搜索
[FreeCourseSite.com] Udemy - Data Science and Machine Learning Bootcamp with R
磁力链接/BT种子名称
[FreeCourseSite.com] Udemy - Data Science and Machine Learning Bootcamp with R
磁力链接/BT种子简介
种子哈希:
891df927a6797b86eccdf1dabd4735dc1966a385
文件大小:
2.86G
已经下载:
378
次
下载速度:
极快
收录时间:
2021-04-28
最近下载:
2025-03-14
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:891DF927A6797B86ECCDF1DABD4735DC1966A385
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
少女初夜
萝莉岛
最近搜索
4651178
x探员
rangers
mide-013
巴拉圭支付渠道【f26.cc】✔️-tam
無修正-流出巨乳
大款肥猪男约炮颜值美女情人跨年炮
汤女
【加qq 261872985】
2016.720
小林酱
dvrt-034
ipx+493
peac-028
sivr+013
日本三级+醉酒之后
国外金发女友
tokugawa
廣島援交 2002-12-24 14才
paradigm
三级片强
jdxyx+021
zakk wylde
[thz.la]020417-367-carib-1080p
第二場性感藍色包臀裙少婦
chick++
quantum
凯丽学英语
小精致
npjs-128
文件列表
4. Mac OS Installation Set-Up/1. Mac OS Installation Procedure.mp4
74.9 MB
18. Capstone Data Project/2. Capstone Project Solutions Walkthrough.mp4
66.4 MB
19. Introduction to Machine Learning with R/2. Introduction to Machine Learning.mp4
62.6 MB
21. Machine Learning Project - Linear Regression/2. ML - Linear Regression Project - Solutions Part 1.mp4
62.4 MB
14. Data Manipulation with R/8. Guide to Using Tidyr.mp4
60.5 MB
15. Data Visualization with R/2. Histograms.mp4
59.7 MB
23. Machine Learning Project - Logistic Regression/2. Logistic Regression Project Solutions - Part 1.mp4
59.0 MB
20. Machine Learning with R - Linear Regression/2. Linear Regression with R - Part 1.mp4
58.3 MB
33. Machine Learning with R - Neural Nets/2. Neural Nets with R.mp4
57.4 MB
20. Machine Learning with R - Linear Regression/3. Linear Regression with R - Part 2.mp4
56.6 MB
22. Machine Learning with R - Logistic Regression/3. Logistic Regression with R - Part 2.mp4
49.9 MB
24. Machine Learning with R - K Nearest Neighbors/2. K Nearest Neighbors with R.mp4
49.0 MB
21. Machine Learning Project - Linear Regression/1. Introduction to Linear Regression Project.mp4
48.8 MB
22. Machine Learning with R - Logistic Regression/2. Logistic Regression with R - Part 1.mp4
48.6 MB
1. Course Introduction/4.1 R-Course-HTML-Notes.zip
47.8 MB
6. Development Environment Overview/2.1 R-Course-HTML-Notes.zip
47.8 MB
18. Capstone Data Project/1. Introduction to Capstone Project.mp4
47.7 MB
15. Data Visualization with R/3. Scatterplots.mp4
47.4 MB
12. R Programming Basics/10. Functions Training Exercise - Solutions.mp4
45.5 MB
32. Machine Learning with R - Natural Language Processing/3. Natural Language Processing with R - Part 2.mp4
44.9 MB
17. Interactive Visualizations with Plotly/1. Overview of Plotly and Interactive Visualizations.mp4
44.6 MB
16. Data Visualization Project/2. Data Visualization Project - Solutions Walkthrough - Part 1.mp4
44.1 MB
16. Data Visualization Project/3. Data Visualization Project Solutions Walkthrough - Part 2.mp4
43.5 MB
12. R Programming Basics/8. Functions.mp4
42.6 MB
28. Machine Learning with R - Support Vector Machines/2. Support Vector Machines with R.mp4
41.5 MB
9. R Data Frames/5. Overview of Data Frame Operations - Part 2.mp4
40.8 MB
27. Machine Learning Project - Decision Trees and Random Forests/2. Tree Methods Project Solutions - Part 1.mp4
40.7 MB
23. Machine Learning Project - Logistic Regression/3. Logistic Regression Project Solutions - Part 2.mp4
40.5 MB
31. Machine Learning Project - K-means Clustering/2. K Means Clustering Project - Solutions Walkthrough.mp4
40.1 MB
23. Machine Learning Project - Logistic Regression/4. Logistic Regression Project - Solutions Part 3.mp4
39.5 MB
