificial Intelligence for Robotics-X7cixvcogl8.en.vtt
5.9 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/12. Finishing up.html
5.9 kB
Part 01-Module 03-Lesson 05_Project 3 Smart Beta and Portfolio Optimization/03. Smart Beta and Portfolio Optimization Workspace.html
5.9 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/19. 06 Defining Model V2-_LWzyqq4hCY.en.vtt
5.9 kB
Part 10-Module 01-Lesson 01_Intro to NLP/08. NLP and Pipelines.html
5.9 kB
Part 10-Module 01-Lesson 01_Intro to NLP/09. How NLP Pipelines Work.html
5.9 kB
Part 01-Module 04-Lesson 01_Factors/01. Intro to the Module.html
5.9 kB
Part 01-Module 01-Lesson 06_Data Processing/05. Missing Values.html
5.9 kB
Part 01-Module 01-Lesson 06_Data Processing/13. Alternate Data.html
5.9 kB
Part 01-Module 03-Lesson 04_Portfolio Optimization/13. Summary.html
5.9 kB
Part 01-Module 04-Lesson 01_Factors/03. Example of a factor.html
5.9 kB
Part 01-Module 02-Lesson 02_Outliers and Filtering/07. Spotting Outliers in Signal Returns.html
5.9 kB
Part 01-Module 03-Lesson 04_Portfolio Optimization/01. Intro.html
5.9 kB
Part 01-Module 01-Lesson 06_Data Processing/08. Survivor Bias.html
5.9 kB
Part 04-Module 01-Lesson 03_Linear Combination/01. Linear Combination. Part 1.html
5.9 kB
Part 04-Module 01-Lesson 03_Linear Combination/02. Linear Combination. Part 2.html
5.9 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/index.html
5.9 kB
Part 01-Module 02-Lesson 05_Volatility/03. Annualized Volatility.html
5.9 kB
Part 01-Module 03-Lesson 04_Portfolio Optimization/11. L4 12 Rebalancing Strategies V2-8u5gBx-fYr8.en.vtt
5.9 kB
Part 01-Module 02-Lesson 04_Time Series Modeling/08. Recurrent Neural Networks.html
5.9 kB
Part 01-Module 04-Lesson 01_Factors/02. Intro to the Lesson.html
5.9 kB
Part 01-Module 02-Lesson 02_Outliers and Filtering/04. Outliers, Signals and Strategies.html
5.8 kB
Part 02-Module 01-Lesson 03_Text Processing/10. Stemming and Lemmatization.html
5.8 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/15. Discrete vs. Continuous-Rm2KxFaPiJg.en.vtt
5.8 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs. Continuous-Rm2KxFaPiJg.en.vtt
5.8 kB
Part 02-Module 01-Lesson 03_Text Processing/09. Named Entity Recognition.html
5.8 kB
Part 01-Module 02-Lesson 04_Time Series Modeling/07. Particle Filter.html
5.8 kB
Part 01-Module 04-Lesson 06_Alpha Factors/53. M4 L3a 27 Interlude Pt 3 V2-v6cLkoJhujU.en.vtt
5.8 kB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/index.html
5.8 kB
assets/css/fonts/KaTeX_Size1-Regular.woff2
5.8 kB
Part 01-Module 02-Lesson 07_Project 2 Breakout Strategy/03. Breakout Strategy Workspace.html
5.8 kB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/07. NLP and Pipelines.html
5.8 kB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/08. How NLP Pipelines Work.html
5.8 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/15. Discrete vs. Continuous-Rm2KxFaPiJg.pt-BR.vtt
5.8 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs. Continuous-Rm2KxFaPiJg.pt-BR.vtt
5.8 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/11. Emotion as a Service.html
5.8 kB
Part 01-Module 04-Lesson 09_Project 4 Alpha Research and Factor Modeling/03. Project 4 Workspace.html
5.8 kB
Part 01-Module 04-Lesson 06_Alpha Factors/52. M4 L3a 26 Interlude Pt 2 V2-1a60RPqhO8k.en.vtt
5.8 kB
Part 02-Module 01-Lesson 03_Text Processing/07. Stop Word Removal.html
5.8 kB
Part 10-Module 01-Lesson 01_Intro to NLP/12. Modeling.html
5.8 kB
Part 02-Module 01-Lesson 03_Text Processing/01. Text Processing.html
5.8 kB
Part 01-Module 01-Lesson 07_Stock Returns/01. Returns.html
5.8 kB
Part 01-Module 03-Lesson 02_ETFs/02. Shortcomings of Mutual Funds.html
5.8 kB
Part 05-Module 01-Lesson 03_Pandas/10. Pandas 6 V1-GS1kj04XQcM.zh-CN.vtt
5.8 kB
Part 01-Module 01-Lesson 09_Project 1 Trading with Momentum/03. Trading with Momentum Workspace.html
5.8 kB
Part 06-Module 01-Lesson 08_Python Probability Practice/01. Introduction.html
5.8 kB
Part 01-Module 01-Lesson 07_Stock Returns/02. Quiz Calculate Returns.html
5.8 kB
Part 02-Module 01-Lesson 06_Project 5 NLP on Financial Statements/03. Project 5 Workspace.html
5.8 kB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/10. L3 08 The Efficient Frontier V3-tEEyhU23bI4.en.vtt
5.8 kB
Part 06-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-o2Tpws5C2Eg.th.vtt
5.7 kB
Part 07-Module 01-Lesson 01_Linear Regression/08. Gradient Descent-4s4x9h6AN5Y.en.vtt
5.7 kB
Part 06-Module 01-Lesson 08_Python Probability Practice/08. Conclusion.html
5.7 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.pt-BR.vtt
5.7 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.pt-BR.vtt
5.7 kB
Part 02-Module 01-Lesson 04_Feature Extraction/08. Embeddings For Deep Learning-gj8u1KG0H2w.pt-BR.vtt
5.7 kB
Part 01-Module 02-Lesson 02_Outliers and Filtering/08. Handling Outliers in Signal Returns.html
5.7 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/13. Strings-ySZDrs-nNqg.pt-BR.vtt
5.7 kB
Part 07-Module 01-Lesson 03_Clustering/13. Sklearn-3zHUAXcoZ7c.zh-CN.vtt
5.7 kB
Part 01-Module 03-Lesson 02_ETFs/12. Interlude Meditation.html
5.7 kB
Part 01-Module 02-Lesson 02_Outliers and Filtering/09. Generating Robust Trading Signals.html
5.7 kB
Part 05-Module 01-Lesson 02_NumPy/11. NumPy 6 V1-wtLRuGK0kW4.en.vtt
5.7 kB
Part 02-Module 01-Lesson 03_Text Processing/11. Summary.html
5.7 kB
Part 03-Module 01-Lesson 01_Why Python Programming/03. Programming in Python.html
5.7 kB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/11. Modeling.html
5.7 kB
Part 10-Module 01-Lesson 01_Intro to NLP/02. NLP Overview.html
5.7 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/05. Tell Us About Yourself.html
5.7 kB
Part 10-Module 01-Lesson 01_Intro to NLP/01. Introducing Arpan.html
5.7 kB
Part 01-Module 02-Lesson 02_Outliers and Filtering/05. Spotting Outliers in Raw Data.html
5.7 kB
Part 01-Module 02-Lesson 02_Outliers and Filtering/06. Handling Outliers in Raw Data.html
5.7 kB
Part 01-Module 02-Lesson 02_Outliers and Filtering/07. M2L2 06 Spotting Outliers In Signal Returns V4-BSLGZz0RzTg.en.vtt
5.7 kB
Part 07-Module 01-Lesson 02_Naive Bayes/11. MLND SL NB Naive Bayes Algorithm-CQBMB9jwcp8.zh-CN.vtt
5.7 kB
Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/09. Linear Transformations 1-99jYIxBRDww.en.vtt
5.7 kB
Part 01-Module 03-Lesson 02_ETFs/11. Summary.html
5.7 kB
Part 02-Module 01-Lesson 04_Feature Extraction/08. Embeddings for Deep Learning.html
5.7 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/index.html
5.7 kB
Part 01-Module 03-Lesson 02_ETFs/01. Intro.html
5.7 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/05. Model Complexity Graph-NnS0FJyVcDQ.pt-BR.vtt
5.7 kB
Part 01-Module 02-Lesson 02_Outliers and Filtering/02. Sources of Outliers.html
5.6 kB
Part 03-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Part II-1GRv1S6K8gQ.pt-BR.vtt
5.6 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/index.html
5.6 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/06. Vision-based Emotion AI.html
5.6 kB
Part 01-Module 01-Lesson 07_Stock Returns/03. Log Returns.html
5.6 kB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/01. NLP Overview.html
5.6 kB
Part 01-Module 01-Lesson 02_Get Help from Peers and Mentors/01. What It Takes.html
5.6 kB
Part 02-Module 01-Lesson 05_Financial Statements/index.html
5.6 kB
Part 01-Module 02-Lesson 02_Outliers and Filtering/10. Summary.html
5.6 kB
Part 01-Module 02-Lesson 02_Outliers and Filtering/01. Intro.html
5.6 kB
Part 02-Module 01-Lesson 04_Feature Extraction/04. One-Hot Encoding.html
5.6 kB
Part 05-Module 01-Lesson 03_Pandas/09. Pandas 5 V1-lClsJnZn_7w.zh-CN.vtt
5.6 kB
Part 01-Module 03-Lesson 05_Project 3 Smart Beta and Portfolio Optimization/02. Project Description.html
5.6 kB
Part 02-Module 01-Lesson 04_Feature Extraction/05. Word Embeddings.html
5.6 kB
assets/css/fonts/KaTeX_Size2-Regular.woff2
5.6 kB
Part 04-Module 01-Lesson 02_Vectors/03. Vectors 3-mWV_MpEjz9c.pt-BR.vtt
5.6 kB
Part 01-Module 01-Lesson 05_Market Mechanics/06. OHLC Open, High, Low, Close.html
5.6 kB
Part 02-Module 01-Lesson 04_Feature Extraction/02. Bag of Words.html
5.5 kB
Part 01-Module 01-Lesson 09_Project 1 Trading with Momentum/02. Project Description.html
5.5 kB
Part 07-Module 01-Lesson 02_Naive Bayes/07. SL NB 06 S False Positives V1 V3-Bg6_Tvcv81A.zh-CN.vtt
5.5 kB
Part 06-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-FV_hc3MzS_8.th.vtt
5.5 kB
Part 05-Module 01-Lesson 03_Pandas/12. Pandas 7 V1-ruTYp-twXO0.en.vtt
5.5 kB
Part 01-Module 01-Lesson 03_Get Help with Your Account/01. FAQ.html
5.5 kB
Part 03-Module 01-Lesson 04_Functions/02. Defining Functions-IP_tJYhynbc.en.vtt
5.5 kB
Part 02-Module 01-Lesson 04_Feature Extraction/06. Word2Vec.html
5.5 kB
Part 01-Module 01-Lesson 05_Market Mechanics/02. Farmers' Market.html
5.5 kB
Part 04-Module 01-Lesson 01_Introduction/01. Our Goal .html
5.5 kB
Part 04-Module 01-Lesson 01_Introduction/03. Essence of Linear Algebra.html
5.5 kB
Part 02-Module 01-Lesson 04_Feature Extraction/07. GloVe.html
5.5 kB
Part 02-Module 01-Lesson 04_Feature Extraction/09. t-SNE.html
5.5 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/16. DL 18 Q Softmax V2-RC_A9Tu99y4.en.vtt
5.5 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 Q Softmax V2-RC_A9Tu99y4.en.vtt
5.5 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/24. M4 L1B 24 NLP Used To Enhance Fundamental Analysis V1-9zMWuZ9j7rI.en.vtt
5.5 kB
Part 01-Module 01-Lesson 05_Market Mechanics/05. Tick Data.html
5.5 kB
Part 01-Module 01-Lesson 02_Get Help from Peers and Mentors/02. Reviews.html
5.5 kB
Part 01-Module 01-Lesson 05_Market Mechanics/08. Volume.html
5.5 kB
Part 01-Module 01-Lesson 05_Market Mechanics/11. Summary.html
5.5 kB
Part 02-Module 01-Lesson 04_Feature Extraction/01. Feature Extraction.html
5.5 kB
Part 01-Module 01-Lesson 05_Market Mechanics/01. Intro.html
5.5 kB
Part 01-Module 04-Lesson 09_Project 4 Alpha Research and Factor Modeling/02. Project Description.html
5.5 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.zh-CN.vtt
5.5 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.zh-CN.vtt
5.5 kB
Part 01-Module 01-Lesson 04_Stock Prices/04. Quiz Stock Data.html
5.5 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/05. Model Complexity Graph-NnS0FJyVcDQ.en.vtt
5.4 kB
Part 01-Module 02-Lesson 04_Time Series Modeling/02. Autoregressive Models.html
5.4 kB
Part 01-Module 02-Lesson 04_Time Series Modeling/03. Moving Average Models.html
5.4 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/25. Kalman Filter Code Solution - Artificial Intelligence for Robotics-X7cixvcogl8.zh-CN.vtt
5.4 kB
Part 01-Module 02-Lesson 04_Time Series Modeling/01. Time Series Modeling.html
5.4 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/32. Combinando modelos-Boy3zHVrWB4.pt-BR.vtt
5.4 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/32. Combinando modelos-Boy3zHVrWB4.pt-BR.vtt
5.4 kB
Part 02-Module 01-Lesson 04_Feature Extraction/10. Summary.html
5.4 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/32. Combinando modelos-Boy3zHVrWB4.en.vtt
5.4 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/32. Combinando modelos-Boy3zHVrWB4.en.vtt
5.4 kB
Part 02-Module 02-Lesson 05_Embeddings Word2Vec/09. 7 Batching Data Solution V1-nu2rjLzt1HI.en.vtt
5.4 kB
Part 02-Module 01-Lesson 04_Feature Extraction/03. TF-IDF.html
5.4 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/25. M4 L1B 25 Other Alternative Data V1-hMw3AuPVSSs.en.vtt
5.4 kB
Part 01-Module 02-Lesson 05_Volatility/11. M2L5 11 Markets Volatility V3-jEHJkZUX9s4.en.vtt
5.4 kB
Part 07-Module 01-Lesson 01_Linear Regression/index.html
5.4 kB
Part 01-Module 02-Lesson 04_Time Series Modeling/09. Summary.html
5.4 kB
Part 07-Module 01-Lesson 01_Linear Regression/08. Gradient Descent-4s4x9h6AN5Y.pt-BR.vtt
5.4 kB
Part 01-Module 01-Lesson 04_Stock Prices/01. Stocks.html
5.4 kB
Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/11. Linear Transformations 3-g_yTyRwMzXU.pt-BR.vtt
5.3 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/03. LSTM Basics-gjb68a4XsqE.en.vtt
5.3 kB
Part 02-Module 02-Lesson 05_Embeddings Word2Vec/09. 7 Batching Data Solution V1-nu2rjLzt1HI.pt-BR.vtt
5.3 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/13. Strings-ySZDrs-nNqg.en.vtt
5.3 kB
Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/10. Linear Transformations 2-imtEd8M6__s.pt-BR.vtt
5.3 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/23. Error Function-V5kkHldUlVU.pt-BR.vtt
5.3 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/23. Error Function-V5kkHldUlVU.pt-BR.vtt
5.3 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/18. 05 Batching Data V1-9Eg0wf3eW-k.en.vtt
5.3 kB
Part 02-Module 03-Lesson 01_Coming Soon!/01. Coming Soon!.html
5.3 kB
Part 03-Module 01-Lesson 01_Why Python Programming/01. Instructor.html
5.3 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/index.html
5.3 kB
Part 06-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-CNpSrdnYvbo.th.vtt
5.3 kB
Part 03-Module 01-Lesson 05_Scripting/27. Experimenting With An Interpreter-hspPtnQwMPg.ar.vtt
5.2 kB
Part 01-Module 02-Lesson 07_Project 2 Breakout Strategy/02. Project Description.html
5.2 kB
Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/11. Linear Transformations 3-g_yTyRwMzXU.en.vtt
5.2 kB
Part 01-Module 01-Lesson 05_Market Mechanics/08. M1L3 10 Volume V3-DFp7kp0xRCo.en.vtt
5.2 kB
Part 02-Module 01-Lesson 04_Feature Extraction/08. Embeddings For Deep Learning-gj8u1KG0H2w.en.vtt
5.2 kB
Part 02-Module 04-Lesson 01_Coming soon!/01. Coming soon!.html
5.2 kB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/13. M4 L2b 14 Explained Variance V3-OdHeReNUqoQ.en.vtt
5.2 kB
Part 01-Module 03-Lesson 05_Project 3 Smart Beta and Portfolio Optimization/01. Intro Project 3.html
5.2 kB
Part 01-Module 04-Lesson 01_Factors/02. M4 L1A 02 Intro V2-W7_llXQ2GhA.en.vtt
5.2 kB
Part 01-Module 02-Lesson 07_Project 2 Breakout Strategy/04. Wrapping Up Module 2.html
5.2 kB
Part 01-Module 04-Lesson 06_Alpha Factors/05. M4 L3a 04 Researching Alphas From Academic Papers V4-te0UTxemLBE.en.vtt
5.2 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/20. Notation for Random Variables-8NxTW1u4s-Y.pt-BR.vtt
5.2 kB
assets/css/fonts/KaTeX_Size4-Regular.woff2
5.2 kB
Part 01-Module 02-Lesson 07_Project 2 Breakout Strategy/01. Intro Project 2.html
5.2 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/16. DL 18 Q Softmax V2-RC_A9Tu99y4.pt-BR.vtt
5.2 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 Q Softmax V2-RC_A9Tu99y4.pt-BR.vtt
5.2 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/03. LSTM Basics-gjb68a4XsqE.pt-BR.vtt
5.2 kB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/10. 9 DefiningModel V1-SpvIZl1YQRI.en.vtt
5.2 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.zh-CN.vtt
5.2 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.zh-CN.vtt
5.2 kB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/08. 7 PaddedFeatures Sol V1-sYOd1IDmep8.en.vtt
5.2 kB
Part 01-Module 04-Lesson 09_Project 4 Alpha Research and Factor Modeling/04. Outro What's next.html
5.2 kB
Part 02-Module 01-Lesson 04_Feature Extraction/02. Bag Of Words-A7M1z8yLl0w.pt-BR.vtt
5.2 kB
Part 01-Module 03-Lesson 04_Portfolio Optimization/10. L4 11 Rebalancing A Portfolio V2-S5SPhBpG3b0.en.vtt
5.1 kB
Part 01-Module 03-Lesson 04_Portfolio Optimization/03. L4 03 Optimization With Constraints V3-91WzhG6dti8.en.vtt
5.1 kB
Part 01-Module 04-Lesson 06_Alpha Factors/49. M4 L3a 22 Conditional Factors V2-2J1aUwGq6tc.en.vtt
5.1 kB
Part 02-Module 01-Lesson 03_Text Processing/10. Stemming And Lemmatization-7Gjf81u5hmw.pt-BR.vtt
5.1 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/08. Números inteiros e floats-MiJ1vfWp-Ts.pt-BR.vtt
5.1 kB
Part 01-Module 04-Lesson 09_Project 4 Alpha Research and Factor Modeling/01. Intro.html
5.1 kB
Part 01-Module 01-Lesson 03_Get Help with Your Account/02. Support.html
5.1 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/index.html
5.1 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/20. Cross Entropy 1-iREoPUrpXvE.pt-BR.vtt
5.1 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/20. Cross Entropy 1-iREoPUrpXvE.pt-BR.vtt
5.1 kB
Part 02-Module 01-Lesson 06_Project 5 NLP on Financial Statements/02. Project Description.html
5.1 kB
Part 03-Module 01-Lesson 04_Functions/index.html
5.1 kB
Part 01-Module 01-Lesson 09_Project 1 Trading with Momentum/01. Intro to Project 1.html
5.1 kB
Part 01-Module 01-Lesson 04_Stock Prices/02. M1L2 02 Stock Prices V7-l_PilXVuh8I.en.vtt
5.1 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.zh-CN.vtt
5.1 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.zh-CN.vtt
5.1 kB
Part 07-Module 01-Lesson 04_Decision Trees/index.html
5.1 kB
Part 04-Module 01-Lesson 02_Vectors/03. Vectors 3-mWV_MpEjz9c.zh-CN.vtt
5.1 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/08. Jonathan Larkin Careers-QhHNPxM_Ku4.en.vtt
5.1 kB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/index.html
5.1 kB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/09. M4 L4 10 Estimation Error V4-WdrMIRhScN0.en.vtt
5.0 kB
Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/10. Linear Transformations 2-imtEd8M6__s.en.vtt
5.0 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/18. 05 Batching Data V1-9Eg0wf3eW-k.pt-BR.vtt
5.0 kB
Part 06-Module 01-Lesson 08_Python Probability Practice/02. Simulating Coin Flips-7YtQNZ3iy6o.ar.vtt
5.0 kB
Part 01-Module 02-Lesson 01_Quant Workflow/02. Starting from a Hypothesis.html
5.0 kB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/13. M4 L4 17 Path Dependency 1 V3-ok9rKYRtZLE.en.vtt
5.0 kB
Part 01-Module 02-Lesson 01_Quant Workflow/04. Flavors of Trading.html
5.0 kB
Part 01-Module 03-Lesson 05_Project 3 Smart Beta and Portfolio Optimization/Project Description - Smart Beta and Portfolio Optimization.html
5.0 kB
Part 03-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Part II-1GRv1S6K8gQ.en.vtt
5.0 kB
Part 05-Module 01-Lesson 02_NumPy/11. NumPy 6 V1-wtLRuGK0kW4.zh-CN.vtt
5.0 kB
Part 03-Module 01-Lesson 05_Scripting/06. Programming Environment Setup-EKxDnCK0NAk.pt-BR.vtt
5.0 kB
Part 01-Module 04-Lesson 01_Factors/06. M4 L1A 05 Demean Part 1 V3-R3N8bd8U6TM.en.vtt
5.0 kB
Part 07-Module 01-Lesson 04_Decision Trees/09. MLND SL DT 08 Entropy Formula 2 MAIN V2-6GHg70hrSJw.en.vtt
5.0 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/25. Kalman Filter Code Solution - Artificial Intelligence for Robotics-X7cixvcogl8.ja.vtt
5.0 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/23. Error Function-V5kkHldUlVU.en.vtt
5.0 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/23. Error Function-V5kkHldUlVU.en.vtt
5.0 kB
Part 02-Module 01-Lesson 06_Project 5 NLP on Financial Statements/01. Introduction to Project 5.html
5.0 kB
Part 01-Module 01-Lesson 06_Data Processing/03. M1L4 04 Corporate Actions V5-S60WArbQK7k.en.vtt
5.0 kB
Part 01-Module 02-Lesson 03_Regression/index.html
5.0 kB
Part 01-Module 02-Lesson 01_Quant Workflow/01. Intro Module 2.html
5.0 kB
Part 01-Module 02-Lesson 01_Quant Workflow/03. Quant Workflow.html
5.0 kB
Part 07-Module 01-Lesson 03_Clustering/11. K-Means Clustering Visualization 2-fQXXa-CAoS0.ar.vtt
5.0 kB
Part 06-Module 01-Lesson 13_Case Study AB tests/index.html
5.0 kB
Part 03-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules-jPGyFgcIvsM.pt-BR.vtt
5.0 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/14. M4 L3b 10 Skewness And Momentum Attentional Bias V3-3ZkFRBUmSQ0.en.vtt
4.9 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/08. Números inteiros e floats-MiJ1vfWp-Ts.en.vtt
4.9 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/08. Standard Deviation Calculation-H5zA1A-XPoY.ar.vtt
4.9 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/07. M4 L1B 06 Factor Models In Quant Finance V2-VeM2SudgZqc.en.vtt
4.9 kB
Part 07-Module 01-Lesson 03_Clustering/index.html
4.9 kB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/index.html
4.9 kB
Part 01-Module 02-Lesson 07_Project 2 Breakout Strategy/Project Description - Breakout Strategy.html
4.9 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/20. Cross Entropy 1-iREoPUrpXvE.en.vtt
4.9 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/20. Cross Entropy 1-iREoPUrpXvE.en.vtt
4.9 kB
Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/09. M2L6 13 Trade Pairs Of Stocks V6-i1yVMrgjtB0.en.vtt
4.9 kB
Part 01-Module 04-Lesson 09_Project 4 Alpha Research and Factor Modeling/Project Description - Multi-factor Model.html
4.9 kB
Part 05-Module 01-Lesson 02_NumPy/index.html
4.9 kB
Part 02-Module 02-Lesson 05_Embeddings Word2Vec/index.html
4.9 kB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/05. 4 EncodingWords Sol V1-4RYyn3zv1Hg.en.vtt
4.9 kB
Part 07-Module 01-Lesson 04_Decision Trees/07. Entropy-piLpj1V1HEk.en.vtt
4.9 kB
Part 01-Module 04-Lesson 06_Alpha Factors/34. M4 L3a 151 The Fundamental Law Of Active Management Part 1 V4-iCW_vqvrTlw.en.vtt
4.9 kB
Part 02-Module 01-Lesson 06_Project 5 NLP on Financial Statements/Project Description - NLP on Financial Statements.html
4.9 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/13. Strings-ySZDrs-nNqg.zh-CN.vtt
4.9 kB
Part 02-Module 01-Lesson 03_Text Processing/10. Stemming And Lemmatization-7Gjf81u5hmw.en.vtt
4.9 kB
Part 05-Module 01-Lesson 03_Pandas/12. Pandas 7 V1-ruTYp-twXO0.zh-CN.vtt
4.9 kB
Part 03-Module 01-Lesson 04_Functions/02. Defining Functions-IP_tJYhynbc.zh-CN.vtt
4.9 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/index.html
4.9 kB
Part 01-Module 01-Lesson 09_Project 1 Trading with Momentum/Project Description - Trading with Momentum.html
4.9 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/27. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.ar.vtt
4.9 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/02. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.ar.vtt
4.9 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/06. M4 L1B 05 Covariance Matrix Using Factor Model V3-_qfTLXoifsM.en.vtt
4.8 kB
Part 06-Module 01-Lesson 04_Probability/index.html
4.8 kB
Part 02-Module 02-Lesson 07_Project 6 Sentiment Analysis with Neural Networks/01. Coming Soon!.html
4.8 kB
Part 06-Module 01-Lesson 07_Bayes Rule/20. Bayes Rule Summary-RgXQ8GRsjfc.th.vtt
4.8 kB
Part 02-Module 01-Lesson 04_Feature Extraction/02. Bag Of Words-A7M1z8yLl0w.en.vtt
4.8 kB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/index.html
4.8 kB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/04. L3 04 Portfolio Variance V2-LlxRypakop4.en.vtt
4.8 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.en.vtt
4.8 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.en.vtt
4.8 kB
Part 05-Module 01-Lesson 02_NumPy/03. NumPy 0 V1-vyjMs8KFHlE.pt-BR.vtt
4.8 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/02. RNN Vs LSTM-70MgF-IwAr8.en.vtt
4.8 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/08. Dropout-Ty6K6YiGdBs.en.vtt
4.8 kB
Part 02-Module 01-Lesson 04_Feature Extraction/08. Embeddings For Deep Learning-gj8u1KG0H2w.zh-CN.vtt
4.8 kB
Part 05-Module 01-Lesson 03_Pandas/index.html
4.8 kB
Part 01-Module 04-Lesson 06_Alpha Factors/50. M4 L3a 23 Summary V3-FZYqdaqoiZk.en.vtt
4.8 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/20. Notation for Random Variables-8NxTW1u4s-Y.en.vtt
4.8 kB
Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/09. Linear Transformations 1-99jYIxBRDww.zh-CN.vtt
4.8 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/02. Arithmetic Operators-M8TIOK2P2yw.ar.vtt
4.8 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/15. Discrete vs. Continuous-Rm2KxFaPiJg.zh-CN.vtt
4.8 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs. Continuous-Rm2KxFaPiJg.zh-CN.vtt
4.8 kB
assets/css/fonts/KaTeX_Size3-Regular.woff
4.8 kB
Part 01-Module 01-Lesson 08_Momentum Trading/index.html
4.8 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/08. Dropout-Ty6K6YiGdBs.pt-BR.vtt
4.8 kB
Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/index.html
4.8 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/04. 29 Number Summary-gzUN5zKLHjQ.ar.vtt
4.8 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/05. Model Complexity Graph-NnS0FJyVcDQ.zh-CN.vtt
4.8 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/13. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.en.vtt
4.8 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/13. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.pt-BR.vtt
4.7 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/25. L2 06 Lists Methods V1-tz2Ja1Eaeqo.en.vtt
4.7 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/08. M4 L1B 07 Risk Factors V Alpha Factors V2-9KUpH1MDC1k.en.vtt
4.7 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/32. Combinando modelos-Boy3zHVrWB4.zh-CN.vtt
4.7 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/32. Combinando modelos-Boy3zHVrWB4.zh-CN.vtt
4.7 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/index.html
4.7 kB
Part 04-Module 01-Lesson 02_Vectors/01. Vectors 1-oPBz-MLVUHk.en.vtt
4.7 kB
Part 01-Module 02-Lesson 01_Quant Workflow/02. M2L1 01 Starting From A Hypothesis V3-yjlt4yerB9I.en.vtt
4.7 kB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/07. 6 Cleaning And Padding V1-UgPo1_cq-0g.en.vtt
4.7 kB
Part 06-Module 01-Lesson 06_Conditional Probability/15. Summary-yepMH9VswI8.th.vtt
4.7 kB
Part 07-Module 01-Lesson 02_Naive Bayes/index.html
4.7 kB
Part 02-Module 01-Lesson 01_Welcome To Term II/03. Interview with Justin Sheetz.html
4.7 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/03. LSTM Basics-gjb68a4XsqE.zh-CN.vtt
4.7 kB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/index.html
4.7 kB
Part 07-Module 01-Lesson 01_Linear Regression/11. Minimizing Error Functions-RbT2TXN_6tY.pt-BR.vtt
4.7 kB
Part 02-Module 02-Lesson 05_Embeddings Word2Vec/02. M4L52 HSA Embedding Weight Matrix V3 RENDER V2-KVCcG5v8fi0.pt-BR.vtt
4.7 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/19. String Methods-Bv7CAxVOONs.ar.vtt
4.7 kB
Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/index.html
4.7 kB
Part 02-Module 01-Lesson 01_Welcome To Term II/02. Overview of Term II.html
4.7 kB
Part 02-Module 03-Lesson 01_Coming Soon!/Project Description - Project 7 Combine Signals for Enhanced Alpha.html
4.7 kB
Part 06-Module 01-Lesson 06_Conditional Probability/index.html
4.7 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/15. M4 L1B 15 Volume Factors V1-1dTAV3Irxv4.en.vtt
4.7 kB
Part 03-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Part II-1GRv1S6K8gQ.zh-CN.vtt
4.7 kB
Part 02-Module 01-Lesson 04_Feature Extraction/07. GloVe-KK3PMIiIn8o.pt-BR.vtt
4.7 kB
Part 01-Module 02-Lesson 02_Outliers and Filtering/08. M2L2 07 Handling Outliers In Signal Returns V4-ILdnNi4CgZM.en.vtt
4.7 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.pt-BR.vtt
4.7 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.pt-BR.vtt
4.7 kB
Part 01-Module 03-Lesson 04_Portfolio Optimization/index.html
4.7 kB
Part 02-Module 02-Lesson 05_Embeddings Word2Vec/08. 6 Defining Context Targets V1-DJN9MzD7ctY.en.vtt
4.6 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/22. M4 L3b 18 IVol Value Fundamental Or Discretionary Investing V2-sKAE5Z8e7IM.en.vtt
4.6 kB
Part 02-Module 01-Lesson 01_Welcome To Term II/01. Welcome!.html
4.6 kB
Part 01-Module 02-Lesson 05_Volatility/index.html
4.6 kB
Part 02-Module 03-Lesson 01_Coming Soon!/Project Rubric - Project 7 Combine Signals for Enhanced Alpha.html
4.6 kB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/07. PyTorch V2 Part 1 Solution 3 V1-iMIo9p5iSbE.en.vtt
4.6 kB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/06. PyTorch V2 Part 1 Solution 2 V1-QLaGMz8Ca3E.en.vtt
4.6 kB
Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/11. Linear Transformations 3-g_yTyRwMzXU.zh-CN.vtt
4.6 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/13. M4 L2A 24 Categorical Variable Estimation V4-50hvTluqz3U.en.vtt
4.6 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/index.html
4.6 kB
Part 02-Module 02-Lesson 05_Embeddings Word2Vec/02. M4L52 HSA Embedding Weight Matrix V3 RENDER V2-KVCcG5v8fi0.en.vtt
4.6 kB
Part 07-Module 01-Lesson 01_Linear Regression/11. Minimizing Error Functions-RbT2TXN_6tY.en.vtt
4.6 kB
Part 03-Module 01-Lesson 05_Scripting/21. The Standard Library-Fw3vf0tDrJM.ar.vtt
4.6 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 2-6nUUeQ9AeUA.pt-BR.vtt
4.6 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 2-6nUUeQ9AeUA.pt-BR.vtt
4.6 kB
Part 06-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-CNpSrdnYvbo.ar.vtt
4.6 kB
Part 04-Module 01-Lesson 02_Vectors/index.html
4.6 kB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/21. PyTorch V2 Part 7 Solution V1-d_NhvI1yEf0.en.vtt
4.6 kB
Part 01-Module 01-Lesson 06_Data Processing/index.html
4.6 kB
Part 01-Module 02-Lesson 01_Quant Workflow/05. M2L1 04 Anatomy Of A Strategy Part 2 V1-v3w4JZKQixc.en.vtt
4.6 kB
Part 01-Module 02-Lesson 03_Regression/11. M2L3 10 Linear Regression V4-GRY4eakMBJ8.en.vtt
4.6 kB
Part 01-Module 04-Lesson 01_Factors/index.html
4.6 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/25. L2 06 Lists Methods V1-tz2Ja1Eaeqo.pt-BR.vtt
4.6 kB
Part 01-Module 04-Lesson 06_Alpha Factors/39. M4 L3a 172 Factor Rank Autocorrelation Turnover V2-QBvbMiVW100.en.vtt
4.6 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/05. M4 L3b 04 Overnight Returns Data Universe Methods V2-Y_lBDa1hRco.en.vtt
4.5 kB
Part 03-Module 01-Lesson 03_Control Flow/25. Break and Continue-F6qJAv9ts9Y.pt-BR.vtt
4.5 kB
Part 02-Module 02-Lesson 05_Embeddings Word2Vec/08. 6 Defining Context Targets V1-DJN9MzD7ctY.pt-BR.vtt
4.5 kB
Part 02-Module 04-Lesson 01_Coming soon!/Project Description - Project 8 Backtesting.html
4.5 kB
Part 03-Module 01-Lesson 05_Scripting/26. Third Party Libraries And Package Managers-epOze9gC6T4.ar.vtt
4.5 kB
Part 05-Module 01-Lesson 02_NumPy/09. NumPy 5 V1-vGjI-WTnEbY.pt-BR.vtt
4.5 kB
Part 04-Module 01-Lesson 02_Vectors/01. Vectors 1-oPBz-MLVUHk.pt-BR.vtt
4.5 kB
Part 07-Module 01-Lesson 04_Decision Trees/09. MLND SL DT 08 Entropy Formula 2 MAIN V2-6GHg70hrSJw.zh-CN.vtt
4.5 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/index.html
4.5 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 2-6nUUeQ9AeUA.en.vtt
4.5 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 2-6nUUeQ9AeUA.en.vtt
4.5 kB
Part 01-Module 04-Lesson 06_Alpha Factors/46. M4 L3a 20 Transfer Coefficient V3-4rZ0MWQzlIs.en.vtt
4.5 kB
Part 07-Module 01-Lesson 03_Clustering/02. Unsupervised Learning-Mx9f99bRB3Q.ar.vtt
4.5 kB
Part 02-Module 04-Lesson 01_Coming soon!/Project Rubric - Project 8 Backtesting.html
4.5 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/index.html
4.5 kB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/04. M4 L2b 04 Bases As Languages V3-yEL0-AE3mjo.en.vtt
4.5 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/index.html
4.5 kB
Part 07-Module 01-Lesson 04_Decision Trees/01. MLND SL DT 00 Intro V2-l34ijtQhVNk.en.vtt
4.5 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/16. DL 18 Q Softmax V2-RC_A9Tu99y4.zh-CN.vtt
4.5 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 Q Softmax V2-RC_A9Tu99y4.zh-CN.vtt
4.5 kB
Part 01-Module 01-Lesson 07_Stock Returns/05. M1L5 06 Distribution Of Stock Prices Part 2 V1-cGoXGiO1DYk.en.vtt
4.5 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/16. Type Type Conversion-yN6Fam_vZrU.ar.vtt
4.5 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/22. L2 09 Lists And Membership Operators V2-rNV_E50wcWM.pt-BR.vtt
4.4 kB
Part 03-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules-jPGyFgcIvsM.en.vtt
4.4 kB
Part 01-Module 02-Lesson 05_Volatility/10. M2L5 09 Forecasting Volatility V3-82v4v_PKDAE.en.vtt
4.4 kB
Part 07-Module 01-Lesson 04_Decision Trees/07. Entropy-piLpj1V1HEk.zh-CN.vtt
4.4 kB
Part 01-Module 03-Lesson 02_ETFs/index.html
4.4 kB
Part 01-Module 02-Lesson 04_Time Series Modeling/02. M2L4 02 Autoregressive Models V5-9jE7S4b-oIU.en.vtt
4.4 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/index.html
4.4 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/21. M4 L1B 21 Analyst Ratings V1-cHkJo8qBKes.en.vtt
4.4 kB
Part 01-Module 02-Lesson 02_Outliers and Filtering/index.html
4.4 kB
Part 03-Module 01-Lesson 05_Scripting/13. Handling Errors Try Except Finally-S6hwBZG0KwM.ar.vtt
4.4 kB
Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/10. Linear Transformations 2-imtEd8M6__s.zh-CN.vtt
4.4 kB
Part 07-Module 01-Lesson 04_Decision Trees/img/screen-shot-2018-05-22-at-12.27.55-pm.png
4.4 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.en.vtt
4.4 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.en.vtt
4.4 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/08. Números inteiros e floats-MiJ1vfWp-Ts.zh-CN.vtt
4.4 kB
Part 07-Module 01-Lesson 04_Decision Trees/01. MLND SL DT 00 Intro V2-l34ijtQhVNk.zh-CN.vtt
4.4 kB
Part 02-Module 01-Lesson 03_Text Processing/10. Stemming And Lemmatization-7Gjf81u5hmw.zh-CN.vtt
4.4 kB
Part 07-Module 01-Lesson 04_Decision Trees/01. MLND SL DT 00 Intro V2-l34ijtQhVNk.pt-BR.vtt
4.4 kB
Part 10-Module 01-Lesson 01_Intro to NLP/index.html
4.3 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.pt-BR.vtt
4.3 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.pt-BR.vtt
4.3 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/02. RNN Vs LSTM-70MgF-IwAr8.pt-BR.vtt
4.3 kB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/10. Feature Extraction-UgENzCmfFWE.pt-BR.vtt
4.3 kB
Part 10-Module 01-Lesson 01_Intro to NLP/11. Feature Extraction-UgENzCmfFWE.pt-BR.vtt
4.3 kB
Part 01-Module 02-Lesson 05_Volatility/01. M2L5 01 What Is Volatility V3-brGVwpDSuG4.en.vtt
4.3 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/02. RNN Vs LSTM-70MgF-IwAr8.zh-CN.vtt
4.3 kB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/index.html
4.3 kB
Part 02-Module 01-Lesson 03_Text Processing/index.html
4.3 kB
Part 02-Module 01-Lesson 04_Feature Extraction/07. GloVe-KK3PMIiIn8o.en.vtt
4.3 kB
Part 06-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-o2Tpws5C2Eg.ar.vtt
4.3 kB
Part 05-Module 01-Lesson 02_NumPy/09. NumPy 5 V1-vGjI-WTnEbY.en.vtt
4.3 kB
Part 07-Module 01-Lesson 04_Decision Trees/img/screen-shot-2018-05-22-at-12.27.22-pm.png
4.3 kB
Part 07-Module 01-Lesson 04_Decision Trees/07. Entropy-piLpj1V1HEk.pt-BR.vtt
4.3 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/20. Notation for Random Variables-8NxTW1u4s-Y.zh-CN.vtt
4.3 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/12. M4 L3b 09 Winners And Losers Creating A Joint Factor V3-xmW05ii8Vxs.en.vtt
4.3 kB
Part 01-Module 04-Lesson 06_Alpha Factors/24. M4 L3a 12 Return Denominator Leverage And Factor Returns V3-QxHrP5LoXAI.en.vtt
4.3 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/19. What Is A P-value Anyway-eU6pUZjqviA.pt-BR.vtt
4.3 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.pt-BR.vtt
4.3 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.pt-BR.vtt
4.3 kB
Part 01-Module 01-Lesson 05_Market Mechanics/index.html
4.3 kB
Part 01-Module 04-Lesson 01_Factors/09. M4 L1A 08 Rescale Part 2 V3-8Ix10U6MEug.en.vtt
4.3 kB
Part 03-Module 01-Lesson 05_Scripting/27. Experimenting With An Interpreter-hspPtnQwMPg.pt-BR.vtt
4.3 kB
Part 01-Module 02-Lesson 05_Volatility/08. M2L5 07 Exponentially Weighted Moving Average V4-VBPitTHzYRI.en.vtt
4.2 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/23. Error Function-V5kkHldUlVU.zh-CN.vtt
4.2 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/23. Error Function-V5kkHldUlVU.zh-CN.vtt
4.2 kB
Part 04-Module 01-Lesson 03_Linear Combination/index.html
4.2 kB
Part 03-Module 01-Lesson 03_Control Flow/07. Good And Bad Examples-95oLh3WtdhY.ar.vtt
4.2 kB
Part 03-Module 01-Lesson 05_Scripting/06. Programming Environment Setup-EKxDnCK0NAk.en.vtt
4.2 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/04. M4 L3b 03 Overnight Returns Possible Alpha Factors V2-QBCDr9q2rLo.en.vtt
4.2 kB
Part 05-Module 01-Lesson 02_NumPy/03. NumPy 0 V1-vyjMs8KFHlE.en.vtt
4.2 kB
Part 02-Module 01-Lesson 04_Feature Extraction/02. Bag Of Words-A7M1z8yLl0w.zh-CN.vtt
4.2 kB
Part 03-Module 01-Lesson 03_Control Flow/31. List Comprehensions-6qxo-NV9v_s.ar.vtt
4.2 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/03. M1L1 Introducing The Instructors 1 V4-l5gG7r-BWYc.en.vtt
4.2 kB
Part 03-Module 01-Lesson 03_Control Flow/02. If Elif and Else-KZubH5XT0eU.ar.vtt
4.2 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.en.vtt
4.2 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.en.vtt
4.2 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/02. Jonathan Larkin - What Is A Quant-G22oM0qv0Hs.en.vtt
4.2 kB
Part 01-Module 02-Lesson 04_Time Series Modeling/index.html
4.2 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/20. Cross Entropy 1-iREoPUrpXvE.zh-CN.vtt
4.2 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/17. Shape of Distributions-UnN99AAYf8k.ar.vtt
4.2 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/20. Cross Entropy 1-iREoPUrpXvE.zh-CN.vtt
4.2 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/13. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.zh-CN.vtt
4.2 kB
Part 01-Module 01-Lesson 08_Momentum Trading/06. M1L6 06 Trading Strategy V2-rrCHC20FkIc.en.vtt
4.2 kB
Part 06-Module 01-Lesson 08_Python Probability Practice/index.html
4.2 kB
Part 01-Module 02-Lesson 04_Time Series Modeling/06. M2L4 07 Kalman Filter V4-CLJhgfMI4Ho.en.vtt
4.2 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/01. M4 L2A 01 Intro V1-DgsD3yL9Yy0.en.vtt
4.2 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/08. Dropout-Ty6K6YiGdBs.zh-CN.vtt
4.2 kB
Part 01-Module 04-Lesson 01_Factors/01. M4 L3A 01 Intro To The Factors V2-OqhRUxHf6wo.en.vtt
4.2 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/10. Boolean Comparison and Logical Operators-iNNsUJIDtVU.ar.vtt
4.2 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/19. What Is A P-value Anyway-eU6pUZjqviA.en.vtt
4.2 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/index.html
4.1 kB
Part 06-Module 01-Lesson 13_Case Study AB tests/07. Metric - Click Through Rate-EpfoKAwV_Eg.pt-BR.vtt
4.1 kB
Part 01-Module 02-Lesson 05_Volatility/02. M2L5 02 Historical Volatility V3-BOPhsYLHkUU.en.vtt
4.1 kB
Part 02-Module 01-Lesson 04_Feature Extraction/index.html
4.1 kB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/10. M4 L4 12 Infeasible Problems V4-ljg25Rj511Q.en.vtt
4.1 kB
