搜索
[FreeCourseSite.com] Udemy - Machine Learning & Deep Learning in Python & R
磁力链接/BT种子名称
[FreeCourseSite.com] Udemy - Machine Learning & Deep Learning in Python & R
磁力链接/BT种子简介
种子哈希:
92ad725996b751c3257f45ce5da3aff93e706b87
文件大小:
13.23G
已经下载:
836
次
下载速度:
极快
收录时间:
2021-05-21
最近下载:
2024-11-08
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:92AD725996B751C3257F45CE5DA3AFF93E706B87
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
最近搜索
反差学生
ncy-002
060215-890
小學生
女主播偷自慰
ktv 偷拍
小伙酒店开房操纹身小女友操到她受不了干脆连屁眼也一起操了完美露脸
in der falle
工作室重磅
公务员
紫色面具女孩
met art genuine
前嵨美步
女同事
王伟
bban 416
starcraft xbox
차간단 마무리있음 singahye
ririsuamano
欧美萝莉
4521477
健身猛男
冷艳娇妻绿帽奴
刘婷
heydouga-4037- 418
naked+attraction+sverige
最美高颜值
ts唐
鬼脚七
公孙离
文件列表
27. ANN in R/8. Saving - Restoring Models and Using Callbacks.mp4
226.5 MB
37. Time Series - Preprocessing in Python/3. Time Series - Visualization in Python.mp4
173.2 MB
18. Ensemble technique 3 - Boosting/7. XGBoosting in R.mp4
169.1 MB
26. ANN in Python/9. Building Neural Network for Regression Problem.mp4
163.5 MB
26. ANN in Python/11. Saving - Restoring Models and Using Callbacks.mp4
158.9 MB
23. Creating Support Vector Machine Model in R/4. Classification SVM model using Linear Kernel.mp4
145.9 MB
27. ANN in R/6. Building Regression Model with Functional API.mp4
137.5 MB
27. ANN in R/3. Building,Compiling and Training.mp4
137.1 MB
34. Transfer Learning Basics/6. Project - Transfer Learning - VGG16.mp4
135.4 MB
7. Linear Regression/20. Ridge regression and Lasso in Python.mp4
135.1 MB
25. Neural Networks - Stacking cells to create network/3. Back Propagation.mp4
128.1 MB
38. Time Series - Important Concepts/5. Differencing in Python.mp4
118.5 MB
37. Time Series - Preprocessing in Python/5. Time Series - Feature Engineering in Python.mp4
118.2 MB
27. ANN in R/2. Data Normalization and Test-Train Split.mp4
117.2 MB
5. Introduction to Machine Learning/1. Introduction to Machine Learning.mp4
114.5 MB
37. Time Series - Preprocessing in Python/1. Data Loading in Python.mp4
114.1 MB
23. Creating Support Vector Machine Model in R/8. SVM based Regression Model in R.mp4
111.3 MB
7. Linear Regression/21. Ridge regression and Lasso in R.mp4
108.5 MB
14. Simple Decision Trees/13. Building a Regression Tree in R.mp4
108.3 MB
35. Transfer Learning in R/1. Project - Transfer Learning - VGG16 (Implementation).mp4
106.5 MB
37. Time Series - Preprocessing in Python/7. Time Series - Upsampling and Downsampling in Python.mp4
105.6 MB
6. Data Preprocessing/16. Bi-variate analysis and Variable transformation.mp4
105.3 MB
27. ANN in R/4. Evaluating and Predicting.mp4
104.1 MB
6. Data Preprocessing/8. EDD in R.mp4
101.7 MB
3. Setting up R Studio and R crash course/7. Creating Barplots in R.mp4
101.4 MB
7. Linear Regression/3. Assessing accuracy of predicted coefficients.mp4
96.6 MB
26. ANN in Python/10. Using Functional API for complex architectures.mp4
96.6 MB
18. Ensemble technique 3 - Boosting/5. AdaBoosting in R.mp4
93.0 MB
32. Project Creating CNN model from scratch/1. Project in R - Data Preprocessing.mp4
92.0 MB
24. Introduction - Deep Learning/4. Python - Creating Perceptron model.mp4
90.8 MB
15. Simple Classification Tree/5. Building a classification Tree in R.mp4
89.2 MB
27. ANN in R/5. ANN with NeuralNets Package.mp4
88.5 MB
23. Creating Support Vector Machine Model in R/6. Polynomial Kernel with Hyperparameter Tuning.mp4
87.2 MB
6. Data Preprocessing/25. Correlation Matrix in R.mp4
87.2 MB
3. Setting up R Studio and R crash course/3. Packages in R.mp4
87.0 MB
15. Simple Classification Tree/4. Classification tree in Python Training.mp4
86.7 MB
14. Simple Decision Trees/18. Pruning a Tree in R.mp4
86.1 MB
26. ANN in Python/7. Compiling and Training the Neural Network model.mp4
85.6 MB
17. Ensemble technique 2 - Random Forests/3. Using Grid Search in Python.mp4
84.6 MB
27. ANN in R/7. Complex Architectures using Functional API.mp4
83.4 MB
26. ANN in Python/6. Building the Neural Network using Keras.mp4
83.0 MB
7. Linear Regression/17. Subset selection techniques.mp4
82.9 MB
8. Classification Models Data Preparation/1. The Data and the Data Dictionary.mp4
82.8 MB
8. Classification Models Data Preparation/4. EDD in Python.mp4
81.4 MB