6. Development Environment Overview/3. Guide to RStudio.mp4
36.8 MB
9. R Data Frames/4. Overview of Data Frame Operations - Part 1.mp4
36.3 MB
26. Machine Learning with R - Decision Trees and Random Forests/2. Decision Trees and Random Forests with R.mp4
36.1 MB
9. R Data Frames/7. Data Frame Training Exercises - Solutions Walkthrough.mp4
35.7 MB
11. Data Input and Output with R/5. SQL with R.mp4
35.1 MB
21. Machine Learning Project - Linear Regression/3. ML - Linear Regression Project - Solutions Part 2.mp4
34.3 MB
13. Advanced R Programming/3. Apply.mp4
32.9 MB
6. Development Environment Overview/2. Course Notes.mp4
32.6 MB
15. Data Visualization with R/10. ggplot2 Exercise Solutions.mp4
32.0 MB
25. Machine Learning Project - K Nearest Neighbors/2. K Nearest Neighbors Project Solutions.mp4
31.9 MB
14. Data Manipulation with R/2. Guide to Using Dplyr.mp4
30.9 MB
12. R Programming Basics/3. if, else, and else if Statements.mp4
30.6 MB
29. Machine Learning Project - Support Vector Machines/2. Support Vector Machines Project - Solutions Part 1.mp4
29.9 MB
8. R Matrices/8. Matrix Training Exercises - Solutions Walkthrough.mp4
29.5 MB
15. Data Visualization with R/7. Coordinates and Faceting.mp4
29.4 MB
13. Advanced R Programming/6. Dates and Timestamps.mp4
29.2 MB
11. Data Input and Output with R/4. Excel Files with R.mp4
29.0 MB
12. R Programming Basics/7. For Loops.mp4
27.8 MB
20. Machine Learning with R - Linear Regression/4. Linear Regression with R - Part 3.mp4
27.6 MB
34. Machine Learning Project - Neural Nets/2. Neural Nets Project - Solutions.mp4
26.8 MB
15. Data Visualization with R/6. 2 Variable Plotting.mp4
25.9 MB
3. Windows Installation Set-Up/1. Windows Installation Procedure.mp4
25.7 MB
29. Machine Learning Project - Support Vector Machines/3. Support Vector Machines Project - Solutions Part 2.mp4
25.5 MB
12. R Programming Basics/5. Conditional Statements Training Exercise - Solutions Walkthrough.mp4
25.4 MB
14. Data Manipulation with R/3. Guide to Using Dplyr - Part 2.mp4
25.3 MB
11. Data Input and Output with R/6. Web Scraping with R.mp4
23.9 MB
30. Machine Learning with R - K-means Clustering/2. K Means Clustering with R.mp4
23.6 MB
22. Machine Learning with R - Logistic Regression/1. Introduction to Logistic Regression.mp4
23.0 MB
10. R Lists/1. List Basics.mp4
23.0 MB
9. R Data Frames/2. Data Frame Basics.mp4
22.5 MB
8. R Matrices/2. Creating a Matrix.mp4
22.3 MB
13. Advanced R Programming/2. Built-in R Features.mp4
21.4 MB
15. Data Visualization with R/4. Barplots.mp4
20.9 MB
9. R Data Frames/3. Data Frame Indexing and Selection.mp4
19.9 MB
7. Introduction to R Basics/8. Vector Indexing and Slicing.mp4
18.8 MB
1. Course Introduction/1. Introduction to Course.mp4
18.2 MB
8. R Matrices/6. Factor and Categorical Matrices.mp4
17.8 MB
15. Data Visualization with R/5. Boxplots.mp4
17.5 MB
14. Data Manipulation with R/4. Pipe Operator.mp4
17.4 MB
12. R Programming Basics/2. Logical Operators.mp4
17.0 MB
14. Data Manipulation with R/7. Dplyr Training Exercise - Solutions Walkthrough.mp4
16.4 MB
7. Introduction to R Basics/5. Vector Basics.mp4
16.0 MB
16. Data Visualization Project/1. Data Visualization Project.mp4
16.0 MB
7. Introduction to R Basics/11. R Basics Training Exercise - Solutions Walkthrough.mp4
15.5 MB
25. Machine Learning Project - K Nearest Neighbors/1. Introduction K Nearest Neighbors Project.mp4
15.4 MB
11. Data Input and Output with R/2. CSV Files with R.mp4
14.7 MB
12. R Programming Basics/6. While Loops.mp4