Part 01-Module 03-Lesson 05_Project 3 Smart Beta and Portfolio Optimization/index.html
4.1 kB
Part 01-Module 01-Lesson 04_Stock Prices/02. M1L2 01 Stock Pt II V1-SGb54HLbk1g.en.vtt
4.1 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.zh-CN.vtt
4.1 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.zh-CN.vtt
4.1 kB
Part 07-Module 01-Lesson 04_Decision Trees/14. Maximizing Information Gain-3FgJOpKfdY8.en.vtt
4.1 kB
Part 03-Module 01-Lesson 03_Control Flow/02. If Statements-jWiIUMrwPqA.ar.vtt
4.1 kB
Part 01-Module 04-Lesson 06_Alpha Factors/01. M4 L3a 01 Intro Efficient Market Hypothesis And Arbitrage Opportunities V3--YpXAt7zuh8.en.vtt
4.1 kB
Part 06-Module 01-Lesson 08_Python Probability Practice/04. Simulating Many Coin Flips-AqpWQIj2V5Y.ar.vtt
4.1 kB
Part 01-Module 02-Lesson 01_Quant Workflow/04. M2L1 03 Flavors Of Trading Strategies V4-uCCx8I9u_Nk.en.vtt
4.1 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/24. Gradient Descent-rhVIF-nigrY.pt-BR.vtt
4.1 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/24. Gradient Descent-rhVIF-nigrY.pt-BR.vtt
4.1 kB
Part 04-Module 01-Lesson 02_Vectors/01. Vectors 1-oPBz-MLVUHk.zh-CN.vtt
4.1 kB
Part 07-Module 01-Lesson 03_Clustering/03. Clustering Movies-g8PKffm8IRY.ar.vtt
4.1 kB
Part 01-Module 04-Lesson 06_Alpha Factors/09. M4 L3a 06 Ranking Part 1 V4-4j2hIB7WHY4.en.vtt
4.1 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/08. Whitespace-UxkIwcOczQQ.ar.vtt
4.1 kB
Part 01-Module 04-Lesson 09_Project 4 Alpha Research and Factor Modeling/index.html
4.1 kB
Part 01-Module 02-Lesson 07_Project 2 Breakout Strategy/index.html
4.0 kB
Part 03-Module 01-Lesson 03_Control Flow/25. Break and Continue-F6qJAv9ts9Y.en.vtt
4.0 kB
Part 04-Module 01-Lesson 01_Introduction/index.html
4.0 kB
Part 03-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules-jPGyFgcIvsM.zh-CN.vtt
4.0 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/09. M4 L2A 20 Fama French Risk Model V3-tepvGkpNKrI.en.vtt
4.0 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/08. Standard Deviation Calculation-H5zA1A-XPoY.pt-BR.vtt
4.0 kB
Part 02-Module 01-Lesson 06_Project 5 NLP on Financial Statements/index.html
4.0 kB
Part 03-Module 01-Lesson 05_Scripting/06. Programming Environment Setup-EKxDnCK0NAk.zh-CN.vtt
4.0 kB
Part 01-Module 03-Lesson 02_ETFs/12. MV 11 Guided Meditation V1-njp1mnEEv9s.en.vtt
4.0 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/12. M4 L2A 08 Variance Of 2 Stocks Part 1 V3-PlPusmuR20k.en.vtt
4.0 kB
Part 05-Module 01-Lesson 02_NumPy/09. NumPy 5 V1-vGjI-WTnEbY.zh-CN.vtt
4.0 kB
Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/06. M2L6 09 Cointegration V6-N4ZI5SyFMOc.en.vtt
4.0 kB
Part 06-Module 01-Lesson 08_Python Probability Practice/02. Simulating Coin Flips-7YtQNZ3iy6o.pt-BR.vtt
4.0 kB
Part 07-Module 01-Lesson 01_Linear Regression/07. Square Trick-AGZEq-yQgRM.en.vtt
4.0 kB
Part 01-Module 01-Lesson 09_Project 1 Trading with Momentum/index.html
4.0 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/04. 29 Number Summary-gzUN5zKLHjQ.pt-BR.vtt
4.0 kB
Part 07-Module 01-Lesson 04_Decision Trees/09. MLND SL DT 08 Entropy Formula 2 MAIN V2-6GHg70hrSJw.pt-BR.vtt
4.0 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/16. Binomial Distribution Conclusion-9gjCYs8f_PU.ar.vtt
4.0 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/09. M4 L3b 07 Winners And Losers Accelerated And Decelerated Gains And Losses V2-cdSdKl4uxVM.en.vtt
4.0 kB
Part 03-Module 01-Lesson 05_Scripting/08. Scripting With Raw Input-Fs9uLV2qfgI.ar.vtt
4.0 kB
Part 01-Module 01-Lesson 07_Stock Returns/index.html
4.0 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/15. M4 L2A 26 Fundamental Factors V2-fndhL2Tolac.en.vtt
4.0 kB
Part 02-Module 02-Lesson 05_Embeddings Word2Vec/15. 11 SkipGram Negative V1-e7ZrzpyXNDs.en.vtt
4.0 kB
Part 01-Module 04-Lesson 06_Alpha Factors/13. M4 L3a 08 Z Score V3-6_cKCoLa92o.en.vtt
4.0 kB
Part 06-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-FV_hc3MzS_8.ar.vtt
4.0 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/05. Linear Boundaries-X-uMlsBi07k.en.vtt
3.9 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/24. Gradient Descent-rhVIF-nigrY.en.vtt
3.9 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/05. Linear Boundaries-X-uMlsBi07k.en.vtt
3.9 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/24. Gradient Descent-rhVIF-nigrY.en.vtt
3.9 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/25. L2 06 Lists Methods V1-tz2Ja1Eaeqo.zh-CN.vtt
3.9 kB
Part 05-Module 01-Lesson 03_Pandas/05. Pandas 2 V1-B7MuFIwboKU.pt-BR.vtt
3.9 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/08. Career Services-cuKecPpZ7PM.pt-BR.vtt
3.9 kB
Part 07-Module 01-Lesson 01_Linear Regression/img/m.gif
3.9 kB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/10. Feature Extraction-UgENzCmfFWE.en.vtt
3.9 kB
Part 10-Module 01-Lesson 01_Intro to NLP/11. Feature Extraction-UgENzCmfFWE.en.vtt
3.9 kB
Part 02-Module 01-Lesson 04_Feature Extraction/06. Word2Vec-7jjappzGRe0.pt-BR.vtt
3.9 kB
Part 03-Module 01-Lesson 05_Scripting/27. Experimenting With An Interpreter-hspPtnQwMPg.en.vtt
3.9 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/02. M4 L1B 02 What Is A Factor Model V4-K5QKPwU38Do.en.vtt
3.9 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/04. M1L1 05 Program Overview V1-Ci0j_UwLlQQ.en.vtt
3.9 kB
Part 06-Module 01-Lesson 07_Bayes Rule/20. Bayes Rule Summary-RgXQ8GRsjfc.ar.vtt
3.9 kB
Part 01-Module 02-Lesson 01_Quant Workflow/index.html
3.9 kB
Part 07-Module 01-Lesson 01_Linear Regression/07. Square Trick-AGZEq-yQgRM.pt-BR.vtt
3.9 kB
Part 01-Module 02-Lesson 04_Time Series Modeling/08. M2L4 09 Recurrent Neural Networks V5-5cYAAHyRHDo.en.vtt
3.9 kB
Part 02-Module 03-Lesson 01_Coming Soon!/index.html
3.9 kB
Part 05-Module 01-Lesson 03_Pandas/04. Pandas 1 V1-iXnYN8cnhzs.pt-BR.vtt
3.9 kB
assets/css/fonts/KaTeX_Size3-Regular.woff2
3.9 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/31. L2 02 Dictionaries And Identiy Operators V3-QR8HTxCTWi0.pt-BR.vtt
3.9 kB
assets/css/styles.css
3.9 kB
Part 01-Module 01-Lesson 08_Momentum Trading/04. M1L6 04 Long And Short Positions V3-TCOFgM-hxkQ.en.vtt
3.9 kB
Part 01-Module 04-Lesson 06_Alpha Factors/51. M4 L3a 25 Interlude Pt 1 V2-SMQwc5kwSr0.en.vtt
3.8 kB
Part 02-Module 02-Lesson 05_Embeddings Word2Vec/15. 11 SkipGram Negative V1-e7ZrzpyXNDs.pt-BR.vtt
3.8 kB
Part 03-Module 01-Lesson 05_Scripting/26. Third Party Libraries And Package Managers-epOze9gC6T4.pt-BR.vtt
3.8 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/06. M4 L2A 17 Fama French Size Factor V3-FXZuHsn0bx4.en.vtt
3.8 kB
Part 03-Module 01-Lesson 01_Why Python Programming/index.html
3.8 kB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/14. M4 L4 19 What Is Optimization Doing To OUr Alphas V3-6Yqb91Xahvg.en.vtt
3.8 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/02. Arithmetic Operators-M8TIOK2P2yw.pt-BR.vtt
3.8 kB
Part 01-Module 04-Lesson 01_Factors/05. M4 L1A 04 Standardizing A Factor V5-sLZY2SQ4uME.en.vtt
3.8 kB
Part 07-Module 01-Lesson 04_Decision Trees/14. Maximizing Information Gain-3FgJOpKfdY8.zh-CN.vtt
3.8 kB
Part 02-Module 04-Lesson 01_Coming soon!/index.html
3.8 kB
Part 05-Module 01-Lesson 02_NumPy/03. NumPy 0 V1-vyjMs8KFHlE.zh-CN.vtt
3.8 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 2-6nUUeQ9AeUA.zh-CN.vtt
3.8 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 2-6nUUeQ9AeUA.zh-CN.vtt
3.8 kB
Part 01-Module 01-Lesson 02_Get Help from Peers and Mentors/index.html
3.8 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/05. Linear Boundaries-X-uMlsBi07k.pt-BR.vtt
3.8 kB
Part 07-Module 01-Lesson 03_Clustering/12. K-Means Clustering Visualization 3-WfwX3B4d8_I.ar.vtt
3.8 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/05. Linear Boundaries-X-uMlsBi07k.pt-BR.vtt
3.8 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/16. Type Type Conversion-yN6Fam_vZrU.pt-BR.vtt
3.8 kB
Part 03-Module 01-Lesson 05_Scripting/11. Errors And Exceptions-DmthSiy2d0U.ar.vtt
3.8 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/08. Standard Deviation Calculation-H5zA1A-XPoY.en.vtt
3.8 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/14. Character-Wise RNN-dXl3eWCGLdU.pt-BR.vtt
3.7 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/03. M4 L1B 03 Factor Returns As Latent Variables V3-LpHvJq6XTOQ.en.vtt
3.7 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/20. M4 L1B 20 Pre And Post Event V1-Olz9QZQaBxs.en.vtt
3.7 kB
Part 01-Module 01-Lesson 04_Stock Prices/index.html
3.7 kB
Part 03-Module 01-Lesson 03_Control Flow/25. Break and Continue-F6qJAv9ts9Y.zh-CN.vtt
3.7 kB
Part 02-Module 01-Lesson 01_Welcome To Term II/index.html
3.7 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/08. Career Services-cuKecPpZ7PM.en.vtt
3.7 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/19. String Methods-Bv7CAxVOONs.pt-BR.vtt
3.7 kB
Part 06-Module 01-Lesson 13_Case Study AB tests/02. AB Testing-EcWvhbIjT9o.pt-BR.vtt
3.7 kB
Part 02-Module 01-Lesson 04_Feature Extraction/07. GloVe-KK3PMIiIn8o.zh-CN.vtt
3.7 kB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/06. 5 GettingRid ZeroLength V1-Hs6ithuvDJg.en.vtt
3.7 kB
Part 06-Module 01-Lesson 13_Case Study AB tests/07. Metric - Click Through Rate-EpfoKAwV_Eg.en.vtt
3.7 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/18. KALMAN QUIZ Gaussian Motion 01 RENDER V2-LFPT0R3VaPs.en.vtt
3.7 kB
Part 06-Module 01-Lesson 08_Python Probability Practice/02. Simulating Coin Flips-7YtQNZ3iy6o.en.vtt
3.7 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.zh-CN.vtt
3.7 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.zh-CN.vtt
3.7 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/20. Calculating the p-value-_W3Jg7jQ8jI.en.vtt
3.7 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/20. Calculating the p-value-_W3Jg7jQ8jI.pt-BR.vtt
3.7 kB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/06. M4 L2b 06 The Core Idea V3-0KwLkaKHAvg.en.vtt
3.7 kB
Part 03-Module 01-Lesson 03_Control Flow/28. Zip and Enumerate-bSJPzVArE7M.ar.vtt
3.7 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/04. 29 Number Summary-gzUN5zKLHjQ.en.vtt
3.6 kB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/11. M4 L4 14 Transaction Costs V3-yxwqTvbJhhc.en.vtt
3.6 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/05. M4 L2A 03 Factor Model Of Asset Return V2-7UnllxDmLj8.en.vtt
3.6 kB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/03. M4 L4 03 Setting Up The Problem Risk V4-2vcULOlXTzc.en.vtt
3.6 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/05. M4 L2A 16 Fama French Size Factor V2-94a2ugitC_E.en.vtt
3.6 kB
Part 07-Module 01-Lesson 01_Linear Regression/18. Closed Form Solution-G3fRVgLa5gI.en.vtt
3.6 kB
Part 02-Module 02-Lesson 07_Project 6 Sentiment Analysis with Neural Networks/index.html
3.6 kB
Part 03-Module 01-Lesson 03_Control Flow/31. List Comprehensions-6qxo-NV9v_s.pt-BR.vtt
3.6 kB
Part 01-Module 01-Lesson 03_Get Help with Your Account/index.html
3.6 kB
Part 06-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-JIWv5fU3GLA.th.vtt
3.6 kB
Part 07-Module 01-Lesson 01_Linear Regression/09. Mean Absolute Error-vLKiY0Ehors.en.vtt
3.6 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/22. Random Observed Values-KFIt2OC3wCI.ar.vtt
3.6 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/25. Aggregations-ADx1x2ljFB4.ar.vtt
3.6 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/27. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.pt-BR.vtt
3.6 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/02. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.pt-BR.vtt
3.6 kB
Part 07-Module 01-Lesson 03_Clustering/11. K-Means Clustering Visualization 2-fQXXa-CAoS0.en.vtt
3.6 kB
Part 01-Module 01-Lesson 09_Project 1 Trading with Momentum/01. MV 03 Transition To Project 01 V1-dcps5Bg4bZE.en.vtt
3.6 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.zh-CN.vtt
3.6 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.zh-CN.vtt
3.6 kB
Part 03-Module 01-Lesson 05_Scripting/26. Third Party Libraries And Package Managers-epOze9gC6T4.en.vtt
3.6 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/20. Outliers-HKIsvkZUZfo.ar.vtt
3.6 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/16. M4 L3b 12 Skewness And Momentum Momentum Enhances Or Weakened By Skew V2-S73J_h8DHsE.en.vtt
3.6 kB
Part 06-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram-b8M9CWxRyQ4.th.vtt
3.6 kB
Part 01-Module 04-Lesson 06_Alpha Factors/30. M4 L3A 141 Ranked Information Coefficient Part 1 V4-_huNulOIuB0.en.vtt
3.6 kB
Part 06-Module 01-Lesson 06_Conditional Probability/15. Summary-yepMH9VswI8.ar.vtt
3.5 kB
Part 06-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-o2Tpws5C2Eg.it.vtt
3.5 kB
Part 01-Module 04-Lesson 01_Factors/08. M4 L1A 07 Rescale Part 1 V2-BcsxA0vy3jA.en.vtt
3.5 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/07. M4 L2A 04 Factor Model Of Portfolio Return V3-HEoPljS1wD0.en.vtt
3.5 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/11. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.en.vtt
3.5 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/11. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.en.vtt
3.5 kB
Part 06-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-CNpSrdnYvbo.it.vtt
3.5 kB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/16. M4 L2b 15 PCA As A Factor Model Pt 1 V3-4E3C5E-MmkI.en.vtt
3.5 kB
Part 06-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-CNpSrdnYvbo.es-ES.vtt
3.5 kB
Part 01-Module 04-Lesson 06_Alpha Factors/19. M4 L3a 10 Factor Returns V5-enyeTpyCS-o.en.vtt
3.5 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/34. Calculating The Gradient 1 -tVuZDbUrzzI.pt-BR.vtt
3.5 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/34. Calculating The Gradient 1 -tVuZDbUrzzI.pt-BR.vtt
3.5 kB
Part 03-Module 01-Lesson 01_Why Python Programming/04. L1 02 Course Overview V4-vFxXSIV5cHM.ar.vtt
3.5 kB
Part 03-Module 01-Lesson 03_Control Flow/20. L3 08 While Loops V3-7Sf5tcPlKQw.pt-BR.vtt
3.5 kB
Part 03-Module 01-Lesson 04_Functions/14. Iterators And Generators-tYH8X4Zeh-0.ar.vtt
3.5 kB
Part 02-Module 01-Lesson 04_Feature Extraction/06. Word2Vec-7jjappzGRe0.en.vtt
3.5 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/02. Arithmetic Operators-M8TIOK2P2yw.en.vtt
3.5 kB
Part 03-Module 01-Lesson 04_Functions/08. Documentation-_Vl9NJkA6JQ.ar.vtt
3.5 kB
Part 05-Module 01-Lesson 03_Pandas/06. Pandas 3 V1-yhMT0X6YPFA.pt-BR.vtt
3.5 kB
Part 06-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-o2Tpws5C2Eg.es-ES.vtt
3.5 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/02. Jupyter-qiYDWFLyXvg.ar.vtt
3.5 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/34. Calculating The Gradient 1 -tVuZDbUrzzI.en.vtt
3.5 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/34. Calculating The Gradient 1 -tVuZDbUrzzI.en.vtt
3.5 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/32. Layers-pg99FkXYK0M.en.vtt
3.5 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/32. Layers-pg99FkXYK0M.en.vtt
3.5 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/10. M4 L3b 08 Winners And Losers Approximating Curves With Polynomials V4-Nw6v2EeECt0.en.vtt
3.5 kB
Part 07-Module 01-Lesson 02_Naive Bayes/02. SL NB 01 Guess The Person V1 V1-tAOAjI-7ins.en.vtt
3.5 kB
Part 05-Module 01-Lesson 03_Pandas/04. Pandas 1 V1-iXnYN8cnhzs.en.vtt
3.5 kB
Part 03-Module 01-Lesson 05_Scripting/21. The Standard Library-Fw3vf0tDrJM.pt-BR.vtt
3.5 kB
Part 03-Module 01-Lesson 05_Scripting/13. Handling Errors Try Except Finally-S6hwBZG0KwM.pt-BR.vtt
3.5 kB
Part 07-Module 01-Lesson 03_Clustering/11. K-Means Clustering Visualization 2-fQXXa-CAoS0.pt-BR.vtt
3.5 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/31. L2 02 Dictionaries And Identiy Operators V3-QR8HTxCTWi0.en.vtt
3.5 kB
Part 07-Module 01-Lesson 01_Linear Regression/18. Closed Form Solution-G3fRVgLa5gI.pt-BR.vtt
3.5 kB
Part 06-Module 01-Lesson 06_Conditional Probability/10. Total Probability-YSYpzFR4k1I.th.vtt
3.5 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/15. M4 L3b 11 Skewness And Momentum Defining Skew V2-6PgqIpmJBJ8.en.vtt
3.5 kB
Part 01-Module 02-Lesson 04_Time Series Modeling/03. M2L4 03 Moving Average Models V5-1FkCP_dwxjI.en.vtt
3.5 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/19. String Methods-Bv7CAxVOONs.en.vtt
3.5 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/07. What is the Standard Deviation Measuring-IbwUJ3ORZ5s.ar.vtt
3.5 kB
Part 01-Module 04-Lesson 06_Alpha Factors/31. M4 L3A 142 Ranked Information Coefficient Part 2 V5-WKGmog0Nzgo.en.vtt
3.5 kB
Part 02-Module 01-Lesson 03_Text Processing/05. Normalization-eOV2UUY8vtM.pt-BR.vtt
3.5 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/10. Boolean Comparison and Logical Operators-iNNsUJIDtVU.pt-BR.vtt
3.4 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/05. Linear Boundaries-X-uMlsBi07k.zh-CN.vtt
3.4 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/05. Linear Boundaries-X-uMlsBi07k.zh-CN.vtt
3.4 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/03. KALMAN Tracking Intro RENDER V2-C73G7vfVNQc.en.vtt
3.4 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/05. L2 04b Variables II V3-4IJqbP8vi6A.ar.vtt
3.4 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/19. What Is A P-value Anyway-eU6pUZjqviA.zh-CN.vtt
3.4 kB
Part 06-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.th.vtt
3.4 kB
Part 07-Module 01-Lesson 04_Decision Trees/13. Information Gain-k9iZL53PAmw.en.vtt
3.4 kB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/17. M4 L2b 16 PCA As A Factor Model Pt 2 V2-sDbmO0kHx9A.en.vtt
3.4 kB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/10. Feature Extraction-UgENzCmfFWE.zh-CN.vtt
3.4 kB
Part 10-Module 01-Lesson 01_Intro to NLP/11. Feature Extraction-UgENzCmfFWE.zh-CN.vtt
3.4 kB
Part 01-Module 02-Lesson 03_Regression/10. M2L3 09 Transforming Data V3-N8Fhq8wiQZU.en.vtt
3.4 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.pt-BR.vtt
3.4 kB
Part 07-Module 01-Lesson 04_Decision Trees/14. Maximizing Information Gain-3FgJOpKfdY8.pt-BR.vtt
3.4 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.pt-BR.vtt
3.4 kB
Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/02. M2L6 02 Mean Reversion V5-zQ08lFcZa_A.en.vtt
3.4 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/14. Character-Wise RNN-dXl3eWCGLdU.en.vtt
3.4 kB
Part 01-Module 04-Lesson 06_Alpha Factors/41. M4 L3a 181 Quantile Analysis Part 1 V2-oT5GFbg0G8g.en.vtt
3.4 kB
Part 01-Module 04-Lesson 01_Factors/03. M4 L1A 03 Example Of A Factor V4-MJrwJDjWlAg.en.vtt
3.4 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/23. M4 L1B 23 Sentiment Analysis On News And Social Media V1-Jph7h2Yl0yg.en.vtt
3.4 kB
Part 06-Module 01-Lesson 08_Python Probability Practice/04. Simulating Many Coin Flips-AqpWQIj2V5Y.pt-BR.vtt
3.4 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/08. Statistical vs. Practical Differences-RKHD1wzxxPA.pt-BR.vtt
3.4 kB
Part 05-Module 01-Lesson 03_Pandas/05. Pandas 2 V1-B7MuFIwboKU.en.vtt
3.4 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/17. Simulating From the Null-sL2yJtHZd8Y.en.vtt
3.4 kB
Part 01-Module 02-Lesson 07_Project 2 Breakout Strategy/01. MV 7 Transition To Project 02 1 V1-nkAcx2X_lfs.en.vtt
3.4 kB
Part 07-Module 01-Lesson 01_Linear Regression/09. Mean Absolute Error-vLKiY0Ehors.pt-BR.vtt
3.4 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/10. M4 L1B 09 Risk Factors V Alpha Factors Part 3 V1-UmdOVhcRCVU.en.vtt
3.4 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/02. Introduction-XZL934YQ-FQ.ru.vtt
3.4 kB
Part 03-Module 01-Lesson 03_Control Flow/07. Good And Bad Examples-95oLh3WtdhY.pt-BR.vtt
3.4 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/32. Layers-pg99FkXYK0M.pt-BR.vtt
3.4 kB
Part 03-Module 01-Lesson 05_Scripting/27. Experimenting With An Interpreter-hspPtnQwMPg.zh-CN.vtt
3.4 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/32. Layers-pg99FkXYK0M.pt-BR.vtt
3.4 kB
Part 03-Module 01-Lesson 05_Scripting/17. Reading And Writing Files-w-ZG6DMkVi4.ar.vtt
3.4 kB
Part 01-Module 01-Lesson 05_Market Mechanics/09. M1L3 12 Gaps In Market Data V3-jMT3VbUGiZI.en.vtt
3.4 kB
Part 02-Module 01-Lesson 03_Text Processing/06. Tokenization-4Ieotbeh4u8.pt-BR.vtt
3.4 kB
Part 06-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-o2Tpws5C2Eg.en.vtt
3.4 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/11. Traditional vs. Bootstrapping Confidence Intervals-eZ8lyiumXDY.en.vtt
3.4 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/02. Introduction-tn-CrUTkCUc.en.vtt
3.4 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/02. Introduction-tn-CrUTkCUc.en.vtt
3.4 kB
Part 03-Module 01-Lesson 05_Scripting/08. Scripting With Raw Input-Fs9uLV2qfgI.pt-BR.vtt
3.4 kB
Part 06-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-CNpSrdnYvbo.ja.vtt
3.4 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/11. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.pt-BR.vtt
3.4 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/11. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.pt-BR.vtt
3.4 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/17. Simulating From the Null-sL2yJtHZd8Y.pt-BR.vtt
3.3 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/16. Binomial Distribution Conclusion-9gjCYs8f_PU.pt-BR.vtt
3.3 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/23. Kalman Filter Code - Artificial Intelligence for Robotics-3xBycKfnCOQ.ru.vtt
3.3 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/01. MV 11 Intro To Module 03 Difficulties In Learning V1-kqjFkUVZwEc.en.vtt
3.3 kB
Part 06-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-CNpSrdnYvbo.en.vtt
3.3 kB
Part 07-Module 01-Lesson 02_Naive Bayes/02. SL NB 01 Guess The Person V1 V1-tAOAjI-7ins.pt-BR.vtt
3.3 kB
Part 06-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-hoVOT8qcQ7c.th.vtt
3.3 kB
Part 06-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-o2Tpws5C2Eg.pt-BR.vtt
3.3 kB
Part 02-Module 01-Lesson 03_Text Processing/05. Normalization-eOV2UUY8vtM.en.vtt
3.3 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/26. KALMAN QUIZ Kalman Prediction V1-d8Gx4-RghD0.en.vtt
3.3 kB
Part 01-Module 02-Lesson 02_Outliers and Filtering/06. M2L2 05 Handling Outliers In Raw Data V3-3l6kQZqlVJA.en.vtt
3.3 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/08. Whitespace-UxkIwcOczQQ.pt-BR.vtt
3.3 kB
Part 06-Module 01-Lesson 08_Python Probability Practice/04. Simulating Many Coin Flips-AqpWQIj2V5Y.en.vtt
3.3 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/27. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.en.vtt
3.3 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/02. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.en.vtt
3.3 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/01. M4 L2A 12 Time Series Risk Model Factor Variance V2-hjVBXeZmA0w.en.vtt
3.3 kB
Part 01-Module 02-Lesson 07_Project 2 Breakout Strategy/04. MV 10 Transition From Project 02 Int V1-DYjOsL3VYfY.en.vtt
3.3 kB
Part 07-Module 01-Lesson 03_Clustering/02. Unsupervised Learning-Mx9f99bRB3Q.en.vtt
3.3 kB
Part 07-Module 01-Lesson 02_Naive Bayes/10. SL NB 09 Bayesian Learning 3 V1 V4-u-Hj4RsJn1o.en.vtt
3.3 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/16. Type Type Conversion-yN6Fam_vZrU.en.vtt
3.3 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/15. The Median-WlT3eeW0rb0.ar.vtt
3.3 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/12. M4 L2A 23 Categorical Factors V2-F76juAxHVIk.en.vtt
3.3 kB
Part 03-Module 01-Lesson 03_Control Flow/02. If Elif and Else-KZubH5XT0eU.pt-BR.vtt
3.3 kB
Part 06-Module 01-Lesson 08_Python Probability Practice/02. Simulating Coin Flips-7YtQNZ3iy6o.zh-CN.vtt
3.3 kB
Part 06-Module 01-Lesson 07_Bayes Rule/20. Bayes Rule Summary-RgXQ8GRsjfc.pt-BR.vtt
3.2 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/12. Introduction to Summary Statistics-PCZmHCrcMcw.ar.vtt
3.2 kB
Part 06-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-FV_hc3MzS_8.pt-BR.vtt
3.2 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/27. What If Our Sample Is Large-WoTCeSTL1eM.en.vtt
3.2 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/05. KALMAN Gaussian Intro RENDER 1 1 V3-S2v1CExswT4.en.vtt
3.2 kB
Part 07-Module 01-Lesson 03_Clustering/02. Unsupervised Learning-Mx9f99bRB3Q.pt-BR.vtt
3.2 kB
Part 01-Module 01-Lesson 04_Stock Prices/01. M1L2 01 Stocks V6-23sv5ey0ySs.en.vtt
3.2 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/08. Statistical vs. Practical Differences-RKHD1wzxxPA.en.vtt
3.2 kB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/04. M4 L4 04 Regularization V4-fq-CanyDHuw.en.vtt
3.2 kB
Part 03-Module 01-Lesson 03_Control Flow/07. Complex Boolean Expressions-gWmIKWgzFqI.ar.vtt
3.2 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/13. Calculating the Mean-1nzZxmJ8xvU.ar.vtt
3.2 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/09. Types Of Errors - Part II-mbdSQ5CjdFs.en.vtt
3.2 kB
Part 01-Module 03-Lesson 04_Portfolio Optimization/02. L4 02 What Is Optimization V2-ISRlP1GeOjU.en.vtt
3.2 kB
Part 03-Module 01-Lesson 03_Control Flow/02. If Statements-jWiIUMrwPqA.pt-BR.vtt
3.2 kB
Part 03-Module 01-Lesson 05_Scripting/26. Third Party Libraries And Package Managers-epOze9gC6T4.zh-CN.vtt
3.2 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/09. MV 05 Time Management V1-22PdQNlhCt8.en.vtt
3.2 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/02. Introduction-tn-CrUTkCUc.pt-BR.vtt
3.2 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/02. Introduction-tn-CrUTkCUc.pt-BR.vtt
3.2 kB
Part 06-Module 01-Lesson 13_Case Study AB tests/02. AB Testing-EcWvhbIjT9o.en.vtt
3.2 kB
Part 01-Module 01-Lesson 06_Data Processing/03. M1L4 04b Dividends V2-OVZw9tci55w.en.vtt
3.2 kB
Part 03-Module 01-Lesson 05_Scripting/21. The Standard Library-Fw3vf0tDrJM.en.vtt
3.1 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/19. String Methods-Bv7CAxVOONs.zh-CN.vtt
3.1 kB
Part 06-Module 01-Lesson 13_Case Study AB tests/11. Metric - Average Reading Duration-w6Y9ZxHDEbw.pt-BR.vtt
3.1 kB
Part 05-Module 01-Lesson 03_Pandas/04. Pandas 1 V1-iXnYN8cnhzs.zh-CN.vtt
3.1 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/18. KALMAN QUIZ Gaussian Motion 01 RENDER V2-LFPT0R3VaPs.zh-CN.vtt
3.1 kB
Part 02-Module 02-Lesson 05_Embeddings Word2Vec/07. 5 Subsampling Solution V1-YXruURuFD7g.pt-BR.vtt
3.1 kB
Part 06-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-CNpSrdnYvbo.zh-CN.vtt
3.1 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/12. M4 L1B 12 How An Alpha Factor Becomes A Risk Factor Part 2 V1-9waaTtRaU-Y.en.vtt
3.1 kB
Part 06-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-CNpSrdnYvbo.pt-BR.vtt
3.1 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/32. Layers-pg99FkXYK0M.zh-CN.vtt
3.1 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/32. Layers-pg99FkXYK0M.zh-CN.vtt
3.1 kB
Part 07-Module 01-Lesson 03_Clustering/11. K-Means Clustering Visualization 2-fQXXa-CAoS0.zh-CN.vtt
3.1 kB
Part 03-Module 01-Lesson 03_Control Flow/20. L3 08 While Loops V3-7Sf5tcPlKQw.en.vtt
3.1 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/14. Character-Wise RNN-dXl3eWCGLdU.zh-CN.vtt
3.1 kB
Part 03-Module 01-Lesson 04_Functions/08. Documentation-_Vl9NJkA6JQ.pt-BR.vtt
3.1 kB
Part 03-Module 01-Lesson 05_Scripting/11. Errors And Exceptions-DmthSiy2d0U.pt-BR.vtt
3.1 kB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/06. M4 L4 07 Leverage Constraint V5-zJ9gon4rFQc.en.vtt
3.1 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/07. M4 L2A 18 Fama French Value Factor V4-IcbsQ4QRGbs.en.vtt
3.1 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/27. What If Our Sample Is Large-WoTCeSTL1eM.pt-BR.vtt
3.1 kB
Part 06-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-FV_hc3MzS_8.it.vtt
3.1 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.en.vtt
3.1 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.en.vtt
3.1 kB
Part 06-Module 01-Lesson 08_Python Probability Practice/04. Simulating Many Coin Flips-AqpWQIj2V5Y.zh-CN.vtt
3.1 kB
Part 05-Module 01-Lesson 03_Pandas/05. Pandas 2 V1-B7MuFIwboKU.zh-CN.vtt
3.1 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/01. Introduction-4F7SC0C6tfQ.ar.vtt
3.1 kB
Part 07-Module 01-Lesson 02_Naive Bayes/02. SL NB 01 Guess The Person V1 V1-tAOAjI-7ins.zh-CN.vtt
3.1 kB
Part 07-Module 01-Lesson 02_Naive Bayes/10. SL NB 09 Bayesian Learning 3 V1 V4-u-Hj4RsJn1o.pt-BR.vtt
3.1 kB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/05. M4 L2b 05 Translating Between Bases V4-lrE4VOJ2RCA.en.vtt
3.1 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/11. Traditional vs. Bootstrapping Confidence Intervals-eZ8lyiumXDY.pt-BR.vtt
3.1 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/09. Types Of Errors - Part II-mbdSQ5CjdFs.pt-BR.vtt
3.1 kB
Part 06-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-FV_hc3MzS_8.es-ES.vtt
3.1 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/08. Whitespace-UxkIwcOczQQ.en.vtt
3.1 kB
Part 06-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-o2Tpws5C2Eg.zh-CN.vtt
3.1 kB
Part 03-Module 01-Lesson 05_Scripting/05. Running A Python Script-vMKemwCderg.ar.vtt
3.1 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/09. 09. Training a Model-m4GVfwVkj74.en.vtt
3.1 kB
Part 01-Module 04-Lesson 06_Alpha Factors/16. M4 L3a 09 Smoothing V2-mAfrjpZOf7Q.en.vtt
3.1 kB
Part 02-Module 02-Lesson 05_Embeddings Word2Vec/01. M4L51 HSA Word Embeddings V3 RENDER V1-ZsLhh1mly9k.pt-BR.vtt
3.0 kB
Part 06-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-vasdN2Gol0M.th.vtt
3.0 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/02. Arithmetic Operators-M8TIOK2P2yw.zh-CN.vtt
3.0 kB
Part 03-Module 01-Lesson 04_Functions/14. Iterators And Generators-tYH8X4Zeh-0.pt-BR.vtt
3.0 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/06. Vision-based Emotion AI-7nKKWWn1sAc.en.vtt
3.0 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/08. Standard Deviation Calculation-H5zA1A-XPoY.zh-CN.vtt
3.0 kB
Part 03-Module 01-Lesson 05_Scripting/13. Handling Errors Try Except Finally-S6hwBZG0KwM.en.vtt
3.0 kB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/09. Text Processing-pqheVyctkNQ.pt-BR.vtt
3.0 kB
Part 10-Module 01-Lesson 01_Intro to NLP/10. Text Processing-pqheVyctkNQ.pt-BR.vtt
3.0 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/23. Bootstrapping the Central Limit Theorem-GJGUwNr_82s.ar.vtt
3.0 kB
Part 01-Module 04-Lesson 06_Alpha Factors/42. M4 L3a 182 Quantile Analysis Part 2 V3-NF18kx0sfBE.en.vtt
3.0 kB
Part 06-Module 01-Lesson 13_Case Study AB tests/05. Experiment I-JLKAdT2JESk.pt-BR.vtt
3.0 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/22. L2 08 Lists And Membership Operators V2-JAbZdZg5_x8.pt-BR.vtt
3.0 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/16. Type Type Conversion-yN6Fam_vZrU.zh-CN.vtt
3.0 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/06. 09 Higher Dimensions-eBHunImDmWw.en.vtt
3.0 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/06. 09 Higher Dimensions-eBHunImDmWw.en.vtt
3.0 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/17. Shape of Distributions-UnN99AAYf8k.en.vtt
3.0 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/12. Types Of Errors - Part III-Z-srkCPsdaM.pt-BR.vtt
3.0 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/17. Shape of Distributions-UnN99AAYf8k.pt-BR.vtt
3.0 kB
Part 07-Module 01-Lesson 01_Linear Regression/16. Higher Dimensions--UvpQV1qmiE.en.vtt
3.0 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/22. Random Observed Values-KFIt2OC3wCI.pt-BR.vtt
3.0 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/04. 29 Number Summary-gzUN5zKLHjQ.zh-CN.vtt
3.0 kB
Part 07-Module 01-Lesson 04_Decision Trees/10. Entropy Formula-w73JTBVeyjE.en.vtt
3.0 kB
Part 07-Module 01-Lesson 03_Clustering/16. Counterintuitive Clusters-StmEUgT1XSY.ar.vtt
3.0 kB
Part 03-Module 01-Lesson 03_Control Flow/31. List Comprehensions-6qxo-NV9v_s.en.vtt
3.0 kB
Part 05-Module 01-Lesson 03_Pandas/06. Pandas 3 V1-yhMT0X6YPFA.en.vtt
3.0 kB
Part 06-Module 01-Lesson 13_Case Study AB tests/07. Metric - Click Through Rate-EpfoKAwV_Eg.zh-CN.vtt
3.0 kB
Part 03-Module 01-Lesson 03_Control Flow/07. Good And Bad Examples-95oLh3WtdhY.en.vtt
3.0 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/16. Binomial Distribution Conclusion-9gjCYs8f_PU.en.vtt
3.0 kB
Part 06-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1-_DjfTytro6I.th.vtt
3.0 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/12. Types Of Errors - Part III-Z-srkCPsdaM.en.vtt
3.0 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/17. M4 L1B 17 Fundamental Ratios V2-Eo-faV9CsP8.en.vtt
3.0 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/25. Aggregations-ADx1x2ljFB4.en.vtt
3.0 kB
Part 07-Module 01-Lesson 04_Decision Trees/13. Information Gain-k9iZL53PAmw.zh-CN.vtt
3.0 kB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/09. M4 L2b 09 Writing It Down Pt 2 V2-TSH3hTAHsIg.en.vtt
3.0 kB
Part 02-Module 01-Lesson 03_Text Processing/06. Tokenization-4Ieotbeh4u8.en.vtt
3.0 kB
Part 03-Module 01-Lesson 05_Scripting/13. Handling Error Specifying Exceptions-EHW5I7shdJg.ar.vtt
3.0 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/21. Working with Outliers-4RnQjtJB8t8.ar.vtt
3.0 kB
Part 03-Module 01-Lesson 03_Control Flow/31. List Comprehensions-6qxo-NV9v_s.zh-CN.vtt
3.0 kB
Part 02-Module 01-Lesson 03_Text Processing/05. Normalization-eOV2UUY8vtM.zh-CN.vtt
3.0 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/34. Calculating The Gradient 1 -tVuZDbUrzzI.zh-CN.vtt
3.0 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/34. Calculating The Gradient 1 -tVuZDbUrzzI.zh-CN.vtt
3.0 kB
Part 01-Module 02-Lesson 03_Regression/02. M2L3 02 Distributions V2-ZlRGxq5I9BU.en.vtt
3.0 kB
Part 03-Module 01-Lesson 01_Why Python Programming/04. L1 02 Course Overview V4-vFxXSIV5cHM.pt-BR.vtt
2.9 kB
Part 06-Module 01-Lesson 06_Conditional Probability/15. Summary-yepMH9VswI8.it.vtt
2.9 kB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/02. L3 02 Diversification V3-tyzqlXddXd8.en.vtt
2.9 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/20. Calculating the p-value-_W3Jg7jQ8jI.zh-CN.vtt
2.9 kB
Part 03-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules Part II-aASigWQ_XU0.ar.vtt
2.9 kB
Part 01-Module 04-Lesson 06_Alpha Factors/04. M4 L3a 03 Definition Of Key Words V4-zySdIQTPTGo.en.vtt
2.9 kB
Part 06-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-o2Tpws5C2Eg.ja.vtt
2.9 kB
Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/01. M2L6 01 Intro V3-CQ6QGAxbUF8.en.vtt
2.9 kB
Part 02-Module 01-Lesson 04_Feature Extraction/06. Word2Vec-7jjappzGRe0.zh-CN.vtt
2.9 kB
Part 06-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.th.vtt
2.9 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/21. M4 L3b 17 IVol Idiosyncratic Volatility V2-B8hOR4G9CJk.en.vtt
2.9 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/02. Introduction-tn-CrUTkCUc.zh-CN.vtt
2.9 kB
Part 06-Module 01-Lesson 06_Conditional Probability/15. Summary-yepMH9VswI8.es-ES.vtt
2.9 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/02. Introduction-tn-CrUTkCUc.zh-CN.vtt
2.9 kB
Part 06-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-FV_hc3MzS_8.en.vtt
2.9 kB
Part 03-Module 01-Lesson 03_Control Flow/02. If Elif and Else-KZubH5XT0eU.en.vtt
2.9 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/07. What is the Standard Deviation Measuring-IbwUJ3ORZ5s.pt-BR.vtt
2.9 kB
Part 01-Module 03-Lesson 02_ETFs/06. L2 08 Authorized Participant And The Create Process V4-u4thSf3Uxsc.en.vtt
2.9 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/10. Boolean Comparison and Logical Operators-iNNsUJIDtVU.en.vtt
2.9 kB
Part 01-Module 01-Lesson 05_Market Mechanics/06. M1L3 09 Open High Low Close V4-FgNY4YgVWFk.en.vtt
2.9 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/05. L2 04b Variables II V3-4IJqbP8vi6A.pt-BR.vtt
2.9 kB
Part 03-Module 01-Lesson 05_Scripting/13. Handling Errors Try Except Finally-S6hwBZG0KwM.zh-CN.vtt
2.9 kB
Part 07-Module 01-Lesson 03_Clustering/03. Clustering Movies-g8PKffm8IRY.pt-BR.vtt
2.9 kB
Part 02-Module 02-Lesson 05_Embeddings Word2Vec/07. 5 Subsampling Solution V1-YXruURuFD7g.en.vtt
2.9 kB
Part 04-Module 01-Lesson 02_Vectors/02. Vectors 2-R7WiQYixvRQ.en.vtt
2.9 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/26. Notation for the Mean-3EF15AoRxyM.ar.vtt
2.9 kB
Part 03-Module 01-Lesson 05_Scripting/17. Reading And Writing Files-w-ZG6DMkVi4.pt-BR.vtt
2.9 kB
Part 07-Module 01-Lesson 04_Decision Trees/13. Information Gain-k9iZL53PAmw.pt-BR.vtt
2.9 kB
Part 03-Module 01-Lesson 03_Control Flow/20. L3 08 While Loops V3-7Sf5tcPlKQw.zh-CN.vtt
2.9 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/12. Variance Standard Deviation Final Points-vXUgp2375j4.ar.vtt
2.9 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/05. Variables-7pxpUot4x0w.ar.vtt
2.9 kB
Part 01-Module 04-Lesson 06_Alpha Factors/35. M4 L3a 152 The Fundamental Law Of Active Management Part 2 V7-CMc4ujA8Ahs.en.vtt
2.9 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/25. Aggregations-ADx1x2ljFB4.pt-BR.vtt
2.9 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/05. Setting Up Hypotheses - Part II-nByvHz77GiA.pt-BR.vtt
2.9 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/03. KALMAN Tracking Intro RENDER V2-C73G7vfVNQc.zh-CN.vtt
2.9 kB
Part 07-Module 01-Lesson 03_Clustering/03. Clustering Movies-g8PKffm8IRY.en.vtt
2.9 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/24. M4 L3b 20 IVol Volatility Enhanced Price Earnings Ratio V2-x-1nqTEPGcA.en.vtt
2.9 kB
Part 02-Module 02-Lesson 05_Embeddings Word2Vec/01. M4L51 HSA Word Embeddings V3 RENDER V1-ZsLhh1mly9k.en.vtt
2.9 kB
Part 03-Module 01-Lesson 05_Scripting/11. Errors And Exceptions-DmthSiy2d0U.en.vtt
2.8 kB
Part 01-Module 01-Lesson 07_Stock Returns/03. M1L5 03 Log Returns V5-62fZN1QnGjc.en.vtt
2.8 kB
Part 07-Module 01-Lesson 01_Linear Regression/16. Higher Dimensions--UvpQV1qmiE.pt-BR.vtt
2.8 kB
Part 07-Module 01-Lesson 04_Decision Trees/04. Recommending Apps-nEvW8B1HNq4.en.vtt
2.8 kB
Part 07-Module 01-Lesson 02_Naive Bayes/05. SL NB 04 Bayes Theorem V1 V2-nVbPJmf53AI.pt-BR.vtt
2.8 kB
Part 01-Module 02-Lesson 01_Quant Workflow/05. M2L1 04 Anatomy Of A Strategy Part 1 V5-cnJK8c2zfq4.en.vtt
2.8 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/27. What If Our Sample Is Large-WoTCeSTL1eM.zh-CN.vtt
