搜索
[FreeCourseSite.com] Udemy - A deep understanding of deep learning (with Python intro)
磁力链接/BT种子名称
[FreeCourseSite.com] Udemy - A deep understanding of deep learning (with Python intro)
磁力链接/BT种子简介
种子哈希:
8c71480827323bd7981edb572ec294ee078fae25
文件大小:
21.97G
已经下载:
410
次
下载速度:
极快
收录时间:
2022-02-01
最近下载:
2024-11-09
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:8C71480827323BD7981EDB572EC294EE078FAE25
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
最近搜索
元气酱
juq284
老妓女
极品巨乳肉感
detroit 2017
小陈头+肉丝
funk 014
tom and jerry
花井メイサ无码
舌吻
魔枪贯姬
龙珠超级英雄
肉丝妹妹
萝莉
沉沦
猫宝宝
+venx-054
i saw the devil multi
vettaiyan hindi
黑人操人妻
咬兔卫
dune 2 3d
伊芙蝶
龙珠超级英雄 4k
nezukojapan
naimi
山鸡优选 足疗店相中少妇技师,买钟开房,
捅主任
sy mengnan689
猫梓
文件列表
19 - Understand and design CNNs/005 Examine feature map activations.mp4
273.2 MB
22 - Style transfer/004 Transferring the screaming bathtub.mp4
227.4 MB
19 - Understand and design CNNs/012 The EMNIST dataset (letter recognition).mp4
211.1 MB
19 - Understand and design CNNs/002 CNN to classify MNIST digits.mp4
210.1 MB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/005 CodeChallenge sine wave extrapolation.mp4
205.2 MB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/009 Lorem ipsum.mp4
201.9 MB
07 - ANNs (Artificial Neural Networks)/013 Multi-output ANN (iris dataset).mp4
195.8 MB
19 - Understand and design CNNs/004 Classify Gaussian blurs.mp4
194.1 MB
09 - Regularization/004 Dropout regularization in practice.mp4
192.1 MB
16 - Autoencoders/006 Autoencoder with tied weights.mp4
186.4 MB
18 - Convolution and transformations/003 Convolution in code.mp4
181.5 MB
08 - Overfitting and cross-validation/006 Cross-validation -- DataLoader.mp4
180.7 MB
23 - Generative adversarial networks/002 Linear GAN with MNIST.mp4
178.2 MB
07 - ANNs (Artificial Neural Networks)/009 Learning rates comparison.mp4
176.8 MB
12 - More on data/003 CodeChallenge unbalanced data.mp4
174.3 MB
11 - FFNs (Feed-Forward Networks)/003 FFN to classify digits.mp4
169.7 MB
16 - Autoencoders/005 The latent code of MNIST.mp4
169.7 MB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/004 Predicting alternating sequences.mp4
167.9 MB
07 - ANNs (Artificial Neural Networks)/018 Model depth vs. breadth.mp4
166.6 MB
12 - More on data/007 Data feature augmentation.mp4
166.0 MB
21 - Transfer learning/007 Pretraining with autoencoders.mp4
164.2 MB
14 - FFN milestone projects/004 Project 2 My solution.mp4
163.3 MB
21 - Transfer learning/008 CIFAR10 with autoencoder-pretrained model.mp4
160.8 MB
07 - ANNs (Artificial Neural Networks)/008 ANN for classifying qwerties.mp4
158.5 MB
21 - Transfer learning/005 Transfer learning with ResNet-18.mp4
155.7 MB
19 - Understand and design CNNs/008 Do autoencoders clean Gaussians.mp4
155.1 MB
15 - Weight inits and investigations/009 Learning-related changes in weights.mp4
153.9 MB
07 - ANNs (Artificial Neural Networks)/010 Multilayer ANN.mp4
151.7 MB
10 - Metaparameters (activations, optimizers)/002 The wine quality dataset.mp4
150.5 MB
08 - Overfitting and cross-validation/005 Cross-validation -- scikitlearn.mp4
149.8 MB
26 - Where to go from here/002 How to read academic DL papers.mp4
148.7 MB
18 - Convolution and transformations/012 Creating and using custom DataLoaders.mp4
146.3 MB
07 - ANNs (Artificial Neural Networks)/007 CodeChallenge manipulate regression slopes.mp4
145.9 MB
09 - Regularization/003 Dropout regularization.mp4
145.1 MB
16 - Autoencoders/004 AEs for occlusion.mp4
144.9 MB
10 - Metaparameters (activations, optimizers)/015 Loss functions in PyTorch.mp4
144.8 MB
19 - Understand and design CNNs/011 Discover the Gaussian parameters.mp4
143.3 MB
12 - More on data/001 Anatomy of a torch dataset and dataloader.mp4
142.4 MB
23 - Generative adversarial networks/004 CNN GAN with Gaussians.mp4
142.3 MB
12 - More on data/002 Data size and network size.mp4
142.3 MB
06 - Gradient descent/007 Parametric experiments on g.d.mp4
142.2 MB
07 - ANNs (Artificial Neural Networks)/006 ANN for regression.mp4
142.1 MB
16 - Autoencoders/003 CodeChallenge How many units.mp4
142.0 MB
15 - Weight inits and investigations/005 Xavier and Kaiming initializations.mp4
140.6 MB
19 - Understand and design CNNs/010 CodeChallenge Custom loss functions.mp4
139.3 MB
07 - ANNs (Artificial Neural Networks)/016 Depth vs. breadth number of parameters.mp4
138.5 MB
18 - Convolution and transformations/011 Image transforms.mp4
136.2 MB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/007 GRU and LSTM.mp4
136.0 MB
15 - Weight inits and investigations/006 CodeChallenge Xavier vs. Kaiming.mp4
132.6 MB
12 - More on data/010 Save the best-performing model.mp4
132.6 MB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/003 The RNN class in PyTorch.mp4
129.0 MB
12 - More on data/005 Data oversampling in MNIST.mp4
128.5 MB
10 - Metaparameters (activations, optimizers)/013 CodeChallenge Predict sugar.mp4
128.0 MB
15 - Weight inits and investigations/002 A surprising demo of weight initializations.mp4
127.5 MB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/008 The LSTM and GRU classes.mp4
126.0 MB
19 - Understand and design CNNs/006 CodeChallenge Softcode internal parameters.mp4
125.9 MB
06 - Gradient descent/003 Gradient descent in 1D.mp4
125.1 MB
10 - Metaparameters (activations, optimizers)/003 CodeChallenge Minibatch size in the wine dataset.mp4
124.6 MB