14.2 MB
23. Machine Learning Project - Logistic Regression/1. Introduction to Logistic Regression Project.mp4
14.0 MB
15. Data Visualization with R/8. Themes.mp4
14.0 MB
15. Data Visualization with R/1. Overview of ggplot2.mp4
14.0 MB
8. R Matrices/5. Matrix Selection and Indexing.mp4
14.0 MB
13. Advanced R Programming/4. Math Functions with R.mp4
13.6 MB
8. R Matrices/4. Matrix Operations.mp4
13.5 MB
33. Machine Learning with R - Neural Nets/1. Introduction to Neural Nets.mp4
13.3 MB
32. Machine Learning with R - Natural Language Processing/2. Natural Language Processing with R - Part 1.mp4
13.2 MB
26. Machine Learning with R - Decision Trees and Random Forests/1. Introduction to Tree Methods.mp4
13.1 MB
7. Introduction to R Basics/7. Comparison Operators.mp4
12.4 MB
20. Machine Learning with R - Linear Regression/1. Introduction to Linear Regression.mp4
12.1 MB
29. Machine Learning Project - Support Vector Machines/1. Introduction to SVM Project.mp4
12.1 MB
34. Machine Learning Project - Neural Nets/1. Introduction to Neural Nets Project.mp4
11.6 MB
13. Advanced R Programming/5. Regular Expressions.mp4
11.6 MB
27. Machine Learning Project - Decision Trees and Random Forests/3. Tree Methods Project Solutions - Part 2.mp4
11.0 MB
27. Machine Learning Project - Decision Trees and Random Forests/1. Introduction to Decision Trees and Random Forests Project.mp4
10.7 MB
7. Introduction to R Basics/4. R Basic Data Types.mp4
10.4 MB
7. Introduction to R Basics/3. Variables.mp4
10.4 MB
30. Machine Learning with R - K-means Clustering/1. Introduction to K-Means Clustering.mp4
10.0 MB
24. Machine Learning with R - K Nearest Neighbors/1. Introduction to K Nearest Neighbors.mp4
9.7 MB
28. Machine Learning with R - Support Vector Machines/1. Introduction to Support Vector Machines.mp4
9.4 MB
8. R Matrices/3. Matrix Arithmetic.mp4
9.3 MB
31. Machine Learning Project - K-means Clustering/1. Introduction to K Means Clustering Project.mp4
9.2 MB
12. R Programming Basics/9. Functions Training Exercise.mp4
9.0 MB
7. Introduction to R Basics/2. Arithmetic in R.mp4
8.9 MB
7. Introduction to R Basics/6. Vector Operations.mp4
8.9 MB
15. Data Visualization with R/9. ggplot2 Exercises.mp4
8.7 MB
32. Machine Learning with R - Natural Language Processing/1. Introduction to Natural Language Processing.mp4
8.7 MB
1. Course Introduction/3. What is Data Science.mp4
8.2 MB
7. Introduction to R Basics/9. Getting Help with R and RStudio.mp4
7.1 MB
1. Course Introduction/2. Course Curriculum.mp4
7.0 MB
7. Introduction to R Basics/10. R Basics Training Exercise.mp4
6.8 MB
7. Introduction to R Basics/1. Introduction to R Basics.mp4
6.8 MB
9. R Data Frames/6. Data Frame Training Exercise.mp4
5.2 MB
12. R Programming Basics/4. Conditional Statements Training Exercise.mp4
4.6 MB
8. R Matrices/7. Matrix Training Exercise.mp4
4.0 MB
14. Data Manipulation with R/6. Dplyr Training Exercise.mp4
3.2 MB
19. Introduction to Machine Learning with R/2.1 Machine Learning Slides.zip
3.0 MB
12. R Programming Basics/1. Introduction to Programming Basics.mp4
2.0 MB
13. Advanced R Programming/1. Introduction to Advanced R Programming.mp4
1.9 MB
8. R Matrices/1. Introduction to R Matrices.mp4
1.7 MB
9. R Data Frames/1. Introduction to R Data Frames.mp4
1.6 MB
14. Data Manipulation with R/1. Data Manipulation Overview.mp4
1.3 MB
6. Development Environment Overview/1. Development Environment Overview.mp4
1.2 MB
11. Data Input and Output with R/1. Introduction to Data Input and Output with R.mp4