2.8 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.zh-CN.vtt
2.8 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.zh-CN.vtt
2.8 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/31. L2 02 Dictionaries And Identiy Operators V3-QR8HTxCTWi0.zh-CN.vtt
2.8 kB
Part 01-Module 04-Lesson 06_Alpha Factors/06. M4 L3a 051 Controlling For Risk Within An Alpha Factor Part 1 V3-raeVfAbBXnA.en.vtt
2.8 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/03. Sampling Distributions Confidence Intervals-gICzUhMVymo.en.vtt
2.8 kB
Part 01-Module 04-Lesson 06_Alpha Factors/07. M4 L3a 052 Controlling For Risk Within An Alpha Factor Part 2 V2-Ks8HiHcflPs.en.vtt
2.8 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/27. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.zh-CN.vtt
2.8 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/02. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.zh-CN.vtt
2.8 kB
Part 07-Module 01-Lesson 02_Naive Bayes/10. SL NB 09 Bayesian Learning 3 V1 V4-u-Hj4RsJn1o.zh-CN.vtt
2.8 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/22. Random Observed Values-KFIt2OC3wCI.en.vtt
2.8 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/27. L2 04 Tuples V3-33xN-AbTMoc.pt-BR.vtt
2.8 kB
Part 03-Module 01-Lesson 05_Scripting/21. The Standard Library-Fw3vf0tDrJM.zh-CN.vtt
2.8 kB
Part 06-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-FV_hc3MzS_8.ja.vtt
2.8 kB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/13. PyTorch V2 Part 3 Solution 2 V1-ExyFG2MjsKs.en.vtt
2.8 kB
Part 06-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.th.vtt
2.8 kB
Part 03-Module 01-Lesson 05_Scripting/08. Scripting With Raw Input-Fs9uLV2qfgI.en.vtt
2.8 kB
Part 03-Module 01-Lesson 04_Functions/02. Default Arguments-cG6UfBZX2KI.ar.vtt
2.8 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/16. Using A Confidence Interval to Make A Decision-MghT95b6LbQ.pt-BR.vtt
2.8 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-b2zvrFL8AUw.ar.vtt
2.8 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/05. Setting Up Hypotheses - Part II-nByvHz77GiA.en.vtt
2.8 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/04. 04. Computer Vision Applications-aFJKp2NltCY.en.vtt
2.8 kB
Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/04. M2L6 07 Finding Pairs To Trade V4-6hQtoElcnGM.en.vtt
2.8 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/03. Exemplo de classificação-Dh625piH7Z0.en.vtt
2.8 kB
Part 03-Module 01-Lesson 04_Functions/08. Documentation-_Vl9NJkA6JQ.en.vtt
2.8 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/03. Exemplo de classificação-Dh625piH7Z0.en.vtt
2.8 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/01. Introduction-4F7SC0C6tfQ.pt-BR.vtt
2.8 kB
Part 03-Module 01-Lesson 03_Control Flow/02. If Statements-jWiIUMrwPqA.en.vtt
2.8 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/02. Jupyter-qiYDWFLyXvg.en.vtt
2.8 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/11. Traditional vs. Bootstrapping Confidence Intervals-eZ8lyiumXDY.zh-CN.vtt
2.8 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/17. Simulating From the Null-sL2yJtHZd8Y.zh-CN.vtt
2.8 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/07. What is the Standard Deviation Measuring-IbwUJ3ORZ5s.en.vtt
2.8 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/03. Setting Up Hypotheses - Part I-NpZxJg4S6X4.pt-BR.vtt
2.8 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/15. Momentum-r-rYz_PEWC8.pt-BR.vtt
2.8 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/20. Outliers-HKIsvkZUZfo.pt-BR.vtt
2.8 kB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/08. M4 L2b 08 Writing It Down Pt 1 V3-NyDNFqm8c_s.en.vtt
2.8 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/26. KALMAN QUIZ Kalman Prediction V1-d8Gx4-RghD0.zh-CN.vtt
2.8 kB
Part 01-Module 04-Lesson 06_Alpha Factors/36. M4 L3a 161 Real World Constraints Liquidity V3-eu0YZRMu_3w.en.vtt
2.8 kB
Part 01-Module 01-Lesson 08_Momentum Trading/02. M1L6 02 Momentumbased Signals V4-RedwbmYg6e4.en.vtt
2.7 kB
Part 03-Module 01-Lesson 04_Functions/11. L4 08 Lambda Expressions V3-wkEmPz1peJM.pt-BR.vtt
2.7 kB
Part 06-Module 01-Lesson 07_Bayes Rule/20. Bayes Rule Summary-RgXQ8GRsjfc.es-ES.vtt
2.7 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/12. Other Activation Functions-kA-1vUt6cvQ.en.vtt
2.7 kB
Part 07-Module 01-Lesson 03_Clustering/02. Unsupervised Learning-Mx9f99bRB3Q.zh-CN.vtt
2.7 kB
Part 03-Module 01-Lesson 04_Functions/14. Iterators And Generators-tYH8X4Zeh-0.en.vtt
2.7 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/05. Learn Gate-aVHVI7ovbHY.pt-BR.vtt
2.7 kB
Part 06-Module 01-Lesson 06_Conditional Probability/15. Summary-yepMH9VswI8.en.vtt
2.7 kB
Part 07-Module 01-Lesson 02_Naive Bayes/05. SL NB 04 Bayes Theorem V1 V2-nVbPJmf53AI.en.vtt
2.7 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/06. 09 Higher Dimensions-eBHunImDmWw.pt-BR.vtt
2.7 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/06. 09 Higher Dimensions-eBHunImDmWw.pt-BR.vtt
2.7 kB
Part 07-Module 01-Lesson 04_Decision Trees/15. MLND SL DT 13 Random Forests MAIN V1-n5DhXhcYKcw.en.vtt
2.7 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/08. M4 L2A 19 Fama French SMB And HML V2-fnncnimScFc.en.vtt
2.7 kB
Part 01-Module 03-Lesson 02_ETFs/09. L2 11 2 Arbitrage Farmers Market V1-hHxp16mQNGA.en.vtt
2.7 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/16. Using A Confidence Interval to Make A Decision-MghT95b6LbQ.en.vtt
2.7 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/10. M4 L2A 06 Variance Of One Stock V3-rxaABg4wVZo.en.vtt
2.7 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/10. Perceptron Algorithm--zhTROHtscQ.en.vtt
2.7 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/25. Gradient Descent Algorithm-snxmBgi_GeU.pt-BR.vtt
2.7 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/10. Perceptron Algorithm--zhTROHtscQ.en.vtt
2.7 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/25. Gradient Descent Algorithm-snxmBgi_GeU.pt-BR.vtt
2.7 kB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/07. M4 L4 08 Factor Exposure And Position Constraints V3-wMY4zI5zLSM.en.vtt
2.7 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/02. Jupyter-qiYDWFLyXvg.zh-CN.vtt
2.7 kB
Part 01-Module 02-Lesson 04_Time Series Modeling/07. M2L4 08 Particle Filter V4-4KhDUAvwI74.en.vtt
2.7 kB
Part 06-Module 01-Lesson 07_Bayes Rule/20. Bayes Rule Summary-RgXQ8GRsjfc.ja.vtt
2.7 kB
Part 01-Module 02-Lesson 03_Regression/18. MV 14 What Happens In Your Brain V1-ioDP7ndd40Y.en.vtt
2.7 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/05. Learn Gate-aVHVI7ovbHY.en.vtt
2.7 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/06. Vision-based Emotion AI-7nKKWWn1sAc.zh-CN.vtt
2.7 kB
Part 03-Module 01-Lesson 03_Control Flow/07. Truth Value Testing-e52uw7ejV8k.ar.vtt
2.7 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/20. Outliers-HKIsvkZUZfo.en.vtt
2.7 kB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/09. Text Processing-pqheVyctkNQ.en.vtt
2.7 kB
Part 10-Module 01-Lesson 01_Intro to NLP/10. Text Processing-pqheVyctkNQ.en.vtt
2.7 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/10. M4 L2A 21 Cross Sectional Risk Model V3-mpnRAt8qUus.en.vtt
2.7 kB
Part 03-Module 01-Lesson 03_Control Flow/28. Zip and Enumerate-bSJPzVArE7M.pt-BR.vtt
2.7 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/08. Whitespace-UxkIwcOczQQ.zh-CN.vtt
2.7 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/15. The Median-WlT3eeW0rb0.pt-BR.vtt
2.7 kB
Part 01-Module 04-Lesson 01_Factors/07. M4 L1A 06 Demean Part 2 V2-aaj1QVsSCIs.en.vtt
2.7 kB
Part 01-Module 02-Lesson 05_Volatility/13. M2L5 13 Breakout Strategies V4-9eamk40DMu0.en.vtt
2.7 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/05. Data Types-gT6EYlsLZkE.ar.vtt
2.7 kB
Part 07-Module 01-Lesson 04_Decision Trees/10. Entropy Formula-w73JTBVeyjE.pt-BR.vtt
2.7 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/22. Bootstrapping-42j3YclcZ4Q.ar.vtt
2.7 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-DjsL64Kjr1Q.ar.vtt
2.7 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/13. Formula Summary-zqo1RJEHT_0.ar.vtt
2.7 kB
Part 03-Module 01-Lesson 05_Scripting/11. Errors And Exceptions-DmthSiy2d0U.zh-CN.vtt
2.7 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/08. Statistical vs. Practical Differences-RKHD1wzxxPA.zh-CN.vtt
2.7 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/29. L2 03 Sets V2-eIHNFgTFfnA.pt-BR.vtt
2.7 kB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/10. M4 L2b 10 Writing It Down Pt 3 V3-kSl0j4QIMIU.en.vtt
2.7 kB
Part 05-Module 01-Lesson 03_Pandas/06. Pandas 3 V1-yhMT0X6YPFA.zh-CN.vtt
2.7 kB
Part 02-Module 01-Lesson 03_Text Processing/06. Tokenization-4Ieotbeh4u8.zh-CN.vtt
2.7 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/16. DL 18 S Softmax-n8S-v_LCTms.en.vtt
2.7 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 S Softmax-n8S-v_LCTms.en.vtt
2.7 kB
Part 07-Module 01-Lesson 03_Clustering/12. K-Means Clustering Visualization 3-WfwX3B4d8_I.en.vtt
2.7 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/09. 09. Training a Model-m4GVfwVkj74.zh-CN.vtt
2.6 kB
Part 06-Module 01-Lesson 07_Bayes Rule/20. Bayes Rule Summary-RgXQ8GRsjfc.en.vtt
2.6 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/09. Types Of Errors - Part II-mbdSQ5CjdFs.zh-CN.vtt
2.6 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-b2zvrFL8AUw.pt-BR.vtt
2.6 kB
Part 06-Module 01-Lesson 13_Case Study AB tests/02. AB Testing-EcWvhbIjT9o.zh-CN.vtt
2.6 kB
Part 06-Module 01-Lesson 13_Case Study AB tests/11. Metric - Average Reading Duration-w6Y9ZxHDEbw.en.vtt
2.6 kB
Part 06-Module 01-Lesson 13_Case Study AB tests/05. Experiment I-JLKAdT2JESk.en.vtt
2.6 kB
Part 07-Module 01-Lesson 04_Decision Trees/04. Recommending Apps-nEvW8B1HNq4.zh-CN.vtt
2.6 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/14. Common Types of Hypothesis Tests-8hv8KnvQ6JY.en.vtt
2.6 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/05. KALMAN Gaussian Intro RENDER 1 1 V3-S2v1CExswT4.zh-CN.vtt
2.6 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/03. Sampling Distributions Confidence Intervals-gICzUhMVymo.pt-BR.vtt
2.6 kB
Part 01-Module 04-Lesson 06_Alpha Factors/37. M4 L3a 162 Real World Constraints Transaction Costs V2-HAif7xSh8z0.en.vtt
2.6 kB
Part 03-Module 01-Lesson 03_Control Flow/07. Good And Bad Examples-95oLh3WtdhY.zh-CN.vtt
2.6 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/13. Calculating the Mean-1nzZxmJ8xvU.pt-BR.vtt
2.6 kB
Part 06-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.th.vtt
2.6 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/12. Introduction to Summary Statistics-PCZmHCrcMcw.pt-BR.vtt
2.6 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/12. Other Activation Functions-kA-1vUt6cvQ.pt-BR.vtt
2.6 kB
Part 07-Module 01-Lesson 03_Clustering/12. K-Means Clustering Visualization 3-WfwX3B4d8_I.pt-BR.vtt
2.6 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/25. Gradient Descent Algorithm-snxmBgi_GeU.en.vtt
2.6 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/25. Gradient Descent Algorithm-snxmBgi_GeU.en.vtt
2.6 kB
Part 04-Module 01-Lesson 02_Vectors/02. Vectors 2-R7WiQYixvRQ.pt-BR.vtt
2.6 kB
Part 03-Module 01-Lesson 03_Control Flow/28. Zip and Enumerate-bSJPzVArE7M.en.vtt
2.6 kB
Part 03-Module 01-Lesson 05_Scripting/05. Running A Python Script-vMKemwCderg.pt-BR.vtt
2.6 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/12. Types Of Errors - Part III-Z-srkCPsdaM.zh-CN.vtt
2.6 kB
Part 07-Module 01-Lesson 04_Decision Trees/10. Entropy Formula-w73JTBVeyjE.zh-CN.vtt
2.6 kB
Part 01-Module 01-Lesson 05_Market Mechanics/04. M1L3 04 Liquidity V4-KNVQeH6Y_YA.en.vtt
2.6 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/13. M4 L1B 13 Momentum Or Reversal V3-izTAHVF6V_g.en.vtt
2.6 kB
Part 07-Module 01-Lesson 03_Clustering/03. Clustering Movies-g8PKffm8IRY.zh-CN.vtt
2.6 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/02. Hypothesis Testing-9GbHHpiK6wk.en.vtt
2.6 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/16. DL 18 S Softmax-n8S-v_LCTms.pt-BR.vtt
2.6 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 S Softmax-n8S-v_LCTms.pt-BR.vtt
2.6 kB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/02. M4 L4 02 Setting Up The Problem Alphas V5-6GeyU-thC4U.en.vtt
2.6 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-pOKmt4w8T3g.ar.vtt
2.6 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/03. Exemplo de classificação-Dh625piH7Z0.pt-BR.vtt
2.6 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/03. Exemplo de classificação-Dh625piH7Z0.pt-BR.vtt
2.6 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/25. Aggregations-ADx1x2ljFB4.zh-CN.vtt
2.6 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/05. Learn Gate-aVHVI7ovbHY.zh-CN.vtt
2.6 kB
Part 07-Module 01-Lesson 04_Decision Trees/04. Recommending Apps-nEvW8B1HNq4.pt-BR.vtt
2.6 kB
Part 01-Module 02-Lesson 05_Volatility/06. M2L5 06 Rolling Windows V3-4EuMKqeNXA0.en.vtt
2.6 kB
Part 07-Module 01-Lesson 04_Decision Trees/15. MLND SL DT 13 Random Forests MAIN V1-n5DhXhcYKcw.pt-BR.vtt
2.6 kB
Part 03-Module 01-Lesson 03_Control Flow/02. If Elif and Else-KZubH5XT0eU.zh-CN.vtt
2.6 kB
Part 07-Module 01-Lesson 04_Decision Trees/06. Student Admissions-TdgBi6LtOB8.en.vtt
2.6 kB
Part 07-Module 01-Lesson 04_Decision Trees/15. MLND SL DT 13 Random Forests MAIN V1-n5DhXhcYKcw.zh-CN.vtt
2.6 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/15. Momentum-r-rYz_PEWC8.en.vtt
2.6 kB
Part 07-Module 01-Lesson 01_Linear Regression/10. Mean Squared Error-MRyxmZDngI4.en.vtt
2.5 kB
Part 03-Module 01-Lesson 05_Scripting/08. Scripting With Raw Input-Fs9uLV2qfgI.zh-CN.vtt
2.5 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/09. M4 L1B 08 Risk Factors V Alpha Factors Part 2 V2-AApfsuSpnMY.en.vtt
2.5 kB
Part 06-Module 01-Lesson 06_Conditional Probability/10. Total Probability-YSYpzFR4k1I.ar.vtt
2.5 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/11. M4 L1B 11 How An Alpha Factor Becomes A Risk Factor Part 1 V3-p0cTudt8kXI.en.vtt
2.5 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/15. The Median-WlT3eeW0rb0.en.vtt
2.5 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/27. L1 31 Transaction Costs V2-JGYAv7tQpyY.en.vtt
2.5 kB
Part 03-Module 01-Lesson 05_Scripting/17. Reading And Writing Files-w-ZG6DMkVi4.en.vtt
2.5 kB
Part 06-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-JIWv5fU3GLA.ar.vtt
2.5 kB
Part 02-Module 01-Lesson 04_Feature Extraction/09. T-SNE-xxcK8oZ6_WE.pt-BR.vtt
2.5 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/10. Boolean Comparison and Logical Operators-iNNsUJIDtVU.zh-CN.vtt
2.5 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/21. Working with Outliers-4RnQjtJB8t8.pt-BR.vtt
2.5 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/16. Binomial Distribution Conclusion-9gjCYs8f_PU.zh-CN.vtt
2.5 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/14. Common Types of Hypothesis Tests-8hv8KnvQ6JY.pt-BR.vtt
2.5 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/03. Setting Up Hypotheses - Part I-NpZxJg4S6X4.en.vtt
2.5 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/05. Variables-7pxpUot4x0w.pt-BR.vtt
2.5 kB
Part 03-Module 01-Lesson 03_Control Flow/07. Complex Boolean Expressions-gWmIKWgzFqI.pt-BR.vtt
2.5 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/10. Other Architectures-MsxFDuYlTuQ.pt-BR.vtt
2.5 kB
Part 03-Module 01-Lesson 01_Why Python Programming/04. L1 02 Course Overview V4-vFxXSIV5cHM.en.vtt
2.5 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/05. M4 L1B 04 Factor Model Assumptions V3-qEu3m_3eGWk.en.vtt
2.5 kB
Part 06-Module 01-Lesson 06_Conditional Probability/15. Summary-yepMH9VswI8.pt-BR.vtt
2.5 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/12. Normalizer-mQ_IjrtmmAk.ar.vtt
2.5 kB
Part 03-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Using With-OQ-Y0mMjm00.ar.vtt
2.5 kB
Part 06-Module 01-Lesson 06_Conditional Probability/15. Summary-yepMH9VswI8.zh-CN.vtt
2.5 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/05. Assignment Operators-p_qfzL-x3Cs.ar.vtt
2.5 kB
Part 01-Module 04-Lesson 09_Project 4 Alpha Research and Factor Modeling/01. M4 01 Intro To Project 4 V1-7goOG7CdUjU.en.vtt
2.5 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/02. Hypothesis Testing-9GbHHpiK6wk.pt-BR.vtt
2.5 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/23. M4 L3b 19 IVol Quantamental Investing V2-K6Ud6gams-U.en.vtt
2.5 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/09. Putting It All Together-IF8FlKW-Zo0.en.vtt
2.5 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/05. L2 04b Variables II V3-4IJqbP8vi6A.en.vtt
2.5 kB
Part 06-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-FV_hc3MzS_8.zh-CN.vtt
2.5 kB
Part 01-Module 01-Lesson 05_Market Mechanics/05. M1L3 08 Tick Data V4-2O0eSKmI6YQ.en.vtt
2.5 kB
Part 01-Module 01-Lesson 07_Stock Returns/01. M1L5 02 Returns V6-PngIo6G73Z8.en.vtt
2.5 kB
Part 03-Module 01-Lesson 04_Functions/14. Iterators And Generators-tYH8X4Zeh-0.zh-CN.vtt
2.5 kB
Part 06-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram-b8M9CWxRyQ4.ar.vtt
2.5 kB
Part 01-Module 02-Lesson 03_Regression/01. M2L3 01 Intro V4-C7vWJH05tKA.en.vtt
2.5 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/10. Perceptron Algorithm--zhTROHtscQ.pt-BR.vtt
2.5 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/10. Perceptron Algorithm--zhTROHtscQ.pt-BR.vtt
2.5 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/04. 04. Computer Vision Applications-aFJKp2NltCY.zh-CN.vtt
2.5 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/03. Testing-EeBZpb-PSac.en.vtt
2.5 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/02. Jupyter-qiYDWFLyXvg.pt-BR.vtt
2.5 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/02. Sampling To Distributions To Confidence Intervals-QYMLkDToigc.pt-BR.vtt
2.5 kB
Part 03-Module 01-Lesson 04_Functions/02. Default Arguments-cG6UfBZX2KI.pt-BR.vtt
2.5 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/14. KALMAN QUIZ Parameter Update 01 RENDER V3-UUXETqShme4.en.vtt
2.5 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/23. Bootstrapping the Central Limit Theorem-GJGUwNr_82s.pt-BR.vtt
2.5 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/01. M4 L3b 01 Case Studies Intro V3-oWWrWbzDi2k.en.vtt
2.5 kB
Part 07-Module 01-Lesson 02_Naive Bayes/08. SL NB 07 Q Bayesian Learning 1 V1 V4-J4BmsKXPnkA.en.vtt
2.4 kB
Part 02-Module 01-Lesson 04_Feature Extraction/03. TF-IDF-XZBiBIRcACE.en.vtt
2.4 kB
Part 01-Module 04-Lesson 06_Alpha Factors/45. M4 L3a 19 Quantiles Academic Research Vs Practitioners V2-AwL7cV2VyhM.en.vtt
2.4 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/06. 09 Higher Dimensions-eBHunImDmWw.zh-CN.vtt
2.4 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/06. 09 Higher Dimensions-eBHunImDmWw.zh-CN.vtt
2.4 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/03. Testing-EeBZpb-PSac.pt-BR.vtt
2.4 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/22. Random Observed Values-KFIt2OC3wCI.zh-CN.vtt
2.4 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/03. Exemplo de classificação-Dh625piH7Z0.zh-CN.vtt
2.4 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/03. Exemplo de classificação-Dh625piH7Z0.zh-CN.vtt
2.4 kB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/05. M4 L4 06 Standard Constraints V4-OPBKsNQPr6I.en.vtt
2.4 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/09. Putting It All Together-IF8FlKW-Zo0.pt-BR.vtt
2.4 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/03. M4 L3b 02 Overnight Returns Abstract V2-q5xidwa5W8w.en.vtt
2.4 kB
Part 03-Module 01-Lesson 04_Functions/08. Documentation-_Vl9NJkA6JQ.zh-CN.vtt
2.4 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/03. M4 L2A 02 Motivation For Risk Factor Model V2-jAQRjxK8PyQ.en.vtt
2.4 kB
Part 06-Module 01-Lesson 06_Conditional Probability/15. Summary-yepMH9VswI8.ja.vtt
2.4 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/13. Calculating the Mean-1nzZxmJ8xvU.en.vtt
2.4 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/03. Sampling Distributions Confidence Intervals-gICzUhMVymo.zh-CN.vtt
2.4 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/10. Perceptron Algorithm--zhTROHtscQ.zh-CN.vtt
2.4 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/10. Perceptron Algorithm--zhTROHtscQ.zh-CN.vtt
2.4 kB
Part 01-Module 04-Lesson 06_Alpha Factors/10. M4 L3a 07 Ranking Part 2 V2-uwPUV5LBhWY.en.vtt
2.4 kB
Part 03-Module 01-Lesson 03_Control Flow/28. Zip and Enumerate-bSJPzVArE7M.zh-CN.vtt
2.4 kB
Part 03-Module 01-Lesson 03_Control Flow/07. Complex Boolean Expressions-gWmIKWgzFqI.en.vtt
2.4 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/01. Introduction-4F7SC0C6tfQ.en.vtt
2.4 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/12. Other Activation Functions-kA-1vUt6cvQ.zh-CN.vtt
2.4 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/12. Introduction to Summary Statistics-PCZmHCrcMcw.en.vtt
2.4 kB
Part 07-Module 01-Lesson 04_Decision Trees/06. Student Admissions-TdgBi6LtOB8.zh-CN.vtt
2.4 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/02. M4 L2A 13 Time Series Risk Model Factor Exposure V4-WPBSMptBrfw.en.vtt
2.4 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/27. L2 04 Tuples V3-33xN-AbTMoc.en.vtt
2.4 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/15. Sequence-Batching-Z4OiyU0Cldg.pt-BR.vtt
2.4 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/22. L2 07 Lists And Membership Operators II V3-3Nj-b-ZzqH8.pt-BR.vtt
2.4 kB
Part 01-Module 03-Lesson 02_ETFs/03. L2 03 Commodity Futures V3-qvSubjxMGJ0.en.vtt
2.4 kB
Part 01-Module 04-Lesson 06_Alpha Factors/23. M4 L3a 11 Universe Construction Rule V3-Cr0-k7gUSNg.en.vtt
2.4 kB
Part 03-Module 01-Lesson 03_Control Flow/02. If Statements-jWiIUMrwPqA.zh-CN.vtt
2.4 kB
Part 01-Module 02-Lesson 03_Regression/04. M2L3 04 Parameters Of A Distribution V3--akdmiLDny4.en.vtt
2.4 kB
Part 07-Module 01-Lesson 04_Decision Trees/06. Student Admissions-TdgBi6LtOB8.pt-BR.vtt
2.4 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/10. Other Architectures-MsxFDuYlTuQ.en.vtt
2.4 kB
Part 03-Module 01-Lesson 05_Scripting/13. Handling Error Specifying Exceptions-EHW5I7shdJg.pt-BR.vtt
2.4 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/24. L1 27 OpenEnd Mutual Funds V2-T4_mmjEKUAo.en.vtt
2.4 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/23. Bootstrapping the Central Limit Theorem-GJGUwNr_82s.en.vtt
2.4 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/16. DL 18 S Softmax-n8S-v_LCTms.zh-CN.vtt
2.4 kB
Part 06-Module 01-Lesson 06_Conditional Probability/01. Introduction to Conditional Probability-Ok8948Wcbmo.ar.vtt
2.4 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 S Softmax-n8S-v_LCTms.zh-CN.vtt
2.4 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/17. Shape of Distributions-UnN99AAYf8k.zh-CN.vtt
2.4 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/06. M4 L3b 05 Overnight Returns Methods Quantile Analysis V3-4Js3mghq2mU.en.vtt
2.4 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/05. 05. Emotional Intelligence-D_LzJsJH5qk.en.vtt
2.4 kB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/09. Text Processing-pqheVyctkNQ.zh-CN.vtt
2.4 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/16. Using A Confidence Interval to Make A Decision-MghT95b6LbQ.zh-CN.vtt
2.4 kB
Part 10-Module 01-Lesson 01_Intro to NLP/10. Text Processing-pqheVyctkNQ.zh-CN.vtt
2.4 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/19. Quiz Cross Entropy-njq6bYrPqSU.en.vtt
2.4 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz Cross Entropy-njq6bYrPqSU.en.vtt
2.4 kB
Part 04-Module 01-Lesson 02_Vectors/02. Vectors 2-R7WiQYixvRQ.zh-CN.vtt
2.3 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/20. Outliers-HKIsvkZUZfo.zh-CN.vtt
2.3 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/19. Quiz Cross Entropy-njq6bYrPqSU.pt-BR.vtt
2.3 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz Cross Entropy-njq6bYrPqSU.pt-BR.vtt
2.3 kB
Part 01-Module 01-Lesson 06_Data Processing/02. M1L4 02 Market Data V5-9aEp374GsgQ.en.vtt
2.3 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/05. Setting Up Hypotheses - Part II-nByvHz77GiA.zh-CN.vtt
2.3 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/20. M4 L3b 16 IVol Arbitrage Risk V3-rKtJ3iAYYns.en.vtt
2.3 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/25. L2 05 Lists Methods V1-WXkPm4rv6ng.pt-BR.vtt
2.3 kB
Part 07-Module 01-Lesson 03_Clustering/12. K-Means Clustering Visualization 3-WfwX3B4d8_I.zh-CN.vtt
2.3 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-GeINbOOYkF8.ar.vtt
2.3 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/02. Histograms-4t10RgUv2Fc.ar.vtt
2.3 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/26. Notation for the Mean-3EF15AoRxyM.pt-BR.vtt
2.3 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/02. Sampling To Distributions To Confidence Intervals-QYMLkDToigc.en.vtt
2.3 kB
Part 07-Module 01-Lesson 01_Linear Regression/10. Mean Squared Error-MRyxmZDngI4.pt-BR.vtt
2.3 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/02. Hypothesis Testing-9GbHHpiK6wk.zh-CN.vtt
2.3 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/24. There Must Be A Better Way-oBp8YX2AgJw.ar.vtt
2.3 kB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/14. PyTorch - Part 4-AEJV_RKZ7VU.en.vtt
2.3 kB
Part 01-Module 04-Lesson 06_Alpha Factors/03. M4 L3a 02 Alpha Factors Versus Risk Factor Modeling V2-qsahBvhVTkk.en.vtt
2.3 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/29. L2 03 Sets V2-eIHNFgTFfnA.en.vtt
2.3 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/26. L1 30 ClosedEnd Mutual Funds V3-y2VhtrF6vdc.en.vtt
2.3 kB
Part 06-Module 01-Lesson 07_Bayes Rule/20. Bayes Rule Summary-RgXQ8GRsjfc.zh-CN.vtt
2.3 kB
Part 07-Module 01-Lesson 02_Naive Bayes/05. SL NB 04 Bayes Theorem V1 V2-nVbPJmf53AI.zh-CN.vtt
2.3 kB
Part 03-Module 01-Lesson 05_Scripting/02. Python Installation-2_P05aYChqQ.ar.vtt
2.3 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/03. M4 L2A 14 Time Series Risk Model Specific Variance V2-I0uJLfh_OgQ.en.vtt
2.3 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/17. One-Hot Encoding-AePvjhyvsBo.en.vtt
2.3 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/17. One-Hot Encoding-AePvjhyvsBo.en.vtt
2.3 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/08. Continuous vs. Discrete Data-BzgZebZD9kk.ar.vtt
2.3 kB
Part 01-Module 02-Lesson 02_Outliers and Filtering/09. M2L2 08 Generating Robust Trading Signals V3-1ikkZmVkjl0.en.vtt
2.3 kB
Part 03-Module 01-Lesson 05_Scripting/05. Running A Python Script-vMKemwCderg.en.vtt
2.3 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/12. Other Language Associated With Confidence Intervals-9KYVRx7-llg.en.vtt
2.3 kB
Part 07-Module 01-Lesson 02_Naive Bayes/08. SL NB 07 Q Bayesian Learning 1 V1 V4-J4BmsKXPnkA.pt-BR.vtt
2.3 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/11. M4 L2A 22 Cross Sectional Risk Model A Different Approach V2-LauZ7h4bgKE.en.vtt
2.3 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/02. L1 01 Stocks V2-XHo5iyxDxOQ.en.vtt
2.3 kB
Part 06-Module 01-Lesson 13_Case Study AB tests/04. Business Example-Wzz7omSDfEk.pt-BR.vtt
2.3 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/07. What is the Standard Deviation Measuring-IbwUJ3ORZ5s.zh-CN.vtt
2.3 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/06. 5 Number Summary to Variance-Ljhau0hrZ1g.ar.vtt
2.3 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/28. Multiple Testing Corrections-DuMgeHrkIF0.en.vtt
2.3 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/15. Momentum-r-rYz_PEWC8.zh-CN.vtt
2.3 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/19. M4 L1B 19 Index Changes V1-C7QNfPZBXXo.en.vtt
2.3 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/28. Multiple Testing Corrections-DuMgeHrkIF0.pt-BR.vtt
2.3 kB
Part 07-Module 01-Lesson 02_Naive Bayes/08. SL NB 07 Q Bayesian Learning 1 V1 V4-J4BmsKXPnkA.zh-CN.vtt
2.3 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/13. Formula Summary-zqo1RJEHT_0.pt-BR.vtt
2.3 kB
Part 03-Module 01-Lesson 05_Scripting/17. Reading And Writing Files-w-ZG6DMkVi4.zh-CN.vtt
2.3 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/25. Gradient Descent Algorithm-snxmBgi_GeU.zh-CN.vtt
2.3 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/25. Gradient Descent Algorithm-snxmBgi_GeU.zh-CN.vtt
2.3 kB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/03. L3 03 Portfolio Mean V3-vozlctvug7I.en.vtt
2.3 kB
Part 06-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-vasdN2Gol0M.ar.vtt
2.3 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/20. When Does the CLT Not Work-uZGTVUEMfrU.ar.vtt
2.3 kB
Part 06-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-9R44IyZ-aQI.th.vtt
2.3 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/23. Connecting Errors and P-Values-hFNjd5l9CLs.en.vtt
2.2 kB
Part 06-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.ar.vtt
2.2 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/05. L2 04b Variables II V3-4IJqbP8vi6A.zh-CN.vtt
2.2 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/23. Kalman Filter Code - Artificial Intelligence for Robotics-3xBycKfnCOQ.es-ES.vtt
2.2 kB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/14. PyTorch - Part 4-AEJV_RKZ7VU.pt-BR.vtt
2.2 kB
Part 06-Module 01-Lesson 07_Bayes Rule/35. Using Sensor Data-vhl-SADfti8.ar.vtt
2.2 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/05. Confidence Interval for a Difference In Means-8hrWGzjyhck.en.vtt
2.2 kB
Part 07-Module 01-Lesson 03_Clustering/16. Counterintuitive Clusters-StmEUgT1XSY.pt-BR.vtt
2.2 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/14. M4 L2A 25 Specific Variance V2-JwA9g3NBglE.en.vtt
2.2 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/14. Common Types of Hypothesis Tests-8hv8KnvQ6JY.zh-CN.vtt
2.2 kB
Part 03-Module 01-Lesson 04_Functions/11. L4 08 Lambda Expressions V3-wkEmPz1peJM.en.vtt
2.2 kB
Part 03-Module 01-Lesson 01_Why Python Programming/04. L1 02 Course Overview V4-vFxXSIV5cHM.zh-CN.vtt
2.2 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/08. M4 L2A 05 Covariance Matrix Of Factors V3-llA1A0vjSuI.en.vtt
2.2 kB
Part 02-Module 01-Lesson 04_Feature Extraction/09. T-SNE-xxcK8oZ6_WE.en.vtt
2.2 kB
Part 07-Module 01-Lesson 03_Clustering/16. Counterintuitive Clusters-StmEUgT1XSY.en.vtt
2.2 kB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/01. 1 SentimentRNN Intro V1-bQWUuaMc9ZI.en.vtt
2.2 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-b2zvrFL8AUw.es-ES.vtt
2.2 kB
Part 06-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram-b8M9CWxRyQ4.pt-BR.vtt
2.2 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/12. Other Language Associated With Confidence Intervals-9KYVRx7-llg.pt-BR.vtt
2.2 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/25. L2 05 Lists Methods V1-WXkPm4rv6ng.en.vtt
2.2 kB
Part 01-Module 02-Lesson 02_Outliers and Filtering/05. M2L2 04 Spotting Outliers In Raw Data V3-kFIB0YIW1TQ.en.vtt
2.2 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/29. L2 03 Sets V2-eIHNFgTFfnA.zh-CN.vtt
2.2 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/11. Why the Standard Deviation-XlTBvjQ2t8w.ar.vtt
2.2 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/21. Working with Outliers-4RnQjtJB8t8.en.vtt
2.2 kB
Part 06-Module 01-Lesson 13_Case Study AB tests/11. Metric - Average Reading Duration-w6Y9ZxHDEbw.zh-CN.vtt
2.2 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/12. Variance Standard Deviation Final Points-vXUgp2375j4.pt-BR.vtt
2.2 kB
Part 03-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules Part II-aASigWQ_XU0.pt-BR.vtt
2.2 kB
Part 03-Module 01-Lesson 05_Scripting/05. Running A Python Script-vMKemwCderg.zh-CN.vtt
2.2 kB
Part 03-Module 01-Lesson 03_Control Flow/07. Complex Boolean Expressions-gWmIKWgzFqI.zh-CN.vtt
2.2 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/07. Types Of Errors - Part I-aw6GMxIvENc.en.vtt
2.2 kB
Part 06-Module 01-Lesson 13_Case Study AB tests/05. Experiment I-JLKAdT2JESk.zh-CN.vtt
2.2 kB
Part 01-Module 03-Lesson 02_ETFs/10. L2 12 Misaligned ETF Pricing V3-5-pBZ3fyv6I.en.vtt
2.2 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/13. Formula Summary-zqo1RJEHT_0.es-ES.vtt
2.2 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/09. Putting It All Together-IF8FlKW-Zo0.zh-CN.vtt
2.2 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/01. Introduction-4F7SC0C6tfQ.zh-CN.vtt
2.2 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/13. Calculating the Mean-1nzZxmJ8xvU.zh-CN.vtt
2.2 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.pt-BR.vtt
2.2 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.pt-BR.vtt
2.2 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/14. KALMAN QUIZ Parameter Update 01 RENDER V3-UUXETqShme4.zh-CN.vtt
2.2 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/32. Multiclass Classification-uNTtvxwfox0.pt-BR.vtt
2.2 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/32. Multiclass Classification-uNTtvxwfox0.pt-BR.vtt
2.2 kB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/06. Context-J-4pfu2w1C0.en.vtt
2.2 kB
Part 03-Module 01-Lesson 05_Scripting/02. Python Installation-2_P05aYChqQ.pt-BR.vtt
2.2 kB
Part 10-Module 01-Lesson 01_Intro to NLP/07. Context-J-4pfu2w1C0.en.vtt
2.2 kB
Part 06-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-hoVOT8qcQ7c.ar.vtt
2.2 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/02. Introduction-XZL934YQ-FQ.ja.vtt
2.2 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-b2zvrFL8AUw.en.vtt
2.2 kB
Part 06-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-JIWv5fU3GLA.it.vtt
2.2 kB
Part 07-Module 01-Lesson 03_Clustering/06. Optimizing Centers (Rubber Bands)-nNR4hjhhGBc.ar.vtt
2.2 kB
Part 06-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-JIWv5fU3GLA.es-ES.vtt
2.2 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/12. Normalizer-mQ_IjrtmmAk.pt-BR.vtt
2.2 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/08. M4 L3b 06 Winners And Losers In Momentum Investing V2-84ygzbLENbE.en.vtt
2.2 kB
Part 01-Module 02-Lesson 04_Time Series Modeling/01. M2L4 01 Time Series Modeling V4-QeIu7GMZl20.en.vtt
2.1 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/23. Kalman Filter Code - Artificial Intelligence for Robotics-3xBycKfnCOQ.en.vtt
2.1 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/27. L2 04 Tuples V3-33xN-AbTMoc.zh-CN.vtt
2.1 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/15. Sequence-Batching-Z4OiyU0Cldg.en.vtt
2.1 kB
Part 06-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram-b8M9CWxRyQ4.it.vtt
2.1 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/05. Variables-7pxpUot4x0w.en.vtt
2.1 kB
Part 03-Module 01-Lesson 03_Control Flow/07. Truth Value Testing-e52uw7ejV8k.pt-BR.vtt
2.1 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/img/codecogseqn-49.gif
2.1 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/img/sigmoid-derivative.gif
2.1 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/img/codecogseqn-49.gif
2.1 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/img/sigmoid-derivative.gif
2.1 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/18. Data in the Real World-HmipezTjTDY.ar.vtt
2.1 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/05. Assignment Operators-p_qfzL-x3Cs.pt-BR.vtt
2.1 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/02. Introduction-XZL934YQ-FQ.es-ES.vtt
2.1 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/32. Multiclass Classification-uNTtvxwfox0.en.vtt
2.1 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/05. Confidence Interval for a Difference In Means-8hrWGzjyhck.pt-BR.vtt
2.1 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/32. Multiclass Classification-uNTtvxwfox0.en.vtt
2.1 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/02. Introduction-XZL934YQ-FQ.es.vtt
2.1 kB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/11. M4 L2b 11 Writing It Down Pt 4 V3-7XO-syqIpCE.en.vtt
2.1 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/03. Setting Up Hypotheses - Part I-NpZxJg4S6X4.zh-CN.vtt
2.1 kB
Part 02-Module 01-Lesson 04_Feature Extraction/03. TF-IDF-XZBiBIRcACE.zh-CN.vtt
2.1 kB
Part 07-Module 01-Lesson 01_Linear Regression/img/codecogseqn-61.gif
2.1 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/19. Quiz Cross Entropy-njq6bYrPqSU.zh-CN.vtt
2.1 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz Cross Entropy-njq6bYrPqSU.zh-CN.vtt
2.1 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/12. Introduction to Summary Statistics-PCZmHCrcMcw.zh-CN.vtt
2.1 kB
Part 07-Module 01-Lesson 03_Clustering/10. K-Means Cluster Visualization-iCTPBcowJRY.ar.vtt
2.1 kB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/18. PyTorch V2 Part 5 Solution 2 V1-3Py2SbtZLbc.en.vtt
2.1 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/16. M4 L1B 16 Fundamentals V1-rPii5-ry8nc.en.vtt
2.1 kB
Part 01-Module 04-Lesson 06_Alpha Factors/38. M4 L3a 171 Turnover As Proxy For Real World Constraints V2-6xo8sZjoSVk.en.vtt
2.1 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/06. L1 07 Ratios V2-Dfbwep-tkok.en.vtt
2.1 kB
Part 03-Module 01-Lesson 04_Functions/02. Default Arguments-cG6UfBZX2KI.en.vtt
2.1 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/13. Formula Summary-zqo1RJEHT_0.en.vtt
2.1 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/26. Notation for the Mean-3EF15AoRxyM.en.vtt
2.1 kB
Part 06-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-yYqN9Mf4jqw.th.vtt
2.1 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/10. Other Architectures-MsxFDuYlTuQ.zh-CN.vtt
2.1 kB
Part 03-Module 01-Lesson 05_Scripting/13. Handling Error Specifying Exceptions-EHW5I7shdJg.en.vtt
2.1 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/15. Summary-VP-PMcgqhc8.ar.vtt
2.1 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/17. One-Hot Encoding-AePvjhyvsBo.pt-BR.vtt
2.1 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/17. One-Hot Encoding-AePvjhyvsBo.pt-BR.vtt
2.1 kB
Part 03-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules Part II-aASigWQ_XU0.en.vtt
2.1 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/17. One-Hot Encoding-AePvjhyvsBo.zh-CN.vtt
2.1 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/17. One-Hot Encoding-AePvjhyvsBo.zh-CN.vtt