21 - Transfer learning/003 CodeChallenge letters to numbers.mp4
124.5 MB
20 - CNN milestone projects/002 Project 1 My solution.mp4
124.4 MB
16 - Autoencoders/002 Denoising MNIST.mp4
124.3 MB
11 - FFNs (Feed-Forward Networks)/006 Distributions of weights pre- and post-learning.mp4
121.9 MB
03 - Concepts in deep learning/005 Are artificial neurons like biological neurons.mp4
120.2 MB
06 - Gradient descent/008 CodeChallenge fixed vs. dynamic learning rate.mp4
119.1 MB
09 - Regularization/007 L2 regularization in practice.mp4
115.8 MB
29 - Python intro Functions/008 Classes and object-oriented programming.mp4
113.4 MB
31 - Python intro Text and plots/004 Making the graphs look nicer.mp4
112.9 MB
13 - Measuring model performance/004 APRF example 1 wine quality.mp4
112.6 MB
12 - More on data/006 Data noise augmentation (with devset+test).mp4
111.2 MB
05 - Math, numpy, PyTorch/011 Entropy and cross-entropy.mp4
111.1 MB
15 - Weight inits and investigations/004 CodeChallenge Weight variance inits.mp4
109.0 MB
11 - FFNs (Feed-Forward Networks)/002 The MNIST dataset.mp4
106.3 MB
18 - Convolution and transformations/005 The Conv2 class in PyTorch.mp4
105.1 MB
30 - Python intro Flow control/010 Function error checking and handling.mp4
104.7 MB
10 - Metaparameters (activations, optimizers)/016 More practice with multioutput ANNs.mp4
104.6 MB
14 - FFN milestone projects/002 Project 1 My solution.mp4
104.6 MB
09 - Regularization/008 L1 regularization in practice.mp4
104.3 MB
13 - Measuring model performance/005 APRF example 2 MNIST.mp4
103.4 MB
08 - Overfitting and cross-validation/004 Cross-validation -- manual separation.mp4
103.1 MB
10 - Metaparameters (activations, optimizers)/017 Optimizers (minibatch, momentum).mp4
102.8 MB
18 - Convolution and transformations/001 Convolution concepts.mp4
102.7 MB
10 - Metaparameters (activations, optimizers)/009 Activation functions.mp4
101.7 MB
10 - Metaparameters (activations, optimizers)/023 Learning rate decay.mp4
101.6 MB
21 - Transfer learning/001 Transfer learning What, why, and when.mp4
101.3 MB
06 - Gradient descent/005 Gradient descent in 2D.mp4
101.1 MB
11 - FFNs (Feed-Forward Networks)/005 CodeChallenge Data normalization.mp4
100.9 MB
05 - Math, numpy, PyTorch/009 Softmax.mp4
100.6 MB
09 - Regularization/012 CodeChallenge Effects of mini-batch size.mp4
100.1 MB
11 - FFNs (Feed-Forward Networks)/007 CodeChallenge MNIST and breadth vs. depth.mp4
99.8 MB
07 - ANNs (Artificial Neural Networks)/014 CodeChallenge more qwerties!.mp4
99.7 MB
31 - Python intro Text and plots/001 Printing and string interpolation.mp4
99.4 MB
19 - Understand and design CNNs/007 CodeChallenge How wide the FC.mp4
98.6 MB
31 - Python intro Text and plots/006 Images.mp4
98.1 MB
15 - Weight inits and investigations/008 Freezing weights during learning.mp4
97.7 MB
18 - Convolution and transformations/007 Transpose convolution.mp4
97.4 MB
19 - Understand and design CNNs/015 CodeChallenge Varying number of channels.mp4
96.9 MB
10 - Metaparameters (activations, optimizers)/010 Activation functions in PyTorch.mp4
95.9 MB
30 - Python intro Flow control/002 If-else statements, part 2.mp4
95.5 MB
30 - Python intro Flow control/008 while loops.mp4
95.5 MB
30 - Python intro Flow control/006 Initializing variables.mp4
95.5 MB
21 - Transfer learning/002 Transfer learning MNIST - FMNIST.mp4
94.7 MB
10 - Metaparameters (activations, optimizers)/014 Loss functions.mp4
94.7 MB
23 - Generative adversarial networks/001 GAN What, why, and how.mp4
94.1 MB
07 - ANNs (Artificial Neural Networks)/017 Defining models using sequential vs. class.mp4
93.8 MB
09 - Regularization/010 Batch training in action.mp4
93.4 MB
18 - Convolution and transformations/008 Maxmean pooling.mp4
93.4 MB
17 - Running models on a GPU/001 What is a GPU and why use it.mp4
93.0 MB
29 - Python intro Functions/005 Creating functions.mp4
92.7 MB
05 - Math, numpy, PyTorch/012 Minmax and argminargmax.mp4
92.5 MB
08 - Overfitting and cross-validation/002 Cross-validation.mp4
92.5 MB
15 - Weight inits and investigations/007 CodeChallenge Identically random weights.mp4
92.4 MB
30 - Python intro Flow control/003 For loops.mp4
91.4 MB
10 - Metaparameters (activations, optimizers)/020 Optimizers comparison.mp4
91.1 MB
31 - Python intro Text and plots/003 Subplot geometry.mp4
91.0 MB
07 - ANNs (Artificial Neural Networks)/001 The perceptron and ANN architecture.mp4
90.0 MB
05 - Math, numpy, PyTorch/008 Matrix multiplication.mp4
89.8 MB
05 - Math, numpy, PyTorch/014 Random sampling and sampling variability.mp4
89.6 MB
09 - Regularization/006 Weight regularization (L1L2) math.mp4
89.6 MB
19 - Understand and design CNNs/013 Dropout in CNNs.mp4
86.7 MB
13 - Measuring model performance/007 Computation time.mp4
85.7 MB
05 - Math, numpy, PyTorch/013 Mean and variance.mp4
85.4 MB
05 - Math, numpy, PyTorch/016 The t-test.mp4
85.3 MB
29 - Python intro Functions/003 Python libraries (pandas).mp4
85.1 MB
18 - Convolution and transformations/009 Pooling in PyTorch.mp4
85.0 MB
05 - Math, numpy, PyTorch/017 Derivatives intuition and polynomials.mp4
84.2 MB
09 - Regularization/001 Regularization Concept and methods.mp4
83.9 MB
15 - Weight inits and investigations/003 Theory Why and how to initialize weights.mp4
83.3 MB
08 - Overfitting and cross-validation/007 Splitting data into train, devset, test.mp4
83.1 MB
