搜索
[DesireCourse.Net] Udemy - Practical Machine Learning by Example in Python
磁力链接/BT种子名称
[DesireCourse.Net] Udemy - Practical Machine Learning by Example in Python
磁力链接/BT种子简介
种子哈希:
8758b7caedcd33413077f573efb82eebe0414648
文件大小:
2.71G
已经下载:
722
次
下载速度:
极快
收录时间:
2021-03-14
最近下载:
2024-12-31
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:8758B7CAEDCD33413077F573EFB82EEBE0414648
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
少女初夜
萝莉岛
最近搜索
【萌宝】
御姐 骚话
会喷水的亲姐姐
goldberg - sonya
更衣室 学生
网红++摄影
svdvd -385
[無修正]+[dl版][中国翻訳]+
sisters video
tinto brass presents erotic short stories: part 3
원본
3930
ntr剧-落榜女神的网红路
偶大
雄性
november
高颜良家
大屌哥探花
跳弹调教
奔驰车主包养美
凡间妲己
qrda+158
이천년
麻豆+++最新
無碼+縛
雪山泪
鞋插
tkbr-018
吉川ななこ
高
文件列表
4. Foundations NumPy/6. Linear Regression Example.mp4
67.8 MB
2. Python Quick Start/12. Classes.mp4
65.5 MB
7. Foundations Pandas/2. Loading and inspecting data example.mp4
61.9 MB
3. Example Logistic Regression/3. Data analysis.mp4
61.8 MB
9. Example Sentiment Analysis/11. Transfer Learning Example.mp4
60.6 MB
6. Example Image recognition/14. Hyperparameter tuning example.mp4
55.0 MB
2. Python Quick Start/3. String formatting.mp4
54.9 MB
4. Foundations NumPy/5. Introduction to Linear Regression.mp4
54.8 MB
6. Example Image recognition/8. Model training.mp4
52.7 MB
10. Example Fraud detection/9. Making predictions.mp4
51.8 MB
3. Example Logistic Regression/8. Gradient descent.mp4
48.5 MB
9. Example Sentiment Analysis/5. Data Preparation.mp4
46.5 MB
8. Example Recommendations/8. Model definition.mp4
44.3 MB
10. Example Fraud detection/2. Data analysis.mp4
43.8 MB
3. Example Logistic Regression/12. Making predictions.mp4
42.3 MB
7. Foundations Pandas/5. Sorting and transforming data example.mp4
41.8 MB
9. Example Sentiment Analysis/12. Fine Tuning and Prediction.mp4
41.5 MB
6. Example Image recognition/2. Data analysis.mp4
40.2 MB
3. Example Logistic Regression/6. The forward function.mp4
39.7 MB
8. Example Recommendations/5. Data preparation.mp4
37.9 MB
1. Course Structure and Development Environment/8. Sharing Colab Notebooks.mp4
37.4 MB
7. Foundations Pandas/7. Visualizing data.mp4
37.0 MB
2. Python Quick Start/2. Basic Syntax.mp4
36.9 MB
7. Foundations Pandas/3. Indexing and selecting data example.mp4
36.7 MB
9. Example Sentiment Analysis/8. Model Training.mp4
36.5 MB
2. Python Quick Start/11. Defining functions.mp4
36.4 MB
7. Foundations Pandas/6. Aggregations example.mp4
35.6 MB
2. Python Quick Start/13. File IO and Modules.mp4
35.4 MB
4. Foundations NumPy/10. Visualizing data.mp4
35.4 MB
1. Course Structure and Development Environment/2. Course Quick Tips.mp4
33.6 MB
2. Python Quick Start/10. Dictionaries.mp4
33.6 MB
4. Foundations NumPy/11. Images.mp4
33.3 MB
6. Example Image recognition/7. Model definition.mp4
33.2 MB
1. Course Structure and Development Environment/1. Course Structure and Development Environment.mp4
32.9 MB
9. Example Sentiment Analysis/2. Data Analysis.mp4
32.0 MB
3. Example Logistic Regression/11. Model training.mp4
31.4 MB
8. Example Recommendations/12. Making predictions.mp4
31.0 MB
8. Example Recommendations/9. Model training.mp4
30.8 MB
8. Example Recommendations/2. Data analysis.mp4
30.5 MB
9. Example Sentiment Analysis/7. Model Definition.mp4
30.4 MB
5. Foundations Tensorflow/2. Model example.mp4
30.4 MB
10. Example Fraud detection/4. Unsupervised learning.mp4
30.3 MB
10. Example Fraud detection/11. Common questions.mp4
30.2 MB
3. Example Logistic Regression/1. The problem.mp4
29.3 MB
6. Example Image recognition/16. Common questions.mp4
29.2 MB