2.1 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/02. 02. What Is Vision-_99V1rUNFa4.en.vtt
2.1 kB
Part 06-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-JIWv5fU3GLA.en.vtt
2.1 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/05. 05. Emotional Intelligence-D_LzJsJH5qk.zh-CN.vtt
2.1 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-b2zvrFL8AUw.ja.vtt
2.1 kB
Part 06-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1-_DjfTytro6I.ar.vtt
2.1 kB
Part 07-Module 01-Lesson 01_Linear Regression/img/f1.gif
2.1 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/12. Normalizer-mQ_IjrtmmAk.es-ES.vtt
2.1 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/22. Bootstrapping-42j3YclcZ4Q.pt-BR.vtt
2.1 kB
Part 06-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.ar.vtt
2.1 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/19. What is Notation-MaHV5cKfcmE.ar.vtt
2.0 kB
Part 06-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.th.vtt
2.0 kB
Part 03-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Using With-OQ-Y0mMjm00.pt-BR.vtt
2.0 kB
Part 06-Module 01-Lesson 04_Probability/19. Probability Conclusion-dsVKoXymYDU.ar.vtt
2.0 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/05. Data Types-gT6EYlsLZkE.pt-BR.vtt
2.0 kB
Part 06-Module 01-Lesson 06_Conditional Probability/10. Total Probability-YSYpzFR4k1I.it.vtt
2.0 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/02. Introduction-XZL934YQ-FQ.pt-PT.vtt
2.0 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/23. Kalman Filter Code - Artificial Intelligence for Robotics-3xBycKfnCOQ.ja.vtt
2.0 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/02. Introduction-XZL934YQ-FQ.pt.vtt
2.0 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/12. Notation Parameters vs. Statistics-webref_dLrA.ar.vtt
2.0 kB
Part 02-Module 01-Lesson 03_Text Processing/08. Part-of-Speech Tagging-WFEu8bXI5OA.pt-BR.vtt
2.0 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/24. Conclusions In Hypothesis Testing-I0Mo7hcxahY.pt-BR.vtt
2.0 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/03. Testing-EeBZpb-PSac.zh-CN.vtt
2.0 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/07. Types Of Errors - Part I-aw6GMxIvENc.pt-BR.vtt
2.0 kB
Part 06-Module 01-Lesson 13_Case Study AB tests/04. Business Example-Wzz7omSDfEk.en.vtt
2.0 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/23. Bootstrapping the Central Limit Theorem-GJGUwNr_82s.zh-CN.vtt
2.0 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/15. The Median-WlT3eeW0rb0.zh-CN.vtt
2.0 kB
Part 06-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram-b8M9CWxRyQ4.ja.vtt
2.0 kB
Part 06-Module 01-Lesson 06_Conditional Probability/10. Total Probability-YSYpzFR4k1I.es-ES.vtt
2.0 kB
Part 06-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.ar.vtt
2.0 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/24. Conclusions In Hypothesis Testing-I0Mo7hcxahY.en.vtt
2.0 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-DjsL64Kjr1Q.pt-BR.vtt
2.0 kB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/12. M4 L2b 13 Principal Components V3-XtecKk58CLs.en.vtt
2.0 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/23. Connecting Errors and P-Values-hFNjd5l9CLs.pt-BR.vtt
2.0 kB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/06. Context-J-4pfu2w1C0.zh-CN.vtt
2.0 kB
Part 10-Module 01-Lesson 01_Intro to NLP/07. Context-J-4pfu2w1C0.zh-CN.vtt
2.0 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.en.vtt
2.0 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.en.vtt
2.0 kB
Part 01-Module 03-Lesson 02_ETFs/02. L2 12 Shortcomings Of Mutual Funds V2-oEqsaex31Qg.en.vtt
2.0 kB
Part 01-Module 01-Lesson 05_Market Mechanics/02. M1L3 02 Farmers Market V3-i_itXOdetCc.en.vtt
2.0 kB
Part 06-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram-b8M9CWxRyQ4.es-ES.vtt
2.0 kB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/01. L3 01 Intro V1-PxLJniuGyC0.en.vtt
2.0 kB
Part 06-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-FnNveASivMA.th.vtt
2.0 kB
Part 01-Module 01-Lesson 08_Momentum Trading/01. M1L6 01 Designing A Trading Strategy V4-O7c6bPXBUsU.en.vtt
2.0 kB
Part 03-Module 01-Lesson 05_Scripting/13. Handling Error Specifying Exceptions-EHW5I7shdJg.zh-CN.vtt
2.0 kB
Part 07-Module 01-Lesson 02_Naive Bayes/06. SL NB 05 Q False Positives V1 V2-ngA6v09eP08.pt-BR.vtt
2.0 kB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/01. M4 L2b 01 PCA Statistical Risk Model V1-lDxqJ0JYUzs.en.vtt
2.0 kB
Part 06-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram-aUFWZ2uJuBE.en-GB.vtt
2.0 kB
Part 07-Module 01-Lesson 02_Naive Bayes/06. SL NB 05 Q False Positives V1 V2-ngA6v09eP08.en.vtt
2.0 kB
Part 03-Module 01-Lesson 04_Functions/11. L4 08 Lambda Expressions V3-wkEmPz1peJM.zh-CN.vtt
2.0 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/21. L1 24 Hedging Strategies V3-8bzw4ZMGpWU.en.vtt
2.0 kB
Part 06-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram-b8M9CWxRyQ4.en.vtt
2.0 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/15. Sequence-Batching-Z4OiyU0Cldg.zh-CN.vtt
2.0 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/12. L1 13 Hang Seng Index Construction V2-rdGdC-meRLU.en.vtt
2.0 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-GeINbOOYkF8.pt-BR.vtt
2.0 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/12. Normalizer-mQ_IjrtmmAk.en.vtt
2.0 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/12. Variance Standard Deviation Final Points-vXUgp2375j4.en.vtt
2.0 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/22. Outliers Advice-BhhDoTgYQmI.ar.vtt
2.0 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/16. M4 L2A 27 Summary V1-rdqINNkTlqs.en.vtt
2.0 kB
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/14. PyTorch - Part 4-AEJV_RKZ7VU.zh-CN.vtt
2.0 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/11. L1 12 How An Index Is Constructed V2-dsbi4dvdU9c.en.vtt
2.0 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/18. M4 L3b 14 IVol Value And Idiosyncratic Volatility Overview V2-h7vamh2FPMs.en.vtt
2.0 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/10. AffdexMe Demo-dpFtXDqakvY.en.vtt
2.0 kB
Part 06-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.pt-BR.vtt
2.0 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/04. What is Data-ldTDAjrVsA8.ar.vtt
2.0 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/01. Welcome to Computer Vision-GgA3_-MMT_I.en.vtt
1.9 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/21. Working with Outliers-4RnQjtJB8t8.zh-CN.vtt
1.9 kB
Part 07-Module 01-Lesson 03_Clustering/16. Counterintuitive Clusters-StmEUgT1XSY.zh-CN.vtt
1.9 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/25. L2 05 Lists Methods V1-WXkPm4rv6ng.zh-CN.vtt
1.9 kB
Part 06-Module 01-Lesson 06_Conditional Probability/10. Total Probability-YSYpzFR4k1I.en.vtt
1.9 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/28. Multiple Testing Corrections-DuMgeHrkIF0.zh-CN.vtt
1.9 kB
Part 01-Module 01-Lesson 05_Market Mechanics/10. M1L3 14 Markets In Different Timezones V3-wmmEpPM-HVs.en.vtt
1.9 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/02. Introduction-XZL934YQ-FQ.en.vtt
1.9 kB
Part 06-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-R4zq6mPPMxs.ar.vtt
1.9 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/22. Bootstrapping-42j3YclcZ4Q.en.vtt
1.9 kB
Part 07-Module 01-Lesson 01_Linear Regression/img/f2.gif
1.9 kB
Part 06-Module 01-Lesson 07_Bayes Rule/32. Reducing Uncertainty-zuFMhmKQ--o.ar.vtt
1.9 kB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/08. NLP M1-L1 01 NLP Pipeline-vJx6oKlu_MM.pt-BR.vtt
1.9 kB
Part 10-Module 01-Lesson 01_Intro to NLP/09. NLP M1-L1 01 NLP Pipeline-vJx6oKlu_MM.pt-BR.vtt
1.9 kB
Part 06-Module 01-Lesson 06_Conditional Probability/01. Introduction to Conditional Probability-Ok8948Wcbmo.pt-BR.vtt
1.9 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/11. M4 L2A 07 Taking Constants Out Of Variance And Covariance Optional V3-M9R9870m_o0.en.vtt
1.9 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/25. Background Of Bootstrapping-6Vg5kGoDl7k.ar.vtt
1.9 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/25. L1 29 Open End Funds Holding Cash For Withdrawals V3-RU8-ZRBJ2Cw.en.vtt
1.9 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/18. M4 L1B 18 EventDriven Factors V1-2mnwjChH2hg.en.vtt
1.9 kB
Part 06-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.it.vtt
1.9 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/29. How Do Confidence Intervals Hypothesis Tests Compare-KEmsEViOoMA.pt-BR.vtt
1.9 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/23. Kalman Filter Code - Artificial Intelligence for Robotics-3xBycKfnCOQ.zh-CN.vtt
1.9 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/05. Data Types-gT6EYlsLZkE.en.vtt
1.9 kB
Part 06-Module 01-Lesson 07_Bayes Rule/35. Using Sensor Data-vhl-SADfti8.pt-BR.vtt
1.9 kB
Part 01-Module 03-Lesson 02_ETFs/05. L2 07 ETF Sponsor V2-v5vfAP1nJ10.en.vtt
1.9 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/13. M4 L2A 09 Variance Of 2 Stocks Part 2 V4-tSMutw0f6OE.en.vtt
1.9 kB
Part 07-Module 01-Lesson 03_Clustering/17. Counterintuitive Clusters 2-HyjBus7S2gY.ar.vtt
1.9 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-pOKmt4w8T3g.pt-BR.vtt
1.9 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/13. Formula Summary-zqo1RJEHT_0.ja.vtt
1.9 kB
Part 06-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-JIWv5fU3GLA.ja.vtt
1.9 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-DjsL64Kjr1Q.en.vtt
1.9 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-DjsL64Kjr1Q.es-ES.vtt
1.9 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-YIELbuet-ZE.ar.vtt
1.9 kB
Part 01-Module 03-Lesson 02_ETFs/04. L2 06 Hedging V3-4k1bdohhawI.en.vtt
1.9 kB
Part 06-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-GO6kbL3QRBE.th.vtt
1.9 kB
Part 02-Module 01-Lesson 04_Feature Extraction/09. T-SNE-xxcK8oZ6_WE.zh-CN.vtt
1.9 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/03. What is the Difference-I3tQvrCgNrQ.ar.vtt
1.9 kB
Part 06-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-JIWv5fU3GLA.pt-BR.vtt
1.9 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/02. Sampling To Distributions To Confidence Intervals-QYMLkDToigc.zh-CN.vtt
1.9 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/19. M4 L3b 15 IVol Arbitrage And Efficient Pricing Of Stocks V3-7Fqe5DP6iG8.en.vtt
1.9 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/26. Notation for the Mean-3EF15AoRxyM.zh-CN.vtt
1.9 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/32. Multiclass Classification-uNTtvxwfox0.zh-CN.vtt
1.9 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/32. Multiclass Classification-uNTtvxwfox0.zh-CN.vtt
1.9 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/10. Traditional Confidence Interval Methods-DmZwYHuz2eM.pt-BR.vtt
1.9 kB
Part 03-Module 01-Lesson 04_Functions/02. Default Arguments-cG6UfBZX2KI.zh-CN.vtt
1.9 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/23. Connecting Errors and P-Values-hFNjd5l9CLs.zh-CN.vtt
1.9 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/17. M4 L2A 11 Types Of Risk Models V1-SHj2VzJggAE.en.vtt
1.9 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/06. Example of Sampling Distributions - Part I-1XezzP6kxUE.ar.vtt
1.9 kB
Part 06-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Iz4ViIg9ZlQ.th.vtt
1.8 kB
Part 07-Module 01-Lesson 04_Decision Trees/05. MLND SL DT 04 Q Student Admissions V3 MAIN V1-MOa335cQGI4.en.vtt
1.8 kB
Part 06-Module 01-Lesson 06_Conditional Probability/10. Total Probability-YSYpzFR4k1I.pt-BR.vtt
1.8 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/06. 5 Number Summary to Variance-Ljhau0hrZ1g.pt-BR.vtt
1.8 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/07. Types Of Errors - Part I-aw6GMxIvENc.zh-CN.vtt
1.8 kB
Part 07-Module 01-Lesson 04_Decision Trees/08. Entropy Formula-iZiSYrOKvpo.en.vtt
1.8 kB
Part 02-Module 01-Lesson 03_Text Processing/07. Stop Word Removal-WAU_Ij0GJbw.pt-BR.vtt
1.8 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/02. 02. What Is Vision-_99V1rUNFa4.zh-CN.vtt
1.8 kB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/02. Structured Languages-NsmqUIHlk6U.en.vtt
1.8 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/05. Assignment Operators-p_qfzL-x3Cs.en.vtt
1.8 kB
Part 06-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.es-ES.vtt
1.8 kB
Part 10-Module 01-Lesson 01_Intro to NLP/03. Structured Languages-NsmqUIHlk6U.en.vtt
1.8 kB
Part 01-Module 03-Lesson 02_ETFs/10. L2 13 Realigning ETF Share Prices V2-aRXJxjQQSiI.en.vtt
1.8 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/05. Variables-7pxpUot4x0w.zh-CN.vtt
1.8 kB
Part 06-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-JIWv5fU3GLA.zh-CN.vtt
1.8 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/05. Confidence Interval for a Difference In Means-8hrWGzjyhck.zh-CN.vtt
1.8 kB
Part 01-Module 02-Lesson 03_Regression/15. M2L3 14 Regression In Trading V2-bcOGRWxg7qQ.en.vtt
1.8 kB
Part 01-Module 03-Lesson 02_ETFs/01. L2 01 Intro V2-utlPzT8MEsM.en.vtt
1.8 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-DjsL64Kjr1Q.ja.vtt
1.8 kB
Part 06-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.th.vtt
1.8 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/02. Introduction-XZL934YQ-FQ.zh-CN.vtt
1.8 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/05. Data Types-gT6EYlsLZkE.zh-CN.vtt
1.8 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/20. L1 22 Relative Returns V2-m4MvYRlyPoU.en.vtt
1.8 kB
Part 03-Module 01-Lesson 03_Control Flow/07. Truth Value Testing-e52uw7ejV8k.en.vtt
1.8 kB
Part 07-Module 01-Lesson 04_Decision Trees/08. Entropy Formula-iZiSYrOKvpo.zh-CN.vtt
1.8 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/20. When Does the CLT Not Work-uZGTVUEMfrU.pt-BR.vtt
1.8 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/03. L1 02 Indices V2-BRv5B78YBGs.en.vtt
1.8 kB
Part 02-Module 01-Lesson 03_Text Processing/03. Capturing Text Data-Z4mnMN1ApG4.en.vtt
1.8 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/12. Non-Linear Regions-B8UrWnHh1Wc.en.vtt
1.8 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/12. Non-Linear Regions-B8UrWnHh1Wc.en.vtt
1.8 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/12. Normalizer-mQ_IjrtmmAk.ja.vtt
1.8 kB
Part 06-Module 01-Lesson 13_Case Study AB tests/04. Business Example-Wzz7omSDfEk.zh-CN.vtt
1.8 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/15. L1 18 Alpha And Beta V3-CcVdfrr5nD8.en.vtt
1.8 kB
Part 03-Module 01-Lesson 05_Scripting/02. Python Installation-2_P05aYChqQ.en.vtt
1.8 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/04. 分类问题 2 -46PywnGa_cQ.en.vtt
1.8 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/04. 分类问题 2 -46PywnGa_cQ.en.vtt
1.8 kB
Part 06-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-hoVOT8qcQ7c.it.vtt
1.8 kB
Part 06-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1-_DjfTytro6I.pt-BR.vtt
1.8 kB
Part 06-Module 01-Lesson 06_Conditional Probability/10. Total Probability-YSYpzFR4k1I.zh-CN.vtt
1.8 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/02. Histograms-4t10RgUv2Fc.pt-BR.vtt
1.8 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/01. Confidence Intervals Introduction-crleT4000ak.pt-BR.vtt
1.8 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/12. Other Language Associated With Confidence Intervals-9KYVRx7-llg.zh-CN.vtt
1.8 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-b2zvrFL8AUw.zh-CN.vtt
1.8 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/24. Conclusions In Hypothesis Testing-I0Mo7hcxahY.zh-CN.vtt
1.8 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/08. LSTM 7 Use Gate-5Ifolm1jTdY.en.vtt
1.8 kB
Part 01-Module 01-Lesson 08_Momentum Trading/13. M1L6 12 Finding Alpha V1-r8lfWVhfQC0.en.vtt
1.8 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/28. L1 32 Summary V1-Pt2sVftdwS0.en.vtt
1.8 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/15. Two Useful Theorems-jQ5i7CALdRQ.ar.vtt
1.8 kB
Part 03-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules Part II-aASigWQ_XU0.zh-CN.vtt
1.8 kB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/04. Unstructured Text-OmwSdaec5vU.en.vtt
1.8 kB
Part 10-Module 01-Lesson 01_Intro to NLP/05. Unstructured Text-OmwSdaec5vU.en.vtt
1.8 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/14. L1 16 Funds V2-s9f2Bzc9lnk.en.vtt
1.8 kB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/08. NLP M1-L1 01 NLP Pipeline-vJx6oKlu_MM.en.vtt
1.8 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-pOKmt4w8T3g.es-ES.vtt
1.8 kB
Part 07-Module 01-Lesson 02_Naive Bayes/12. MLND SL NB Solution Naive Bayes Algorithm-QDj3xzjuYmo.en.vtt
1.8 kB
Part 10-Module 01-Lesson 01_Intro to NLP/09. NLP M1-L1 01 NLP Pipeline-vJx6oKlu_MM.en.vtt
1.8 kB
Part 03-Module 01-Lesson 04_Functions/01. Introduction-p5L4rTV1Pgk.ar.vtt
1.8 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/34. Chain Rule-YAhIBOnbt54.pt-BR.vtt
1.8 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/34. Chain Rule-YAhIBOnbt54.pt-BR.vtt
1.8 kB
Part 01-Module 03-Lesson 02_ETFs/03. L2 05 International ETFs V2-OL2p8S-82mY.en.vtt
1.8 kB
Part 06-Module 01-Lesson 06_Conditional Probability/01. Introduction to Conditional Probability-Ok8948Wcbmo.en.vtt
1.8 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/08. LSTM 7 Use Gate-5Ifolm1jTdY.pt-BR.vtt
1.8 kB
Part 01-Module 04-Lesson 06_Alpha Factors/27. M4 L3a 13 Sharpe Ratio V4-W8nfg1fkloA.en.vtt
1.8 kB
Part 03-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Using With-OQ-Y0mMjm00.en.vtt
1.8 kB
Part 06-Module 01-Lesson 07_Bayes Rule/29. Generalizing-SdMk3aROgSc.ar.vtt
1.8 kB
Part 06-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-R4zq6mPPMxs.pt-BR.vtt
1.8 kB
Part 06-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-hoVOT8qcQ7c.es-ES.vtt
1.8 kB
Part 01-Module 02-Lesson 01_Quant Workflow/03. M2L1 02 Quant Workflow V3-lZfCCRv2rEE.en.vtt
1.8 kB
Part 06-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.en.vtt
1.8 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/18. Data in the Real World-HmipezTjTDY.pt-BR.vtt
1.8 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/19. What is Notation-MaHV5cKfcmE.pt-BR.vtt
1.8 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-pOKmt4w8T3g.en.vtt
1.8 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/12. Notation Parameters vs. Statistics-webref_dLrA.pt-BR.vtt
1.8 kB
Part 02-Module 01-Lesson 04_Feature Extraction/05. Word Embeddings-4mM_S9L2_JQ.pt-BR.vtt
1.7 kB
Part 03-Module 01-Lesson 01_Why Python Programming/03. L1 03 Programming In Python V4-O1cTNYAjeeg.ar.vtt
1.7 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/08. Continuous vs. Discrete Data-BzgZebZD9kk.pt-BR.vtt
1.7 kB
Part 06-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram-b8M9CWxRyQ4.zh-CN.vtt
1.7 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/29. How Do Confidence Intervals Hypothesis Tests Compare-KEmsEViOoMA.en.vtt
1.7 kB
Part 07-Module 01-Lesson 02_Naive Bayes/12. MLND SL NB Solution Naive Bayes Algorithm-QDj3xzjuYmo.pt-BR.vtt
1.7 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-GeINbOOYkF8.ja.vtt
1.7 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/01. Welcome to Computer Vision-GgA3_-MMT_I.zh-CN.vtt
1.7 kB
Part 06-Module 01-Lesson 04_Probability/19. Probability Conclusion-dsVKoXymYDU.pt-BR.vtt
1.7 kB
Part 06-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-9R44IyZ-aQI.ar.vtt
1.7 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/10. L1 11 Adding Or Removing From An Index V2-_bWIZWa20j8.en.vtt
1.7 kB
Part 06-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.th.vtt
1.7 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/07. 08. Computer Vision Pipeline-64hFcqhnNow.en.vtt
1.7 kB
Part 07-Module 01-Lesson 04_Decision Trees/08. Entropy Formula-iZiSYrOKvpo.pt-BR.vtt
1.7 kB
Part 01-Module 02-Lesson 01_Quant Workflow/01. MV 05 Intro To Module 2 V1-92JzOXda9Q8.en.vtt
1.7 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.zh-CN.vtt
1.7 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.zh-CN.vtt
1.7 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-GeINbOOYkF8.es-ES.vtt
1.7 kB
Part 06-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-vasdN2Gol0M.es-ES.vtt
1.7 kB
Part 06-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-hoVOT8qcQ7c.ja.vtt
1.7 kB
Part 06-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.hr.vtt
1.7 kB
Part 01-Module 04-Lesson 09_Project 4 Alpha Research and Factor Modeling/04. M4 03 Coming In Term II V1-2jF5J8MIdqc.en.vtt
1.7 kB
Part 07-Module 01-Lesson 04_Decision Trees/02. MLND SL DT 01 Recommending Apps 1 MAIN V3-uI_yNrqqKVg.pt-BR.vtt
1.7 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-1R44jvxIPJY.ar.vtt
1.7 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/24. There Must Be A Better Way-oBp8YX2AgJw.en.vtt
1.7 kB
Part 06-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-vasdN2Gol0M.en.vtt
1.7 kB
Part 02-Module 01-Lesson 03_Text Processing/08. Part-of-Speech Tagging-WFEu8bXI5OA.en.vtt
1.7 kB
Part 07-Module 01-Lesson 02_Naive Bayes/06. SL NB 05 Q False Positives V1 V2-ngA6v09eP08.zh-CN.vtt
1.7 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/01. Confidence Intervals Introduction-crleT4000ak.en.vtt
1.7 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/10. Traditional Confidence Interval Methods-DmZwYHuz2eM.en.vtt
1.7 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/22. Bootstrapping-42j3YclcZ4Q.zh-CN.vtt
1.7 kB
Part 07-Module 01-Lesson 04_Decision Trees/02. MLND SL DT 01 Recommending Apps 1 MAIN V3-uI_yNrqqKVg.en.vtt
1.7 kB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/02. M4 L2b 02 Vector Two Ways V3-mlw6FnCUloU.en.vtt
1.7 kB
Part 07-Module 01-Lesson 04_Decision Trees/05. MLND SL DT 04 Q Student Admissions V3 MAIN V1-MOa335cQGI4.zh-CN.vtt
1.7 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/34. Chain Rule-YAhIBOnbt54.en.vtt
1.7 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/34. Chain Rule-YAhIBOnbt54.en.vtt
1.7 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/04. 分类问题 2 -46PywnGa_cQ.zh-CN.vtt
1.7 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/04. 分类问题 2 -46PywnGa_cQ.zh-CN.vtt
1.7 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/07. Confidence Intervals Applications-C0wgmeRx9yE.pt-BR.vtt
1.7 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/10. AffdexMe Demo-dpFtXDqakvY.zh-CN.vtt
1.7 kB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/01. Welcome to NLP-g-AlFF61p0I.en.vtt
1.7 kB
Part 10-Module 01-Lesson 01_Intro to NLP/02. Welcome to NLP-g-AlFF61p0I.en.vtt
1.7 kB
Part 06-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-tI0J14yQr1s.th.vtt
1.7 kB
Part 06-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.it.vtt
1.7 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 1-1yJx-QtlvNI.en.vtt
1.7 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 1-1yJx-QtlvNI.en.vtt
1.7 kB
Part 03-Module 01-Lesson 05_Scripting/02. Python Installation-2_P05aYChqQ.zh-CN.vtt
1.7 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/22. Outliers Advice-BhhDoTgYQmI.pt-BR.vtt
1.7 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/10. KALMAN QUIZ Shifting The Mean 01 RENDER 1 V2-gfBdoCFborg.en.vtt
1.7 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/20. When Does the CLT Not Work-uZGTVUEMfrU.en.vtt
1.7 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-GeINbOOYkF8.en.vtt
1.7 kB
Part 07-Module 01-Lesson 03_Clustering/06. Optimizing Centers (Rubber Bands)-nNR4hjhhGBc.en.vtt
1.7 kB
Part 01-Module 04-Lesson 06_Alpha Factors/48. M4 L3a 21 Its All Relative V2-VBcOrT7TuFA.en.vtt
1.7 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-02v8ui9riew.ar.vtt
1.7 kB
Part 06-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.ja.vtt
1.7 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.en.vtt
1.7 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.en.vtt
1.7 kB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/15. M4 L4 20 Outro V1-c3J8t6q2BGo.en.vtt
1.7 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 1-1yJx-QtlvNI.pt-BR.vtt
1.7 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 1-1yJx-QtlvNI.pt-BR.vtt
1.7 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-pOKmt4w8T3g.ja.vtt
1.7 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/13. Formula Summary-zqo1RJEHT_0.zh-CN.vtt
1.7 kB
Part 06-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-hoVOT8qcQ7c.en.vtt
1.7 kB
Part 01-Module 01-Lesson 06_Data Processing/08. M1L4 11 Survivor Bias V2-39MeCCw5ndM.en.vtt
1.6 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/11. Why the Standard Deviation-XlTBvjQ2t8w.pt-BR.vtt
1.6 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/12. Normalizer-mQ_IjrtmmAk.zh-CN.vtt
1.6 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-dOa4Cl0wM0s.ar.vtt
1.6 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/02. Histograms-4t10RgUv2Fc.en.vtt
1.6 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/24. There Must Be A Better Way-oBp8YX2AgJw.pt-BR.vtt
1.6 kB
Part 03-Module 01-Lesson 03_Control Flow/07. Truth Value Testing-e52uw7ejV8k.zh-CN.vtt
1.6 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-DjsL64Kjr1Q.zh-CN.vtt
1.6 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/04. 分类问题 2 -46PywnGa_cQ.pt-BR.vtt
1.6 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/04. 分类问题 2 -46PywnGa_cQ.pt-BR.vtt
1.6 kB
Part 03-Module 01-Lesson 04_Functions/05. Variable Scope-rYubQlAM-gw.ar.vtt
1.6 kB
Part 03-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Using With-OQ-Y0mMjm00.zh-CN.vtt
1.6 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/11. Why the Standard Deviation-XlTBvjQ2t8w.en.vtt
1.6 kB
Part 06-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.th.vtt
1.6 kB
Part 07-Module 01-Lesson 01_Linear Regression/img/f6.gif
1.6 kB
Part 02-Module 01-Lesson 03_Text Processing/07. Stop Word Removal-WAU_Ij0GJbw.en.vtt
1.6 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/12. Variance Standard Deviation Final Points-vXUgp2375j4.zh-CN.vtt
1.6 kB
Part 07-Module 01-Lesson 03_Clustering/08. Match Points (again)-5j6VZr8sHo8.ar.vtt
1.6 kB
Part 07-Module 01-Lesson 04_Decision Trees/05. MLND SL DT 04 Q Student Admissions V3 MAIN V1-MOa335cQGI4.pt-BR.vtt
1.6 kB
Part 06-Module 01-Lesson 06_Conditional Probability/10. Total Probability-YSYpzFR4k1I.ja.vtt
1.6 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/05. Assignment Operators-p_qfzL-x3Cs.zh-CN.vtt
1.6 kB
Part 06-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-yYqN9Mf4jqw.ar.vtt
1.6 kB
Part 02-Module 01-Lesson 04_Feature Extraction/04. One-Hot Encoding-a0j1CDXFYZI.pt-BR.vtt
1.6 kB
Part 06-Module 01-Lesson 07_Bayes Rule/35. Using Sensor Data-vhl-SADfti8.en.vtt
1.6 kB
Part 07-Module 01-Lesson 02_Naive Bayes/09. SL NB 08 S Bayesian Learning 2 V1 V6-3rIYZgCXVXY.pt-BR.vtt
1.6 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/12. Notation Parameters vs. Statistics-webref_dLrA.en.vtt
1.6 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/14. Correct Interpretations of Confidence Intervals-IhYv_SlN7e8.en.vtt
1.6 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/35. L2 01 Compound Data Structures V1-jmQ8IKvQgBU.pt-BR.vtt
1.6 kB
Part 07-Module 01-Lesson 02_Naive Bayes/09. SL NB 08 S Bayesian Learning 2 V1 V6-3rIYZgCXVXY.en.vtt
1.6 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/18. Data in the Real World-HmipezTjTDY.en.vtt
1.6 kB
Part 06-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-vasdN2Gol0M.pt-BR.vtt
1.6 kB
Part 01-Module 03-Lesson 05_Project 3 Smart Beta and Portfolio Optimization/01. MV 12 Transition To Project 03 V1-ClzlNlWqMQI.en.vtt
1.6 kB
Part 02-Module 01-Lesson 03_Text Processing/03. Capturing Text Data-Z4mnMN1ApG4.zh-CN.vtt
1.6 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/15. Summary-VP-PMcgqhc8.pt-BR.vtt
1.6 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/12. Non-Linear Regions-B8UrWnHh1Wc.zh-CN.vtt
1.6 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/12. Non-Linear Regions-B8UrWnHh1Wc.zh-CN.vtt
1.6 kB
Part 06-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-vasdN2Gol0M.zh-CN.vtt
1.6 kB
Part 07-Module 01-Lesson 03_Clustering/06. Optimizing Centers (Rubber Bands)-nNR4hjhhGBc.pt-BR.vtt
1.6 kB
Part 07-Module 01-Lesson 04_Decision Trees/03. MLND SL DT 02 Recommending Apps 2 MAIN V3-KSrIYqKZwCA.en.vtt
1.6 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/11. Vanishing Gradient-W_JJm_5syFw.pt-BR.vtt
1.6 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/17. M4 L3b 13 Skewness And Momentum Conditional Factor V2-cMLTVZFKEm0.en.vtt
1.6 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/14. Correct Interpretations of Confidence Intervals-IhYv_SlN7e8.pt-BR.vtt
1.6 kB
Part 06-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-hoVOT8qcQ7c.zh-CN.vtt
1.6 kB
Part 07-Module 01-Lesson 03_Clustering/10. K-Means Cluster Visualization-iCTPBcowJRY.en.vtt
1.6 kB
Part 02-Module 01-Lesson 04_Feature Extraction/05. Word Embeddings-4mM_S9L2_JQ.en.vtt
1.6 kB
Part 06-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.es-ES.vtt
1.6 kB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/04. Unstructured Text-OmwSdaec5vU.zh-CN.vtt
1.6 kB
Part 10-Module 01-Lesson 01_Intro to NLP/05. Unstructured Text-OmwSdaec5vU.zh-CN.vtt
1.6 kB
Part 06-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-QIQBb4nLsHc.th.vtt
1.6 kB
Part 03-Module 01-Lesson 04_Functions/05. Variable Scope-rYubQlAM-gw.pt-BR.vtt
1.6 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/06. 5 Number Summary to Variance-Ljhau0hrZ1g.en.vtt
1.6 kB
Part 07-Module 01-Lesson 03_Clustering/17. Counterintuitive Clusters 2-HyjBus7S2gY.pt-BR.vtt
1.6 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/08. Continuous vs. Discrete Data-BzgZebZD9kk.en.vtt
1.6 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/07. Confidence Intervals Applications-C0wgmeRx9yE.en.vtt
1.6 kB
Part 03-Module 01-Lesson 03_Control Flow/02. Indentation-G8qUNOTHtrM.ar.vtt
1.6 kB
Part 06-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-hoVOT8qcQ7c.pt-BR.vtt
1.6 kB
Part 07-Module 01-Lesson 04_Decision Trees/02. MLND SL DT 01 Recommending Apps 1 MAIN V3-uI_yNrqqKVg.zh-CN.vtt
1.6 kB
Part 06-Module 01-Lesson 06_Conditional Probability/01. Introduction to Conditional Probability-Ok8948Wcbmo.zh-CN.vtt
1.6 kB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/08. NLP M1-L1 01 NLP Pipeline-vJx6oKlu_MM.zh-CN.vtt
1.6 kB
Part 10-Module 01-Lesson 01_Intro to NLP/09. NLP M1-L1 01 NLP Pipeline-vJx6oKlu_MM.zh-CN.vtt
1.6 kB
Part 06-Module 01-Lesson 13_Case Study AB tests/16. Drawing Conclusions-s-4ghG9vrGQ.pt-BR.vtt
1.6 kB
Part 06-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.pt-BR.vtt
1.6 kB
Part 06-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1-_DjfTytro6I.es-ES.vtt
1.6 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-pOKmt4w8T3g.zh-CN.vtt
1.6 kB
Part 06-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-vasdN2Gol0M.ja.vtt
1.6 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/06. M1L1 MV 01 Intro In The First Five V1-magg5AVJRVA.en.vtt
1.6 kB
Part 06-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-TtmQ7YCw_1Y.ar.vtt
1.6 kB
Part 03-Module 01-Lesson 04_Functions/01. Introduction-p5L4rTV1Pgk.pt-BR.vtt
1.5 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/07. 08. Computer Vision Pipeline-64hFcqhnNow.zh-CN.vtt
1.5 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/12. Non-Linear Regions-B8UrWnHh1Wc.pt-BR.vtt
1.5 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/12. Non-Linear Regions-B8UrWnHh1Wc.pt-BR.vtt
1.5 kB
Part 01-Module 02-Lesson 03_Regression/14. M2L3 12 Multivariate Linear Regression V3-WbCGVF7SAN0.en.vtt
1.5 kB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/02. Structured Languages-NsmqUIHlk6U.zh-CN.vtt
1.5 kB
Part 10-Module 01-Lesson 01_Intro to NLP/03. Structured Languages-NsmqUIHlk6U.zh-CN.vtt
1.5 kB
Part 06-Module 01-Lesson 04_Probability/19. Probability Conclusion-dsVKoXymYDU.en.vtt
1.5 kB
Part 07-Module 01-Lesson 02_Naive Bayes/12. MLND SL NB Solution Naive Bayes Algorithm-QDj3xzjuYmo.zh-CN.vtt
1.5 kB
Part 06-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.ar.vtt
1.5 kB
Part 06-Module 01-Lesson 07_Bayes Rule/32. Reducing Uncertainty-zuFMhmKQ--o.pt-BR.vtt
1.5 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/09. L1 10 Market Cap Weighting V2-7qVVA5yLFnY.en.vtt
1.5 kB
Part 06-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.hr.vtt
1.5 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/08. LSTM 7 Use Gate-5Ifolm1jTdY.zh-CN.vtt
1.5 kB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/01. Welcome to NLP-g-AlFF61p0I.zh-CN.vtt
1.5 kB
Part 10-Module 01-Lesson 01_Intro to NLP/02. Welcome to NLP-g-AlFF61p0I.zh-CN.vtt
1.5 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/19. What is Notation-MaHV5cKfcmE.en.vtt
1.5 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/04. LSTM Architecture-ycwthhdx8ws.en.vtt
1.5 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/22. Outliers Advice-BhhDoTgYQmI.en.vtt
1.5 kB
Part 07-Module 01-Lesson 03_Clustering/17. Counterintuitive Clusters 2-HyjBus7S2gY.en.vtt
1.5 kB
Part 06-Module 01-Lesson 07_Bayes Rule/32. Reducing Uncertainty-zuFMhmKQ--o.en.vtt
1.5 kB
Part 02-Module 01-Lesson 03_Text Processing/08. Part-of-Speech Tagging-WFEu8bXI5OA.zh-CN.vtt
1.5 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-lPrKmvckG4E.pt-BR.vtt
1.5 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/17. L1 19 Smart Beta V2-Rc9NEmNMzk8.en.vtt
1.5 kB
Part 01-Module 03-Lesson 02_ETFs/08. L2 10 Lower Operational Costs And Taxes V2-UlJusglK0h0.en.vtt
1.5 kB
Part 06-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.en.vtt
1.5 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/03. What is the Difference-I3tQvrCgNrQ.pt-BR.vtt
1.5 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-YIELbuet-ZE.pt-BR.vtt
1.5 kB
Part 06-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-R4zq6mPPMxs.ja.vtt
1.5 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/04. LSTM Architecture-ycwthhdx8ws.pt-BR.vtt
1.5 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.zh-CN.vtt
1.5 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/11. Vanishing Gradient-W_JJm_5syFw.en.vtt
1.5 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.zh-CN.vtt
1.5 kB
Part 07-Module 01-Lesson 01_Linear Regression/02. DLND REG 01 Quiz Housing Prices V2-8CSBiVKu35Q.pt-BR.vtt
1.5 kB
Part 07-Module 01-Lesson 04_Decision Trees/03. MLND SL DT 02 Recommending Apps 2 MAIN V3-KSrIYqKZwCA.pt-BR.vtt
1.5 kB
Part 06-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.zh-CN.vtt
1.5 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/04. What is Data-ldTDAjrVsA8.pt-BR.vtt
1.5 kB
Part 06-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-GO6kbL3QRBE.ar.vtt
1.5 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/11. Introduction To Notation-ISkBSUVH49M.ar.vtt
1.5 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/15. Two Useful Theorems-jQ5i7CALdRQ.pt-BR.vtt
1.5 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/24. There Must Be A Better Way-oBp8YX2AgJw.zh-CN.vtt
1.5 kB
Part 06-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.es-ES.vtt
1.5 kB
Part 01-Module 01-Lesson 06_Data Processing/14. MV 06 Our Goal Is To Help You Meet Your Goals V1--pSppDzJRu8.en.vtt
1.5 kB
Part 07-Module 01-Lesson 03_Clustering/10. K-Means Cluster Visualization-iCTPBcowJRY.pt-BR.vtt
1.5 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/29. How Do Confidence Intervals Hypothesis Tests Compare-KEmsEViOoMA.zh-CN.vtt
1.5 kB
Part 06-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-R4zq6mPPMxs.es-ES.vtt
1.5 kB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/11. Modeling-P4w_2rkxBvE.pt-BR.vtt
1.5 kB
Part 06-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-R4zq6mPPMxs.en.vtt
1.5 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/17. New Mean and Variance Solution - Artificial Intelligence for Robotics-SwxRWZaC1FM.ru.vtt
1.5 kB
Part 10-Module 01-Lesson 01_Intro to NLP/12. Modeling-P4w_2rkxBvE.pt-BR.vtt
1.5 kB
Part 06-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram-aUFWZ2uJuBE.ar.vtt
1.5 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 1-1yJx-QtlvNI.zh-CN.vtt
1.5 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 1-1yJx-QtlvNI.zh-CN.vtt
1.5 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/03. 03. Role In AI Render-xm1TXnNe5Pw.en.vtt
1.5 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/25. Background Of Bootstrapping-6Vg5kGoDl7k.en.vtt
1.5 kB
Part 07-Module 01-Lesson 03_Clustering/06. Optimizing Centers (Rubber Bands)-nNR4hjhhGBc.zh-CN.vtt
1.5 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/06. Example of Sampling Distributions - Part I-1XezzP6kxUE.en.vtt
1.5 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/19. What is Notation-MaHV5cKfcmE.zh-CN.vtt
1.5 kB
Part 06-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1-_DjfTytro6I.en.vtt
1.5 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.pt-BR.vtt
1.5 kB
Part 06-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.it.vtt
1.5 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.pt-BR.vtt
1.5 kB
Part 07-Module 01-Lesson 01_Linear Regression/04. Fitting A Line-gkdoknEEcaI.pt-BR.vtt
1.5 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/15. Summary-VP-PMcgqhc8.en.vtt
1.5 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.ar.vtt
1.5 kB
Part 06-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.en.vtt
1.5 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/34. Chain Rule-YAhIBOnbt54.zh-CN.vtt
1.5 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/34. Chain Rule-YAhIBOnbt54.zh-CN.vtt
1.5 kB
Part 03-Module 01-Lesson 03_Control Flow/01. Introduction-eUrvACMMJ5w.ar.vtt
1.4 kB
Part 07-Module 01-Lesson 01_Linear Regression/04. Fitting A Line-gkdoknEEcaI.en.vtt
1.4 kB
Part 07-Module 01-Lesson 04_Decision Trees/03. MLND SL DT 02 Recommending Apps 2 MAIN V3-KSrIYqKZwCA.zh-CN.vtt
1.4 kB
Part 07-Module 01-Lesson 01_Linear Regression/img/y.gif
1.4 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/15. Summary-VP-PMcgqhc8.es-ES.vtt
1.4 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/25. Background Of Bootstrapping-6Vg5kGoDl7k.pt-BR.vtt
1.4 kB
Part 02-Module 01-Lesson 03_Text Processing/07. Stop Word Removal-WAU_Ij0GJbw.zh-CN.vtt
1.4 kB