1.1 MB
33. Machine Learning with R - Neural Nets/2. Neural Nets with R.srt
32.1 kB
20. Machine Learning with R - Linear Regression/3. Linear Regression with R - Part 2.srt
30.6 kB
18. Capstone Data Project/2. Capstone Project Solutions Walkthrough.srt
30.3 kB
21. Machine Learning Project - Linear Regression/2. ML - Linear Regression Project - Solutions Part 1.srt
30.0 kB
12. R Programming Basics/10. Functions Training Exercise - Solutions.srt
29.2 kB
20. Machine Learning with R - Linear Regression/2. Linear Regression with R - Part 1.srt
28.9 kB
22. Machine Learning with R - Logistic Regression/2. Logistic Regression with R - Part 1.srt
28.6 kB
15. Data Visualization with R/2. Histograms.srt
28.6 kB
14. Data Manipulation with R/8. Guide to Using Tidyr.srt
28.4 kB
23. Machine Learning Project - Logistic Regression/2. Logistic Regression Project Solutions - Part 1.srt
28.4 kB
19. Introduction to Machine Learning with R/2. Introduction to Machine Learning.srt
27.7 kB
9. R Data Frames/5. Overview of Data Frame Operations - Part 2.srt
27.4 kB
12. R Programming Basics/8. Functions.srt
26.8 kB
24. Machine Learning with R - K Nearest Neighbors/2. K Nearest Neighbors with R.srt
25.9 kB
22. Machine Learning with R - Logistic Regression/3. Logistic Regression with R - Part 2.srt
25.4 kB
9. R Data Frames/4. Overview of Data Frame Operations - Part 1.srt
25.0 kB
15. Data Visualization with R/3. Scatterplots.srt
24.4 kB
31. Machine Learning Project - K-means Clustering/2. K Means Clustering Project - Solutions Walkthrough.srt
23.8 kB
27. Machine Learning Project - Decision Trees and Random Forests/2. Tree Methods Project Solutions - Part 1.srt
23.3 kB
23. Machine Learning Project - Logistic Regression/3. Logistic Regression Project Solutions - Part 2.srt
22.3 kB
28. Machine Learning with R - Support Vector Machines/2. Support Vector Machines with R.srt
21.2 kB
9. R Data Frames/7. Data Frame Training Exercises - Solutions Walkthrough.srt
21.2 kB
32. Machine Learning with R - Natural Language Processing/3. Natural Language Processing with R - Part 2.srt
20.7 kB
13. Advanced R Programming/3. Apply.srt
20.6 kB
12. R Programming Basics/3. if, else, and else if Statements.srt
20.3 kB
15. Data Visualization with R/10. ggplot2 Exercise Solutions.srt
19.7 kB
23. Machine Learning Project - Logistic Regression/4. Logistic Regression Project - Solutions Part 3.srt
19.7 kB
8. R Matrices/8. Matrix Training Exercises - Solutions Walkthrough.srt
19.7 kB
6. Development Environment Overview/3. Guide to RStudio.srt
19.5 kB
12. R Programming Basics/7. For Loops.srt
18.5 kB
14. Data Manipulation with R/2. Guide to Using Dplyr.srt
18.3 kB
11. Data Input and Output with R/4. Excel Files with R.srt
18.0 kB
12. R Programming Basics/5. Conditional Statements Training Exercise - Solutions Walkthrough.srt
17.8 kB
26. Machine Learning with R - Decision Trees and Random Forests/2. Decision Trees and Random Forests with R.srt
17.5 kB
22. Machine Learning with R - Logistic Regression/1. Introduction to Logistic Regression.srt
17.4 kB
13. Advanced R Programming/6. Dates and Timestamps.srt
16.9 kB
16. Data Visualization Project/2. Data Visualization Project - Solutions Walkthrough - Part 1.srt
16.9 kB
16. Data Visualization Project/3. Data Visualization Project Solutions Walkthrough - Part 2.srt
16.7 kB
11. Data Input and Output with R/5. SQL with R.srt
16.4 kB
20. Machine Learning with R - Linear Regression/4. Linear Regression with R - Part 3.srt
16.0 kB
