搜索
[Tutorialsplanet.NET] Udemy -Projects in Machine Learning Beginner To Professional
磁力链接/BT种子名称
[Tutorialsplanet.NET] Udemy -Projects in Machine Learning Beginner To Professional
磁力链接/BT种子简介
种子哈希:
89c9a8c6f25a0a3da9ad16d71d4c84a524a31924
文件大小:
4.24G
已经下载:
125
次
下载速度:
极快
收录时间:
2021-04-27
最近下载:
2024-12-11
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:89C9A8C6F25A0A3DA9AD16D71D4C84A524A31924
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
少女初夜
萝莉岛
最近搜索
nerdy glasses
cc甜心
超人花
bad guys bluray
一龙三凤
【】
#兔牙蛇蛇
女优老师
李寻欢舞蹈学院美女,身材柔软花式多!-4k字幕版
韩国美容
蜜桃臀摇
居家破解
朋友打电话
prequel
[nsz] rising
上海留学生onlyfans网红反差骚女【李艾】
the east
芊芊粉嫩
h中字
榨 精 强
透视舞
池鱼pmv
vol.3 蛇之僕·櫻
出租屋骚
熟女撩骚
20.04.17
lanewgirl.
破解家庭网络摄像头偷拍各种夫妻激情
to wong foo, thanks for everything julie newmar 19
朋友喝醉
文件列表
12. Project 7 Text Classification/2. Feature Engineering.mp4
393.6 MB
11. Project 6 Image Super Resolution/3. Image Super Resolution using Deep Learning.mp4
374.9 MB
9. Project 4 Intro to Natural Language Processing/3. Tagging, Chunking, and Named Entity Recognition.mp4
338.8 MB
11. Project 6 Image Super Resolution/2. Quality Metrics and Preprocessing Images.mp4
271.4 MB
13. Project 8 - KMeans/2. Preprocessing Images for Clustering.mp4
242.1 MB
9. Project 4 Intro to Natural Language Processing/4. Text Classification.mp4
227.5 MB
13. Project 8 - KMeans/3. Evaluation and Visualization.mp4
219.7 MB
10. Project 5 Object Recognition/3. Building and Deploying the All-CNN Network Part 1.mp4
215.6 MB
12. Project 7 Text Classification/3. Deploying Sklearn Classifiers.mp4
214.2 MB
9. Project 4 Intro to Natural Language Processing/2. Tokenizing, Stop Words, and Stemming.mp4
208.0 MB
14. Project 9 PCA/3. PCA Compression and Visualization.mp4
194.0 MB
10. Project 5 Object Recognition/2. Loading and Preprocessing the CIFAR10 Dataset.mp4
189.3 MB
10. Project 5 Object Recognition/4. Building and Deploying the All-CNN Network Part 2.mp4
179.1 MB
14. Project 9 PCA/2. The Elbow Method.mp4
119.7 MB
6. Warmup Project/3. Building and Training the Network Part 2.mp4
66.4 MB
1. An Introduction to Machine Learning/3. Types and Applications of ML.mp4
55.6 MB
8. Project 2 Credit Card Fraud Detection/3. Credit Card Fraud Detection - The Algorithms.mp4
51.3 MB
8. Project 2 Credit Card Fraud Detection/2. Credit Card Fraud Detection - The Dataset.mp4
39.4 MB
2. Supervised Learning - part 1/8. Bonus! Supervised Learning Project in Python Part 2.mp4
38.0 MB
6. Warmup Project/2. Building and Training the Network Part 1.mp4
37.8 MB
7. Project 1Board Game Review Prediction/4. Board Game Review Prediction - Training the Models.mp4
37.6 MB
1. An Introduction to Machine Learning/5. Essential Math for ML and AI.mp4
37.5 MB
2. Supervised Learning - part 1/4. Support Vector Machines.mp4
37.5 MB
7. Project 1Board Game Review Prediction/3. Board Game Review Prediction - Building the Dataset Part 2.mp4
37.2 MB
2. Supervised Learning - part 1/2. Linear Methods for Classification.mp4
35.8 MB
4. Neural Networks/5. Convolutional Neural Networks.mp4
33.6 MB
3. Unsupervised Learning/1. Introduction to Unsupervised Learning.mp4
33.3 MB
5. Real World Machine Learning/4. Common Software for ML.mp4
32.8 MB
2. Supervised Learning - part 1/7. Bonus! Supervised Learning Project in Python Part 1.mp4
32.5 MB
6. Warmup Project/1. Setting up OpenAI Gym.mp4
31.6 MB
1. An Introduction to Machine Learning/2. What is Machine Learning.mp4
30.6 MB
3. Unsupervised Learning/2. Association Rules.mp4
29.9 MB
3. Unsupervised Learning/3. Cluster Analysis.mp4
29.3 MB
2. Supervised Learning - part 1/3. Linear Methods for Regression.mp4
28.3 MB
2. Supervised Learning - part 1/6. Model Selection Procedures.mp4
28.2 MB
5. Real World Machine Learning/1. Introduction to Real World ML.mp4
26.8 MB
2. Supervised Learning - part 1/1. Introduction to Supervised Learning.mp4