Part 02-Module 01-Lesson 04_Feature Extraction/04. One-Hot Encoding-a0j1CDXFYZI.en.vtt
1.4 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/15. Two Useful Theorems-jQ5i7CALdRQ.en.vtt
1.4 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-lPrKmvckG4E.ar.vtt
1.4 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/18. Data in the Real World-HmipezTjTDY.zh-CN.vtt
1.4 kB
Part 06-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.ja.vtt
1.4 kB
Part 03-Module 01-Lesson 01_Why Python Programming/03. L1 03 Programming In Python V4-O1cTNYAjeeg.pt-BR.vtt
1.4 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-69je8wHh2mQ.ar.vtt
1.4 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/06. Example of Sampling Distributions - Part I-1XezzP6kxUE.pt-BR.vtt
1.4 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/31. Non-Linear Models-HWuBKCZsCo8.pt-BR.vtt
1.4 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/26. Why Are Sampling Distributions Important-aDFDOCJKoH0.ar.vtt
1.4 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/31. Non-Linear Models-HWuBKCZsCo8.pt-BR.vtt
1.4 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/22. M4 L1B 22 Alternative Data V1-p6NxGZnkrdc.en.vtt
1.4 kB
Part 03-Module 01-Lesson 04_Functions/01. Introduction-p5L4rTV1Pgk.en.vtt
1.4 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/02. Histograms-4t10RgUv2Fc.zh-CN.vtt
1.4 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/08. 为何是神经网络-zAkzOZntK6Y.en.vtt
1.4 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/08. 为何是神经网络-zAkzOZntK6Y.en.vtt
1.4 kB
Part 06-Module 01-Lesson 07_Bayes Rule/35. Using Sensor Data-vhl-SADfti8.zh-CN.vtt
1.4 kB
Part 06-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-9R44IyZ-aQI.it.vtt
1.4 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/26. M4 L3b 22 Summary V2-Tq8yVPEHxXs.en.vtt
1.4 kB
Part 06-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1-_DjfTytro6I.ja.vtt
1.4 kB
Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/08. M2L6 11 Clustering Stocks V3-LkgCK_qPqWE.en.vtt
1.4 kB
Part 07-Module 01-Lesson 03_Clustering/17. Counterintuitive Clusters 2-HyjBus7S2gY.zh-CN.vtt
1.4 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/07. L1 08 SP Index Categories V2-D3VGIvti71g.en.vtt
1.4 kB
Part 06-Module 01-Lesson 04_Probability/01. Introduction to Probability-HeoQccoqfTk.ar.vtt
1.4 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-1R44jvxIPJY.en.vtt
1.4 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/14. Correct Interpretations of Confidence Intervals-IhYv_SlN7e8.zh-CN.vtt
1.4 kB
Part 06-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-cDub-OOrIRE.th.vtt
1.4 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/01. M1L1 01 Welcome V1-W2R32yXgwcg.en.vtt
1.4 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/14. Other Sampling Distributions-Bxl0DonzX8c.ar.vtt
1.4 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/10. Traditional Confidence Interval Methods-DmZwYHuz2eM.zh-CN.vtt
1.4 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/08. Continuous vs. Discrete Data-BzgZebZD9kk.zh-CN.vtt
1.4 kB
Part 07-Module 01-Lesson 01_Linear Regression/02. DLND REG 01 Quiz Housing Prices V2-8CSBiVKu35Q.en.vtt
1.4 kB
Part 06-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.hr.vtt
1.4 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/10. KALMAN QUIZ Shifting The Mean 01 RENDER 1 V2-gfBdoCFborg.zh-CN.vtt
1.4 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-GeINbOOYkF8.zh-CN.vtt
1.4 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/04. M4 L2A 15 Time Series Risk Model V2-Lz3RMLmov8o.en.vtt
1.4 kB
Part 07-Module 01-Lesson 03_Clustering/16. Counterintuitive Clusters-aveIz1JYeAg.ar.vtt
1.4 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/02. L1 00 Intro V2-JA4WBd6sHF4.en.vtt
1.4 kB
Part 06-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-yYqN9Mf4jqw.pt-BR.vtt
1.4 kB
Part 07-Module 01-Lesson 02_Naive Bayes/09. SL NB 08 S Bayesian Learning 2 V1 V6-3rIYZgCXVXY.zh-CN.vtt
1.4 kB
Part 06-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-9R44IyZ-aQI.en.vtt
1.4 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-1R44jvxIPJY.pt-BR.vtt
1.4 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/20. When Does the CLT Not Work-uZGTVUEMfrU.zh-CN.vtt
1.4 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-1R44jvxIPJY.es-ES.vtt
1.4 kB
Part 06-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.pt-BR.vtt
1.4 kB
Part 06-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-9R44IyZ-aQI.es-ES.vtt
1.4 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/06. 5 Number Summary to Variance-Ljhau0hrZ1g.zh-CN.vtt
1.4 kB
Part 06-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.zh-CN.vtt
1.4 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/04. LSTM Architecture-ycwthhdx8ws.zh-CN.vtt
1.4 kB
Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/14. M2L6 20 Summary V2-wuzha8SU2jw.en.vtt
1.4 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-9I8ysrRlmbA.ar.vtt
1.4 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/01. Confidence Intervals Introduction-crleT4000ak.zh-CN.vtt
1.4 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/15. L1 17 Active Vs Passive V2-QzoHmUzJ5zw.en.vtt
1.4 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/29. Continuous Perceptrons-07-JJ-aGEfM.en.vtt
1.4 kB
Part 06-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.pt-BR.vtt
1.4 kB
Part 06-Module 01-Lesson 07_Bayes Rule/29. Generalizing-SdMk3aROgSc.pt-BR.vtt
1.4 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/29. Continuous Perceptrons-07-JJ-aGEfM.en.vtt
1.4 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/06. Forget Gate-iWxpfxLUPSU.pt-BR.vtt
1.4 kB
Part 01-Module 02-Lesson 03_Regression/09. M2L3 08 Heteroskedasticity V2-wias9OZ1tU4.en.vtt
1.4 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/07. Example of Sampling Distributions - Part II-PKf3Nu6zAxM.ar.vtt
1.4 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/03. 03. Role In AI Render-xm1TXnNe5Pw.zh-CN.vtt
1.4 kB
Part 06-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.ja.vtt
1.4 kB
Part 06-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-FnNveASivMA.ar.vtt
1.4 kB
Part 07-Module 01-Lesson 03_Clustering/10. K-Means Cluster Visualization-iCTPBcowJRY.zh-CN.vtt
1.4 kB
Part 01-Module 03-Lesson 02_ETFs/03. L2 02 Commodities V2-gc_GMqbCC2Q.en.vtt
1.4 kB
Part 06-Module 01-Lesson 07_Bayes Rule/29. Generalizing-SdMk3aROgSc.es-ES.vtt
1.4 kB
Part 01-Module 01-Lesson 05_Market Mechanics/01. M1L3 01 Intro V4-LE-4Xf8lzHk.en.vtt
1.3 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/03. What Is Coming Up-oDJsnQcCPr4.ar.vtt
1.3 kB
Part 07-Module 01-Lesson 03_Clustering/15. Limitations of K-Means-4Fkfu37el_k.ar.vtt
1.3 kB
Part 07-Module 01-Lesson 01_Linear Regression/img/codecogseqn-62.gif
1.3 kB
Part 06-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1-_DjfTytro6I.zh-CN.vtt
1.3 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/29. Continuous Perceptrons-07-JJ-aGEfM.pt-BR.vtt
1.3 kB
Part 03-Module 01-Lesson 03_Control Flow/02. Indentation-G8qUNOTHtrM.pt-BR.vtt
1.3 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/03. What is the Difference-I3tQvrCgNrQ.en.vtt
1.3 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/29. Continuous Perceptrons-07-JJ-aGEfM.pt-BR.vtt
1.3 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/07. Confidence Intervals Applications-C0wgmeRx9yE.zh-CN.vtt
1.3 kB
Part 01-Module 01-Lesson 08_Momentum Trading/14. MV 13 Global Talent Is Equally Distributed V1-QwDJbbBl_48.en.vtt
1.3 kB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/07. Natural Language Processing-UQBxJzoCp-I.pt-BR.vtt
1.3 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/31. Non-Linear Models-HWuBKCZsCo8.en.vtt
1.3 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/31. Non-Linear Models-HWuBKCZsCo8.en.vtt
1.3 kB
Part 10-Module 01-Lesson 01_Intro to NLP/08. Natural Language Processing-UQBxJzoCp-I.pt-BR.vtt
1.3 kB
Part 06-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-TtmQ7YCw_1Y.pt-BR.vtt
1.3 kB
Part 06-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram-aUFWZ2uJuBE.pt-BR.vtt
1.3 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/11. Why the Standard Deviation-XlTBvjQ2t8w.zh-CN.vtt
1.3 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/13. L1 15 Calculating Index After Add Or Delete V2-hiAHRE6JY0k.en.vtt
1.3 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-02v8ui9riew.pt-BR.vtt
1.3 kB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/11. Modeling-P4w_2rkxBvE.en.vtt
1.3 kB
Part 10-Module 01-Lesson 01_Intro to NLP/12. Modeling-P4w_2rkxBvE.en.vtt
1.3 kB
Part 07-Module 01-Lesson 01_Linear Regression/21. Polynomial Regression-DBhWG-PagEQ.en.vtt
1.3 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/22. Outliers Advice-BhhDoTgYQmI.zh-CN.vtt
1.3 kB
Part 06-Module 01-Lesson 04_Probability/16. One Of Three 2-27Ed1GI4j84.pt-BR.vtt
1.3 kB
Part 06-Module 01-Lesson 13_Case Study AB tests/09. Experiment II-fq4eO7CybA4.pt-BR.vtt
1.3 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/06. M1L1 MV 04b Project Reviews V1-KJbx9f9VKJE.en.vtt
1.3 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-02v8ui9riew.es-ES.vtt
1.3 kB
Part 06-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.zh-CN.vtt
1.3 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/14. Other Sampling Distributions-Bxl0DonzX8c.pt-BR.vtt
1.3 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-dOa4Cl0wM0s.it.vtt
1.3 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/04. What is Data-ldTDAjrVsA8.en.vtt
1.3 kB
Part 07-Module 01-Lesson 03_Clustering/08. Match Points (again)-5j6VZr8sHo8.pt-BR.vtt
1.3 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.pt-BR.vtt
1.3 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-02v8ui9riew.en.vtt
1.3 kB
Part 06-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-9R44IyZ-aQI.zh-CN.vtt
1.3 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/12. Notation Parameters vs. Statistics-webref_dLrA.zh-CN.vtt
1.3 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-YIELbuet-ZE.es-ES.vtt
1.3 kB
Part 06-Module 01-Lesson 07_Bayes Rule/33. Bayes' Rule and Robotics-meNSO42JF6I.ar.vtt
1.3 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/15. Summary-VP-PMcgqhc8.ja.vtt
1.3 kB
Part 06-Module 01-Lesson 04_Probability/19. Probability Conclusion-dsVKoXymYDU.zh-CN.vtt
1.3 kB
Part 01-Module 03-Lesson 02_ETFs/07. L2 09 Redeeming Shares V3-ZSVgU7DBarc.en.vtt
1.3 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/08. 为何是神经网络-zAkzOZntK6Y.pt-BR.vtt
1.3 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-YIELbuet-ZE.en.vtt
1.3 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/08. 为何是神经网络-zAkzOZntK6Y.pt-BR.vtt
1.3 kB
Part 06-Module 01-Lesson 13_Case Study AB tests/16. Drawing Conclusions-s-4ghG9vrGQ.en.vtt
1.3 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/08. Formula-DTdS-LlMTQ0.ar.vtt
1.3 kB
Part 01-Module 03-Lesson 02_ETFs/09. L2 11 Arbitrage V2-yp-CcGrMzYQ.en.vtt
1.3 kB
Part 06-Module 01-Lesson 04_Probability/16. One Of Three 2-27Ed1GI4j84.ar.vtt
1.3 kB
Part 06-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-OdVAt79eQak.en-GB.vtt
1.3 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/14. Learning Rate-TwJ8aSZoh2U.pt-BR.vtt
1.3 kB
Part 02-Module 01-Lesson 04_Feature Extraction/05. Word Embeddings-4mM_S9L2_JQ.zh-CN.vtt
1.3 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/06. Forget Gate-iWxpfxLUPSU.en.vtt
1.3 kB
Part 07-Module 01-Lesson 01_Linear Regression/02. DLND REG 01 Quiz Housing Prices V2-8CSBiVKu35Q.zh-CN.vtt
1.3 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/19. L1 21 Hedge Funds V4-AgGPqvDFTHw.en.vtt
1.3 kB
Part 02-Module 01-Lesson 03_Text Processing/09. Named Entity Recognition-QUQu2nsE7vE.pt-BR.vtt
1.3 kB
Part 02-Module 01-Lesson 03_Text Processing/11. Summary-zKYEvRd2XmI.pt-BR.vtt
1.3 kB
Part 03-Module 01-Lesson 04_Functions/01. Introduction-p5L4rTV1Pgk.zh-CN.vtt
1.3 kB
Part 02-Module 01-Lesson 03_Text Processing/01. Text Processing-6LO6I5M18PQ.pt-BR.vtt
1.3 kB
Part 06-Module 01-Lesson 07_Bayes Rule/29. Generalizing-SdMk3aROgSc.en.vtt
1.3 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/35. L2 01 Compound Data Structures V1-jmQ8IKvQgBU.en.vtt
1.3 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-mOPFQlKBg2M.pt-BR.vtt
1.3 kB
Part 01-Module 01-Lesson 06_Data Processing/13. M1L4 16 Alternate Data V2-DFwu2ysGY8c.en.vtt
1.3 kB
Part 03-Module 01-Lesson 04_Functions/05. Variable Scope-rYubQlAM-gw.en.vtt
1.3 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/11. Vanishing Gradient-W_JJm_5syFw.zh-CN.vtt
1.3 kB
Part 06-Module 01-Lesson 04_Probability/01. Introduction to Probability-HeoQccoqfTk.pt-BR.vtt
1.3 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/25. Background Of Bootstrapping-6Vg5kGoDl7k.zh-CN.vtt
1.3 kB
Part 07-Module 01-Lesson 02_Naive Bayes/03. SL NB 02 Known And Inferred V1 V2-DrYfZXiDLQI.en.vtt
1.3 kB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/01. M4 L4 01 Intro V1-9NzZFszX2E4.en.vtt
1.3 kB
Part 06-Module 01-Lesson 07_Bayes Rule/32. Reducing Uncertainty-zuFMhmKQ--o.zh-CN.vtt
1.3 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/06. Example of Sampling Distributions - Part I-1XezzP6kxUE.zh-CN.vtt
1.3 kB
Part 06-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-yYqN9Mf4jqw.es-ES.vtt
1.3 kB
Part 10-Module 01-Lesson 01_Intro to NLP/01. Intro Arpan-MW5MWOLj064.en.vtt
1.3 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/07. Categorical Ordinal Nominal Data-k5bLaPGY2Vw.ar.vtt
1.3 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/11. Introduction To Notation-ISkBSUVH49M.pt-BR.vtt
1.3 kB
Part 07-Module 01-Lesson 03_Clustering/08. Match Points (again)-5j6VZr8sHo8.en.vtt
1.3 kB
Part 06-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.ar.vtt
1.2 kB
Part 06-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-R4zq6mPPMxs.zh-CN.vtt
1.2 kB
Part 06-Module 01-Lesson 07_Bayes Rule/29. Generalizing-SdMk3aROgSc.ja.vtt
1.2 kB
Part 06-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.th.vtt
1.2 kB
Part 06-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Iz4ViIg9ZlQ.ar.vtt
1.2 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-69je8wHh2mQ.pt-BR.vtt
1.2 kB
Part 07-Module 01-Lesson 02_Naive Bayes/03. SL NB 02 Known And Inferred V1 V2-DrYfZXiDLQI.pt-BR.vtt
1.2 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/01. Instructors Introduction-lIvm8urf4GE.ar.vtt
1.2 kB
Part 07-Module 01-Lesson 01_Linear Regression/01. Welcome To Linear Regression-zxZkTkM34BY.pt-BR.vtt
1.2 kB
Part 06-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram-aUFWZ2uJuBE.it.vtt
1.2 kB
Part 10-Module 01-Lesson 01_Intro to NLP/01. Intro Arpan-MW5MWOLj064.zh-CN.vtt
1.2 kB
Part 02-Module 01-Lesson 04_Feature Extraction/04. One-Hot Encoding-a0j1CDXFYZI.zh-CN.vtt
1.2 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/03. L1 03 Indices Are Virtual Portfolios V2-oAd_szbBNWc.en.vtt
1.2 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-dOa4Cl0wM0s.en.vtt
1.2 kB
Part 06-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-qDGSvvabN18.th.vtt
1.2 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/01. Introduction-SvdlBB-ZjcQ.ar.vtt
1.2 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/08. Formula-DTdS-LlMTQ0.pt-BR.vtt
1.2 kB
Part 07-Module 01-Lesson 01_Linear Regression/21. Polynomial Regression-DBhWG-PagEQ.pt-BR.vtt
1.2 kB
Part 02-Module 01-Lesson 03_Text Processing/01. Text Processing-6LO6I5M18PQ.en.vtt
1.2 kB
Part 07-Module 01-Lesson 01_Linear Regression/img/e.gif
1.2 kB
Part 06-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram-aUFWZ2uJuBE.es-ES.vtt
1.2 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-1R44jvxIPJY.ja.vtt
1.2 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/08. 为何是神经网络-zAkzOZntK6Y.zh-CN.vtt
1.2 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-HjpgML5zsUE.ar.vtt
1.2 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/08. 为何是神经网络-zAkzOZntK6Y.zh-CN.vtt
1.2 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/15. Two Useful Theorems-jQ5i7CALdRQ.zh-CN.vtt
1.2 kB
Part 06-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.ar.vtt
1.2 kB
Part 03-Module 01-Lesson 01_Why Python Programming/03. L1 03 Programming In Python V4-O1cTNYAjeeg.en.vtt
1.2 kB
Part 06-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.es-ES.vtt
1.2 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-1R44jvxIPJY.zh-CN.vtt
1.2 kB
Part 06-Module 01-Lesson 07_Bayes Rule/29. Generalizing-SdMk3aROgSc.zh-CN.vtt
1.2 kB
Part 06-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-btGdX0ZpkNU.th.vtt
1.2 kB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/07. L3 06 The Covariance Matrix And Quadratic Forms V1-as5lafBZ2CA.en.vtt
1.2 kB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/07. Natural Language Processing-UQBxJzoCp-I.en.vtt
1.2 kB
Part 06-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-9R44IyZ-aQI.pt-BR.vtt
1.2 kB
Part 10-Module 01-Lesson 01_Intro to NLP/08. Natural Language Processing-UQBxJzoCp-I.en.vtt
1.2 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/16. Error Functions Around the World-34AAcTECu2A.en.vtt
1.2 kB
Part 06-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.it.vtt
1.2 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.es-ES.vtt
1.2 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/18. L1 20 Mutual Funds V2-LgaylDkS92Y.en.vtt
1.2 kB
Part 06-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-yYqN9Mf4jqw.ja.vtt
1.2 kB
Part 07-Module 01-Lesson 01_Linear Regression/05. Moving A Line-8EIHFyL2Log.en.vtt
1.2 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-9I8ysrRlmbA.es-MX.vtt
1.2 kB
Part 06-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-05upwXtARuo.th.vtt
1.2 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/06. DL 53 Q Regularization-KxROxcRsHL8.pt-BR.vtt
1.2 kB
Part 06-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Iz4ViIg9ZlQ.pt-BR.vtt
1.2 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/29. Continuous Perceptrons-07-JJ-aGEfM.zh-CN.vtt
1.2 kB
Part 07-Module 01-Lesson 01_Linear Regression/01. Welcome To Linear Regression-zxZkTkM34BY.en.vtt
1.2 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/29. Continuous Perceptrons-07-JJ-aGEfM.zh-CN.vtt
1.2 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/06. DL 53 Q Regularization-KxROxcRsHL8.en.vtt
1.2 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/04. What is Data-ldTDAjrVsA8.zh-CN.vtt
1.2 kB
Part 06-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.th.vtt
1.2 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-YIELbuet-ZE.ja.vtt
1.2 kB
Part 06-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.en.vtt
1.2 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/05. L1 06 Growth Vs Value V2-ZCjre5YTD0s.en.vtt
1.2 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/01. 26 Spread Part 1-zb76Z_viYLY.ar.vtt
1.2 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.pt-PT.vtt
1.2 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/07. Categorical Ordinal Nominal Data-k5bLaPGY2Vw.pt-BR.vtt
1.2 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/09. Local Minima-gF_sW_nY-xw.en.vtt
1.2 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/09. Data Types Summary-T-KrQoAJUpI.ar.vtt
1.2 kB
Part 06-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram-aUFWZ2uJuBE.en.vtt
1.2 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.tr.vtt
1.2 kB
Part 06-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-TtmQ7YCw_1Y.es-ES.vtt
1.2 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-dOa4Cl0wM0s.ja.vtt
1.2 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-mOPFQlKBg2M.ar.vtt
1.2 kB
Part 06-Module 01-Lesson 07_Bayes Rule/33. Bayes' Rule and Robotics-meNSO42JF6I.pt-BR.vtt
1.2 kB
Part 06-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-TtmQ7YCw_1Y.ja.vtt
1.2 kB
Part 06-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.ja.vtt
1.2 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/22. L1 25 Net Asset Value V2-hBnY2DmEFo4.en.vtt
1.2 kB
Part 07-Module 01-Lesson 01_Linear Regression/img/f4.gif
1.2 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/15. Summary-VP-PMcgqhc8.zh-CN.vtt
1.2 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/16. Error Functions Around the World-34AAcTECu2A.zh-CN.vtt
1.2 kB
Part 06-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.hr.vtt
1.2 kB
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/06. Forget Gate-iWxpfxLUPSU.zh-CN.vtt
1.1 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-lPrKmvckG4E.en.vtt
1.1 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/31. Non-Linear Models-HWuBKCZsCo8.zh-CN.vtt
1.1 kB
Part 07-Module 01-Lesson 02_Naive Bayes/03. SL NB 02 Known And Inferred V1 V2-DrYfZXiDLQI.zh-CN.vtt
1.1 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/31. Non-Linear Models-HWuBKCZsCo8.zh-CN.vtt
1.1 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/14. Learning Rate-TwJ8aSZoh2U.en.vtt
1.1 kB
Part 03-Module 01-Lesson 04_Functions/05. Variable Scope-rYubQlAM-gw.zh-CN.vtt
1.1 kB
Part 06-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-GO6kbL3QRBE.it.vtt
1.1 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-dOa4Cl0wM0s.hr.vtt
1.1 kB
Part 06-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-yYqN9Mf4jqw.en.vtt
1.1 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.it.vtt
1.1 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/25. M4 L3b 21 IVol Generalizing The Volatility Factor V2-Lt1JPjKHPmk.en.vtt
1.1 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-lPrKmvckG4E.es-ES.vtt
1.1 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/32. Hypothesis Testing Conclusion-nQFchD4XPPs.pt-BR.vtt
1.1 kB
Part 02-Module 01-Lesson 03_Text Processing/11. Summary-zKYEvRd2XmI.en.vtt
1.1 kB
Part 06-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-GO6kbL3QRBE.es-ES.vtt
1.1 kB
Part 02-Module 01-Lesson 03_Text Processing/09. Named Entity Recognition-QUQu2nsE7vE.en.vtt
1.1 kB
Part 02-Module 01-Lesson 04_Feature Extraction/01. Feature Extraction-Bd6TJB8eVLQ.en.vtt
1.1 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/11. Introduction To Notation-ISkBSUVH49M.en.vtt
1.1 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-02v8ui9riew.ja.vtt
1.1 kB
Part 06-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-aBBmlnd7okQ.ar.vtt
1.1 kB
Part 06-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-9R44IyZ-aQI.ja.vtt
1.1 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/26. Why Are Sampling Distributions Important-aDFDOCJKoH0.pt-BR.vtt
1.1 kB
Part 03-Module 01-Lesson 01_Why Python Programming/03. L1 03 Programming In Python V4-O1cTNYAjeeg.zh-CN.vtt
1.1 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-69je8wHh2mQ.es-ES.vtt
1.1 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/01. Binomial-3koDdc9r73E.ar.vtt
1.1 kB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/11. Modeling-P4w_2rkxBvE.zh-CN.vtt
1.1 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/03. What is the Difference-I3tQvrCgNrQ.zh-CN.vtt
1.1 kB
Part 06-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.ar.vtt
1.1 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/26. Why Are Sampling Distributions Important-aDFDOCJKoH0.en.vtt
1.1 kB
Part 10-Module 01-Lesson 01_Intro to NLP/12. Modeling-P4w_2rkxBvE.zh-CN.vtt
1.1 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-69je8wHh2mQ.en.vtt
1.1 kB
Part 03-Module 01-Lesson 03_Control Flow/02. Indentation-G8qUNOTHtrM.en.vtt
1.1 kB
Part 06-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2-WYA5Zbf8HC4.th.vtt
1.1 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.zh-Hans.vtt
1.1 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-dOa4Cl0wM0s.pt-BR.vtt
1.1 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-lPrKmvckG4E.ja.vtt
1.1 kB
Part 06-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-FnNveASivMA.it.vtt
1.1 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.en.vtt
1.1 kB
Part 06-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.th.vtt
1.1 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/16. Error Functions Around the World-34AAcTECu2A.pt-BR.vtt
1.1 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/35. L2 01 Compound Data Structures V1-jmQ8IKvQgBU.zh-CN.vtt
1.1 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.ja.vtt
1.1 kB
Part 06-Module 01-Lesson 13_Case Study AB tests/09. Experiment II-fq4eO7CybA4.en.vtt
1.1 kB
Part 06-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram-aUFWZ2uJuBE.ja.vtt
1.1 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/03. L1 04 Indices Describe The Market V2-jNzwxE3el7I.en.vtt
1.1 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-02v8ui9riew.zh-CN.vtt
1.1 kB
Part 06-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-OdVAt79eQak.ar.vtt
1.1 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/16. How Do We Choose Between Hypotheses-JkXTwS-5Daw.en.vtt
1.1 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/03. What Is Coming Up-oDJsnQcCPr4.pt-BR.vtt
1.1 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/11. Dangers Of Statistics-UYZXqP562qg.ar.vtt
1.1 kB
Part 03-Module 01-Lesson 03_Control Flow/01. Introduction-eUrvACMMJ5w.pt-BR.vtt
1.1 kB
Part 06-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-FnNveASivMA.es-ES.vtt
1.1 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/17. Two Useful Theorems - Central Limit Theorem-L79u8ywRmG8.ar.vtt
1.1 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/08. Example of Sampling Distributions - Part 3-E_4lvTWkSNI.ar.vtt
1.1 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/32. Hypothesis Testing Conclusion-nQFchD4XPPs.en.vtt
1.1 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-69je8wHh2mQ.ja.vtt
1.1 kB
Part 02-Module 01-Lesson 03_Text Processing/01. Text Processing-6LO6I5M18PQ.zh-CN.vtt
1.1 kB
Part 06-Module 01-Lesson 13_Case Study AB tests/16. Drawing Conclusions-s-4ghG9vrGQ.zh-CN.vtt
1.1 kB
Part 06-Module 01-Lesson 04_Probability/01. Introduction to Probability-HeoQccoqfTk.en.vtt
1.1 kB
Part 06-Module 01-Lesson 04_Probability/05. Loaded Coin 2-dGffszQYzqc.ar.vtt
1.1 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-YIELbuet-ZE.zh-CN.vtt
1.1 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.zh-CN.vtt
1.1 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-07vOaYwecII.ar.vtt
1.1 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.hr.vtt
1.1 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-55eZrE82TqA.ar.vtt
1.1 kB
Part 06-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.ar.vtt
1.1 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-9I8ysrRlmbA.pt-BR.vtt
1.1 kB
Part 07-Module 01-Lesson 01_Linear Regression/05. Moving A Line-8EIHFyL2Log.pt-BR.vtt
1.1 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/09. Local Minima-gF_sW_nY-xw.pt-BR.vtt
1.1 kB
Part 07-Module 01-Lesson 03_Clustering/05. Match Points with Clusters-lS5DfbsWH34.ar.vtt
1.1 kB
Part 06-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Iz4ViIg9ZlQ.ja.vtt
1.1 kB
Part 06-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-FnNveASivMA.en.vtt
1.1 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/04. L1 05 Market Cap V2-PE0UgUc0f0U.en.vtt
1.1 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/17. New Mean and Variance Solution - Artificial Intelligence for Robotics-SwxRWZaC1FM.ja.vtt
1.1 kB
Part 06-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-tI0J14yQr1s.ar.vtt
1.1 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/14. Other Sampling Distributions-Bxl0DonzX8c.en.vtt
1.1 kB
Part 06-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.th.vtt
1.1 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/07. Example of Sampling Distributions - Part II-PKf3Nu6zAxM.pt-BR.vtt
1.1 kB
Part 06-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-TtmQ7YCw_1Y.en.vtt
1.1 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-9I8ysrRlmbA.en.vtt
1.1 kB
Part 07-Module 01-Lesson 01_Linear Regression/img/gif-1.gif
1.1 kB
Part 06-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-GO6kbL3QRBE.en.vtt
1.1 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/01. 矩阵介绍-Ugx3mldc0lE.en.vtt
1.1 kB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/07. Natural Language Processing-UQBxJzoCp-I.zh-CN.vtt
1.1 kB
Part 10-Module 01-Lesson 01_Intro to NLP/08. Natural Language Processing-UQBxJzoCp-I.zh-CN.vtt
1.1 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/16. How Do We Choose Between Hypotheses-JkXTwS-5Daw.pt-BR.vtt
1.1 kB
Part 03-Module 01-Lesson 01_Why Python Programming/02. L1 01 Intro V3-yyNtiUyI5Tw.ar.vtt
1.0 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/01. 矩阵介绍-Ugx3mldc0lE.zh-CN.vtt
1.0 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/17. New Mean and Variance Solution - Artificial Intelligence for Robotics-SwxRWZaC1FM.es-ES.vtt
1.0 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/06. DL 53 Q Regularization-KxROxcRsHL8.zh-CN.vtt
1.0 kB
Part 07-Module 01-Lesson 03_Clustering/16. Counterintuitive Clusters-aveIz1JYeAg.pt-BR.vtt
1.0 kB
Part 07-Module 01-Lesson 03_Clustering/08. Match Points (again)-5j6VZr8sHo8.zh-CN.vtt
1.0 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/09. Local Minima-gF_sW_nY-xw.zh-CN.vtt
1.0 kB
Part 06-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-cDub-OOrIRE.ar.vtt
1.0 kB
Part 06-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.pt-BR.vtt
1.0 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/01. Instructors Introduction-lIvm8urf4GE.en.vtt
1.0 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/26. M4 L1B 26 Summary V1-yuLQA24Thms.en.vtt
1.0 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-N-wpkttwcoA.ar.vtt
1.0 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-dOa4Cl0wM0s.zh-CN.vtt
1.0 kB
Part 02-Module 01-Lesson 03_Text Processing/09. Named Entity Recognition-QUQu2nsE7vE.zh-CN.vtt
1.0 kB
Part 06-Module 01-Lesson 07_Bayes Rule/01. Bayes Rules-CohZnkZMOxE.th.vtt
1.0 kB
Part 07-Module 01-Lesson 01_Linear Regression/03. Solution Housing Prices-uhdTulw9-Nc.pt-BR.vtt
1.0 kB
Part 07-Module 01-Lesson 01_Linear Regression/14. DLND REG 13 Absolute Vs Squared Error 3 V1 (1)-bIVGf_dDkrY.en.vtt
1.0 kB
Part 03-Module 01-Lesson 01_Why Python Programming/02. L1 01 Intro V3-yyNtiUyI5Tw.pt-BR.vtt
1.0 kB
Part 06-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.th.vtt
1.0 kB
Part 02-Module 02-Lesson 04_Training Neural Networks/14. Learning Rate-TwJ8aSZoh2U.zh-CN.vtt
1.0 kB
Part 06-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-FnNveASivMA.ja.vtt
1.0 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/07. Example of Sampling Distributions - Part II-PKf3Nu6zAxM.en.vtt
1.0 kB
Part 06-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.th.vtt
1.0 kB
Part 06-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-FnNveASivMA.pt-BR.vtt
1.0 kB
Part 06-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram-aUFWZ2uJuBE.zh-CN.vtt
1.0 kB
Part 06-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Iz4ViIg9ZlQ.it.vtt
1.0 kB
Part 03-Module 01-Lesson 03_Control Flow/02. Indentation-G8qUNOTHtrM.zh-CN.vtt
1.0 kB
Part 06-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-GO6kbL3QRBE.zh-CN.vtt
1.0 kB
Part 06-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Iz4ViIg9ZlQ.es-ES.vtt
1.0 kB
Part 06-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-GO6kbL3QRBE.pt-BR.vtt
1.0 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-w5qcGO8krMw.ar.vtt
1.0 kB
Part 06-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-omC0zbJyzUY.ar.vtt
1.0 kB
Part 07-Module 01-Lesson 03_Clustering/04. How Many Clusters-R6oIvdBtsZw.ar.vtt
999 Bytes
Part 06-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.en.vtt
997 Bytes
Part 01-Module 03-Lesson 02_ETFs/03. L2 04 Commodity ETFs V2-UpgX6INJ6nU.en.vtt
996 Bytes
Part 06-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.it.vtt
994 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-69je8wHh2mQ.zh-CN.vtt
994 Bytes
Part 07-Module 01-Lesson 03_Clustering/16. Counterintuitive Clusters-aveIz1JYeAg.en.vtt
991 Bytes
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/07. Categorical Ordinal Nominal Data-k5bLaPGY2Vw.en.vtt
988 Bytes
Part 06-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.pt-BR.vtt
988 Bytes
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/01. Introduction-SvdlBB-ZjcQ.pt-BR.vtt
987 Bytes
Part 06-Module 01-Lesson 13_Case Study AB tests/09. Experiment II-fq4eO7CybA4.zh-CN.vtt
987 Bytes
Part 02-Module 01-Lesson 03_Text Processing/11. Summary-zKYEvRd2XmI.zh-CN.vtt
984 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/08. Formula-DTdS-LlMTQ0.ja.vtt
984 Bytes
Part 07-Module 01-Lesson 01_Linear Regression/14. DLND REG 12 Absolute Vs Squared Error 2 V1 (1)-7El1OH17Oi4.en.vtt
983 Bytes
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/17. New Mean and Variance Solution - Artificial Intelligence for Robotics-SwxRWZaC1FM.en.vtt
983 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-36KLIHioAvA.ar.vtt
982 Bytes
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/11. Introduction To Notation-ISkBSUVH49M.zh-CN.vtt
982 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/33. Bayes' Rule and Robotics-meNSO42JF6I.en.vtt
979 Bytes
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/12. KALMAN QUIZ Predicting The Peak 01 RENDER V1-_fGH3xJMxdM.en.vtt
979 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-FnNveASivMA.zh-CN.vtt
978 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-aBBmlnd7okQ.es-ES.vtt
975 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-07vOaYwecII.pt-BR.vtt
974 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-YSMWpFM92S0.ar.vtt
974 Bytes
Part 06-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.es-ES.vtt
971 Bytes
Part 02-Module 01-Lesson 04_Feature Extraction/01. Feature Extraction-Bd6TJB8eVLQ.zh-CN.vtt
970 Bytes
Part 06-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.th.vtt
970 Bytes
Part 07-Module 01-Lesson 01_Linear Regression/14. DLND REG 13 Absolute Vs Squared Error 3 V1 (1)-bIVGf_dDkrY.pt-BR.vtt
970 Bytes
Part 06-Module 01-Lesson 04_Probability/16. One Of Three 2-27Ed1GI4j84.it.vtt
969 Bytes
Part 06-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.it.vtt
967 Bytes
Part 06-Module 01-Lesson 04_Probability/16. One Of Three 2-27Ed1GI4j84.es-ES.vtt
967 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-lPrKmvckG4E.zh-CN.vtt
966 Bytes
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/01. M4 L1B 01 Intro To Lesson V1-ff0paDNA75U.en.vtt
965 Bytes
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/08. Example of Sampling Distributions - Part 3-E_4lvTWkSNI.pt-BR.vtt
965 Bytes
Part 06-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.zh-CN.vtt
964 Bytes
Part 06-Module 01-Lesson 04_Probability/16. One Of Three 2-27Ed1GI4j84.en.vtt
964 Bytes
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/14. Other Sampling Distributions-Bxl0DonzX8c.zh-CN.vtt
964 Bytes
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/03. What Is Coming Up-oDJsnQcCPr4.en.vtt
963 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-qDGSvvabN18.ar.vtt
963 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-yYqN9Mf4jqw.zh-CN.vtt
962 Bytes
Part 06-Module 01-Lesson 11_Confidence Intervals/16. Confidence Intervals And Hypothesis Tests-T2d9AUnWl-I.pt-BR.vtt
962 Bytes
Part 06-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.es-ES.vtt
957 Bytes
Part 06-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.hr.vtt
957 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-9I8ysrRlmbA.ja.vtt
957 Bytes
Part 06-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.hr.vtt
956 Bytes
Part 07-Module 01-Lesson 01_Linear Regression/14. DLND REG 12 Absolute Vs Squared Error 2 V1 (1)-7El1OH17Oi4.pt-BR.vtt
956 Bytes
Part 03-Module 01-Lesson 04_Functions/18. Conclusion-QRnLr7pwHyk.ar.vtt
953 Bytes
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/01. Instructors Introduction-lIvm8urf4GE.pt-BR.vtt
953 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Iz4ViIg9ZlQ.en.vtt
953 Bytes
Part 06-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.ja.vtt
952 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-aBBmlnd7okQ.en.vtt
952 Bytes
Part 06-Module 01-Lesson 04_Probability/01. Introduction to Probability-HeoQccoqfTk.zh-CN.vtt
949 Bytes
Part 06-Module 01-Lesson 04_Probability/16. One Of Three 2-27Ed1GI4j84.ja.vtt
949 Bytes
Part 06-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.es-ES.vtt
948 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/08. Formula-DTdS-LlMTQ0.es-ES.vtt
948 Bytes
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/19. Quiz - Cross 1--xxrisIvD0E.pt-BR.vtt
947 Bytes
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz - Cross 1--xxrisIvD0E.pt-BR.vtt
947 Bytes
Part 06-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.it.vtt
945 Bytes
Part 03-Module 01-Lesson 03_Control Flow/01. Introduction-eUrvACMMJ5w.en.vtt
944 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-aBBmlnd7okQ.pt-BR.vtt
944 Bytes
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/17. Two Useful Theorems - Central Limit Theorem-L79u8ywRmG8.pt-BR.vtt
944 Bytes
Part 06-Module 01-Lesson 04_Probability/05. Loaded Coin 2-dGffszQYzqc.hr.vtt
942 Bytes
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/01. Introduction-SvdlBB-ZjcQ.en.vtt
940 Bytes
Part 07-Module 01-Lesson 01_Linear Regression/03. Solution Housing Prices-uhdTulw9-Nc.en.vtt
939 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-OdVAt79eQak.pt-BR.vtt
937 Bytes
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/07. Categorical Ordinal Nominal Data-k5bLaPGY2Vw.zh-CN.vtt
935 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-HjpgML5zsUE.pt-BR.vtt
933 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/08. Formula-DTdS-LlMTQ0.en.vtt
931 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-TtmQ7YCw_1Y.zh-CN.vtt
930 Bytes
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/06. M1L1 MV 04a Knowledge V1-lX_is8cq0Bg.en.vtt
929 Bytes
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/09. Maximize Gaussian - Artificial Intelligence for Robotics-fRYtUP0P4Lg.ja.vtt
928 Bytes
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/26. Why Are Sampling Distributions Important-aDFDOCJKoH0.zh-CN.vtt
927 Bytes
Part 06-Module 01-Lesson 04_Probability/16. One Of Three 2-27Ed1GI4j84.hr.vtt