27 - Python intro Data types/003 Math and printing.mp4
82.3 MB
11 - FFNs (Feed-Forward Networks)/010 Shifted MNIST.mp4
81.7 MB
27 - Python intro Data types/002 Variables.mp4
81.3 MB
06 - Gradient descent/004 CodeChallenge unfortunate starting value.mp4
80.8 MB
27 - Python intro Data types/007 Booleans.mp4
80.6 MB
10 - Metaparameters (activations, optimizers)/006 Batch normalization.mp4
80.5 MB
10 - Metaparameters (activations, optimizers)/019 Optimizers (RMSprop, Adam).mp4
80.5 MB
17 - Running models on a GPU/002 Implementation.mp4
80.3 MB
20 - CNN milestone projects/005 Project 4 Psychometric functions in CNNs.mp4
80.0 MB
14 - FFN milestone projects/006 Project 3 My solution.mp4
79.1 MB
25 - Ethics of deep learning/004 Will deep learning take our jobs.mp4
78.8 MB
30 - Python intro Flow control/007 Single-line loops (list comprehension).mp4
78.8 MB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/002 How RNNs work.mp4
78.5 MB
03 - Concepts in deep learning/004 Running experiments to understand DL.mp4
78.5 MB
11 - FFNs (Feed-Forward Networks)/011 CodeChallenge The mystery of the missing 7.mp4
77.9 MB
10 - Metaparameters (activations, optimizers)/011 Activation functions comparison.mp4
77.5 MB
08 - Overfitting and cross-validation/001 What is overfitting and is it as bad as they say.mp4
76.7 MB
07 - ANNs (Artificial Neural Networks)/003 ANN math part 1 (forward prop).mp4
76.7 MB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/001 Leveraging sequences in deep learning.mp4
76.3 MB
03 - Concepts in deep learning/002 How models learn.mp4
76.3 MB
13 - Measuring model performance/002 Accuracy, precision, recall, F1.mp4
76.1 MB
07 - ANNs (Artificial Neural Networks)/015 Comparing the number of hidden units.mp4
74.6 MB
30 - Python intro Flow control/009 Broadcasting in numpy.mp4
74.5 MB
07 - ANNs (Artificial Neural Networks)/002 A geometric view of ANNs.mp4
74.3 MB
18 - Convolution and transformations/002 Feature maps and convolution kernels.mp4
73.8 MB
25 - Ethics of deep learning/005 Accountability and making ethical AI.mp4
73.5 MB
05 - Math, numpy, PyTorch/015 Reproducible randomness via seeding.mp4
73.1 MB
15 - Weight inits and investigations/001 Explanation of weight matrix sizes.mp4
72.3 MB
06 - Gradient descent/001 Overview of gradient descent.mp4
71.8 MB
22 - Style transfer/003 The style transfer algorithm.mp4
70.6 MB
06 - Gradient descent/002 What about local minima.mp4
70.3 MB
18 - Convolution and transformations/004 Convolution parameters (stride, padding).mp4
70.2 MB
30 - Python intro Flow control/001 If-else statements.mp4
70.0 MB
22 - Style transfer/002 The Gram matrix (feature activation covariance).mp4
69.7 MB
25 - Ethics of deep learning/003 Some other possible ethical scenarios.mp4
69.5 MB
29 - Python intro Functions/006 Global and local variable scopes.mp4
69.2 MB
25 - Ethics of deep learning/001 Will AI save us or destroy us.mp4
69.1 MB
03 - Concepts in deep learning/001 What is an artificial neural network.mp4
68.6 MB
10 - Metaparameters (activations, optimizers)/005 The importance of data normalization.mp4
67.8 MB
10 - Metaparameters (activations, optimizers)/012 CodeChallenge Compare relu variants.mp4
67.1 MB
29 - Python intro Functions/002 Python libraries (numpy).mp4
66.5 MB
23 - Generative adversarial networks/003 CodeChallenge Linear GAN with FMNIST.mp4
65.8 MB
09 - Regularization/009 Training in mini-batches.mp4
65.1 MB
10 - Metaparameters (activations, optimizers)/018 SGD with momentum.mp4
65.1 MB
10 - Metaparameters (activations, optimizers)/007 Batch normalization in practice.mp4
64.8 MB
10 - Metaparameters (activations, optimizers)/024 How to pick the right metaparameters.mp4
64.7 MB
23 - Generative adversarial networks/007 CodeChallenge CNN GAN with CIFAR.mp4
63.7 MB
08 - Overfitting and cross-validation/008 Cross-validation on regression.mp4
63.3 MB
11 - FFNs (Feed-Forward Networks)/009 Scrambled MNIST.mp4
63.1 MB
09 - Regularization/011 The importance of equal batch sizes.mp4
63.0 MB
10 - Metaparameters (activations, optimizers)/004 Data normalization.mp4
62.7 MB
31 - Python intro Text and plots/005 Seaborn.mp4
62.6 MB
18 - Convolution and transformations/006 CodeChallenge Choose the parameters.mp4
61.6 MB
30 - Python intro Flow control/004 Enumerate and zip.mp4
61.4 MB
07 - ANNs (Artificial Neural Networks)/021 Reflection Are DL models understandable yet.mp4
61.4 MB
19 - Understand and design CNNs/003 CNN on shifted MNIST.mp4
61.2 MB
19 - Understand and design CNNs/001 The canonical CNN architecture.mp4
58.5 MB
12 - More on data/009 Save and load trained models.mp4
58.4 MB
05 - Math, numpy, PyTorch/019 Derivatives product and chain rules.mp4
58.3 MB
18 - Convolution and transformations/010 To pool or to stride.mp4
58.2 MB
19 - Understand and design CNNs/014 CodeChallenge How low can you go.mp4
58.0 MB
27 - Python intro Data types/004 Lists (1 of 2).mp4
57.7 MB
01 - Introduction/001 How to learn from this course.mp4
57.6 MB
23 - Generative adversarial networks/006 CNN GAN with FMNIST.mp4
57.2 MB
01 - Introduction/002 Using Udemy like a pro.mp4
57.0 MB
12 - More on data/004 What to do about unbalanced designs.mp4
56.8 MB
09 - Regularization/005 Dropout example 2.mp4
56.5 MB
31 - Python intro Text and plots/002 Plotting dots and lines.mp4
56.5 MB
22 - Style transfer/005 CodeChallenge Style transfer with AlexNet.mp4
56.1 MB