26.7 MB
4. Neural Networks/4. Training Procedures.mp4
25.2 MB
1. An Introduction to Machine Learning/4. AI vs ML.mp4
24.0 MB
4. Neural Networks/1. Introduction to Neural Networks.mp4
23.8 MB
4. Neural Networks/3. The Backpropagation Algorithm.mp4
23.7 MB
3. Unsupervised Learning/5. Bonus! KMeans Clustering Project.mp4
23.0 MB
2. Supervised Learning - part 1/5. Basis Expansions.mp4
22.4 MB
3. Unsupervised Learning/4. Reinforcement Learning.mp4
22.0 MB
5. Real World Machine Learning/3. Design and Analysis of ML Experiments.mp4
20.8 MB
5. Real World Machine Learning/2. Choosing an Algorithm.mp4
20.1 MB
7. Project 1Board Game Review Prediction/2. Board Game Review Prediction - Building the Dataset Part 1.mp4
18.6 MB
4. Neural Networks/2. The Perceptron.mp4
17.9 MB
9. Project 4 Intro to Natural Language Processing/1. Intro.mp4
17.8 MB
13. Project 8 - KMeans/1. Intro.mp4
11.8 MB
11. Project 6 Image Super Resolution/1. Intro.mp4
10.0 MB
11. Project 6 Image Super Resolution/1.1 Image Super Resolution.zip.zip
9.9 MB
8. Project 2 Credit Card Fraud Detection/1. Intro.mp4
7.9 MB
7. Project 1Board Game Review Prediction/1. Intro.mp4
7.9 MB
10. Project 5 Object Recognition/1. Intro.mp4
7.6 MB
12. Project 7 Text Classification/1. Intro.mp4
5.2 MB
14. Project 9 PCA/1. Intro.mp4
3.9 MB
1. An Introduction to Machine Learning/1. Introduction.mp4
1.8 MB
8. Project 2 Credit Card Fraud Detection/1.1 Credit Card Fraud Detection.zip.zip
243.5 kB
14. Project 9 PCA/1.1 PCA.zip.zip
224.9 kB
10. Project 5 Object Recognition/1.1 Object Recognition.zip.zip
224.3 kB
13. Project 8 - KMeans/1.1 KMeans.zip.zip
193.6 kB
2. Supervised Learning - part 1/7.1 Supervised Learning.zip.zip
171.2 kB
7. Project 1Board Game Review Prediction/1.1 Board Game Review Predictions.zip.zip
131.7 kB
3. Unsupervised Learning/5.1 Unsupervised Learning.zip.zip
94.7 kB
2. Supervised Learning - part 1/10.1 Unit 2 Solutions.pdf.pdf
77.1 kB
9. Project 4 Intro to Natural Language Processing/1.1 Intro to Natural Language Processing.zip.zip
66.5 kB
1. An Introduction to Machine Learning/6.1 Unit 1 Quiz.pdf.pdf
66.1 kB
1. An Introduction to Machine Learning/7.1 Unit 1 Solutions.pdf.pdf
63.2 kB
12. Project 7 Text Classification/2. Feature Engineering.srt
57.8 kB
12. Project 7 Text Classification/1.1 Text Classification.zip.zip
56.7 kB
11. Project 6 Image Super Resolution/3. Image Super Resolution using Deep Learning.srt
56.4 kB
2. Supervised Learning - part 1/9.1 Unit 2 Quiz.pdf.pdf
54.2 kB
5. Real World Machine Learning/6.1 Unit 5 Solutions.pdf.pdf
48.3 kB
6. Warmup Project/1.1 Final Project.zip.zip
48.1 kB
13. Project 8 - KMeans/2. Preprocessing Images for Clustering.srt
47.1 kB
11. Project 6 Image Super Resolution/2. Quality Metrics and Preprocessing Images.srt
45.3 kB
3. Unsupervised Learning/7.1 Unit 3 Solutions.pdf.pdf
42.2 kB
9. Project 4 Intro to Natural Language Processing/3. Tagging, Chunking, and Named Entity Recognition.srt
38.3 kB
14. Project 9 PCA/3. PCA Compression and Visualization.srt
37.0 kB
5. Real World Machine Learning/5.1 Unit 5 Quiz.pdf.pdf
36.1 kB
13. Project 8 - KMeans/3. Evaluation and Visualization.srt
35.6 kB
1. An Introduction to Machine Learning/3. Types and Applications of ML.srt
35.6 kB
10. Project 5 Object Recognition/2. Loading and Preprocessing the CIFAR10 Dataset.srt
33.4 kB
12. Project 7 Text Classification/3. Deploying Sklearn Classifiers.srt
33.1 kB
10. Project 5 Object Recognition/3. Building and Deploying the All-CNN Network Part 1.srt
31.4 kB
9. Project 4 Intro to Natural Language Processing/2. Tokenizing, Stop Words, and Stemming.srt
30.9 kB
3. Unsupervised Learning/6.1 Unit 3 Quiz.pdf.pdf
30.5 kB
9. Project 4 Intro to Natural Language Processing/4. Text Classification.srt
30.4 kB
14. Project 9 PCA/2. The Elbow Method.srt
29.8 kB