925 Bytes
Part 07-Module 01-Lesson 03_Clustering/16. Counterintuitive Clusters-aveIz1JYeAg.zh-CN.vtt
924 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-mOPFQlKBg2M.ja.vtt
923 Bytes
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/img/codecogseqn-58.gif
919 Bytes
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/09. Data Types Summary-T-KrQoAJUpI.pt-BR.vtt
919 Bytes
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/img/codecogseqn-58.gif
919 Bytes
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/19. Quiz - Cross 1--xxrisIvD0E.en.vtt
918 Bytes
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz - Cross 1--xxrisIvD0E.en.vtt
918 Bytes
Part 06-Module 01-Lesson 04_Probability/05. Loaded Coin 2-dGffszQYzqc.it.vtt
915 Bytes
Part 06-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.pt-BR.vtt
914 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-mOPFQlKBg2M.zh-CN.vtt
914 Bytes
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/03. What Is Coming Up-oDJsnQcCPr4.zh-CN.vtt
913 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-9I8ysrRlmbA.zh-CN.vtt
913 Bytes
Part 06-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.zh-CN.vtt
912 Bytes
Part 06-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.ja.vtt
911 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1--TBAfU1cjRU.th.vtt
910 Bytes
Part 06-Module 01-Lesson 04_Probability/16. One Of Three 2-27Ed1GI4j84.zh-CN.vtt
908 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-mOPFQlKBg2M.en.vtt
908 Bytes
Part 06-Module 01-Lesson 11_Confidence Intervals/16. Confidence Intervals And Hypothesis Tests-T2d9AUnWl-I.en.vtt
906 Bytes
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/07. Example of Sampling Distributions - Part II-PKf3Nu6zAxM.zh-CN.vtt
905 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2-WYA5Zbf8HC4.ar.vtt
903 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/01. Bayes Rules-CohZnkZMOxE.ja.vtt
902 Bytes
Part 06-Module 01-Lesson 04_Probability/11. Two Flips 4-bNoS6LQEFrI.ar.vtt
900 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-mOPFQlKBg2M.es-ES.vtt
900 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-btGdX0ZpkNU.ar.vtt
899 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-omC0zbJyzUY.pt-BR.vtt
899 Bytes
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/01. 26 Spread Part 1-zb76Z_viYLY.en.vtt
898 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/01. Bayes Rules-CohZnkZMOxE.ar.vtt
896 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-aBBmlnd7okQ.zh-CN.vtt
896 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/14. Conclusion-XiR_37bYA84.ar.vtt
894 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/33. Bayes' Rule and Robotics-meNSO42JF6I.zh-CN.vtt
892 Bytes
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/17. New Mean and Variance Solution - Artificial Intelligence for Robotics-SwxRWZaC1FM.zh-CN.vtt
891 Bytes
Part 06-Module 01-Lesson 12_Hypothesis Testing/32. Hypothesis Testing Conclusion-nQFchD4XPPs.zh-CN.vtt
890 Bytes
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/01. 26 Spread Part 1-zb76Z_viYLY.pt-BR.vtt
889 Bytes
Part 06-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.ja.vtt
887 Bytes
Part 06-Module 01-Lesson 12_Hypothesis Testing/16. How Do We Choose Between Hypotheses-JkXTwS-5Daw.zh-CN.vtt
887 Bytes
Part 09-Module 01-Lesson 01_Intro to Computer Vision/11. Emotion as a Service-2jAP3rP3USM.en.vtt
887 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-HjpgML5zsUE.es-ES.vtt
886 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-MEbJxfw3NVs.ar.vtt
886 Bytes
Part 03-Module 01-Lesson 05_Scripting/01. Scripting-Qxe_gCiXUDg.ar.vtt
885 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/01. Binomial-3koDdc9r73E.es-ES.vtt
885 Bytes
Part 06-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.pt-BR.vtt
884 Bytes
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/01. Instructors Introduction-lIvm8urf4GE.zh-CN.vtt
883 Bytes
Part 06-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.en.vtt
883 Bytes
Part 07-Module 01-Lesson 03_Clustering/14. Some challenges of k-means-e2CdlG5P4WA.ar.vtt
882 Bytes
Part 06-Module 01-Lesson 04_Probability/05. Loaded Coin 2-dGffszQYzqc.es-ES.vtt
880 Bytes
Part 01-Module 02-Lesson 02_Outliers and Filtering/01. M2L2 01 Intro V1-OGx1aYHMgbs.en.vtt
879 Bytes
Part 06-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.en.vtt
879 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-HjpgML5zsUE.en.vtt
879 Bytes
Part 01-Module 01-Lesson 05_Market Mechanics/11. M1L3 15 Outro V2-XVvfToYCsmo.en.vtt
878 Bytes
Part 02-Module 02-Lesson 04_Training Neural Networks/02. Training Optimization-UiGKhx9pUYc.pt-BR.vtt
874 Bytes
Part 06-Module 01-Lesson 04_Probability/05. Loaded Coin 2-dGffszQYzqc.en.vtt
874 Bytes
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/20. L1 23 Absolute Returns V3-wbb6WSyXLdU.en.vtt
872 Bytes
Part 06-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.ja.vtt
872 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-07vOaYwecII.es-ES.vtt
870 Bytes
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/09. Maximize Gaussian - Artificial Intelligence for Robotics-fRYtUP0P4Lg.es-ES.vtt
869 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-CMQBKuYjPBM.en-GB.vtt
868 Bytes
Part 06-Module 01-Lesson 04_Probability/05. Loaded Coin 2-dGffszQYzqc.pt-BR.vtt
866 Bytes
Part 06-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.it.vtt
866 Bytes
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/23. L1 26 Expense Ratios V2-SHZ0AhJq134.en.vtt
865 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/01. Binomial-3koDdc9r73E.pt-BR.vtt
864 Bytes
Part 03-Module 01-Lesson 03_Control Flow/01. Introduction-eUrvACMMJ5w.zh-CN.vtt
862 Bytes
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/17. Measures of Center - The Mode-NE81NZgECqg.ar.vtt
861 Bytes
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/12. KALMAN QUIZ Predicting The Peak 01 RENDER V1-_fGH3xJMxdM.zh-CN.vtt
859 Bytes
Part 01-Module 01-Lesson 07_Stock Returns/01. M1L5 01 Intro V2-mE8OOxkgzy8.en.vtt
858 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-07vOaYwecII.en.vtt
856 Bytes
Part 07-Module 01-Lesson 03_Clustering/15. Limitations of K-Means-4Fkfu37el_k.pt-BR.vtt
856 Bytes
Part 07-Module 01-Lesson 03_Clustering/15. Limitations of K-Means-4Fkfu37el_k.en.vtt
855 Bytes
Part 06-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.hr.vtt
854 Bytes
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/06. M1L1 MV 04 Study Groups V1-vmjk1EKR6mM.en.vtt
853 Bytes
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/02. M1L1 02 Interview W Jonathan V1-AeranuDRL7k.en.vtt
851 Bytes
Part 06-Module 01-Lesson 08_Python Probability Practice/08. Python Probability Conclusion-4JYar5GykXk.ar.vtt
851 Bytes
Part 06-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.es-ES.vtt
850 Bytes
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/01. 26 Spread Part 1-zb76Z_viYLY.zh-CN.vtt
848 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-w5qcGO8krMw.pt-BR.vtt
848 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-QIQBb4nLsHc.ar.vtt
847 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-aBBmlnd7okQ.ja.vtt
846 Bytes
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/09. Maximize Gaussian - Artificial Intelligence for Robotics-fRYtUP0P4Lg.en.vtt
846 Bytes
Part 06-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.ar.vtt
845 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-cDub-OOrIRE.es-ES.vtt
845 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1--TBAfU1cjRU.ar.vtt
844 Bytes
Part 01-Module 04-Lesson 01_Factors/10. M4 L1A 09 Overview For Standardizing A Factor V3-0clT0lnrTrU.en.vtt
842 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-GO6kbL3QRBE.ja.vtt
841 Bytes
Part 07-Module 01-Lesson 03_Clustering/17. Counterintuitive Clusters 2-xSQTzAeeoEc.ar.vtt
841 Bytes
Part 02-Module 02-Lesson 04_Training Neural Networks/02. Training Optimization-UiGKhx9pUYc.zh-CN.vtt
840 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/01. Binomial-3koDdc9r73E.en.vtt
839 Bytes
Part 06-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.ar.vtt
838 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-tI0J14yQr1s.es-ES.vtt
837 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-cDub-OOrIRE.it.vtt
837 Bytes
Part 07-Module 01-Lesson 03_Clustering/06. Optimizing Centers (Rubber Bands)-TN1rQMrx65c.ar.vtt
836 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/01. Binomial-3koDdc9r73E.ja.vtt
835 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-tI0J14yQr1s.it.vtt
832 Bytes
Part 07-Module 01-Lesson 01_Linear Regression/14. Absolute Vs Squared Error-csvdjaqt1GM.en.vtt
831 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-05upwXtARuo.ar.vtt
829 Bytes
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/09. Data Types Summary-T-KrQoAJUpI.en.vtt
828 Bytes
Part 06-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.zh-CN.vtt
828 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-07vOaYwecII.ja.vtt
828 Bytes
Part 06-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.en.vtt
826 Bytes
Part 01-Module 01-Lesson 06_Data Processing/01. M1L4 01 Stock Data V2-sN0_IqmMGGA.en.vtt
825 Bytes
Part 02-Module 02-Lesson 04_Training Neural Networks/02. Training Optimization-UiGKhx9pUYc.en.vtt
824 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-N-wpkttwcoA.es-ES.vtt
823 Bytes
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/08. Example of Sampling Distributions - Part 3-E_4lvTWkSNI.en.vtt
821 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-Jp2xJOtNQZ0.ar.vtt
819 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-tI0J14yQr1s.ja.vtt
819 Bytes
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/20. Predict Function - Artificial Intelligence for Robotics-DV2cX9W0tT8.es-ES.vtt
819 Bytes
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/17. Two Useful Theorems - Central Limit Theorem-L79u8ywRmG8.en.vtt
818 Bytes
Part 06-Module 01-Lesson 04_Probability/05. Loaded Coin 2-dGffszQYzqc.zh-CN.vtt
817 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-w5qcGO8krMw.es-ES.vtt
817 Bytes
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/25. L1 28 Open End Mutual Funds Handling Withdrawals V2-46NGAQHY-Mc.en.vtt
816 Bytes
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/13. KALMAN QUIZ Predicting The Peak 02 RENDER V1-mcwr6FcP2Vc.en.vtt
815 Bytes
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/19. Quiz - Cross 1--xxrisIvD0E.zh-CN.vtt
813 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-mFfbts1lAEo.th.vtt
813 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-OdVAt79eQak.ja.vtt
813 Bytes
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz - Cross 1--xxrisIvD0E.zh-CN.vtt
813 Bytes
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/08. L1 09 Price Weighting V2-2SFbwJ19NhA.en.vtt
812 Bytes
Part 07-Module 01-Lesson 03_Clustering/15. Limitations of K-Means-4Fkfu37el_k.zh-CN.vtt
812 Bytes
Part 03-Module 01-Lesson 05_Scripting/01. Scripting-Qxe_gCiXUDg.pt-BR.vtt
810 Bytes
Part 09-Module 01-Lesson 01_Intro to Computer Vision/11. Emotion as a Service-2jAP3rP3USM.zh-CN.vtt
809 Bytes
Part 03-Module 01-Lesson 01_Why Python Programming/02. L1 01 Intro V3-yyNtiUyI5Tw.en.vtt
806 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-cDub-OOrIRE.ja.vtt
805 Bytes
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/13. Error Functions-YfUUunxWIJw.pt-BR.vtt
804 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-lmuonrQp_lM.en-GB.vtt
804 Bytes
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/13. Error Functions-YfUUunxWIJw.pt-BR.vtt
804 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/11. Dangers Of Statistics-UYZXqP562qg.pt-BR.vtt
802 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-GzRNoodJZxk.ar.vtt
802 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-55eZrE82TqA.en.vtt
799 Bytes
Part 06-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.ar.vtt
799 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-tI0J14yQr1s.en.vtt
798 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-55eZrE82TqA.it.vtt
797 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-55eZrE82TqA.pt-BR.vtt
797 Bytes
Part 07-Module 01-Lesson 01_Linear Regression/14. Absolute Vs Squared Error-csvdjaqt1GM.pt-BR.vtt
793 Bytes
Part 01-Module 03-Lesson 02_ETFs/11. L2 14 Summary V1-E5br2PiH8kY.en.vtt
792 Bytes
Part 06-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.hr.vtt
792 Bytes
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/13. Error Functions-YfUUunxWIJw.en.vtt
790 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-omC0zbJyzUY.en.vtt
790 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-w5qcGO8krMw.en.vtt
790 Bytes
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/13. Error Functions-YfUUunxWIJw.en.vtt
790 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-cDub-OOrIRE.en.vtt
789 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/01. Admissions Case Study Introduction-FGbxq1hQgtk.ar.vtt
787 Bytes
Part 06-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.zh-CN.vtt
787 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Iz4ViIg9ZlQ.zh-CN.vtt
785 Bytes
Part 01-Module 03-Lesson 04_Portfolio Optimization/13. L4 14 Recap V1-e3qJYCQfJD0.en.vtt
783 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3-m1LSU9SPZ2k.ar.vtt
783 Bytes
Part 07-Module 01-Lesson 03_Clustering/05. Match Points with Clusters-lS5DfbsWH34.pt-BR.vtt
781 Bytes
Part 06-Module 01-Lesson 13_Case Study AB tests/14. Analyzing Multiple Metrics-DtZghKNa7Ak.pt-BR.vtt
780 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-nUxwwMNKIYo.th.vtt
779 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-7k5oAaZamCA.th.vtt
777 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-OdVAt79eQak.es-ES.vtt
777 Bytes
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/09. Data Types Summary-T-KrQoAJUpI.zh-CN.vtt
775 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-36KLIHioAvA.es-ES.vtt
775 Bytes
Part 07-Module 01-Lesson 03_Clustering/04. How Many Clusters-R6oIvdBtsZw.pt-BR.vtt
773 Bytes
Part 06-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.th.vtt
772 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-OdVAt79eQak.en.vtt
772 Bytes
Part 07-Module 01-Lesson 03_Clustering/05. Match Points with Clusters-lS5DfbsWH34.en.vtt
772 Bytes
Part 07-Module 01-Lesson 04_Decision Trees/12. MLND SL DT 10 Q Information Gain MAIN V1-tVLOLPEtLFw.en.vtt
771 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2-WYA5Zbf8HC4.pt-BR.vtt
769 Bytes
Part 06-Module 01-Lesson 08_Python Probability Practice/08. Python Probability Conclusion-4JYar5GykXk.pt-BR.vtt
769 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-GlmS_jox08s.th.vtt
768 Bytes
Part 07-Module 01-Lesson 03_Clustering/04. How Many Clusters-R6oIvdBtsZw.en.vtt
768 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/01. Bayes Rules-CohZnkZMOxE.it.vtt
767 Bytes
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/09. Maximize Gaussian - Artificial Intelligence for Robotics-fRYtUP0P4Lg.zh-CN.vtt
767 Bytes
Part 06-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.ar.vtt
765 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-36KLIHioAvA.pt-PT.vtt
765 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-btGdX0ZpkNU.it.vtt
764 Bytes
Part 03-Module 01-Lesson 04_Functions/18. Conclusion-QRnLr7pwHyk.en.vtt
763 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-HjpgML5zsUE.zh-CN.vtt
763 Bytes
Part 06-Module 01-Lesson 04_Probability/05. Loaded Coin 2-dGffszQYzqc.ja.vtt
762 Bytes
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/20. Predict Function - Artificial Intelligence for Robotics-DV2cX9W0tT8.en.vtt
762 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-cDub-OOrIRE.pt-BR.vtt
761 Bytes
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/16. L3 13 Summary V1-I7XKJf8t_0s.en.vtt
760 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-HjpgML5zsUE.ja.vtt
760 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/01. Binomial-3koDdc9r73E.zh-CN.vtt
759 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-omC0zbJyzUY.es-ES.vtt
757 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/11. Dangers Of Statistics-UYZXqP562qg.en.vtt
754 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-qDGSvvabN18.pt-BR.vtt
753 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-cDub-OOrIRE.zh-CN.vtt
752 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-YSMWpFM92S0.en.vtt
752 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-yimIE9fCvi8.ar.vtt
752 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-07vOaYwecII.zh-CN.vtt
751 Bytes
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/01. Introduction-SvdlBB-ZjcQ.zh-CN.vtt
750 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-55eZrE82TqA.hr.vtt
748 Bytes
Part 06-Module 01-Lesson 04_Probability/11. Two Flips 4-bNoS6LQEFrI.es-ES.vtt
748 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-w5qcGO8krMw.ja.vtt
748 Bytes
Part 03-Module 01-Lesson 04_Functions/18. Conclusion-QRnLr7pwHyk.pt-BR.vtt
746 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/01. Bayes Rules-CohZnkZMOxE.es-ES.vtt
746 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-YSMWpFM92S0.es-ES.vtt
746 Bytes
Part 03-Module 01-Lesson 01_Why Python Programming/02. L1 01 Intro V3-yyNtiUyI5Tw.zh-CN.vtt
745 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/08. Formula-DTdS-LlMTQ0.zh-CN.vtt
745 Bytes
Part 06-Module 01-Lesson 13_Case Study AB tests/18. Conclusion-qmGjRpMVBz8.pt-BR.vtt
745 Bytes
Part 07-Module 01-Lesson 03_Clustering/04. How Many Clusters-R6oIvdBtsZw.zh-CN.vtt
744 Bytes
Part 06-Module 01-Lesson 04_Probability/11. Two Flips 4-bNoS6LQEFrI.it.vtt
742 Bytes
Part 06-Module 01-Lesson 11_Confidence Intervals/16. Confidence Intervals And Hypothesis Tests-T2d9AUnWl-I.zh-CN.vtt
742 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-N-wpkttwcoA.pt-BR.vtt
741 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-MEbJxfw3NVs.es-ES.vtt
741 Bytes
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/13. Error Functions-YfUUunxWIJw.zh-CN.vtt
739 Bytes
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/13. Error Functions-YfUUunxWIJw.zh-CN.vtt
739 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.ar.vtt
738 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-N-wpkttwcoA.en.vtt
738 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-MZoYGBZTh-g.pt-BR.vtt
736 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1--TBAfU1cjRU.pt-BR.vtt
735 Bytes
Part 06-Module 01-Lesson 13_Case Study AB tests/01. Case Study Introduction-J5uvdPxHIfs.pt-BR.vtt
735 Bytes
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/07. Remember Gate-0qlm86HaXuU.en.vtt
734 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-qDGSvvabN18.en.vtt
734 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/37. Bayes Rule Conclusion-vlfDGCD8w0s.ar.vtt
731 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-qDGSvvabN18.ja.vtt
730 Bytes
Part 06-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.th.vtt
729 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-QIQBb4nLsHc.es-ES.vtt
729 Bytes
Part 06-Module 01-Lesson 04_Probability/11. Two Flips 4-bNoS6LQEFrI.pt-BR.vtt
728 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-btGdX0ZpkNU.es-ES.vtt
728 Bytes
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/03. Grammar-Jw3dA7xmoQ4.en.vtt
727 Bytes
Part 07-Module 01-Lesson 04_Decision Trees/12. MLND SL DT 10 Q Information Gain MAIN V1-tVLOLPEtLFw.zh-CN.vtt
727 Bytes
Part 10-Module 01-Lesson 01_Intro to NLP/04. Grammar-Jw3dA7xmoQ4.en.vtt
727 Bytes
Part 03-Module 01-Lesson 04_Functions/18. Conclusion-QRnLr7pwHyk.zh-CN.vtt
724 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-ys9w-NNKCcU.th.vtt
723 Bytes
Part 07-Module 01-Lesson 04_Decision Trees/12. MLND SL DT 10 Q Information Gain MAIN V1-tVLOLPEtLFw.pt-BR.vtt
723 Bytes
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/21. Formula For Cross 1-qvr_ego_d6w.pt-BR.vtt
719 Bytes
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/21. Formula For Cross 1-qvr_ego_d6w.pt-BR.vtt
719 Bytes
Part 06-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.ar.vtt
717 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-QIQBb4nLsHc.ja.vtt
717 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-V_Gqm42WodI.th.vtt
717 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-omC0zbJyzUY.ja.vtt
716 Bytes
Part 07-Module 01-Lesson 02_Naive Bayes/01. Naive Bayes Intro V2-vNOiQXghgRY.en.vtt
716 Bytes
Part 06-Module 01-Lesson 04_Probability/11. Two Flips 4-bNoS6LQEFrI.en.vtt
715 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-MEbJxfw3NVs.en.vtt
715 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-36KLIHioAvA.pl.vtt
715 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/01. Bayes Rules-CohZnkZMOxE.en.vtt
714 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-tI0J14yQr1s.zh-CN.vtt
713 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2-WYA5Zbf8HC4.it.vtt
712 Bytes
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/20. Predict Function - Artificial Intelligence for Robotics-DV2cX9W0tT8.zh-CN.vtt
711 Bytes
Part 01-Module 02-Lesson 03_Regression/17. M2L3 15 Summary V1-n2VxcEcw0GY.en.vtt
710 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-N-wpkttwcoA.ja.vtt
710 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-55eZrE82TqA.ja.vtt
708 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-qDGSvvabN18.zh-CN.vtt
708 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/11. Dangers Of Statistics-UYZXqP562qg.zh-CN.vtt
707 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-n_OrWrZ8tKY.ar.vtt
706 Bytes
Part 06-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.pt-BR.vtt
705 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-btGdX0ZpkNU.en.vtt
704 Bytes
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/08. Example of Sampling Distributions - Part 3-E_4lvTWkSNI.zh-CN.vtt
704 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-QIQBb4nLsHc.it.vtt
702 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-tI0J14yQr1s.pt-BR.vtt
702 Bytes
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/19. M4 L2b 19 Outro V1-nfVnAkndJCY.en.vtt
700 Bytes
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/07. Remember Gate-0qlm86HaXuU.pt-BR.vtt
700 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-9SbUxcyDTaQ.th.vtt
700 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-MEbJxfw3NVs.pt-BR.vtt
699 Bytes
Part 06-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.it.vtt
697 Bytes
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/20. Predict Function - Artificial Intelligence for Robotics-DV2cX9W0tT8.ja.vtt
697 Bytes
Part 06-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.it.vtt
695 Bytes
Part 06-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.pt-BR.vtt
695 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/01. Bayes Rules-CohZnkZMOxE.pt-BR.vtt
695 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-Jp2xJOtNQZ0.pt-BR.vtt
694 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.pt-BR.vtt
692 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/14. Conclusion-XiR_37bYA84.pt-BR.vtt
692 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-n_OrWrZ8tKY.pt-BR.vtt
691 Bytes
Part 06-Module 01-Lesson 04_Probability/11. Two Flips 4-bNoS6LQEFrI.hr.vtt
690 Bytes
Part 06-Module 01-Lesson 08_Python Probability Practice/08. Python Probability Conclusion-4JYar5GykXk.en.vtt
690 Bytes
Part 07-Module 01-Lesson 02_Naive Bayes/01. Naive Bayes Intro V2-vNOiQXghgRY.pt-BR.vtt
690 Bytes
Part 02-Module 01-Lesson 04_Feature Extraction/10. NLP Summary-B9ul8fsQYOA.en.vtt
688 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-QIQBb4nLsHc.pt-BR.vtt
688 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3-m1LSU9SPZ2k.pt-BR.vtt
687 Bytes
Part 06-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.es-ES.vtt
686 Bytes
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/13. KALMAN QUIZ Predicting The Peak 02 RENDER V1-mcwr6FcP2Vc.zh-CN.vtt
686 Bytes
Part 06-Module 01-Lesson 04_Probability/17. Even Roll-M3L0a5V4Nf0.ar.vtt
684 Bytes
Part 06-Module 01-Lesson 08_Python Probability Practice/01. Python Probability Introduction-tFMdvAN7WDY.ar.vtt
684 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-MZoYGBZTh-g.ar.vtt
684 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-36KLIHioAvA.pt-BR.vtt
684 Bytes
Part 06-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.en.vtt
682 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-qDGSvvabN18.es-ES.vtt
682 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-36KLIHioAvA.en.vtt
682 Bytes
Part 07-Module 01-Lesson 03_Clustering/05. Match Points with Clusters-wJV1cRjmIYY.ar.vtt
682 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2-WYA5Zbf8HC4.es-ES.vtt
681 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-05upwXtARuo.pt-BR.vtt
680 Bytes
Part 07-Module 01-Lesson 03_Clustering/05. Match Points with Clusters-lS5DfbsWH34.zh-CN.vtt
680 Bytes
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/15. KALMAN QUIZ Parameter Update 02 RENDER V2-vl6GkkEgY4M.en.vtt
680 Bytes
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/31. Descriptive Statistics Summary-Fe7Gta2SfLA.ar.vtt
679 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-05upwXtARuo.es-ES.vtt
679 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3-m1LSU9SPZ2k.es-ES.vtt
679 Bytes
Part 06-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.th.vtt
677 Bytes
Part 06-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.zh-CN.vtt
676 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/14. Conclusion-XiR_37bYA84.en.vtt
675 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-OdVAt79eQak.zh-CN.vtt
675 Bytes
Part 03-Module 01-Lesson 03_Control Flow/34. Congrats!-vDoqpwCHxs4.ar.vtt
673 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-55eZrE82TqA.zh-CN.vtt
673 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-YSMWpFM92S0.pt-BR.vtt
673 Bytes
Part 07-Module 01-Lesson 03_Clustering/17. Counterintuitive Clusters 2-xSQTzAeeoEc.pt-BR.vtt
672 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.es-ES.vtt
671 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.it.vtt
671 Bytes
Part 06-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.es-ES.vtt
671 Bytes
Part 07-Module 01-Lesson 03_Clustering/05. Match Points with Clusters-wJV1cRjmIYY.pt-BR.vtt
671 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-nUxwwMNKIYo.ar.vtt
670 Bytes
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/17. Two Useful Theorems - Central Limit Theorem-L79u8ywRmG8.zh-CN.vtt
670 Bytes
Part 06-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.ja.vtt
669 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-PGG9agooCvw.th.vtt
667 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-Jp2xJOtNQZ0.es-ES.vtt
665 Bytes
Part 07-Module 01-Lesson 03_Clustering/17. Counterintuitive Clusters 2-xSQTzAeeoEc.en.vtt
665 Bytes
Part 06-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.ar.vtt
663 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3-m1LSU9SPZ2k.en.vtt
663 Bytes
Part 01-Module 03-Lesson 04_Portfolio Optimization/01. L4 01 Intro V1-CtIcmmR0YTs.en.vtt
662 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.hr.vtt
662 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-36KLIHioAvA.ja.vtt
661 Bytes
Part 06-Module 01-Lesson 04_Probability/11. Two Flips 4-bNoS6LQEFrI.zh-CN.vtt
658 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-udduksMWMB4.th.vtt
657 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3-m1LSU9SPZ2k.ja.vtt
657 Bytes
Part 06-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.es-ES.vtt
656 Bytes
Part 06-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.it.vtt
656 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-NRPcnpmFCg8.ar.vtt
656 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/01. Admissions Case Study Introduction-FGbxq1hQgtk.en.vtt
655 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-QIQBb4nLsHc.en.vtt
655 Bytes
Part 06-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.th.vtt
654 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-mvJUNYfHngY.ar.vtt
654 Bytes
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/17. Measures of Center - The Mode-NE81NZgECqg.en.vtt
653 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-5Tbd3_a5Vug.th.vtt
653 Bytes
Part 03-Module 01-Lesson 05_Scripting/29. Conclusion-rEMrswkLvh8.ar.vtt
652 Bytes
Part 06-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.ar.vtt
650 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-vMAl1m8ZtoI.ar.vtt
650 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-N-wpkttwcoA.zh-CN.vtt
650 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2-WYA5Zbf8HC4.en.vtt
646 Bytes
Part 03-Module 01-Lesson 05_Scripting/01. Scripting-Qxe_gCiXUDg.en.vtt
645 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-w5qcGO8krMw.zh-CN.vtt
644 Bytes
Part 06-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.pt-BR.vtt
642 Bytes
Part 06-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.hr.vtt
640 Bytes
Part 06-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.ar.vtt
640 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-YSMWpFM92S0.zh-CN.vtt
638 Bytes
Part 06-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.hr.vtt
637 Bytes
Part 06-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.en.vtt
635 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-VLLG0rYC7To.th.vtt
634 Bytes
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/30. Non-Linear Data-F7ZiE8PQiSc.en.vtt
633 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/01. Bayes Rules-CohZnkZMOxE.zh-CN.vtt
633 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-05upwXtARuo.en.vtt
633 Bytes
Part 07-Module 01-Lesson 03_Clustering/17. Counterintuitive Clusters 2-xSQTzAeeoEc.zh-CN.vtt
633 Bytes
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/30. Non-Linear Data-F7ZiE8PQiSc.en.vtt
633 Bytes
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/07. Remember Gate-0qlm86HaXuU.zh-CN.vtt
632 Bytes
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/11. KALMAN QUIZ Shifting The Mean 02 RENDER V1-L8vNIKvpJ1s.en.vtt
632 Bytes
Part 07-Module 01-Lesson 02_Naive Bayes/01. Naive Bayes Intro V2-vNOiQXghgRY.zh-CN.vtt
631 Bytes
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/17. Measures of Center - The Mode-NE81NZgECqg.pt-BR.vtt
629 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-btGdX0ZpkNU.zh-CN.vtt
629 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-MZoYGBZTh-g.es-ES.vtt
629 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-Jp2xJOtNQZ0.en.vtt
628 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-MEbJxfw3NVs.ja.vtt
627 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-lmuonrQp_lM.ar.vtt
626 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.ja.vtt
625 Bytes
Part 06-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.it.vtt
625 Bytes
Part 02-Module 01-Lesson 04_Feature Extraction/10. NLP Summary-B9ul8fsQYOA.zh-CN.vtt
624 Bytes
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/30. Non-Linear Data-F7ZiE8PQiSc.zh-CN.vtt
624 Bytes
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/30. Non-Linear Data-F7ZiE8PQiSc.zh-CN.vtt
624 Bytes
Part 06-Module 01-Lesson 04_Probability/11. Two Flips 4-bNoS6LQEFrI.ja.vtt
623 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-zB2Y-5YEIec.ar.vtt
623 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.en.vtt
622 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3-m1LSU9SPZ2k.zh-CN.vtt
622 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-05upwXtARuo.ja.vtt
621 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-nUxwwMNKIYo.pt-BR.vtt
620 Bytes
Part 06-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.it.vtt
618 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2-WYA5Zbf8HC4.ja.vtt
618 Bytes
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/03. Grammar-Jw3dA7xmoQ4.zh-CN.vtt
617 Bytes
Part 06-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.ja.vtt
617 Bytes
Part 06-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.ru.vtt
617 Bytes
Part 06-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.en.vtt
617 Bytes
Part 06-Module 01-Lesson 08_Python Probability Practice/08. Python Probability Conclusion-4JYar5GykXk.zh-CN.vtt
617 Bytes
Part 06-Module 01-Lesson 12_Hypothesis Testing/01. Hypothesis Testing Introduction-Qi6F2rJAmrA.en.vtt
617 Bytes
Part 10-Module 01-Lesson 01_Intro to NLP/04. Grammar-Jw3dA7xmoQ4.zh-CN.vtt
617 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/14. Conclusion-XiR_37bYA84.zh-CN.vtt
616 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-QIQBb4nLsHc.zh-CN.vtt
616 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-CMQBKuYjPBM.ar.vtt
615 Bytes
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/17. Measures of Center - The Mode-NE81NZgECqg.zh-CN.vtt
613 Bytes
Part 07-Module 01-Lesson 03_Clustering/05. Match Points with Clusters-wJV1cRjmIYY.en.vtt
613 Bytes
Part 06-Module 01-Lesson 04_Probability/17. Even Roll-M3L0a5V4Nf0.es-ES.vtt
611 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-omC0zbJyzUY.zh-CN.vtt
609 Bytes
Part 06-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.es-ES.vtt
608 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-btGdX0ZpkNU.ja.vtt
608 Bytes
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/21. Formula For Cross 1-qvr_ego_d6w.en.vtt
607 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-5zkupL6EWh8.ar.vtt
607 Bytes
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/21. Formula For Cross 1-qvr_ego_d6w.en.vtt
607 Bytes
Part 07-Module 01-Lesson 03_Clustering/06. Optimizing Centers (Rubber Bands)-TN1rQMrx65c.pt-BR.vtt
606 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6--lC9xztr4zA.th.vtt
604 Bytes
Part 06-Module 01-Lesson 04_Probability/09. Two Flips 2-pT0FXiH_5nI.th.vtt
603 Bytes
Part 07-Module 01-Lesson 03_Clustering/14. Some challenges of k-means-e2CdlG5P4WA.en.vtt
601 Bytes
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/30. Non-Linear Data-F7ZiE8PQiSc.pt-BR.vtt
600 Bytes
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/30. Non-Linear Data-F7ZiE8PQiSc.pt-BR.vtt
600 Bytes
Part 06-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.hr.vtt
599 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-NRPcnpmFCg8.pt-BR.vtt
599 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-Ny2vcRZ6Aws.ar.vtt
599 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-MZoYGBZTh-g.en.vtt
599 Bytes
Part 06-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.it.vtt
598 Bytes
Part 06-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.pt-BR.vtt
598 Bytes
Part 06-Module 01-Lesson 13_Case Study AB tests/01. Case Study Introduction-J5uvdPxHIfs.en.vtt
598 Bytes
Part 06-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.ja.vtt
597 Bytes
Part 06-Module 01-Lesson 04_Probability/17. Even Roll-M3L0a5V4Nf0.pt-BR.vtt
597 Bytes
Part 06-Module 01-Lesson 04_Probability/17. Even Roll-M3L0a5V4Nf0.ja.vtt
596 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-yimIE9fCvi8.es-ES.vtt
595 Bytes
Part 07-Module 01-Lesson 03_Clustering/06. Optimizing Centers (Rubber Bands)-TN1rQMrx65c.en.vtt
595 Bytes
Part 06-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.ja.vtt
594 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-GzRNoodJZxk.pt-BR.vtt
593 Bytes
Part 06-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.ar.vtt
591 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-yimIE9fCvi8.en.vtt
591 Bytes
Part 07-Module 01-Lesson 01_Linear Regression/23. Conclusion-pyeojf0NniQ.pt-BR.vtt
590 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-btGdX0ZpkNU.pt-BR.vtt
589 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-MZoYGBZTh-g.ja.vtt
589 Bytes
Part 07-Module 01-Lesson 03_Clustering/05. Match Points with Clusters-wJV1cRjmIYY.zh-CN.vtt
589 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-YSMWpFM92S0.ja.vtt
587 Bytes
Part 06-Module 01-Lesson 13_Case Study AB tests/18. Conclusion-qmGjRpMVBz8.en.vtt
586 Bytes
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/15. Discrete vs Continuous-rdP-RPDFkl0.pt-BR.vtt
584 Bytes
Part 06-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.ja.vtt
584 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-t22oDruXhuo.ar.vtt
584 Bytes
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs Continuous-rdP-RPDFkl0.pt-BR.vtt
584 Bytes
Part 03-Module 01-Lesson 03_Control Flow/34. Congrats!-vDoqpwCHxs4.pt-BR.vtt
583 Bytes
Part 07-Module 01-Lesson 03_Clustering/10. K-Means Cluster Visualization-ZMfwPUrOFsE.ar.vtt
583 Bytes
Part 06-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.zh-CN.vtt
582 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-36KLIHioAvA.zh-CN.vtt
582 Bytes
Part 06-Module 01-Lesson 12_Hypothesis Testing/01. Hypothesis Testing Introduction-Qi6F2rJAmrA.pt-BR.vtt
582 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.zh-Hans.vtt
579 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/07. Total Probability-fAaE5K9OZJc.th.vtt
579 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/37. Bayes Rule Conclusion-vlfDGCD8w0s.pt-BR.vtt
579 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-MEbJxfw3NVs.zh-CN.vtt
579 Bytes
Part 06-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.th.vtt
578 Bytes
Part 06-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.zh-CN.vtt
577 Bytes
Part 06-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.hr.vtt
575 Bytes
Part 06-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.es-ES.vtt
575 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-Jp2xJOtNQZ0.ja.vtt
572 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-05upwXtARuo.zh-CN.vtt
572 Bytes
Part 06-Module 01-Lesson 13_Case Study AB tests/14. Analyzing Multiple Metrics-DtZghKNa7Ak.en.vtt
572 Bytes
Part 06-Module 01-Lesson 04_Probability/17. Even Roll-M3L0a5V4Nf0.it.vtt
571 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-GzRNoodJZxk.en.vtt
571 Bytes
Part 06-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.pt-BR.vtt
570 Bytes
Part 03-Module 01-Lesson 05_Scripting/01. Scripting-Qxe_gCiXUDg.zh-CN.vtt
569 Bytes
Part 06-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.en.vtt