23 - Generative adversarial networks/005 CodeChallenge Gaussians with fewer layers.mp4
55.6 MB
10 - Metaparameters (activations, optimizers)/022 CodeChallenge Adam with L2 regularization.mp4
55.6 MB
17 - Running models on a GPU/003 CodeChallenge Run an experiment on the GPU.mp4
55.6 MB
25 - Ethics of deep learning/002 Example case studies.mp4
55.5 MB
07 - ANNs (Artificial Neural Networks)/005 ANN math part 3 (backprop).mp4
55.5 MB
13 - Measuring model performance/003 APRF in code.mp4
54.3 MB
07 - ANNs (Artificial Neural Networks)/019 CodeChallenge convert sequential to class.mp4
53.9 MB
28 - Python intro Indexing, slicing/001 Indexing.mp4
53.6 MB
05 - Math, numpy, PyTorch/003 Spectral theories in mathematics.mp4
53.5 MB
27 - Python intro Data types/008 Dictionaries.mp4
53.1 MB
14 - FFN milestone projects/003 Project 2 Predicting heart disease.mp4
53.1 MB
07 - ANNs (Artificial Neural Networks)/011 Linear solutions to linear problems.mp4
52.8 MB
05 - Math, numpy, PyTorch/007 OMG it's the dot product!.mp4
52.5 MB
10 - Metaparameters (activations, optimizers)/021 CodeChallenge Optimizers and... something.mp4
52.2 MB
11 - FFNs (Feed-Forward Networks)/012 Universal approximation theorem.mp4
51.6 MB
16 - Autoencoders/001 What are autoencoders and what do they do.mp4
51.4 MB
29 - Python intro Functions/004 Getting help on functions.mp4
51.0 MB
14 - FFN milestone projects/001 Project 1 A gratuitously complex adding machine.mp4
50.9 MB
07 - ANNs (Artificial Neural Networks)/004 ANN math part 2 (errors, loss, cost).mp4
50.8 MB
28 - Python intro Indexing, slicing/002 Slicing.mp4
50.8 MB
20 - CNN milestone projects/001 Project 1 Import and classify CIFAR10.mp4
50.7 MB
27 - Python intro Data types/005 Lists (2 of 2).mp4
49.0 MB
11 - FFNs (Feed-Forward Networks)/008 CodeChallenge Optimizers and MNIST.mp4
48.5 MB
02 - Download all course materials/001 Downloading and using the code.mp4
47.9 MB
05 - Math, numpy, PyTorch/018 Derivatives find minima.mp4
47.7 MB
14 - FFN milestone projects/005 Project 3 FFN for missing data interpolation.mp4
47.6 MB
13 - Measuring model performance/008 Better performance in test than train.mp4
47.0 MB
05 - Math, numpy, PyTorch/010 Logarithms.mp4
46.0 MB
12 - More on data/008 Getting data into colab.mp4
45.9 MB
26 - Where to go from here/001 How to learn topic _X_ in deep learning.mp4
44.1 MB
12 - More on data/011 Where to find online datasets.mp4
43.7 MB
10 - Metaparameters (activations, optimizers)/008 CodeChallenge Batch-normalize the qwerties.mp4
43.4 MB
21 - Transfer learning/004 Famous CNN architectures.mp4
43.3 MB
11 - FFNs (Feed-Forward Networks)/004 CodeChallenge Binarized MNIST images.mp4
42.8 MB
22 - Style transfer/001 What is style transfer and how does it work.mp4
42.5 MB
13 - Measuring model performance/001 Two perspectives of the world.mp4
42.0 MB
06 - Gradient descent/006 CodeChallenge 2D gradient ascent.mp4
41.3 MB
09 - Regularization/002 train() and eval() modes.mp4
40.2 MB
05 - Math, numpy, PyTorch/004 Terms and datatypes in math and computers.mp4
39.9 MB
05 - Math, numpy, PyTorch/006 Vector and matrix transpose.mp4
39.5 MB
27 - Python intro Data types/006 Tuples.mp4
37.5 MB
03 - Concepts in deep learning/003 The role of DL in science and knowledge.mp4
36.4 MB
20 - CNN milestone projects/003 Project 2 CIFAR-autoencoder.mp4
35.0 MB
05 - Math, numpy, PyTorch/005 Converting reality to numbers.mp4
34.8 MB
30 - Python intro Flow control/005 Continue.mp4
34.6 MB
10 - Metaparameters (activations, optimizers)/001 What are metaparameters.mp4
34.3 MB
08 - Overfitting and cross-validation/003 Generalization.mp4
34.0 MB
06 - Gradient descent/009 Vanishing and exploding gradients.mp4
31.7 MB
29 - Python intro Functions/001 Inputs and outputs.mp4
30.9 MB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/006 More on RNNs Hidden states, embeddings.mp4
30.4 MB
19 - Understand and design CNNs/009 CodeChallenge AEs and occluded Gaussians.mp4
30.0 MB
15 - Weight inits and investigations/010 Use default inits or apply your own.mp4
29.4 MB
07 - ANNs (Artificial Neural Networks)/012 Why multilayer linear models don't exist.mp4
27.7 MB
20 - CNN milestone projects/004 Project 3 FMNIST.mp4
27.7 MB
11 - FFNs (Feed-Forward Networks)/001 What are fully-connected and feedforward networks.mp4
26.8 MB
13 - Measuring model performance/006 CodeChallenge MNIST with unequal groups.mp4
26.3 MB
29 - Python intro Functions/007 Copies and referents of variables.mp4
24.9 MB
04 - About the Python tutorial/001 Should you watch the Python tutorial.mp4
24.9 MB
27 - Python intro Data types/001 How to learn from the Python tutorial.mp4
23.0 MB
19 - Understand and design CNNs/016 So many possibilities! How to create a CNN.mp4
22.1 MB
21 - Transfer learning/006 CodeChallenge VGG-16.mp4
21.3 MB
31 - Python intro Text and plots/007 Export plots in low and high resolution.mp4
18.0 MB
05 - Math, numpy, PyTorch/002 Introduction to this section.mp4
11.7 MB
02 - Download all course materials/002 My policy on code-sharing.mp4
10.7 MB
06 - Gradient descent/010 Tangent Notebook revision history.mp4
10.4 MB
02 - Download all course materials/001 DUDL-PythonCode.zip
676.7 kB
19 - Understand and design CNNs/005 Examine feature map activations_en.srt
39.9 kB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/005 CodeChallenge sine wave extrapolation_en.srt
38.5 kB