9. Example Sentiment Analysis/4. Supervised Learning.mp4
29.0 MB
3. Example Logistic Regression/17. Improving the model.mp4
28.4 MB
1. Course Structure and Development Environment/4. Jupyter notebook Text Cells.mp4
28.4 MB
6. Example Image recognition/5. Data preparation.mp4
28.3 MB
8. Example Recommendations/4. Model selection.mp4
28.3 MB
1. Course Structure and Development Environment/9. Artificial Intelligence, Machine Learning, and Deep Learning.mp4
26.4 MB
10. Example Fraud detection/7. Model training.mp4
26.3 MB
4. Foundations NumPy/2. Creating data with NumPy.mp4
26.2 MB
3. Example Logistic Regression/10. Backpropagation.mp4
25.1 MB
9. Example Sentiment Analysis/10. Transfer Learning with BERT.mp4
24.9 MB
5. Foundations Tensorflow/5. Training example.mp4
24.7 MB
2. Python Quick Start/7. Flow control.mp4
24.6 MB
5. Foundations Tensorflow/12. The Three Body Problem.mp4
24.6 MB
1. Course Structure and Development Environment/6. Jupyter notebook Math Markup and Magic Commands.mp4
24.5 MB
6. Example Image recognition/6. CNN Model Layers.mp4
24.1 MB
6. Example Image recognition/4. Model selection.mp4
23.9 MB
6. Example Image recognition/13. Hyperparameter tuning.mp4
23.5 MB
2. Python Quick Start/8. Lists.mp4
23.4 MB
10. Example Fraud detection/1. The problem.mp4
23.4 MB
3. Example Logistic Regression/5. The model.mp4
23.3 MB
10. Example Fraud detection/6. Model definition.mp4
22.5 MB
3. Example Logistic Regression/7. Loss and cost functions.mp4
20.8 MB
2. Python Quick Start/6. Type conversion.mp4
20.6 MB
8. Example Recommendations/15. Common questions.mp4
20.5 MB
6. Example Image recognition/1. The problem.mp4
20.4 MB
5. Foundations Tensorflow/4. Activation functions.mp4
20.3 MB
5. Foundations Tensorflow/7. Loss functions.mp4
20.1 MB
3. Example Logistic Regression/15. Test vs. train accuracy.mp4
19.9 MB
8. Example Recommendations/13. Error analysis.mp4
19.5 MB
3. Example Logistic Regression/16. Speeding up training.mp4
19.0 MB
5. Foundations Tensorflow/1. About this section.mp4
19.0 MB
8. Example Recommendations/7. Embedding layers.mp4
18.0 MB
8. Example Recommendations/1. The problem.mp4
17.9 MB
4. Foundations NumPy/9. Statistics and linear algebra.mp4
17.8 MB
1. Course Structure and Development Environment/3. Introduction to Jupyter Notebook.mp4
17.7 MB
10. Example Fraud detection/5. Data preparation.mp4
17.7 MB
5. Foundations Tensorflow/8. Optimizers.mp4
17.2 MB
2. Python Quick Start/4. Literal string interpolation.mp4
16.6 MB
5. Foundations Tensorflow/11. Saving and restoring models.mp4
16.3 MB
6. Example Image recognition/11. Error analysis.mp4
16.2 MB
1. Course Structure and Development Environment/5. Jupyter notebook Code Cells.mp4
15.8 MB
4. Foundations NumPy/3. Basic operations.mp4
15.4 MB
3. Example Logistic Regression/2. Machine Learning Development Process.mp4
14.7 MB
4. Foundations NumPy/8. More Complex Models.mp4
14.2 MB
5. Foundations Tensorflow/3. Model layers.mp4
13.8 MB
9. Example Sentiment Analysis/1. The Problem.mp4
13.8 MB
6. Example Image recognition/10. Making predictions.mp4
12.9 MB
11. Next steps/1. Next steps.mp4
12.2 MB
4. Foundations NumPy/13. Reshaping data.mp4
11.7 MB
7. Foundations Pandas/1. What is Pandas and why is it useful.mp4
9.4 MB
4. Foundations NumPy/1. What is NumPy and why it is needed.mp4
8.5 MB
2. Python Quick Start/1. About this section.mp4
7.8 MB
2. Python Quick Start/15. Prompting for passwords.mp4
7.4 MB
5. Foundations Tensorflow/10. Prediction example.mp4
7.1 MB
8. Example Recommendations/11. Predictions.mp4
6.0 MB
11. Next steps/2. Thank you.mp4
3.2 MB
2. Python Quick Start/12. Classes.srt