569 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/01. Admissions Case Study Introduction-FGbxq1hQgtk.pt-BR.vtt
567 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/01. Admissions Case Study Introduction-FGbxq1hQgtk.zh-CN.vtt
566 Bytes
Part 06-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.es-ES.vtt
566 Bytes
Part 01-Module 02-Lesson 02_Outliers and Filtering/10. M2L2 09 Outro V1-r1SWu-7Rzf0.en.vtt
565 Bytes
Part 06-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.hr.vtt
565 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-GzRNoodJZxk.es-ES.vtt
565 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-5Tbd3_a5Vug.ar.vtt
562 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1--TBAfU1cjRU.es-ES.vtt
560 Bytes
Part 06-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.zh-CN.vtt
558 Bytes
Part 06-Module 01-Lesson 04_Probability/17. Even Roll-M3L0a5V4Nf0.en.vtt
558 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-mFfbts1lAEo.ar.vtt
558 Bytes
Part 07-Module 01-Lesson 01_Linear Regression/23. Conclusion-pyeojf0NniQ.en.vtt
558 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1--TBAfU1cjRU.ja.vtt
557 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.zh-CN.vtt
556 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-Jp2xJOtNQZ0.zh-CN.vtt
554 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-hXyXlk0gYzk.th.vtt
554 Bytes
Part 06-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.en.vtt
553 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2-WYA5Zbf8HC4.zh-CN.vtt
553 Bytes
Part 06-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.it.vtt
552 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-5zkupL6EWh8.pt-BR.vtt
552 Bytes
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/15. Discrete vs Continuous-rdP-RPDFkl0.en.vtt
551 Bytes
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs Continuous-rdP-RPDFkl0.en.vtt
551 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-JWl8lPGhlbY.ar.vtt
549 Bytes
Part 06-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.en.vtt
549 Bytes
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/16. Quiz - Softmax-NNoezNnAMTY.zh-CN.vtt
548 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-jPspIs-fNxg.th.vtt
548 Bytes
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/16. Quiz - Softmax-NNoezNnAMTY.zh-CN.vtt
548 Bytes
Part 06-Module 01-Lesson 04_Probability/10. Two Flips 3-3NSPqjp6pFY.ar.vtt
547 Bytes
Part 06-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.pt-BR.vtt
547 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-yimIE9fCvi8.pt-BR.vtt
547 Bytes
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/21. Formula For Cross 1-qvr_ego_d6w.zh-CN.vtt
545 Bytes
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/21. Formula For Cross 1-qvr_ego_d6w.zh-CN.vtt
545 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-PGG9agooCvw.ar.vtt
544 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-pL8Bf6tck_A.th.vtt
541 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-lmuonrQp_lM.ja.vtt
541 Bytes
Part 06-Module 01-Lesson 08_Python Probability Practice/01. Python Probability Introduction-tFMdvAN7WDY.pt-BR.vtt
541 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-n_OrWrZ8tKY.en.vtt
540 Bytes
Part 07-Module 01-Lesson 03_Clustering/14. Some challenges of k-means-e2CdlG5P4WA.pt-BR.vtt
540 Bytes
Part 06-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.hr.vtt
539 Bytes
Part 06-Module 01-Lesson 04_Probability/17. Even Roll-M3L0a5V4Nf0.zh-CN.vtt
538 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-n_OrWrZ8tKY.es-ES.vtt
538 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1--TBAfU1cjRU.en.vtt
537 Bytes
Part 06-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.zh-CN.vtt
536 Bytes
Part 06-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.es-ES.vtt
535 Bytes
Part 03-Module 01-Lesson 02_Data Types and Operators/38. Conclusion-LLEZadlXM8A.ar.vtt
534 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-RBfFHxEjsIU.ar.vtt
533 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-vMAl1m8ZtoI.es-ES.vtt
533 Bytes
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/11. KALMAN QUIZ Shifting The Mean 02 RENDER V1-L8vNIKvpJ1s.zh-CN.vtt
533 Bytes
Part 06-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.ja.vtt
532 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-rjpcSymYulE.ar.vtt
532 Bytes
Part 06-Module 01-Lesson 12_Hypothesis Testing/01. Hypothesis Testing Introduction-Qi6F2rJAmrA.zh-CN.vtt
532 Bytes
Part 06-Module 01-Lesson 13_Case Study AB tests/01. Case Study Introduction-J5uvdPxHIfs.zh-CN.vtt
532 Bytes
Part 01-Module 02-Lesson 05_Volatility/14. M2L5 15 Outro V1-FMXL37CkTgg.en.vtt
531 Bytes
Part 06-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.zh-CN.vtt
531 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-n_OrWrZ8tKY.ja.vtt
531 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-lmuonrQp_lM.es-ES.vtt
531 Bytes
Part 06-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.hr.vtt
530 Bytes
Part 06-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.pt-BR.vtt
530 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/37. Bayes Rule Conclusion-vlfDGCD8w0s.en.vtt
530 Bytes
Part 07-Module 01-Lesson 03_Clustering/14. Some challenges of k-means-e2CdlG5P4WA.zh-CN.vtt
530 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-5zkupL6EWh8.es-ES.vtt
529 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-vMAl1m8ZtoI.en.vtt
528 Bytes
Part 06-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.ja.vtt
527 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-nUxwwMNKIYo.ja.vtt
525 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-41HCYR-NW-w.ar.vtt
524 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-lmuonrQp_lM.en.vtt
524 Bytes
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/31. Descriptive Statistics Summary-Fe7Gta2SfLA.en.vtt
523 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-CMQBKuYjPBM.pt-BR.vtt
523 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-vMAl1m8ZtoI.pt-BR.vtt
523 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-yimIE9fCvi8.zh-CN.vtt
522 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-MZoYGBZTh-g.zh-CN.vtt
522 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1--TBAfU1cjRU.zh-CN.vtt
521 Bytes
Part 07-Module 01-Lesson 03_Clustering/04. How Many Clusters-8Ygq5dRV0Kk.ar.vtt
521 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-udduksMWMB4.ar.vtt
518 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-tiv8VKPL7jg.ar.vtt
518 Bytes
Part 06-Module 01-Lesson 04_Probability/17. Even Roll-M3L0a5V4Nf0.hr.vtt
517 Bytes
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/15. KALMAN QUIZ Parameter Update 02 RENDER V2-vl6GkkEgY4M.zh-CN.vtt
517 Bytes
Part 06-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.zh-CN.vtt
516 Bytes
Part 06-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.pt-BR.vtt
516 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-7k5oAaZamCA.ar.vtt
516 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-zB2Y-5YEIec.es-ES.vtt
516 Bytes
Part 07-Module 01-Lesson 03_Clustering/08. Match Points (again)-9J3IwQFXveI.ar.vtt
510 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-GlmS_jox08s.ar.vtt
509 Bytes
Part 03-Module 01-Lesson 05_Scripting/29. Conclusion-rEMrswkLvh8.pt-BR.vtt
508 Bytes
Part 06-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.en.vtt
508 Bytes
Part 06-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.it.vtt
504 Bytes
Part 06-Module 01-Lesson 13_Case Study AB tests/18. Conclusion-qmGjRpMVBz8.zh-CN.vtt
504 Bytes
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/31. Descriptive Statistics Summary-Fe7Gta2SfLA.pt-BR.vtt
503 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-mvJUNYfHngY.es-ES.vtt
502 Bytes
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/16. Quiz - Softmax-NNoezNnAMTY.pt-BR.vtt
501 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-41HCYR-NW-w.pt-BR.vtt
501 Bytes
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/16. Quiz - Softmax-NNoezNnAMTY.pt-BR.vtt
501 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-mvJUNYfHngY.pt-BR.vtt
500 Bytes
Part 06-Module 01-Lesson 13_Case Study AB tests/14. Analyzing Multiple Metrics-DtZghKNa7Ak.zh-CN.vtt
499 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-mFfbts1lAEo.pt-BR.vtt
498 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-lmuonrQp_lM.pt-BR.vtt
497 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-z_eElEkVOPY.ar.vtt
497 Bytes
Part 06-Module 01-Lesson 04_Probability/10. Two Flips 3-3NSPqjp6pFY.pt-BR.vtt
496 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-zB2Y-5YEIec.en.vtt
496 Bytes
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/16. Quiz - Softmax-NNoezNnAMTY.en.vtt
495 Bytes
Part 06-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.en.vtt
495 Bytes
Part 06-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.zh-CN.vtt
495 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-5Tbd3_a5Vug.pt-BR.vtt
495 Bytes
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/16. Quiz - Softmax-NNoezNnAMTY.en.vtt
495 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/01. Binomial-x1yamZeOMPY.ar.vtt
493 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-NRPcnpmFCg8.es-ES.vtt
493 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-lmuonrQp_lM.zh-CN.vtt
492 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-vMAl1m8ZtoI.ja.vtt
492 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-VLLG0rYC7To.ar.vtt
491 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-5zkupL6EWh8.ja.vtt
491 Bytes
Part 07-Module 01-Lesson 03_Clustering/06. Optimizing Centers (Rubber Bands)-TN1rQMrx65c.zh-CN.vtt
488 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-5zkupL6EWh8.en.vtt
486 Bytes
Part 06-Module 01-Lesson 08_Python Probability Practice/01. Python Probability Introduction-tFMdvAN7WDY.en.vtt
484 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-GzRNoodJZxk.ja.vtt
483 Bytes
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/15. Discrete vs Continuous-rdP-RPDFkl0.zh-CN.vtt
481 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-V_Gqm42WodI.ar.vtt
481 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-zB2Y-5YEIec.pt-BR.vtt
481 Bytes
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs Continuous-rdP-RPDFkl0.zh-CN.vtt
481 Bytes
Part 06-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.es-ES.vtt
480 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3--6l4_oprDOk.th.vtt
480 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-mvJUNYfHngY.en.vtt
479 Bytes
Part 07-Module 01-Lesson 03_Clustering/07. Moving Centers 2-FY0DXe0lfrI.ar.vtt
479 Bytes
Part 02-Module 02-Lesson 04_Training Neural Networks/10. Random Restart-idyBBCzXiqg.pt-BR.vtt
478 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-t22oDruXhuo.es-ES.vtt
478 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-JWl8lPGhlbY.it.vtt
476 Bytes
Part 03-Module 01-Lesson 05_Scripting/29. Conclusion-rEMrswkLvh8.en.vtt
473 Bytes
Part 06-Module 01-Lesson 04_Probability/10. Two Flips 3-3NSPqjp6pFY.es-ES.vtt
473 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-NRPcnpmFCg8.ja.vtt
473 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-8jcCGD986jk.pt-BR.vtt
473 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-CQHRYIU6v9Q.ar.vtt
473 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6--lC9xztr4zA.ar.vtt
473 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-t22oDruXhuo.pt-BR.vtt
473 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-iyX0-eXStbw.ar.vtt
472 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-CMQBKuYjPBM.es-ES.vtt
471 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-nUxwwMNKIYo.es-ES.vtt
471 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-nUxwwMNKIYo.en.vtt
470 Bytes
Part 06-Module 01-Lesson 04_Probability/10. Two Flips 3-3NSPqjp6pFY.hr.vtt
469 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-JWl8lPGhlbY.en.vtt
468 Bytes
Part 03-Module 01-Lesson 03_Control Flow/34. Congrats!-vDoqpwCHxs4.en.vtt
467 Bytes
Part 02-Module 02-Lesson 04_Training Neural Networks/10. Random Restart-idyBBCzXiqg.en.vtt
466 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-mFfbts1lAEo.es-ES.vtt
466 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-Ny2vcRZ6Aws.pt-BR.vtt
465 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LconwqN7hJs.ar.vtt
463 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-Ny2vcRZ6Aws.en.vtt
461 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-n_OrWrZ8tKY.zh-CN.vtt
460 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-GzRNoodJZxk.zh-CN.vtt
460 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-9SbUxcyDTaQ.ar.vtt
459 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-Ny2vcRZ6Aws.es-ES.vtt
459 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-JWl8lPGhlbY.ja.vtt
458 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/37. Bayes Rule Conclusion-vlfDGCD8w0s.zh-CN.vtt
458 Bytes
Part 07-Module 01-Lesson 03_Clustering/04. How Many Clusters-8Ygq5dRV0Kk.en.vtt
458 Bytes
Part 03-Module 01-Lesson 05_Scripting/29. Conclusion-rEMrswkLvh8.zh-CN.vtt
456 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-CMQBKuYjPBM.it.vtt
456 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-hXyXlk0gYzk.ar.vtt
456 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-vMAl1m8ZtoI.zh-CN.vtt
456 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-5Tbd3_a5Vug.es-ES.vtt
455 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-CMQBKuYjPBM.en.vtt
455 Bytes
Part 07-Module 01-Lesson 03_Clustering/10. K-Means Cluster Visualization-ZMfwPUrOFsE.pt-BR.vtt
454 Bytes
Part 06-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.hr.vtt
453 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-NRPcnpmFCg8.en.vtt
453 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-5Tbd3_a5Vug.it.vtt
452 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-PGG9agooCvw.es-ES.vtt
451 Bytes
Part 07-Module 01-Lesson 03_Clustering/10. K-Means Cluster Visualization-ZMfwPUrOFsE.en.vtt
451 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-yimIE9fCvi8.ja.vtt
449 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-JWl8lPGhlbY.pt-BR.vtt
447 Bytes
Part 06-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.th.vtt
447 Bytes
Part 06-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.ar.vtt
445 Bytes
Part 06-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.it.vtt
444 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-mFfbts1lAEo.ja.vtt
444 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-VLLG0rYC7To.pt-BR.vtt
444 Bytes
Part 07-Module 01-Lesson 03_Clustering/07. Moving Centers 2-uC1Xwc7warg.ar.vtt
444 Bytes
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/31. Descriptive Statistics Summary-Fe7Gta2SfLA.zh-CN.vtt
442 Bytes
Part 06-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.pt-BR.vtt
442 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-cdFrLeXIkZU.th.vtt
441 Bytes
Part 06-Module 01-Lesson 08_Python Probability Practice/01. Python Probability Introduction-tFMdvAN7WDY.zh-CN.vtt
441 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-V_Gqm42WodI.pt-BR.vtt
440 Bytes
Part 07-Module 01-Lesson 03_Clustering/04. How Many Clusters-8Ygq5dRV0Kk.pt-BR.vtt
439 Bytes
Part 06-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.ar.vtt
437 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-ys9w-NNKCcU.ar.vtt
436 Bytes
Part 06-Module 01-Lesson 04_Probability/10. Two Flips 3-3NSPqjp6pFY.it.vtt
435 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6--lC9xztr4zA.en.vtt
433 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-7k5oAaZamCA.it.vtt
433 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-GlmS_jox08s.pt-BR.vtt
433 Bytes
Part 06-Module 01-Lesson 04_Probability/10. Two Flips 3-3NSPqjp6pFY.en.vtt
432 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-nUxwwMNKIYo.zh-CN.vtt
431 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-t22oDruXhuo.en.vtt
428 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-t22oDruXhuo.ja.vtt
428 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-RBfFHxEjsIU.pt-BR.vtt
427 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-mFfbts1lAEo.en.vtt
427 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6--lC9xztr4zA.es-ES.vtt
426 Bytes
Part 01-Module 02-Lesson 04_Time Series Modeling/09. M2L4 11 Outro V1-6sheR92KUU8.en.vtt
425 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-JWl8lPGhlbY.hr.vtt
425 Bytes
Part 06-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.en.vtt
425 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-7k5oAaZamCA.es-ES.vtt
425 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-RBfFHxEjsIU.es-ES.vtt
424 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-5Tbd3_a5Vug.en.vtt
424 Bytes
Part 07-Module 01-Lesson 03_Clustering/10. K-Means Cluster Visualization-ZMfwPUrOFsE.zh-CN.vtt
424 Bytes
Part 03-Module 01-Lesson 02_Data Types and Operators/38. Conclusion-LLEZadlXM8A.en.vtt
423 Bytes
Part 06-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.th.vtt
423 Bytes
Part 06-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.zh-CN.vtt
422 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-mFfbts1lAEo.it.vtt
422 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-z_eElEkVOPY.pt-BR.vtt
422 Bytes
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.en.vtt
420 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-YkaVgZ-yFrM.ar.vtt
420 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-CMQBKuYjPBM.ja.vtt
420 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-PGG9agooCvw.zh-CN.vtt
420 Bytes
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.en.vtt
420 Bytes
Part 02-Module 02-Lesson 04_Training Neural Networks/10. Random Restart-idyBBCzXiqg.zh-CN.vtt
419 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-GlmS_jox08s.ja.vtt
419 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-9SbUxcyDTaQ.pt-BR.vtt
418 Bytes
Part 06-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.es-ES.vtt
417 Bytes
Part 06-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.ja.vtt
417 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-7k5oAaZamCA.en.vtt
416 Bytes
Part 06-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.ja.vtt
415 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-SYnYIjLpbjE.th.vtt
415 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6--lC9xztr4zA.it.vtt
414 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-PGG9agooCvw.en.vtt
414 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-41HCYR-NW-w.es-ES.vtt
412 Bytes
Part 03-Module 01-Lesson 02_Data Types and Operators/38. Conclusion-LLEZadlXM8A.pt-BR.vtt
411 Bytes
Part 06-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.ar.vtt
411 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-5zkupL6EWh8.zh-CN.vtt
411 Bytes
Part 03-Module 01-Lesson 03_Control Flow/34. Congrats!-vDoqpwCHxs4.zh-CN.vtt
410 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Rf6WfB_1EJQ.pt-BR.vtt
410 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-PGG9agooCvw.pt-BR.vtt
410 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-VLLG0rYC7To.it.vtt
409 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-NRPcnpmFCg8.zh-CN.vtt
408 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-CMQBKuYjPBM.zh-CN.vtt
408 Bytes
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/09. Maximize Gaussian Solution - Artificial Intelligence for Robotics-2cD8T65E-jM.es-ES.vtt
408 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-VLLG0rYC7To.es-ES.vtt
406 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-pL8Bf6tck_A.ar.vtt
405 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/07. Total Probability-fAaE5K9OZJc.ar.vtt
404 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-mvJUNYfHngY.ja.vtt
403 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-mvJUNYfHngY.zh-CN.vtt
403 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-Ny2vcRZ6Aws.zh-CN.vtt
403 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-CQHRYIU6v9Q.pt-BR.vtt
401 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-DeWp0hnRq4g.ar.vtt
399 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-RBfFHxEjsIU.en.vtt
399 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-jPspIs-fNxg.ar.vtt
399 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-FQM7i07EqGo.th.vtt
398 Bytes
Part 06-Module 01-Lesson 04_Probability/10. Two Flips 3-3NSPqjp6pFY.ja.vtt
397 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-7k5oAaZamCA.pt-BR.vtt
397 Bytes
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/09. Maximize Gaussian Solution - Artificial Intelligence for Robotics-2cD8T65E-jM.en.vtt
397 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-8jcCGD986jk.ar.vtt
396 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-udduksMWMB4.pt-BR.vtt
396 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3--6l4_oprDOk.ar.vtt
395 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-PGG9agooCvw.ja.vtt
395 Bytes
Part 06-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.es-ES.vtt
393 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-ys9w-NNKCcU.pt-BR.vtt
393 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-hyAQ28MYmc4.th.vtt
393 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/07. Total Probability-fAaE5K9OZJc.pt-BR.vtt
391 Bytes
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.zh-CN.vtt
390 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-7k5oAaZamCA.ja.vtt
390 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-V_Gqm42WodI.es-ES.vtt
390 Bytes
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.zh-CN.vtt
390 Bytes
Part 03-Module 01-Lesson 02_Data Types and Operators/38. Conclusion-LLEZadlXM8A.zh-CN.vtt
389 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-Ny2vcRZ6Aws.ja.vtt
389 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-zB2Y-5YEIec.ja.vtt
389 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-zB2Y-5YEIec.zh-CN.vtt
389 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-rjpcSymYulE.es-ES.vtt
389 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LconwqN7hJs.es-ES.vtt
388 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-z_eElEkVOPY.en.vtt
387 Bytes
Part 07-Module 01-Lesson 03_Clustering/04. How Many Clusters-8Ygq5dRV0Kk.zh-CN.vtt
385 Bytes
Part 07-Module 01-Lesson 03_Clustering/15. Limitations of K-Means-nvLhUSSUhiY.ar.vtt
385 Bytes
Part 06-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.hr.vtt
384 Bytes
Part 06-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.hr.vtt
383 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-Qm4KTLfFMzo.pt-BR.vtt
383 Bytes
Part 06-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.it.vtt
382 Bytes
Part 06-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.zh-CN.vtt
380 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-7k5oAaZamCA.zh-CN.vtt
380 Bytes
Part 06-Module 01-Lesson 04_Probability/10. Two Flips 3-3NSPqjp6pFY.zh-CN.vtt
379 Bytes
Part 06-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.pt-BR.vtt
377 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-rjpcSymYulE.pt-BR.vtt
377 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6--lC9xztr4zA.zh-CN.vtt
376 Bytes
Part 06-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.it.vtt
375 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-iyX0-eXStbw.pt-BR.vtt
375 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-5Tbd3_a5Vug.ja.vtt
374 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-VLLG0rYC7To.en.vtt
373 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-VLLG0rYC7To.ja.vtt
373 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-tiv8VKPL7jg.pt-BR.vtt
373 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-9SbUxcyDTaQ.it.vtt
372 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-8jcCGD986jk.ja.vtt
371 Bytes
Part 06-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.ja.vtt
370 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-41HCYR-NW-w.en.vtt
370 Bytes
Part 07-Module 01-Lesson 03_Clustering/07. Moving Centers 2-FY0DXe0lfrI.pt-BR.vtt
370 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-5Tbd3_a5Vug.zh-CN.vtt
369 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-t22oDruXhuo.zh-CN.vtt
369 Bytes
Part 07-Module 01-Lesson 03_Clustering/08. Match Points (again)-9J3IwQFXveI.pt-BR.vtt
369 Bytes
Part 07-Module 01-Lesson 03_Clustering/07. Moving Centers 2-FY0DXe0lfrI.en.vtt
368 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-z_eElEkVOPY.es-ES.vtt
367 Bytes
Part 06-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.es-ES.vtt
366 Bytes
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.pt-BR.vtt
364 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-4LVRNqpdxsw.ar.vtt
364 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-rjpcSymYulE.en.vtt
364 Bytes
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.pt-BR.vtt
364 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/01. Binomial-x1yamZeOMPY.pt-BR.vtt
362 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-RBfFHxEjsIU.zh-CN.vtt
362 Bytes
Part 07-Module 01-Lesson 03_Clustering/07. Moving Centers 2-FY0DXe0lfrI.zh-CN.vtt
361 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-pL8Bf6tck_A.pt-BR.vtt
360 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-udduksMWMB4.es-ES.vtt
360 Bytes
Part 06-Module 01-Lesson 04_Probability/10. Two Flips 3-uimwo-puQWY.th.vtt
359 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-udduksMWMB4.it.vtt
359 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-ys9w-NNKCcU.es-ES.vtt
358 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LconwqN7hJs.en.vtt
358 Bytes
Part 06-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.ja.vtt
357 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-iyX0-eXStbw.es-ES.vtt
357 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-tiv8VKPL7jg.en.vtt
357 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-tiv8VKPL7jg.es-ES.vtt
357 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/01. Binomial-x1yamZeOMPY.es-ES.vtt
356 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-4LVRNqpdxsw.pt-BR.vtt
356 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-JWl8lPGhlbY.zh-CN.vtt
355 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-8jcCGD986jk.es-ES.vtt
355 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-GlmS_jox08s.zh-CN.vtt
355 Bytes
Part 07-Module 01-Lesson 03_Clustering/08. Match Points (again)-9J3IwQFXveI.en.vtt
355 Bytes
Part 07-Module 01-Lesson 03_Clustering/08. Match Points (again)-9J3IwQFXveI.zh-CN.vtt
355 Bytes
Part 06-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.th.vtt
354 Bytes
Part 06-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.pt-BR.vtt
354 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-udduksMWMB4.en.vtt
354 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-9SbUxcyDTaQ.ja.vtt
353 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-V_Gqm42WodI.en.vtt
353 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-VLLG0rYC7To.zh-CN.vtt
351 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-GlmS_jox08s.en.vtt
351 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-jPspIs-fNxg.es-ES.vtt
350 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-41HCYR-NW-w.ja.vtt
350 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-YkaVgZ-yFrM.pt-BR.vtt
349 Bytes
Part 06-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.en.vtt
349 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-ys9w-NNKCcU.en.vtt
349 Bytes
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/09. Maximize Gaussian Solution - Artificial Intelligence for Robotics-2cD8T65E-jM.zh-CN.vtt
349 Bytes
Part 06-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.zh-CN.vtt
348 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-9SbUxcyDTaQ.es-ES.vtt
348 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-hXyXlk0gYzk.es-ES.vtt
348 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/07. Total Probability-fAaE5K9OZJc.ja.vtt
345 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-hXyXlk0gYzk.en.vtt
343 Bytes
Part 06-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.th.vtt
342 Bytes
Part 06-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.en.vtt
342 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-Qm4KTLfFMzo.ar.vtt
342 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-8jcCGD986jk.en.vtt
342 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-iyX0-eXStbw.en.vtt
341 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-mFfbts1lAEo.zh-CN.vtt
341 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-ys9w-NNKCcU.it.vtt
341 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-cdFrLeXIkZU.ar.vtt
341 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-CQHRYIU6v9Q.en.vtt
340 Bytes
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/22. Predict Function Solution - Artificial Intelligence for Robotics-AMFig-sYGfM.ja.vtt
340 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/01. Binomial-x1yamZeOMPY.en.vtt
339 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-vLhdJtXx060.ar.vtt
339 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6--lC9xztr4zA.pt-BR.vtt
339 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-V96RcbbVP7Q.th.vtt
339 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-GlmS_jox08s.it.vtt
338 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-GlmS_jox08s.es-ES.vtt
337 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Rf6WfB_1EJQ.ar.vtt
336 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-9SbUxcyDTaQ.en.vtt
336 Bytes
Part 06-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.pt-BR.vtt
335 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/08. Formula-yTr8zCHdo5M.ar.vtt
334 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/07. Total Probability-fAaE5K9OZJc.es-ES.vtt
333 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-pL8Bf6tck_A.es-ES.vtt
332 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-V_Gqm42WodI.ja.vtt
332 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LconwqN7hJs.pt-BR.vtt
332 Bytes
Part 07-Module 01-Lesson 03_Clustering/07. Moving Centers 2-uC1Xwc7warg.zh-CN.vtt
332 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-udduksMWMB4.ja.vtt
331 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-hXyXlk0gYzk.zh-CN.vtt
331 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3--6l4_oprDOk.es-ES.vtt
329 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-hXyXlk0gYzk.pt-BR.vtt
329 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-CQHRYIU6v9Q.es-ES.vtt
327 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3--6l4_oprDOk.ja.vtt
327 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/01. Binomial-x1yamZeOMPY.ja.vtt
326 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-hXyXlk0gYzk.ja.vtt
326 Bytes
Part 07-Module 01-Lesson 03_Clustering/07. Moving Centers 2-uC1Xwc7warg.pt-BR.vtt
326 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-jPspIs-fNxg.en.vtt
325 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-FQM7i07EqGo.ar.vtt
325 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-tiv8VKPL7jg.zh-CN.vtt
325 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/07. Total Probability-fAaE5K9OZJc.it.vtt
324 Bytes
Part 06-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.zh-CN.vtt
323 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LconwqN7hJs.ja.vtt
323 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3--6l4_oprDOk.en.vtt
322 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-V_Gqm42WodI.zh-CN.vtt
320 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-YkaVgZ-yFrM.hr.vtt
319 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-lhhUjxnbad8.ar.vtt
319 Bytes
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/09. Maximize Gaussian Solution - Artificial Intelligence for Robotics-2cD8T65E-jM.ja.vtt
319 Bytes
Part 06-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.es-ES.vtt
318 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-YkaVgZ-yFrM.en.vtt
317 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3--6l4_oprDOk.pt-BR.vtt
317 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LconwqN7hJs.zh-CN.vtt
316 Bytes
Part 06-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.it.vtt
315 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-ys9w-NNKCcU.ja.vtt
315 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-hyAQ28MYmc4.ar.vtt
315 Bytes
Part 07-Module 01-Lesson 03_Clustering/15. Limitations of K-Means-nvLhUSSUhiY.en.vtt
315 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-jPspIs-fNxg.it.vtt
314 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-rjpcSymYulE.zh-CN.vtt
314 Bytes
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/22. Predict Function Solution - Artificial Intelligence for Robotics-AMFig-sYGfM.es-ES.vtt
314 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/07. Total Probability-fAaE5K9OZJc.en.vtt
313 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-4YY-hmqSz30.ar.vtt
312 Bytes
Part 06-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.hr.vtt
312 Bytes
Part 07-Module 01-Lesson 03_Clustering/07. Moving Centers 2-uC1Xwc7warg.en.vtt
312 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-DeWp0hnRq4g.it.vtt
311 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-pL8Bf6tck_A.en.vtt
310 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-tiv8VKPL7jg.ja.vtt
310 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-iyX0-eXStbw.zh-CN.vtt
309 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-pL8Bf6tck_A.it.vtt
308 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-YkaVgZ-yFrM.it.vtt
307 Bytes
Part 06-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.en.vtt
307 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-CQHRYIU6v9Q.zh-CN.vtt
307 Bytes
Part 07-Module 01-Lesson 03_Clustering/15. Limitations of K-Means-nvLhUSSUhiY.pt-BR.vtt
306 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-YkaVgZ-yFrM.ja.vtt
305 Bytes
Part 06-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.hr.vtt
305 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-pL8Bf6tck_A.ja.vtt
305 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6-iyE5h48qPFQ.th.vtt
305 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-z_eElEkVOPY.zh-CN.vtt
305 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-Qm4KTLfFMzo.ja.vtt
304 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-jPspIs-fNxg.zh-CN.vtt
304 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-z_eElEkVOPY.ja.vtt
304 Bytes
Part 06-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.ar.vtt
303 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-yof0QiP2mzk.ar.vtt
303 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-udduksMWMB4.zh-CN.vtt
303 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-9SbUxcyDTaQ.zh-CN.vtt
303 Bytes
Part 06-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.ar.vtt
302 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/01. Binomial-x1yamZeOMPY.zh-CN.vtt
302 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-z2xsu2Kehyo.ar.vtt
302 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-rjpcSymYulE.ja.vtt
302 Bytes
Part 06-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.ja.vtt
301 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-RBfFHxEjsIU.ja.vtt
301 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Rf6WfB_1EJQ.es-ES.vtt
301 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-iyX0-eXStbw.ja.vtt
300 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-a61GPGk-Qy4.ja.vtt
300 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-a61GPGk-Qy4.th.vtt
299 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-CQHRYIU6v9Q.ja.vtt
298 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-41HCYR-NW-w.zh-CN.vtt
298 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/07. Total Probability-fAaE5K9OZJc.zh-CN.vtt
297 Bytes
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/22. Predict Function Solution - Artificial Intelligence for Robotics-AMFig-sYGfM.en.vtt
297 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-8jcCGD986jk.zh-CN.vtt
296 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-FQM7i07EqGo.ja.vtt
296 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-DeWp0hnRq4g.ja.vtt
293 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-YkaVgZ-yFrM.zh-CN.vtt
293 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-jPspIs-fNxg.pt-BR.vtt
293 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-DeWp0hnRq4g.hr.vtt
291 Bytes
Part 06-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.it.vtt
291 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-vLhdJtXx060.pt-BR.vtt
291 Bytes
Part 06-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.hr.vtt
289 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Rf6WfB_1EJQ.it.vtt
289 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-SYnYIjLpbjE.ar.vtt
286 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-SYnYIjLpbjE.pt-BR.vtt
285 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-Uy7b3aMPnEY.pt-BR.vtt
284 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-V96RcbbVP7Q.ar.vtt
283 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3--6l4_oprDOk.zh-CN.vtt
282 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-DeWp0hnRq4g.en.vtt
281 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-4LVRNqpdxsw.es-ES.vtt
281 Bytes
Part 06-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.zh-CN.vtt
280 Bytes
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/22. Predict Function Solution - Artificial Intelligence for Robotics-AMFig-sYGfM.zh-CN.vtt
280 Bytes
Part 06-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.ar.vtt
279 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Rf6WfB_1EJQ.en.vtt
279 Bytes
Part 06-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.ar.vtt
278 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-pL8Bf6tck_A.zh-CN.vtt
277 Bytes
Part 07-Module 01-Lesson 03_Clustering/15. Limitations of K-Means-nvLhUSSUhiY.zh-CN.vtt
277 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-DeWp0hnRq4g.pt-BR.vtt
276 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-ys9w-NNKCcU.zh-CN.vtt
275 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-FQM7i07EqGo.es-ES.vtt
272 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-cdFrLeXIkZU.pt-BR.vtt
269 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-4LVRNqpdxsw.zh-CN.vtt