6. Warmup Project/3. Building and Training the Network Part 2.srt
27.6 kB
8. Project 2 Credit Card Fraud Detection/2. Credit Card Fraud Detection - The Dataset.srt
27.2 kB
10. Project 5 Object Recognition/4. Building and Deploying the All-CNN Network Part 2.srt
25.9 kB
8. Project 2 Credit Card Fraud Detection/3. Credit Card Fraud Detection - The Algorithms.srt
25.5 kB
1. An Introduction to Machine Learning/5. Essential Math for ML and AI.srt
23.9 kB
3. Unsupervised Learning/4. Reinforcement Learning.srt
22.9 kB
2. Supervised Learning - part 1/2. Linear Methods for Classification.srt
22.5 kB
4. Neural Networks/5. Convolutional Neural Networks.srt
22.3 kB
2. Supervised Learning - part 1/4. Support Vector Machines.srt
20.9 kB
7. Project 1Board Game Review Prediction/3. Board Game Review Prediction - Building the Dataset Part 2.srt
20.9 kB
6. Warmup Project/2. Building and Training the Network Part 1.srt
20.8 kB
3. Unsupervised Learning/5. Bonus! KMeans Clustering Project.srt
20.2 kB
2. Supervised Learning - part 1/7. Bonus! Supervised Learning Project in Python Part 1.srt
19.4 kB
4. Neural Networks/4. Training Procedures.srt
19.2 kB
3. Unsupervised Learning/2. Association Rules.srt
19.2 kB
2. Supervised Learning - part 1/1. Introduction to Supervised Learning.srt
18.7 kB
3. Unsupervised Learning/3. Cluster Analysis.srt
18.3 kB
2. Supervised Learning - part 1/8. Bonus! Supervised Learning Project in Python Part 2.srt
18.2 kB
4. Neural Networks/1. Introduction to Neural Networks.srt
18.0 kB
6. Warmup Project/1. Setting up OpenAI Gym.srt
17.6 kB
2. Supervised Learning - part 1/6. Model Selection Procedures.srt
17.5 kB
7. Project 1Board Game Review Prediction/4. Board Game Review Prediction - Training the Models.srt
17.2 kB
5. Real World Machine Learning/1. Introduction to Real World ML.srt
16.8 kB
4. Neural Networks/3. The Backpropagation Algorithm.srt
16.5 kB
3. Unsupervised Learning/1. Introduction to Unsupervised Learning.srt
16.2 kB
1. An Introduction to Machine Learning/2. What is Machine Learning.srt
16.1 kB
5. Real World Machine Learning/4. Common Software for ML.srt
15.5 kB
2. Supervised Learning - part 1/3. Linear Methods for Regression.srt
15.1 kB
5. Real World Machine Learning/3. Design and Analysis of ML Experiments.srt
14.8 kB
2. Supervised Learning - part 1/5. Basis Expansions.srt
14.4 kB
4. Neural Networks/2. The Perceptron.srt
13.7 kB
5. Real World Machine Learning/2. Choosing an Algorithm.srt
13.6 kB
7. Project 1Board Game Review Prediction/2. Board Game Review Prediction - Building the Dataset Part 1.srt
13.0 kB
1. An Introduction to Machine Learning/4. AI vs ML.srt
12.8 kB
8. Project 2 Credit Card Fraud Detection/1. Intro.srt
2.9 kB
7. Project 1Board Game Review Prediction/1. Intro.srt
2.1 kB
10. Project 5 Object Recognition/1. Intro.srt
1.7 kB
9. Project 4 Intro to Natural Language Processing/1. Intro.srt
1.7 kB
1. An Introduction to Machine Learning/1. Introduction.srt
1.7 kB
13. Project 8 - KMeans/1. Intro.srt
1.6 kB
11. Project 6 Image Super Resolution/1. Intro.srt
1.5 kB
12. Project 7 Text Classification/1. Intro.srt
1.4 kB
14. Project 9 PCA/1. Intro.srt
1.3 kB
[Tutorialsplanet.NET].url
128 Bytes
1. An Introduction to Machine Learning/6. Quiz- Questions- Section1.html
65 Bytes
2. Supervised Learning - part 1/9. Quiz- Questions- Section 2.html
65 Bytes
3. Unsupervised Learning/6. Quiz- Questions- Section 3.html
65 Bytes
5. Real World Machine Learning/5. Quiz- Questions- Section 5.html
65 Bytes
1. An Introduction to Machine Learning/7. Quiz- Answers - Section 1.html
53 Bytes
2. Supervised Learning - part 1/10. Quiz- Answers - Section 2.html
53 Bytes
3. Unsupervised Learning/7. Quiz- Answers - Section 3.html
53 Bytes
5. Real World Machine Learning/6. Quiz- Answers - Section 5.html
53 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>