16.7 kB
4. Foundations NumPy/6. Linear Regression Example.srt
16.3 kB
4. Foundations NumPy/5. Introduction to Linear Regression.srt
14.8 kB
3. Example Logistic Regression/3. Data analysis.srt
12.8 kB
10. Example Fraud detection/9. Making predictions.srt
12.3 kB
3. Example Logistic Regression/12. Making predictions.srt
12.0 kB
3. Example Logistic Regression/8. Gradient descent.srt
11.8 kB
8. Example Recommendations/8. Model definition.srt
11.7 kB
2. Python Quick Start/11. Defining functions.srt
11.5 kB
6. Example Image recognition/2. Data analysis.srt
10.9 kB
9. Example Sentiment Analysis/11. Transfer Learning Example.srt
10.5 kB
2. Python Quick Start/13. File IO and Modules.srt
10.4 kB
9. Example Sentiment Analysis/5. Data Preparation.srt
9.9 kB
2. Python Quick Start/3. String formatting.srt
9.6 kB
9. Example Sentiment Analysis/12. Fine Tuning and Prediction.srt
9.5 kB
9. Example Sentiment Analysis/8. Model Training.srt
9.4 kB
7. Foundations Pandas/2. Loading and inspecting data example.srt
9.3 kB
3. Example Logistic Regression/11. Model training.srt
9.1 kB
1. Course Structure and Development Environment/2. Course Quick Tips.srt
8.8 kB
2. Python Quick Start/2. Basic Syntax.srt
8.7 kB
8. Example Recommendations/5. Data preparation.srt
8.7 kB
6. Example Image recognition/14. Hyperparameter tuning example.srt
8.7 kB
1. Course Structure and Development Environment/8. Sharing Colab Notebooks.srt
8.5 kB
10. Example Fraud detection/2. Data analysis.srt
8.2 kB
4. Foundations NumPy/11. Images.srt
7.9 kB
3. Example Logistic Regression/6. The forward function.srt
7.6 kB
7. Foundations Pandas/5. Sorting and transforming data example.srt
7.4 kB
2. Python Quick Start/4. Literal string interpolation.srt
7.3 kB
2. Python Quick Start/7. Flow control.srt
7.2 kB
6. Example Image recognition/8. Model training.srt
7.2 kB
2. Python Quick Start/8. Lists.srt
7.2 kB
7. Foundations Pandas/7. Visualizing data.srt
7.2 kB
9. Example Sentiment Analysis/7. Model Definition.srt
7.1 kB
2. Python Quick Start/10. Dictionaries.srt
7.1 kB
8. Example Recommendations/12. Making predictions.srt
7.1 kB
3. Example Logistic Regression/17. Improving the model.srt
7.0 kB
7. Foundations Pandas/3. Indexing and selecting data example.srt
7.0 kB
5. Foundations Tensorflow/2. Model example.srt
7.0 kB
9. Example Sentiment Analysis/10. Transfer Learning with BERT.srt
6.8 kB
8. Example Recommendations/4. Model selection.srt
6.7 kB
3. Example Logistic Regression/10. Backpropagation.srt
6.6 kB
8. Example Recommendations/9. Model training.srt
6.6 kB
10. Example Fraud detection/7. Model training.srt
6.3 kB
10. Example Fraud detection/11. Common questions.srt
6.0 kB
3. Example Logistic Regression/15. Test vs. train accuracy.srt
6.0 kB
4. Foundations NumPy/10. Visualizing data.srt
6.0 kB
6. Example Image recognition/6. CNN Model Layers.srt
5.9 kB
4. Foundations NumPy/9. Statistics and linear algebra.srt
5.9 kB
10. Example Fraud detection/4. Unsupervised learning.srt
5.8 kB
6. Example Image recognition/5. Data preparation.srt
5.8 kB
6. Example Image recognition/11. Error analysis.srt
5.8 kB
4. Foundations NumPy/2. Creating data with NumPy.srt
5.8 kB
1. Course Structure and Development Environment/1. Course Structure and Development Environment.srt
5.7 kB
1. Course Structure and Development Environment/9. Artificial Intelligence, Machine Learning, and Deep Learning.srt
5.7 kB
3. Example Logistic Regression/5. The model.srt
5.6 kB
8. Example Recommendations/13. Error analysis.srt
5.6 kB
2. Python Quick Start/6. Type conversion.srt
5.6 kB