19 - Understand and design CNNs/002 CNN to classify MNIST digits_en.srt
37.5 kB
07 - ANNs (Artificial Neural Networks)/013 Multi-output ANN (iris dataset)_en.srt
37.0 kB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/009 Lorem ipsum_en.srt
36.9 kB
07 - ANNs (Artificial Neural Networks)/009 Learning rates comparison_en.srt
35.7 kB
19 - Understand and design CNNs/012 The EMNIST dataset (letter recognition)_en.srt
35.6 kB
07 - ANNs (Artificial Neural Networks)/006 ANN for regression_en.srt
35.3 kB
16 - Autoencoders/006 Autoencoder with tied weights_en.srt
34.3 kB
19 - Understand and design CNNs/004 Classify Gaussian blurs_en.srt
33.8 kB
07 - ANNs (Artificial Neural Networks)/008 ANN for classifying qwerties_en.srt
33.5 kB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/007 GRU and LSTM_en.srt
32.9 kB
09 - Regularization/004 Dropout regularization in practice_en.srt
32.9 kB
11 - FFNs (Feed-Forward Networks)/003 FFN to classify digits_en.srt
32.4 kB
15 - Weight inits and investigations/009 Learning-related changes in weights_en.srt
32.3 kB
18 - Convolution and transformations/001 Convolution concepts_en.srt
31.9 kB
22 - Style transfer/004 Transferring the screaming bathtub_en.srt
31.8 kB
23 - Generative adversarial networks/002 Linear GAN with MNIST_en.srt
31.5 kB
16 - Autoencoders/005 The latent code of MNIST_en.srt
31.2 kB
09 - Regularization/003 Dropout regularization_en.srt
31.1 kB
07 - ANNs (Artificial Neural Networks)/018 Model depth vs. breadth_en.srt
30.4 kB
29 - Python intro Functions/005 Creating functions_en.srt
30.4 kB
18 - Convolution and transformations/003 Convolution in code_en.srt
30.1 kB
08 - Overfitting and cross-validation/005 Cross-validation -- scikitlearn_en.srt
30.0 kB
19 - Understand and design CNNs/010 CodeChallenge Custom loss functions_en.srt
29.5 kB
07 - ANNs (Artificial Neural Networks)/010 Multilayer ANN_en.srt
29.0 kB
12 - More on data/003 CodeChallenge unbalanced data_en.srt
28.9 kB
16 - Autoencoders/003 CodeChallenge How many units_en.srt
28.5 kB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/004 Predicting alternating sequences_en.srt
28.4 kB
21 - Transfer learning/007 Pretraining with autoencoders_en.srt
28.4 kB
08 - Overfitting and cross-validation/006 Cross-validation -- DataLoader_en.srt
28.2 kB
12 - More on data/007 Data feature augmentation_en.srt
28.0 kB
07 - ANNs (Artificial Neural Networks)/007 CodeChallenge manipulate regression slopes_en.srt
27.9 kB
07 - ANNs (Artificial Neural Networks)/001 The perceptron and ANN architecture_en.srt
27.5 kB
30 - Python intro Flow control/008 while loops_en.srt
27.5 kB
05 - Math, numpy, PyTorch/009 Softmax_en.srt
27.4 kB
14 - FFN milestone projects/004 Project 2 My solution_en.srt
27.3 kB
27 - Python intro Data types/007 Booleans_en.srt
27.3 kB
10 - Metaparameters (activations, optimizers)/017 Optimizers (minibatch, momentum)_en.srt
27.0 kB
27 - Python intro Data types/002 Variables_en.srt
26.8 kB
06 - Gradient descent/007 Parametric experiments on g.d_en.srt
26.8 kB
09 - Regularization/006 Weight regularization (L1L2) math_en.srt
26.7 kB
31 - Python intro Text and plots/004 Making the graphs look nicer_en.srt
26.6 kB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/003 The RNN class in PyTorch_en.srt
26.6 kB
10 - Metaparameters (activations, optimizers)/015 Loss functions in PyTorch_en.srt
26.5 kB
27 - Python intro Data types/003 Math and printing_en.srt
26.4 kB
18 - Convolution and transformations/008 Maxmean pooling_en.srt
26.3 kB
29 - Python intro Functions/008 Classes and object-oriented programming_en.srt
26.2 kB
10 - Metaparameters (activations, optimizers)/009 Activation functions_en.srt
26.1 kB
18 - Convolution and transformations/012 Creating and using custom DataLoaders_en.srt
26.1 kB
12 - More on data/001 Anatomy of a torch dataset and dataloader_en.srt
26.0 kB
21 - Transfer learning/008 CIFAR10 with autoencoder-pretrained model_en.srt
25.5 kB
10 - Metaparameters (activations, optimizers)/002 The wine quality dataset_en.srt
25.4 kB
07 - ANNs (Artificial Neural Networks)/016 Depth vs. breadth number of parameters_en.srt
25.3 kB
31 - Python intro Text and plots/006 Images_en.srt
25.3 kB
30 - Python intro Flow control/006 Initializing variables_en.srt
25.2 kB
16 - Autoencoders/004 AEs for occlusion_en.srt
25.1 kB
26 - Where to go from here/002 How to read academic DL papers_en.srt
25.1 kB
05 - Math, numpy, PyTorch/011 Entropy and cross-entropy_en.srt
25.0 kB
30 - Python intro Flow control/010 Function error checking and handling_en.srt
25.0 kB
30 - Python intro Flow control/003 For loops_en.srt
24.9 kB
19 - Understand and design CNNs/006 CodeChallenge Softcode internal parameters_en.srt
24.7 kB
10 - Metaparameters (activations, optimizers)/013 CodeChallenge Predict sugar_en.srt
24.6 kB
08 - Overfitting and cross-validation/002 Cross-validation_en.srt
24.6 kB
21 - Transfer learning/001 Transfer learning What, why, and when_en.srt
24.4 kB
06 - Gradient descent/003 Gradient descent in 1D_en.srt
24.3 kB
15 - Weight inits and investigations/006 CodeChallenge Xavier vs. Kaiming_en.srt
24.3 kB
21 - Transfer learning/005 Transfer learning with ResNet-18_en.srt
24.2 kB
11 - FFNs (Feed-Forward Networks)/005 CodeChallenge Data normalization_en.srt
24.1 kB
19 - Understand and design CNNs/008 Do autoencoders clean Gaussians_en.srt
24.1 kB
05 - Math, numpy, PyTorch/017 Derivatives intuition and polynomials_en.srt