29. Machine Learning Project - Support Vector Machines/2. Support Vector Machines Project - Solutions Part 1.srt
15.7 kB
21. Machine Learning Project - Linear Regression/3. ML - Linear Regression Project - Solutions Part 2.srt
15.5 kB
6. Development Environment Overview/2. Course Notes.srt
15.0 kB
8. R Matrices/2. Creating a Matrix.srt
14.9 kB
29. Machine Learning Project - Support Vector Machines/3. Support Vector Machines Project - Solutions Part 2.srt
14.7 kB
14. Data Manipulation with R/3. Guide to Using Dplyr - Part 2.srt
14.5 kB
30. Machine Learning with R - K-means Clustering/2. K Means Clustering with R.srt
14.4 kB
7. Introduction to R Basics/8. Vector Indexing and Slicing.srt
14.4 kB
15. Data Visualization with R/7. Coordinates and Faceting.srt
14.4 kB
21. Machine Learning Project - Linear Regression/1. Introduction to Linear Regression Project.srt
14.3 kB
25. Machine Learning Project - K Nearest Neighbors/2. K Nearest Neighbors Project Solutions.srt
13.8 kB
17. Interactive Visualizations with Plotly/1. Overview of Plotly and Interactive Visualizations.srt
13.4 kB
9. R Data Frames/3. Data Frame Indexing and Selection.srt
13.1 kB
10. R Lists/1. List Basics.srt
13.1 kB
18. Capstone Data Project/1. Introduction to Capstone Project.srt
13.0 kB
13. Advanced R Programming/2. Built-in R Features.srt
12.8 kB
34. Machine Learning Project - Neural Nets/2. Neural Nets Project - Solutions.srt
12.5 kB
9. R Data Frames/2. Data Frame Basics.srt
12.1 kB
15. Data Visualization with R/4. Barplots.srt
11.8 kB
8. R Matrices/6. Factor and Categorical Matrices.srt
11.7 kB
12. R Programming Basics/2. Logical Operators.srt
11.6 kB
15. Data Visualization with R/5. Boxplots.srt
11.0 kB
11. Data Input and Output with R/6. Web Scraping with R.srt
10.6 kB
12. R Programming Basics/6. While Loops.srt
10.6 kB
15. Data Visualization with R/6. 2 Variable Plotting.srt
10.6 kB
7. Introduction to R Basics/11. R Basics Training Exercise - Solutions Walkthrough.srt
10.5 kB
15. Data Visualization with R/1. Overview of ggplot2.srt
10.5 kB
3. Windows Installation Set-Up/1. Windows Installation Procedure.srt
10.4 kB
7. Introduction to R Basics/5. Vector Basics.srt
10.3 kB
14. Data Manipulation with R/7. Dplyr Training Exercise - Solutions Walkthrough.srt
10.1 kB
8. R Matrices/5. Matrix Selection and Indexing.srt
9.9 kB
7. Introduction to R Basics/7. Comparison Operators.srt
9.8 kB
14. Data Manipulation with R/4. Pipe Operator.srt
9.5 kB
11. Data Input and Output with R/2. CSV Files with R.srt
9.5 kB
33. Machine Learning with R - Neural Nets/1. Introduction to Neural Nets.srt
9.5 kB
26. Machine Learning with R - Decision Trees and Random Forests/1. Introduction to Tree Methods.srt
9.5 kB
4. Mac OS Installation Set-Up/1. Mac OS Installation Procedure.srt
8.9 kB
20. Machine Learning with R - Linear Regression/1. Introduction to Linear Regression.srt
8.3 kB
15. Data Visualization with R/8. Themes.srt
7.9 kB
32. Machine Learning with R - Natural Language Processing/2. Natural Language Processing with R - Part 1.srt
7.8 kB
7. Introduction to R Basics/4. R Basic Data Types.srt
7.8 kB
8. R Matrices/4. Matrix Operations.srt
7.8 kB
7. Introduction to R Basics/3. Variables.srt
7.6 kB
27. Machine Learning Project - Decision Trees and Random Forests/3. Tree Methods Project Solutions - Part 2.srt
7.3 kB
24. Machine Learning with R - K Nearest Neighbors/1. Introduction to K Nearest Neighbors.srt
7.3 kB
30. Machine Learning with R - K-means Clustering/1. Introduction to K-Means Clustering.srt
7.2 kB