9. Example Sentiment Analysis/2. Data Analysis.srt
5.5 kB
10. Example Fraud detection/6. Model definition.srt
5.5 kB
8. Example Recommendations/2. Data analysis.srt
5.5 kB
9. Example Sentiment Analysis/4. Supervised Learning.srt
5.5 kB
6. Example Image recognition/4. Model selection.srt
5.4 kB
1. Course Structure and Development Environment/6. Jupyter notebook Math Markup and Magic Commands.srt
5.4 kB
6. Example Image recognition/7. Model definition.srt
5.3 kB
5. Foundations Tensorflow/5. Training example.srt
5.3 kB
6. Example Image recognition/13. Hyperparameter tuning.srt
5.2 kB
4. Foundations NumPy/3. Basic operations.srt
5.2 kB
6. Example Image recognition/16. Common questions.srt
5.1 kB
3. Example Logistic Regression/1. The problem.srt
5.1 kB
5. Foundations Tensorflow/4. Activation functions.srt
5.1 kB
3. Example Logistic Regression/7. Loss and cost functions.srt
4.9 kB
5. Foundations Tensorflow/7. Loss functions.srt
4.5 kB
4. Foundations NumPy/8. More Complex Models.srt
4.4 kB
5. Foundations Tensorflow/11. Saving and restoring models.srt
4.3 kB
8. Example Recommendations/7. Embedding layers.srt
4.2 kB
7. Foundations Pandas/6. Aggregations example.srt
4.1 kB
3. Example Logistic Regression/16. Speeding up training.srt
4.0 kB
1. Course Structure and Development Environment/3. Introduction to Jupyter Notebook.srt
4.0 kB
1. Course Structure and Development Environment/5. Jupyter notebook Code Cells.srt
4.0 kB
10. Example Fraud detection/5. Data preparation.srt
3.9 kB
6. Example Image recognition/1. The problem.srt
3.9 kB
3. Example Logistic Regression/2. Machine Learning Development Process.srt
3.9 kB
10. Example Fraud detection/1. The problem.srt
3.8 kB
4. Foundations NumPy/13. Reshaping data.srt
3.8 kB
5. Foundations Tensorflow/12. The Three Body Problem.srt
3.7 kB
8. Example Recommendations/15. Common questions.srt
3.6 kB
8. Example Recommendations/1. The problem.srt
3.4 kB
1. Course Structure and Development Environment/4. Jupyter notebook Text Cells.srt
3.3 kB
6. Example Image recognition/10. Making predictions.srt
3.0 kB
5. Foundations Tensorflow/1. About this section.srt
3.0 kB
9. Example Sentiment Analysis/1. The Problem.srt
3.0 kB
5. Foundations Tensorflow/8. Optimizers.srt
2.9 kB
5. Foundations Tensorflow/3. Model layers.srt
2.8 kB
6. Example Image recognition/19. What you learned in this section.html
2.7 kB
11. Next steps/1. Next steps.srt
2.6 kB
5. Foundations Tensorflow/10. Prediction example.srt
2.4 kB
2. Python Quick Start/15. Prompting for passwords.srt
2.4 kB
7. Foundations Pandas/1. What is Pandas and why is it useful.srt
2.3 kB
5. Foundations Tensorflow/13. What you learned in this section.html
1.7 kB
3. Example Logistic Regression/18. What you learned in this section.html
1.6 kB
4. Foundations NumPy/1. What is NumPy and why it is needed.srt
1.5 kB
10. Example Fraud detection/13. What you learned in this section.html
1.4 kB
2. Python Quick Start/1. About this section.srt
1.3 kB
8. Example Recommendations/11. Predictions.srt
1.3 kB
8. Example Recommendations/16. What you learned in this section.html
1.1 kB
4. Foundations NumPy/14. What you learned in this section.html
823 Bytes
1. Course Structure and Development Environment/10. What you learned in this section.html
674 Bytes
2. Python Quick Start/16. What you learned in this section.html
584 Bytes
7. Foundations Pandas/9. What you learned in this section.html
555 Bytes
11. Next steps/2. Thank you.srt
538 Bytes
9. Example Sentiment Analysis/14. What you learned in this section.html
425 Bytes
5. Foundations Tensorflow/12.2 New Neural Network Could Solve The Three-Body Problem 100 Million Times Faster.html