24.0 kB
31 - Python intro Text and plots/001 Printing and string interpolation_en.srt
24.0 kB
10 - Metaparameters (activations, optimizers)/014 Loss functions_en.srt
23.9 kB
03 - Concepts in deep learning/005 Are artificial neurons like biological neurons_en.srt
23.8 kB
12 - More on data/005 Data oversampling in MNIST_en.srt
23.8 kB
18 - Convolution and transformations/011 Image transforms_en.srt
23.6 kB
15 - Weight inits and investigations/002 A surprising demo of weight initializations_en.srt
23.6 kB
23 - Generative adversarial networks/001 GAN What, why, and how_en.srt
23.2 kB
06 - Gradient descent/008 CodeChallenge fixed vs. dynamic learning rate_en.srt
23.1 kB
12 - More on data/002 Data size and network size_en.srt
23.1 kB
03 - Concepts in deep learning/003 The role of DL in science and knowledge_en.srt
23.0 kB
19 - Understand and design CNNs/011 Discover the Gaussian parameters_en.srt
22.9 kB
31 - Python intro Text and plots/003 Subplot geometry_en.srt
22.8 kB
10 - Metaparameters (activations, optimizers)/003 CodeChallenge Minibatch size in the wine dataset_en.srt
22.8 kB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/006 More on RNNs Hidden states, embeddings_en.srt
22.6 kB
30 - Python intro Flow control/002 If-else statements, part 2_en.srt
22.6 kB
16 - Autoencoders/002 Denoising MNIST_en.srt
22.5 kB
05 - Math, numpy, PyTorch/013 Mean and variance_en.srt
22.3 kB
15 - Weight inits and investigations/005 Xavier and Kaiming initializations_en.srt
22.2 kB
17 - Running models on a GPU/001 What is a GPU and why use it_en.srt
22.1 kB
07 - ANNs (Artificial Neural Networks)/003 ANN math part 1 (forward prop)_en.srt
21.9 kB
23 - Generative adversarial networks/004 CNN GAN with Gaussians_en.srt
21.8 kB
10 - Metaparameters (activations, optimizers)/019 Optimizers (RMSprop, Adam)_en.srt
21.8 kB
11 - FFNs (Feed-Forward Networks)/006 Distributions of weights pre- and post-learning_en.srt
21.7 kB
12 - More on data/010 Save the best-performing model_en.srt
21.7 kB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/002 How RNNs work_en.srt
21.5 kB
30 - Python intro Flow control/007 Single-line loops (list comprehension)_en.srt
21.4 kB
30 - Python intro Flow control/001 If-else statements_en.srt
21.3 kB
06 - Gradient descent/005 Gradient descent in 2D_en.srt
21.2 kB
03 - Concepts in deep learning/001 What is an artificial neural network_en.srt
21.0 kB
30 - Python intro Flow control/009 Broadcasting in numpy_en.srt
21.0 kB
06 - Gradient descent/001 Overview of gradient descent_en.srt
20.6 kB
05 - Math, numpy, PyTorch/008 Matrix multiplication_en.srt
20.3 kB
21 - Transfer learning/003 CodeChallenge letters to numbers_en.srt
20.2 kB
27 - Python intro Data types/004 Lists (1 of 2)_en.srt
20.1 kB
10 - Metaparameters (activations, optimizers)/016 More practice with multioutput ANNs_en.srt
20.0 kB
29 - Python intro Functions/003 Python libraries (pandas)_en.srt
20.0 kB
29 - Python intro Functions/002 Python libraries (numpy)_en.srt
19.7 kB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/008 The LSTM and GRU classes_en.srt
19.7 kB
18 - Convolution and transformations/007 Transpose convolution_en.srt
19.6 kB
10 - Metaparameters (activations, optimizers)/004 Data normalization_en.srt
19.4 kB
19 - Understand and design CNNs/015 CodeChallenge Varying number of channels_en.srt
19.4 kB
29 - Python intro Functions/006 Global and local variable scopes_en.srt
19.4 kB
18 - Convolution and transformations/009 Pooling in PyTorch_en.srt
19.4 kB
05 - Math, numpy, PyTorch/016 The t-test_en.srt
19.1 kB
07 - ANNs (Artificial Neural Networks)/002 A geometric view of ANNs_en.srt
19.1 kB
15 - Weight inits and investigations/008 Freezing weights during learning_en.srt
19.0 kB
03 - Concepts in deep learning/004 Running experiments to understand DL_en.srt
19.0 kB
13 - Measuring model performance/004 APRF example 1 wine quality_en.srt
19.0 kB
07 - ANNs (Artificial Neural Networks)/017 Defining models using sequential vs. class_en.srt
18.9 kB
09 - Regularization/001 Regularization Concept and methods_en.srt
18.8 kB
09 - Regularization/007 L2 regularization in practice_en.srt
18.7 kB
18 - Convolution and transformations/005 The Conv2 class in PyTorch_en.srt
18.6 kB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/001 Leveraging sequences in deep learning_en.srt
18.6 kB
03 - Concepts in deep learning/002 How models learn_en.srt
18.5 kB
10 - Metaparameters (activations, optimizers)/006 Batch normalization_en.srt
18.4 kB
12 - More on data/006 Data noise augmentation (with devset+test)_en.srt
18.4 kB
08 - Overfitting and cross-validation/004 Cross-validation -- manual separation_en.srt
18.3 kB
15 - Weight inits and investigations/004 CodeChallenge Weight variance inits_en.srt
18.2 kB
11 - FFNs (Feed-Forward Networks)/002 The MNIST dataset_en.srt
18.1 kB
08 - Overfitting and cross-validation/001 What is overfitting and is it as bad as they say_en.srt
18.1 kB
15 - Weight inits and investigations/003 Theory Why and how to initialize weights_en.srt
18.0 kB
05 - Math, numpy, PyTorch/012 Minmax and argminargmax_en.srt
17.9 kB
09 - Regularization/012 CodeChallenge Effects of mini-batch size_en.srt
17.8 kB
18 - Convolution and transformations/004 Convolution parameters (stride, padding)_en.srt
17.8 kB
28 - Python intro Indexing, slicing/001 Indexing_en.srt
17.8 kB