13. Advanced R Programming/5. Regular Expressions.srt
7.0 kB
7. Introduction to R Basics/2. Arithmetic in R.srt
6.7 kB
8. R Matrices/3. Matrix Arithmetic.srt
6.6 kB
7. Introduction to R Basics/6. Vector Operations.srt
6.5 kB
32. Machine Learning with R - Natural Language Processing/1. Introduction to Natural Language Processing.srt
6.3 kB
28. Machine Learning with R - Support Vector Machines/1. Introduction to Support Vector Machines.srt
6.2 kB
1. Course Introduction/3. What is Data Science.srt
5.9 kB
25. Machine Learning Project - K Nearest Neighbors/1. Introduction K Nearest Neighbors Project.srt
5.4 kB
13. Advanced R Programming/4. Math Functions with R.srt
5.0 kB
16. Data Visualization Project/1. Data Visualization Project.srt
4.8 kB
15. Data Visualization with R/9. ggplot2 Exercises.srt
4.7 kB
7. Introduction to R Basics/1. Introduction to R Basics.srt
4.2 kB
12. R Programming Basics/9. Functions Training Exercise.srt
4.0 kB
1. Course Introduction/1. Introduction to Course.srt
4.0 kB
29. Machine Learning Project - Support Vector Machines/1. Introduction to SVM Project.srt
4.0 kB
34. Machine Learning Project - Neural Nets/1. Introduction to Neural Nets Project.srt
3.6 kB
7. Introduction to R Basics/10. R Basics Training Exercise.srt
3.6 kB
31. Machine Learning Project - K-means Clustering/1. Introduction to K Means Clustering Project.srt
3.6 kB
1. Course Introduction/2. Course Curriculum.srt
3.5 kB
7. Introduction to R Basics/9. Getting Help with R and RStudio.srt
3.4 kB
23. Machine Learning Project - Logistic Regression/1. Introduction to Logistic Regression Project.srt
2.9 kB
27. Machine Learning Project - Decision Trees and Random Forests/1. Introduction to Decision Trees and Random Forests Project.srt
2.9 kB
12. R Programming Basics/4. Conditional Statements Training Exercise.srt
2.6 kB
2. Course Best Practices/1. How to Get Help in the Course!.html
2.0 kB
14. Data Manipulation with R/6. Dplyr Training Exercise.srt
2.0 kB
11. Data Input and Output with R/3. Note on R with Excel Download.html
1.9 kB
9. R Data Frames/6. Data Frame Training Exercise.srt
1.8 kB
12. R Programming Basics/1. Introduction to Programming Basics.srt
1.6 kB
8. R Matrices/7. Matrix Training Exercise.srt
1.6 kB
13. Advanced R Programming/1. Introduction to Advanced R Programming.srt
1.6 kB
5. Linux Installation/1. LinuxUnbuntu Installation Procedure.html
1.5 kB
1. Course Introduction/4. Course FAQ.html
1.3 kB
8. R Matrices/1. Introduction to R Matrices.srt
1.3 kB
9. R Data Frames/1. Introduction to R Data Frames.srt
1.1 kB
14. Data Manipulation with R/1. Data Manipulation Overview.srt
1.0 kB
17. Interactive Visualizations with Plotly/2. Resources for Plotly and ggplot2.html
962 Bytes
35. Bonus Section/1. Bonus Lecture.html
532 Bytes
11. Data Input and Output with R/1. Introduction to Data Input and Output with R.srt
494 Bytes
6. Development Environment Overview/1. Development Environment Overview.srt
483 Bytes
19. Introduction to Machine Learning with R/1. ISLR PDF.html
393 Bytes
2. Course Best Practices/3. Installation and Set-Up.html
335 Bytes
14. Data Manipulation with R/5. Quick note on Dpylr exercise.html
309 Bytes
2. Course Best Practices/2. Welcome to the Course..html
159 Bytes
0. Websites you may like/[FCS Forum].url
133 Bytes
0. Websites you may like/[FreeCourseSite.com].url
127 Bytes
0. Websites you may like/[CourseClub.ME].url
122 Bytes
8. R Matrices/4.1 Reference of Built-in Functions.html
117 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>