174 Bytes
1. Course Structure and Development Environment/8.1 Saving notebooks to Github or Drive.html
170 Bytes
3. Example Logistic Regression/3.1 Github repo.html
159 Bytes
7. Foundations Pandas/5.1 Sorting data.html
153 Bytes
9. Example Sentiment Analysis/2.2 Github repo.html
149 Bytes
1. Course Structure and Development Environment/7. Introduction to Notebooks.html
148 Bytes
10. Example Fraud detection/10. Prediction and error analysis.html
148 Bytes
10. Example Fraud detection/12. Improving the model.html
148 Bytes
10. Example Fraud detection/3. Analyze credit card data set.html
148 Bytes
10. Example Fraud detection/8. Training the model.html
148 Bytes
2. Python Quick Start/14. Plot several math functions.html
148 Bytes
2. Python Quick Start/5. Experiment with string formatting.html
148 Bytes
2. Python Quick Start/9. Dot product.html
148 Bytes
3. Example Logistic Regression/13. Training a model.html
148 Bytes
3. Example Logistic Regression/14. Optional Wine Classification.html
148 Bytes
3. Example Logistic Regression/4. Analyze Iris flower data set.html
148 Bytes
3. Example Logistic Regression/9. Experiment with gradient descent.html
148 Bytes
4. Foundations NumPy/12. Visualizing data.html
148 Bytes
4. Foundations NumPy/4. Experiment with NumPy.html
148 Bytes
4. Foundations NumPy/7. Experiment with Linear Regression.html
148 Bytes
5. Foundations Tensorflow/6. Train a basic model.html
148 Bytes
5. Foundations Tensorflow/9. Experiment with optimizers.html
148 Bytes
6. Example Image recognition/12. Prediction and error analysis.html
148 Bytes
6. Example Image recognition/15. Model improvement.html
148 Bytes
6. Example Image recognition/17. Optional Real images.html
148 Bytes
6. Example Image recognition/18. Optional Other image types.html
148 Bytes
6. Example Image recognition/3. Analyze MNIST data set.html
148 Bytes
6. Example Image recognition/9. Training a model.html
148 Bytes
7. Foundations Pandas/4. Experiment with Pandas.html
148 Bytes
7. Foundations Pandas/8. Visualizing data with Pandas.html
148 Bytes
8. Example Recommendations/10. Training the model.html
148 Bytes
8. Example Recommendations/14. Making recommendations and error analysis.html
148 Bytes
8. Example Recommendations/3. Analyze MovieLens data set.html
148 Bytes
8. Example Recommendations/6. Prepare data.html
148 Bytes
9. Example Sentiment Analysis/13. Transfer Learning with BERT.html
148 Bytes
9. Example Sentiment Analysis/3. Analyze Sentiment Data Set.html
148 Bytes
9. Example Sentiment Analysis/6. Prepare Data.html
148 Bytes
9. Example Sentiment Analysis/9. Training the Model.html
148 Bytes
1. Course Structure and Development Environment/3.2 IBM Watson Studio Notebooks.html
147 Bytes
2. Python Quick Start/3.2 printf style formatting.html
139 Bytes
5. Foundations Tensorflow/4.2 Tensorflow activations.html
138 Bytes
5. Foundations Tensorflow/2.1 Sequential models.html
137 Bytes
5. Foundations Tensorflow/8.2 Tensorflow optimizers.html
137 Bytes
7. Foundations Pandas/7.1 Pandas visualization user guide.html
135 Bytes
5. Foundations Tensorflow/7.1 Loss functions.html
133 Bytes
5. Foundations Tensorflow/10.1 Model API.html
132 Bytes
5. Foundations Tensorflow/11.1 Model API.html
132 Bytes
7. Foundations Pandas/3.1 User Guide Indexing and Selecting Data.html
130 Bytes
9. Example Sentiment Analysis/2.1 Data set.html
129 Bytes
7. Foundations Pandas/6.1 Pandas group by API.html
128 Bytes
8. Example Recommendations/15.2 BellKor solution.html
126 Bytes
1. Course Structure and Development Environment/4.1 Markdown cheat sheet.html