13 - Measuring model performance/002 Accuracy, precision, recall, F1_en.srt
17.7 kB
15 - Weight inits and investigations/007 CodeChallenge Identically random weights_en.srt
17.7 kB
28 - Python intro Indexing, slicing/002 Slicing_en.srt
17.7 kB
10 - Metaparameters (activations, optimizers)/023 Learning rate decay_en.srt
17.6 kB
07 - ANNs (Artificial Neural Networks)/014 CodeChallenge more qwerties!_en.srt
17.5 kB
11 - FFNs (Feed-Forward Networks)/007 CodeChallenge MNIST and breadth vs. depth_en.srt
17.5 kB
31 - Python intro Text and plots/002 Plotting dots and lines_en.srt
17.4 kB
09 - Regularization/008 L1 regularization in practice_en.srt
17.2 kB
15 - Weight inits and investigations/001 Explanation of weight matrix sizes_en.srt
17.0 kB
06 - Gradient descent/002 What about local minima_en.srt
16.9 kB
13 - Measuring model performance/005 APRF example 2 MNIST_en.srt
16.9 kB
20 - CNN milestone projects/002 Project 1 My solution_en.srt
16.9 kB
27 - Python intro Data types/008 Dictionaries_en.srt
16.8 kB
10 - Metaparameters (activations, optimizers)/010 Activation functions in PyTorch_en.srt
16.7 kB
16 - Autoencoders/001 What are autoencoders and what do they do_en.srt
16.7 kB
14 - FFN milestone projects/002 Project 1 My solution_en.srt
16.7 kB
09 - Regularization/009 Training in mini-batches_en.srt
16.6 kB
22 - Style transfer/002 The Gram matrix (feature activation covariance)_en.srt
16.6 kB
25 - Ethics of deep learning/005 Accountability and making ethical AI_en.srt
16.5 kB
10 - Metaparameters (activations, optimizers)/024 How to pick the right metaparameters_en.srt
16.5 kB
19 - Understand and design CNNs/007 CodeChallenge How wide the FC_en.srt
16.2 kB
11 - FFNs (Feed-Forward Networks)/010 Shifted MNIST_en.srt
16.2 kB
05 - Math, numpy, PyTorch/014 Random sampling and sampling variability_en.srt
16.1 kB
30 - Python intro Flow control/004 Enumerate and zip_en.srt
15.8 kB
06 - Gradient descent/004 CodeChallenge unfortunate starting value_en.srt
15.7 kB
11 - FFNs (Feed-Forward Networks)/011 CodeChallenge The mystery of the missing 7_en.srt
15.5 kB
19 - Understand and design CNNs/001 The canonical CNN architecture_en.srt
15.5 kB
31 - Python intro Text and plots/005 Seaborn_en.srt
15.5 kB
09 - Regularization/010 Batch training in action_en.srt
15.4 kB
07 - ANNs (Artificial Neural Networks)/005 ANN math part 3 (backprop)_en.srt
15.1 kB
25 - Ethics of deep learning/003 Some other possible ethical scenarios_en.srt
15.0 kB
22 - Style transfer/003 The style transfer algorithm_en.srt
14.9 kB
25 - Ethics of deep learning/004 Will deep learning take our jobs_en.srt
14.7 kB
17 - Running models on a GPU/002 Implementation_en.srt
14.6 kB
20 - CNN milestone projects/005 Project 4 Psychometric functions in CNNs_en.vtt
14.6 kB
10 - Metaparameters (activations, optimizers)/020 Optimizers comparison_en.srt
14.4 kB
07 - ANNs (Artificial Neural Networks)/015 Comparing the number of hidden units_en.srt
14.4 kB
21 - Transfer learning/002 Transfer learning MNIST - FMNIST_en.srt
14.4 kB
27 - Python intro Data types/005 Lists (2 of 2)_en.srt
14.3 kB
14 - FFN milestone projects/005 Project 3 FFN for missing data interpolation_en.srt
14.2 kB
25 - Ethics of deep learning/001 Will AI save us or destroy us_en.srt
14.2 kB
18 - Convolution and transformations/010 To pool or to stride_en.srt
14.1 kB
13 - Measuring model performance/007 Computation time_en.srt
14.1 kB
19 - Understand and design CNNs/013 Dropout in CNNs_en.srt
14.0 kB
19 - Understand and design CNNs/009 CodeChallenge AEs and occluded Gaussians_en.srt
13.8 kB
18 - Convolution and transformations/002 Feature maps and convolution kernels_en.srt
13.8 kB
05 - Math, numpy, PyTorch/007 OMG it's the dot product!_en.srt
13.8 kB
07 - ANNs (Artificial Neural Networks)/004 ANN math part 2 (errors, loss, cost)_en.srt
13.7 kB
23 - Generative adversarial networks/003 CodeChallenge Linear GAN with FMNIST_en.srt
13.7 kB
08 - Overfitting and cross-validation/007 Splitting data into train, devset, test_en.srt
13.6 kB
10 - Metaparameters (activations, optimizers)/005 The importance of data normalization_en.srt
13.6 kB
05 - Math, numpy, PyTorch/003 Spectral theories in mathematics_en.srt
13.4 kB
10 - Metaparameters (activations, optimizers)/011 Activation functions comparison_en.srt
13.4 kB
05 - Math, numpy, PyTorch/019 Derivatives product and chain rules_en.srt
13.4 kB
01 - Introduction/001 How to learn from this course_en.srt
12.8 kB
13 - Measuring model performance/006 CodeChallenge MNIST with unequal groups_en.srt
12.5 kB
07 - ANNs (Artificial Neural Networks)/021 Reflection Are DL models understandable yet_en.srt
12.2 kB
26 - Where to go from here/001 How to learn topic _X_ in deep learning_en.srt
12.2 kB
01 - Introduction/002 Using Udemy like a pro_en.srt
12.1 kB
07 - ANNs (Artificial Neural Networks)/011 Linear solutions to linear problems_en.srt
12.0 kB
05 - Math, numpy, PyTorch/018 Derivatives find minima_en.srt
12.0 kB
19 - Understand and design CNNs/003 CNN on shifted MNIST_en.srt
11.9 kB
27 - Python intro Data types/006 Tuples_en.srt
11.8 kB
13 - Measuring model performance/008 Better performance in test than train_en.srt
11.8 kB
08 - Overfitting and cross-validation/008 Cross-validation on regression_en.srt
11.8 kB
14 - FFN milestone projects/006 Project 3 My solution_en.srt
11.7 kB
05 - Math, numpy, PyTorch/015 Reproducible randomness via seeding_en.srt