268 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-FQM7i07EqGo.en.vtt
268 Bytes
Part 06-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.th.vtt
267 Bytes
Part 06-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.ar.vtt
265 Bytes
Part 06-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.pt-BR.vtt
265 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-d4LWnxyvrTQ.ar.vtt
265 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6--lC9xztr4zA.ja.vtt
264 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Rf6WfB_1EJQ.ja.vtt
262 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-FQM7i07EqGo.pt-BR.vtt
262 Bytes
Part 06-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.ja.vtt
261 Bytes
Part 06-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.en.vtt
260 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-lhhUjxnbad8.pt-BR.vtt
260 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-jPspIs-fNxg.ja.vtt
260 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-cdFrLeXIkZU.es-ES.vtt
260 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-SYnYIjLpbjE.es-ES.vtt
258 Bytes
Part 07-Module 01-Lesson 03_Clustering/09. Handoff to Katie-knrPsGtpyQY.ar.vtt
258 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-DeWp0hnRq4g.zh-CN.vtt
257 Bytes
Part 06-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.es-ES.vtt
257 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-4LVRNqpdxsw.en.vtt
256 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-Qm4KTLfFMzo.en.vtt
256 Bytes
Part 06-Module 01-Lesson 04_Probability/10. Two Flips 3-uimwo-puQWY.ar.vtt
254 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-4LVRNqpdxsw.ja.vtt
254 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-yof0QiP2mzk.pt-BR.vtt
254 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-V96RcbbVP7Q.pt-BR.vtt
253 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-4YY-hmqSz30.hr.vtt
252 Bytes
Part 06-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.th.vtt
252 Bytes
Part 06-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.es-ES.vtt
252 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-d_fbDqAGVdE.ar.vtt
252 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-Qm4KTLfFMzo.es-ES.vtt
251 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-S87Z5DgPJeo.ar.vtt
250 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-vLhdJtXx060.zh-CN.vtt
250 Bytes
Part 06-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.pt-BR.vtt
249 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-S87Z5DgPJeo.pt-BR.vtt
249 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/08. Formula-yTr8zCHdo5M.pt-BR.vtt
249 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-hyAQ28MYmc4.pt-BR.vtt
249 Bytes
Part 06-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.zh-CN.vtt
248 Bytes
Part 06-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.it.vtt
248 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-vLhdJtXx060.ja.vtt
248 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-hyAQ28MYmc4.en.vtt
248 Bytes
Part 06-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.ja.vtt
247 Bytes
Part 06-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.en.vtt
247 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-lhhUjxnbad8.ja.vtt
247 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-4YY-hmqSz30.en.vtt
246 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-d4LWnxyvrTQ.pt-BR.vtt
246 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-SYnYIjLpbjE.en.vtt
245 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-vLhdJtXx060.en.vtt
244 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-SYnYIjLpbjE.zh-CN.vtt
244 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-goEMc0w58xM.th.vtt
244 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-S87Z5DgPJeo.ja.vtt
243 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-hyAQ28MYmc4.es-ES.vtt
243 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-lhhUjxnbad8.es-ES.vtt
242 Bytes
assets/How you can help Team-FTU.txt
241 Bytes
How you can help Team-FTU.txt
241 Bytes
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/How you can help Team-FTU.txt
241 Bytes
Part 01-Module 01-Lesson 02_Get Help from Peers and Mentors/How you can help Team-FTU.txt
241 Bytes
Part 01-Module 01-Lesson 03_Get Help with Your Account/How you can help Team-FTU.txt
241 Bytes
Part 01-Module 01-Lesson 04_Stock Prices/How you can help Team-FTU.txt
241 Bytes
Part 01-Module 01-Lesson 05_Market Mechanics/How you can help Team-FTU.txt
241 Bytes
Part 01-Module 01-Lesson 06_Data Processing/How you can help Team-FTU.txt
241 Bytes
Part 01-Module 01-Lesson 07_Stock Returns/How you can help Team-FTU.txt
241 Bytes
Part 01-Module 01-Lesson 08_Momentum Trading/How you can help Team-FTU.txt
241 Bytes
Part 01-Module 01-Lesson 09_Project 1 Trading with Momentum/How you can help Team-FTU.txt
241 Bytes
Part 01-Module 02-Lesson 01_Quant Workflow/How you can help Team-FTU.txt
241 Bytes
Part 01-Module 02-Lesson 02_Outliers and Filtering/How you can help Team-FTU.txt
241 Bytes
Part 01-Module 02-Lesson 03_Regression/How you can help Team-FTU.txt
241 Bytes
Part 01-Module 02-Lesson 04_Time Series Modeling/How you can help Team-FTU.txt
241 Bytes
Part 01-Module 02-Lesson 05_Volatility/How you can help Team-FTU.txt
241 Bytes
Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/How you can help Team-FTU.txt
241 Bytes
Part 01-Module 02-Lesson 07_Project 2 Breakout Strategy/How you can help Team-FTU.txt
241 Bytes
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/How you can help Team-FTU.txt
241 Bytes
Part 01-Module 03-Lesson 02_ETFs/How you can help Team-FTU.txt
241 Bytes
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/How you can help Team-FTU.txt
241 Bytes
Part 01-Module 03-Lesson 04_Portfolio Optimization/How you can help Team-FTU.txt
241 Bytes
Part 01-Module 03-Lesson 05_Project 3 Smart Beta and Portfolio Optimization/How you can help Team-FTU.txt
241 Bytes
Part 01-Module 04-Lesson 01_Factors/How you can help Team-FTU.txt
241 Bytes
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/How you can help Team-FTU.txt
241 Bytes
Part 01-Module 04-Lesson 03_Risk Factor Models/How you can help Team-FTU.txt
241 Bytes
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/How you can help Team-FTU.txt
241 Bytes
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/How you can help Team-FTU.txt
241 Bytes
Part 01-Module 04-Lesson 06_Alpha Factors/How you can help Team-FTU.txt
241 Bytes
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/How you can help Team-FTU.txt
241 Bytes
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/How you can help Team-FTU.txt
241 Bytes
Part 01-Module 04-Lesson 09_Project 4 Alpha Research and Factor Modeling/How you can help Team-FTU.txt
241 Bytes
Part 02-Module 01-Lesson 01_Welcome To Term II/How you can help Team-FTU.txt
241 Bytes
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/How you can help Team-FTU.txt
241 Bytes
Part 02-Module 01-Lesson 03_Text Processing/How you can help Team-FTU.txt
241 Bytes
Part 02-Module 01-Lesson 04_Feature Extraction/How you can help Team-FTU.txt
241 Bytes
Part 02-Module 01-Lesson 05_Financial Statements/How you can help Team-FTU.txt
241 Bytes
Part 02-Module 01-Lesson 06_Project 5 NLP on Financial Statements/How you can help Team-FTU.txt
241 Bytes
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/How you can help Team-FTU.txt
241 Bytes
Part 02-Module 02-Lesson 02_Deep Learning with PyTorch/How you can help Team-FTU.txt
241 Bytes
Part 02-Module 02-Lesson 03_Recurrent Neural Networks/How you can help Team-FTU.txt
241 Bytes
Part 02-Module 02-Lesson 04_Training Neural Networks/How you can help Team-FTU.txt
241 Bytes
Part 02-Module 02-Lesson 05_Embeddings Word2Vec/How you can help Team-FTU.txt
241 Bytes
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/How you can help Team-FTU.txt
241 Bytes
Part 02-Module 02-Lesson 07_Project 6 Sentiment Analysis with Neural Networks/How you can help Team-FTU.txt
241 Bytes
Part 02-Module 03-Lesson 01_Coming Soon!/How you can help Team-FTU.txt
241 Bytes
Part 02-Module 04-Lesson 01_Coming soon!/How you can help Team-FTU.txt
241 Bytes
Part 03-Module 01-Lesson 01_Why Python Programming/How you can help Team-FTU.txt
241 Bytes
Part 03-Module 01-Lesson 02_Data Types and Operators/How you can help Team-FTU.txt
241 Bytes
Part 03-Module 01-Lesson 03_Control Flow/How you can help Team-FTU.txt
241 Bytes
Part 03-Module 01-Lesson 04_Functions/How you can help Team-FTU.txt
241 Bytes
Part 03-Module 01-Lesson 05_Scripting/How you can help Team-FTU.txt
241 Bytes
Part 04-Module 01-Lesson 01_Introduction/How you can help Team-FTU.txt
241 Bytes
Part 04-Module 01-Lesson 02_Vectors/How you can help Team-FTU.txt
241 Bytes
Part 04-Module 01-Lesson 03_Linear Combination/How you can help Team-FTU.txt
241 Bytes
Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/How you can help Team-FTU.txt
241 Bytes
Part 05-Module 01-Lesson 01_Jupyter Notebooks/How you can help Team-FTU.txt
241 Bytes
Part 05-Module 01-Lesson 02_NumPy/How you can help Team-FTU.txt
241 Bytes
Part 05-Module 01-Lesson 03_Pandas/How you can help Team-FTU.txt
241 Bytes
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/How you can help Team-FTU.txt
241 Bytes
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/How you can help Team-FTU.txt
241 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/How you can help Team-FTU.txt
241 Bytes
Part 06-Module 01-Lesson 04_Probability/How you can help Team-FTU.txt
241 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/How you can help Team-FTU.txt
241 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/How you can help Team-FTU.txt
241 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-FQM7i07EqGo.zh-CN.vtt
241 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-cdFrLeXIkZU.en.vtt
241 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-cdFrLeXIkZU.ja.vtt
241 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/How you can help Team-FTU.txt
241 Bytes
Part 06-Module 01-Lesson 08_Python Probability Practice/How you can help Team-FTU.txt
241 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/How you can help Team-FTU.txt
241 Bytes
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/How you can help Team-FTU.txt
241 Bytes
Part 06-Module 01-Lesson 11_Confidence Intervals/How you can help Team-FTU.txt
241 Bytes
Part 06-Module 01-Lesson 12_Hypothesis Testing/How you can help Team-FTU.txt
241 Bytes
Part 06-Module 01-Lesson 13_Case Study AB tests/How you can help Team-FTU.txt
241 Bytes
Part 07-Module 01-Lesson 01_Linear Regression/How you can help Team-FTU.txt
241 Bytes
Part 07-Module 01-Lesson 02_Naive Bayes/How you can help Team-FTU.txt
241 Bytes
Part 07-Module 01-Lesson 03_Clustering/How you can help Team-FTU.txt
241 Bytes
Part 07-Module 01-Lesson 04_Decision Trees/How you can help Team-FTU.txt
241 Bytes
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/How you can help Team-FTU.txt
241 Bytes
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/How you can help Team-FTU.txt
241 Bytes
Part 09-Module 01-Lesson 01_Intro to Computer Vision/How you can help Team-FTU.txt
241 Bytes
Part 10-Module 01-Lesson 01_Intro to NLP/How you can help Team-FTU.txt
241 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/08. Formula-yTr8zCHdo5M.en.vtt
240 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-SYnYIjLpbjE.it.vtt
240 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/07. Total Probability-_hXCgF-aMB0.th.vtt
240 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-Se-ddM2Wdac.th.vtt
240 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-z2xsu2Kehyo.pt-BR.vtt
240 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-4YY-hmqSz30.it.vtt
239 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-vLhdJtXx060.es-ES.vtt
239 Bytes
Part 06-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.hr.vtt
238 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-lhhUjxnbad8.en.vtt
238 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-d4LWnxyvrTQ.es-ES.vtt
238 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-cw_zgQbAWNU.ar.vtt
238 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-SYnYIjLpbjE.ja.vtt
237 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-4YY-hmqSz30.ja.vtt
236 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/08. Formula-yTr8zCHdo5M.es-ES.vtt
236 Bytes
Part 06-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.es-ES.vtt
234 Bytes
Part 06-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.it.vtt
234 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-V96RcbbVP7Q.es-ES.vtt
234 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-S87Z5DgPJeo.es-ES.vtt
233 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-4YY-hmqSz30.zh-CN.vtt
232 Bytes
Part 06-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.en.vtt
231 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-V96RcbbVP7Q.it.vtt
231 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-z2xsu2Kehyo.es-ES.vtt
231 Bytes
Part 06-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.zh-CN.vtt
228 Bytes
Part 06-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.zh-CN.vtt
228 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-cw_zgQbAWNU.th.vtt
228 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.es-ES.vtt
227 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-hyAQ28MYmc4.zh-CN.vtt
226 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-lhhUjxnbad8.zh-CN.vtt
225 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.pt-BR.vtt
223 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-VEfOdACY9rA.pt-BR.vtt
223 Bytes
Part 06-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.ar.vtt
222 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-VEfOdACY9rA.ar.vtt
222 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-d4LWnxyvrTQ.en.vtt
222 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-a61GPGk-Qy4.ar.vtt
222 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-d_fbDqAGVdE.es-ES.vtt
221 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.ja.vtt
219 Bytes
Part 06-Module 01-Lesson 04_Probability/10. Two Flips 3-uimwo-puQWY.pt-BR.vtt
219 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-yof0QiP2mzk.en.vtt
219 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-yof0QiP2mzk.es-ES.vtt
219 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-V96RcbbVP7Q.en.vtt
219 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-4YY-hmqSz30.pt-BR.vtt
218 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-a61GPGk-Qy4.zh-CN.vtt
218 Bytes
Part 06-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.en.vtt
217 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/08. Formula-yTr8zCHdo5M.ja.vtt
217 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-a61GPGk-Qy4.es-ES.vtt
217 Bytes
Part 06-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.hr.vtt
216 Bytes
Part 06-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.ja.vtt
216 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-S87Z5DgPJeo.zh-CN.vtt
216 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-7ZLe_JP5wRY.pt-BR.vtt
216 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-z2xsu2Kehyo.en.vtt
216 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.pt-PT.vtt
215 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-Qm4KTLfFMzo.zh-CN.vtt
215 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-S87Z5DgPJeo.en.vtt
214 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-a61GPGk-Qy4.en.vtt
214 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-cdFrLeXIkZU.zh-CN.vtt
214 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-d_fbDqAGVdE.en.vtt
214 Bytes
Part 06-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.hr.vtt
213 Bytes
Part 06-Module 01-Lesson 04_Probability/09. Two Flips 2-pT0FXiH_5nI.it.vtt
213 Bytes
Part 06-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.it.vtt
212 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-yof0QiP2mzk.ja.vtt
212 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-yof0QiP2mzk.zh-CN.vtt
212 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Rf6WfB_1EJQ.zh-CN.vtt
212 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-a61GPGk-Qy4.pt-BR.vtt
212 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-goEMc0w58xM.ar.vtt
211 Bytes
Part 06-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.es-ES.vtt
210 Bytes
Part 06-Module 01-Lesson 04_Probability/10. Two Flips 3-uimwo-puQWY.en.vtt
210 Bytes
Part 06-Module 01-Lesson 04_Probability/10. Two Flips 3-uimwo-puQWY.it.vtt
210 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/08. Formula-yTr8zCHdo5M.zh-CN.vtt
210 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.hr.vtt
209 Bytes
Part 06-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.pt-BR.vtt
209 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.ar.vtt
208 Bytes
Part 06-Module 01-Lesson 04_Probability/09. Two Flips 2-pT0FXiH_5nI.ar.vtt
207 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-d_fbDqAGVdE.zh-CN.vtt
207 Bytes
Part 07-Module 01-Lesson 03_Clustering/09. Handoff to Katie-knrPsGtpyQY.en.vtt
207 Bytes
Part 07-Module 01-Lesson 03_Clustering/09. Handoff to Katie-knrPsGtpyQY.zh-CN.vtt
206 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.it.vtt
205 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-UERKMwmkAsM.th.vtt
205 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.ar.vtt
204 Bytes
Part 06-Module 01-Lesson 04_Probability/09. Two Flips 2-pT0FXiH_5nI.hr.vtt
204 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-fqt7NIvMB0s.th.vtt
204 Bytes
Part 07-Module 01-Lesson 03_Clustering/09. Handoff to Katie-knrPsGtpyQY.pt-BR.vtt
204 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-Uy7b3aMPnEY.ar.vtt
202 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-d_fbDqAGVdE.pt-BR.vtt
202 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-z2xsu2Kehyo.ja.vtt
202 Bytes
Part 06-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.ja.vtt
201 Bytes
Part 06-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.pt-BR.vtt
201 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-hyAQ28MYmc4.ja.vtt
200 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-V96RcbbVP7Q.ja.vtt
199 Bytes
Part 06-Module 01-Lesson 04_Probability/09. Two Flips 2-pT0FXiH_5nI.en.vtt
198 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-V96RcbbVP7Q.zh-CN.vtt
198 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-d_fbDqAGVdE.ja.vtt
198 Bytes
Part 06-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.zh-CN.vtt
197 Bytes
Part 06-Module 01-Lesson 04_Probability/10. Two Flips 3-uimwo-puQWY.hr.vtt
197 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-d4LWnxyvrTQ.ja.vtt
197 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.en.vtt
196 Bytes
Part 06-Module 01-Lesson 04_Probability/09. Two Flips 2-pT0FXiH_5nI.zh-CN.vtt
196 Bytes
Part 06-Module 01-Lesson 04_Probability/09. Two Flips 2-pT0FXiH_5nI.ja.vtt
194 Bytes
Part 06-Module 01-Lesson 04_Probability/10. Two Flips 3-uimwo-puQWY.ja.vtt
194 Bytes
Part 06-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.es-ES.vtt
192 Bytes
Part 06-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.zh-CN.vtt
192 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6-iyE5h48qPFQ.ar.vtt
191 Bytes
Part 06-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.en.vtt
190 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-Uy7b3aMPnEY.ja.vtt
190 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-7ZLe_JP5wRY.ar.vtt
190 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.zh-Hans.vtt
189 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-xhpEqsHTf3g.it.vtt
187 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-cw_zgQbAWNU.ja.vtt
187 Bytes
Part 06-Module 01-Lesson 04_Probability/09. Two Flips 2-pT0FXiH_5nI.pt-BR.vtt
186 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-z2xsu2Kehyo.zh-CN.vtt
186 Bytes
Part 06-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.es-ES.vtt
185 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-xhpEqsHTf3g.ar.vtt
184 Bytes
Part 06-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.pt-BR.vtt
184 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-GsneDVJB75E.ja.vtt
184 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-cw_zgQbAWNU.pt-BR.vtt
183 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-d4LWnxyvrTQ.zh-CN.vtt
182 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.zh-CN.vtt
180 Bytes
Part 06-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.en.vtt
180 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-VEfOdACY9rA.ja.vtt
180 Bytes
Part 06-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.it.vtt
178 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-GsneDVJB75E.th.vtt
178 Bytes
Part 06-Module 01-Lesson 04_Probability/10. Two Flips 3-uimwo-puQWY.zh-CN.vtt
177 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-clFL503NPyY.th.vtt
177 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/07. Total Probability-_hXCgF-aMB0.ar.vtt
176 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-Se-ddM2Wdac.ja.vtt
176 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-Se-ddM2Wdac.ar.vtt
175 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-goEMc0w58xM.ja.vtt
175 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-cw_zgQbAWNU.es-ES.vtt
174 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-7ZLe_JP5wRY.it.vtt
174 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-goEMc0w58xM.es-ES.vtt
174 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.it.vtt
173 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-xhpEqsHTf3g.pt-BR.vtt
173 Bytes
Part 06-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.pt-BR.vtt
173 Bytes
Part 06-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.it.vtt
171 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-cw_zgQbAWNU.it.vtt
171 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LNzmJUj8K8w.pt-BR.vtt
171 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-Uy7b3aMPnEY.es-ES.vtt
170 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-fqt7NIvMB0s.pt-BR.vtt
169 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6-iyE5h48qPFQ.en.vtt
169 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-goEMc0w58xM.pt-BR.vtt
169 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-udXhxyls5Dw.pt-BR.vtt
168 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-1PHs2w_NNTg.ar.vtt
167 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-cw_zgQbAWNU.en.vtt
167 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-udXhxyls5Dw.ar.vtt
166 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6-iyE5h48qPFQ.es-ES.vtt
166 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-Uy7b3aMPnEY.en.vtt
165 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-7ZLe_JP5wRY.es-ES.vtt
165 Bytes
Part 06-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.zh-CN.vtt
164 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-E1ph6NP3_v4.th.vtt
164 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6-iyE5h48qPFQ.it.vtt
164 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6-iyE5h48qPFQ.pt-BR.vtt
164 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/07. Total Probability-_hXCgF-aMB0.pt-BR.vtt
164 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-xhpEqsHTf3g.hr.vtt
163 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6-iyE5h48qPFQ.zh-CN.vtt
163 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/12. Normalizer-W5i-gRAvZxs.ar.vtt
163 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/12. Normalizer-W5i-gRAvZxs.pt-BR.vtt
162 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-UERKMwmkAsM.ar.vtt
161 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-VEfOdACY9rA.es-ES.vtt
160 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-1PHs2w_NNTg.pt-BR.vtt
160 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-4qW7a5E74No.th.vtt
160 Bytes
Part 06-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.ja.vtt
159 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-yo55zJtJQwo.pt-BR.vtt
158 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-7ZLe_JP5wRY.zh-CN.vtt
158 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-GsneDVJB75E.ar.vtt
158 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-goEMc0w58xM.zh-CN.vtt
158 Bytes
Part 06-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.hr.vtt
157 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-1PHs2w_NNTg.ja.vtt
157 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-Se-ddM2Wdac.es-ES.vtt
157 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-Se-ddM2Wdac.pt-BR.vtt
157 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-xhpEqsHTf3g.ja.vtt
156 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-udXhxyls5Dw.en.vtt
155 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-udXhxyls5Dw.zh-CN.vtt
155 Bytes
Part 06-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.hr.vtt
155 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-7ZLe_JP5wRY.ja.vtt
155 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-GsneDVJB75E.es-ES.vtt
155 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-goEMc0w58xM.en.vtt
155 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.ja.vtt
154 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-VEfOdACY9rA.zh-CN.vtt
153 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-fqt7NIvMB0s.ar.vtt
153 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-cw_zgQbAWNU.zh-CN.vtt
152 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-7ZLe_JP5wRY.en.vtt
152 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-ztkKTrMZHXg.th.vtt
152 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LNzmJUj8K8w.ar.vtt
152 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-udXhxyls5Dw.it.vtt
151 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-Uy7b3aMPnEY.zh-CN.vtt
150 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.pt-BR.vtt
149 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-udXhxyls5Dw.hr.vtt
149 Bytes
Part 06-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.ja.vtt
149 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-GsneDVJB75E.pt-BR.vtt
149 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-GsneDVJB75E.zh-CN.vtt
149 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-Se-ddM2Wdac.zh-CN.vtt
149 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-xhpEqsHTf3g.en.vtt
148 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-Se-ddM2Wdac.en.vtt
147 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-VEfOdACY9rA.en.vtt
146 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-E1ph6NP3_v4.pt-BR.vtt
146 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.hr.vtt
144 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/12. Normalizer-G9yQ_URDrDQ.ar.vtt
144 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/07. Total Probability-_hXCgF-aMB0.es-ES.vtt
143 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-fqt7NIvMB0s.es-ES.vtt
142 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/07. Total Probability-_hXCgF-aMB0.ja.vtt
142 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-GsneDVJB75E.en.vtt
142 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.es-ES.vtt
141 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-yo55zJtJQwo.ar.vtt
141 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-E1ph6NP3_v4.ja.vtt
141 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6-iyE5h48qPFQ.ja.vtt
141 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LNzmJUj8K8w.es-ES.vtt
141 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/07. Total Probability-_hXCgF-aMB0.en.vtt
140 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/12. Normalizer-W5i-gRAvZxs.es-ES.vtt
140 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-yo55zJtJQwo.ja.vtt
139 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.en.vtt
138 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-E1ph6NP3_v4.it.vtt
138 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-fqt7NIvMB0s.ja.vtt
138 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/12. Normalizer-G9yQ_URDrDQ.es-ES.vtt
138 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-udXhxyls5Dw.ja.vtt
137 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-tIrqdYTT_9Q.th.vtt
137 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-1PHs2w_NNTg.zh-CN.vtt
136 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/12. Normalizer-W5i-gRAvZxs.en.vtt
136 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-etrUbOAoh1U.th.vtt
135 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/12. Normalizer-W5i-gRAvZxs.ja.vtt
134 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-E1ph6NP3_v4.ar.vtt
132 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/12. Normalizer-G9yQ_URDrDQ.ja.vtt
132 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-1PHs2w_NNTg.es-ES.vtt
130 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-PfEYA6z-19w.th.vtt
130 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LNzmJUj8K8w.en.vtt
130 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/07. Total Probability-_hXCgF-aMB0.it.vtt
129 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/12. Normalizer-G9yQ_URDrDQ.en.vtt
129 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/12. Normalizer-G9yQ_URDrDQ.zh-CN.vtt
129 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-PfEYA6z-19w.ar.vtt
129 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-UERKMwmkAsM.es-ES.vtt
129 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-fqt7NIvMB0s.en.vtt
128 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-fqt7NIvMB0s.it.vtt
127 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/07. Total Probability-_hXCgF-aMB0.zh-CN.vtt
127 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-xhpEqsHTf3g.zh-CN.vtt
126 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-UERKMwmkAsM.ja.vtt
126 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-clFL503NPyY.ar.vtt
126 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-yo55zJtJQwo.es-ES.vtt
125 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-E1ph6NP3_v4.es-ES.vtt
125 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/12. Normalizer-G9yQ_URDrDQ.pt-BR.vtt
125 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-fqt7NIvMB0s.zh-CN.vtt
123 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/12. Normalizer-W5i-gRAvZxs.zh-CN.vtt
123 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-UERKMwmkAsM.pt-BR.vtt
123 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-4qW7a5E74No.ja.vtt
123 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-tIrqdYTT_9Q.ja.vtt
123 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-1PHs2w_NNTg.en.vtt
122 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-PfEYA6z-19w.ja.vtt
122 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-4qW7a5E74No.ar.vtt
122 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-4qW7a5E74No.pt-BR.vtt
122 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-UERKMwmkAsM.en.vtt
120 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-4qW7a5E74No.es-ES.vtt
120 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.zh-Hans.vtt
119 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-E1ph6NP3_v4.en.vtt
119 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-yo55zJtJQwo.en.vtt
118 Bytes
Part 06-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-E1ph6NP3_v4.zh-CN.vtt
118 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-tIrqdYTT_9Q.ar.vtt
118 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-clFL503NPyY.es-ES.vtt
118 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LNzmJUj8K8w.ja.vtt
118 Bytes
Part 06-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-yo55zJtJQwo.zh-CN.vtt
117 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.ja.vtt
116 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-UERKMwmkAsM.zh-CN.vtt
116 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.zh-CN.vtt
115 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-PfEYA6z-19w.zh-CN.vtt
113 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-clFL503NPyY.ja.vtt
113 Bytes
Part 06-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LNzmJUj8K8w.zh-CN.vtt
113 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-4qW7a5E74No.zh-CN.vtt
111 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-etrUbOAoh1U.ar.vtt
110 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-ztkKTrMZHXg.ja.vtt
110 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-4qW7a5E74No.en.vtt
110 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-tIrqdYTT_9Q.zh-CN.vtt
110 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2--pOzdj6pnbA.es-ES.vtt
109 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-etrUbOAoh1U.es-ES.vtt
109 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-clFL503NPyY.en.vtt
109 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.ar.vtt
108 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2--pOzdj6pnbA.th.vtt
108 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-etrUbOAoh1U.pt-BR.vtt
108 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-tIrqdYTT_9Q.es-ES.vtt
108 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-clFL503NPyY.pt-BR.vtt
108 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-clFL503NPyY.zh-CN.vtt
108 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-PfEYA6z-19w.es-ES.vtt
107 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-tIrqdYTT_9Q.pt-BR.vtt
106 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.es-ES.vtt
104 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-PfEYA6z-19w.en.vtt
104 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-etrUbOAoh1U.en.vtt
103 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.pt-BR.vtt
101 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.zh-Hans.vtt
101 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-ztkKTrMZHXg.es-ES.vtt
101 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.ja.vtt
100 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4-GD6cQhkoqS4.pt-BR.vtt
100 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.ar.vtt
99 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.pt-BR.vtt
99 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.zh-CN.vtt
99 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-PfEYA6z-19w.pt-BR.vtt
99 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.zh-Hans.vtt
98 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-8j5hria6Rc8.ar.vtt
98 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-ztkKTrMZHXg.zh-CN.vtt
98 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4-GD6cQhkoqS4.ja.vtt
97 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-tIrqdYTT_9Q.en.vtt
97 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-etrUbOAoh1U.it.vtt
96 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-ztkKTrMZHXg.ar.vtt
96 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.es-ES.vtt
95 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.es-ES.vtt
95 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.en.vtt
95 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.hr.vtt
95 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2--pOzdj6pnbA.ar.vtt
95 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-ztkKTrMZHXg.en.vtt
95 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.zh-CN.vtt
94 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.ar.vtt
94 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.it.vtt
94 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-etrUbOAoh1U.ja.vtt
94 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-ztkKTrMZHXg.pt-BR.vtt
94 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-tPSj6_m-0_M.ar.vtt
92 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2--pOzdj6pnbA.pt-BR.vtt
92 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.pt-BR.vtt
91 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2--pOzdj6pnbA.ja.vtt
91 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.en.vtt
90 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4-GD6cQhkoqS4.ar.vtt
90 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4-GD6cQhkoqS4.zh-CN.vtt
90 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-8j5hria6Rc8.en.vtt
90 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2--pOzdj6pnbA.it.vtt
90 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-etrUbOAoh1U.zh-CN.vtt
90 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.it.vtt
89 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.pt-PT.vtt
89 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4-GD6cQhkoqS4.it.vtt
89 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-8j5hria6Rc8.it.vtt
89 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-8j5hria6Rc8.ja.vtt
89 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-8j5hria6Rc8.pt-BR.vtt
89 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-tPSj6_m-0_M.pt-BR.vtt
89 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2--pOzdj6pnbA.en.vtt
89 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.en.vtt
88 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.it.vtt
88 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.ja.vtt
88 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-tPSj6_m-0_M.ja.vtt
88 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.hr.vtt
87 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-tPSj6_m-0_M.it.vtt
87 Bytes
Part 06-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2--pOzdj6pnbA.zh-CN.vtt
87 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4-GD6cQhkoqS4.en.vtt
86 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4-GD6cQhkoqS4.hr.vtt
86 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-tPSj6_m-0_M.en.vtt
86 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.hr.vtt
85 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.zh-Hans.vtt
85 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-8j5hria6Rc8.hr.vtt
85 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-8j5hria6Rc8.zh-CN.vtt
84 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-tPSj6_m-0_M.zh-CN.vtt
84 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.zh-CN.vtt
83 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-tPSj6_m-0_M.hr.vtt
83 Bytes
Part 06-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.tr.vtt
81 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>