125 Bytes
7. Foundations Pandas/2.2 Pandas IO.html
124 Bytes
4. Foundations NumPy/9.2 Statistics functions.html
122 Bytes
2. Python Quick Start/3.1 Format string syntax.html
120 Bytes
8. Example Recommendations/15.1 Other solutions.html
120 Bytes
10. Example Fraud detection/11.1 Building Autoencoders in Keras.html
118 Bytes
4. Foundations NumPy/9.1 Linear algebra.html
118 Bytes
5. Foundations Tensorflow/8.1 Stochastic gradient descent and related optimizers.html
118 Bytes
9. Example Sentiment Analysis/1.2 Natural Language Processing (NLP).html
118 Bytes
9. Example Sentiment Analysis/4.1 Natural Language Processing (NLP).html
118 Bytes
1. Course Structure and Development Environment/3.6 AWS Sagemaker Notebook Instances.html
117 Bytes
6. Example Image recognition/7.2 Sequential model guide.html
117 Bytes
8. Example Recommendations/8.1 Keras functional API.html
115 Bytes
8. Example Recommendations/2.1 Collaborative filtering article.html
114 Bytes
4. Foundations NumPy/11.3 Image manipulation with NumPy.html
113 Bytes
4. Foundations NumPy/11.1 Hughes 500.html
112 Bytes
1. Course Structure and Development Environment/1.1 Github repo.html
110 Bytes
5. Foundations Tensorflow/2.2 Github repo.html
110 Bytes
5. Foundations Tensorflow/4.1 Activation functions.html
110 Bytes
5. Foundations Tensorflow/12.1 Three Body Problem.html
109 Bytes
9. Example Sentiment Analysis/1.1 Sentiment Analysis.html
109 Bytes
1. Course Structure and Development Environment/6.1 LaTeX syntax.html
108 Bytes
4. Foundations NumPy/11.2 Aviation.html
104 Bytes
8. Example Recommendations/15.3 Netflix prize.html
104 Bytes
9. Example Sentiment Analysis/5.1 GloVe Vectors.html
101 Bytes
6. Example Image recognition/7.1 Keras CNN layers.html
99 Bytes
1. Course Structure and Development Environment/3.5 Kaggle Notebooks.html
96 Bytes
8. Example Recommendations/7.1 Keras Embedding Layers documentation.html
96 Bytes
1. Course Structure and Development Environment/3.1 Google Colaboratory.html
95 Bytes
10. Example Fraud detection/2.1 Github repo.html
94 Bytes
4. Foundations NumPy/10.1 Matplotlib home page.html
94 Bytes
6. Example Image recognition/1.1 The MNIST database of handwritten digits.html
94 Bytes
6. Example Image recognition/2.1 Example Github repository.html
94 Bytes
6. Example Image recognition/4.1 MNIST models and their accuracy.html
94 Bytes
7. Foundations Pandas/2.1 Github repo.html
94 Bytes
8. Example Recommendations/2.2 Github repo.html
94 Bytes
6. Example Image recognition/10.1 Keras Model API.html
91 Bytes
1. Course Structure and Development Environment/3.4 Microsoft Azure Notebooks.html
89 Bytes
4. Foundations NumPy/2.2 NumPy documentation.html
88 Bytes
5. Foundations Tensorflow/1.1 Tensorflow home page.html
87 Bytes
7. Foundations Pandas/1.1 Pandas Home Page.html
86 Bytes
1. Course Structure and Development Environment/3.3 CoCalc.html
80 Bytes
4. Foundations NumPy/2.1 NumPy home page.html
79 Bytes
0. Websites you may like/[DesireCourse.Net].url
51 Bytes
1. Course Structure and Development Environment/[DesireCourse.Net].url
51 Bytes
6. Example Image recognition/[DesireCourse.Net].url
51 Bytes
9. Example Sentiment Analysis/[DesireCourse.Net].url
51 Bytes
[DesireCourse.Net].url
51 Bytes
0. Websites you may like/[CourseClub.Me].url
48 Bytes
1. Course Structure and Development Environment/[CourseClub.Me].url
48 Bytes
6. Example Image recognition/[CourseClub.Me].url
48 Bytes
9. Example Sentiment Analysis/[CourseClub.Me].url
48 Bytes
[CourseClub.Me].url
48 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>