11.6 kB
11 - FFNs (Feed-Forward Networks)/012 Universal approximation theorem_en.srt
11.5 kB
23 - Generative adversarial networks/007 CodeChallenge CNN GAN with CIFAR_en.srt
11.5 kB
10 - Metaparameters (activations, optimizers)/018 SGD with momentum_en.srt
11.4 kB
05 - Math, numpy, PyTorch/010 Logarithms_en.srt
11.3 kB
31 - Python intro Text and plots/007 Export plots in low and high resolution_en.srt
11.2 kB
10 - Metaparameters (activations, optimizers)/012 CodeChallenge Compare relu variants_en.srt
11.1 kB
11 - FFNs (Feed-Forward Networks)/009 Scrambled MNIST_en.srt
11.1 kB
12 - More on data/004 What to do about unbalanced designs_en.srt
11.0 kB
20 - CNN milestone projects/005 Project 4 Psychometric functions in CNNs_en.srt
11.0 kB
29 - Python intro Functions/004 Getting help on functions_en.srt
10.9 kB
10 - Metaparameters (activations, optimizers)/007 Batch normalization in practice_en.srt
10.9 kB
14 - FFN milestone projects/003 Project 2 Predicting heart disease_en.srt
10.8 kB
14 - FFN milestone projects/001 Project 1 A gratuitously complex adding machine_en.srt
10.6 kB
05 - Math, numpy, PyTorch/004 Terms and datatypes in math and computers_en.srt
10.5 kB
20 - CNN milestone projects/001 Project 1 Import and classify CIFAR10_en.srt
10.4 kB
29 - Python intro Functions/001 Inputs and outputs_en.srt
10.4 kB
22 - Style transfer/005 CodeChallenge Style transfer with AlexNet_en.srt
10.3 kB
10 - Metaparameters (activations, optimizers)/022 CodeChallenge Adam with L2 regularization_en.srt
10.2 kB
13 - Measuring model performance/001 Two perspectives of the world_en.srt
10.2 kB
09 - Regularization/002 train() and eval() modes_en.srt
10.1 kB
18 - Convolution and transformations/006 CodeChallenge Choose the parameters_en.srt
10.0 kB
30 - Python intro Flow control/005 Continue_en.srt
9.9 kB
05 - Math, numpy, PyTorch/006 Vector and matrix transpose_en.srt
9.9 kB
19 - Understand and design CNNs/014 CodeChallenge How low can you go_en.srt
9.8 kB
11 - FFNs (Feed-Forward Networks)/008 CodeChallenge Optimizers and MNIST_en.srt
9.8 kB
17 - Running models on a GPU/003 CodeChallenge Run an experiment on the GPU_en.srt
9.7 kB
07 - ANNs (Artificial Neural Networks)/019 CodeChallenge convert sequential to class_en.srt
9.6 kB
05 - Math, numpy, PyTorch/005 Converting reality to numbers_en.srt
9.4 kB
09 - Regularization/011 The importance of equal batch sizes_en.srt
9.3 kB
02 - Download all course materials/001 Downloading and using the code_en.srt
9.3 kB
13 - Measuring model performance/003 APRF in code_en.srt
9.2 kB
10 - Metaparameters (activations, optimizers)/021 CodeChallenge Optimizers and... something_en.srt
9.2 kB
23 - Generative adversarial networks/006 CNN GAN with FMNIST_en.srt
9.1 kB
07 - ANNs (Artificial Neural Networks)/012 Why multilayer linear models don't exist_en.srt
9.1 kB
09 - Regularization/005 Dropout example 2_en.srt
9.0 kB
25 - Ethics of deep learning/002 Example case studies_en.srt
9.0 kB
06 - Gradient descent/009 Vanishing and exploding gradients_en.srt
8.9 kB
12 - More on data/009 Save and load trained models_en.srt
8.8 kB
23 - Generative adversarial networks/005 CodeChallenge Gaussians with fewer layers_en.srt
8.8 kB
12 - More on data/008 Getting data into colab_en.srt
8.7 kB
08 - Overfitting and cross-validation/003 Generalization_en.srt
8.7 kB
21 - Transfer learning/004 Famous CNN architectures_en.srt
8.6 kB
12 - More on data/011 Where to find online datasets_en.srt
8.1 kB
06 - Gradient descent/006 CodeChallenge 2D gradient ascent_en.srt
7.4 kB
10 - Metaparameters (activations, optimizers)/008 CodeChallenge Batch-normalize the qwerties_en.srt
7.4 kB
11 - FFNs (Feed-Forward Networks)/004 CodeChallenge Binarized MNIST images_en.srt
7.3 kB
10 - Metaparameters (activations, optimizers)/001 What are metaparameters_en.srt
7.3 kB
29 - Python intro Functions/007 Copies and referents of variables_en.srt
7.1 kB
20 - CNN milestone projects/003 Project 2 CIFAR-autoencoder_en.srt
6.9 kB
11 - FFNs (Feed-Forward Networks)/001 What are fully-connected and feedforward networks_en.srt
6.9 kB
19 - Understand and design CNNs/016 So many possibilities! How to create a CNN_en.srt
6.4 kB
15 - Weight inits and investigations/010 Use default inits or apply your own_en.srt
6.3 kB
22 - Style transfer/001 What is style transfer and how does it work_en.srt
6.3 kB
04 - About the Python tutorial/001 Should you watch the Python tutorial_en.srt
6.1 kB
20 - CNN milestone projects/004 Project 3 FMNIST_en.srt
5.1 kB
21 - Transfer learning/006 CodeChallenge VGG-16_en.srt
5.0 kB
27 - Python intro Data types/001 How to learn from the Python tutorial_en.srt
4.8 kB
32 - Bonus section/001 Bonus content.html
3.7 kB
05 - Math, numpy, PyTorch/002 Introduction to this section_en.srt
2.9 kB
06 - Gradient descent/010 Tangent Notebook revision history_en.srt
2.7 kB
02 - Download all course materials/002 My policy on code-sharing_en.srt
2.5 kB
05 - Math, numpy, PyTorch/001 PyTorch or TensorFlow.html
1.1 kB
07 - ANNs (Artificial Neural Networks)/020 Diversity of ANN visual representations.html
517 Bytes
0. Websites you may like/[FCS Forum].url
133 Bytes
0. Websites you may like/[FreeCourseSite.com].url
127 Bytes
0. Websites you may like/[CourseClub.ME].url
122 Bytes
0. Websites you may like/[GigaCourse.Com].url
49 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>