16. Ensemble technique 1 - Bagging/2. Ensemble technique 1 - Bagging in Python.mp4
81.1 MB
7. Linear Regression/15. Test-Train Split in R.mp4
79.3 MB
12. K-Nearest Neighbors classifier/4. K-Nearest Neighbors classifier.mp4
79.1 MB
18. Ensemble technique 3 - Boosting/6. Ensemble technique 3c - XGBoost in Python.mp4
78.6 MB
40. Time Series - ARIMA model/3. ARIMA model in Python.mp4
78.0 MB
11. Linear Discriminant Analysis (LDA)/3. Linear Discriminant Analysis in R.mp4
78.0 MB
12. K-Nearest Neighbors classifier/3. Test-Train Split in R.mp4
77.8 MB
14. Simple Decision Trees/17. Pruning a tree in Python.mp4
77.1 MB
31. Project Creating CNN model from scratch in Python/3. Project - Data Preprocessing in Python.mp4
75.3 MB
30. Creating CNN model in R/3. Creating Model Architecture.mp4
75.1 MB
6. Data Preprocessing/23. Correlation Analysis.mp4
75.1 MB
6. Data Preprocessing/10. Outlier Treatment in Python.mp4
73.7 MB
26. ANN in Python/8. Evaluating performance and Predicting using Keras.mp4
73.3 MB
7. Linear Regression/10. Multiple Linear Regression in Python.mp4
73.1 MB
6. Data Preprocessing/3. The Dataset and the Data Dictionary.mp4
72.6 MB
18. Ensemble technique 3 - Boosting/3. Gradient Boosting in R.mp4
72.4 MB
30. Creating CNN model in R/5. Model Performance.mp4
71.4 MB
28. CNN - Basics/5. Channels.mp4
71.1 MB
22. Creating Support Vector Machine Model in Python/7. SVM based Regression Model in Python.mp4
70.9 MB
30. Creating CNN model in R/2. Data Preprocessing.mp4
70.3 MB
8. Classification Models Data Preparation/5. EDD in R.mp4
69.7 MB
41. Time Series - SARIMA model/2. SARIMA model in Python.mp4
69.5 MB
31. Project Creating CNN model from scratch in Python/4. Project - Training CNN model in Python.mp4
69.2 MB
4. Basics of Statistics/3. Describing data Graphically.mp4
68.6 MB
2. Setting up Python and Jupyter Notebook/3. Opening Jupyter Notebook.mp4
68.4 MB
12. K-Nearest Neighbors classifier/7. K-Nearest Neighbors in R.mp4
68.0 MB
2. Setting up Python and Jupyter Notebook/6. Strings in Python Python Basics.mp4
67.6 MB
22. Creating Support Vector Machine Model in Python/11. SVM Based classification model.mp4
67.2 MB
35. Transfer Learning in R/2. Project - Transfer Learning - VGG16 (Performance).mp4
67.2 MB
37. Time Series - Preprocessing in Python/2. Time Series - Visualization Basics.mp4
66.8 MB
7. Linear Regression/18. Subset selection in R.mp4
66.6 MB
7. Linear Regression/5. Simple Linear Regression in Python.mp4
66.5 MB
36. Time Series Analysis and Forecasting/5. Time Series - Basic Notations.mp4
65.5 MB
7. Linear Regression/11. Multiple Linear Regression in R.srt
65.4 MB
7. Linear Regression/11. Multiple Linear Regression in R.mp4
65.4 MB
25. Neural Networks - Stacking cells to create network/4. Some Important Concepts.mp4
65.2 MB
6. Data Preprocessing/7. EDD in Python.mp4
64.8 MB
26. ANN in Python/12. Hyperparameter Tuning.mp4
63.6 MB
23. Creating Support Vector Machine Model in R/5. Hyperparameter Tuning for Linear Kernel.mp4
63.4 MB
25. Neural Networks - Stacking cells to create network/2. Gradient Descent.mp4
63.3 MB
2. Setting up Python and Jupyter Notebook/7. Lists, Tuples and Directories Python Basics.mp4
63.2 MB
3. Setting up R Studio and R crash course/6. Inputting data part 3 Importing from CSV or Text files.mp4
63.0 MB
38. Time Series - Important Concepts/3. Decomposing Time Series in Python.mp4
62.8 MB
37. Time Series - Preprocessing in Python/4. Time Series - Feature Engineering Basics.mp4
62.4 MB
16. Ensemble technique 1 - Bagging/3. Bagging in R.mp4
61.8 MB
29. Creating CNN model in Python/4. Comparison - Pooling vs Without Pooling in Python.mp4
60.8 MB
22. Creating Support Vector Machine Model in Python/12. Hyper Parameter Tuning.mp4
60.5 MB
39. Time Series - Implementation in Python/1. Test Train Split in Python.mp4
60.2 MB
23. Creating Support Vector Machine Model in R/7. Radial Kernel with Hyperparameter Tuning.mp4
59.4 MB
39. Time Series - Implementation in Python/7. Moving Average model in Python.mp4
59.4 MB
32. Project Creating CNN model from scratch/5. Project in R - Data Augmentation.mp4
59.1 MB
26. ANN in Python/3. Dataset for classification.mp4
58.9 MB
20. Support Vector Classifier/1. Support Vector classifiers.mp4
58.9 MB
7. Linear Regression/8. The F - statistic.mp4
58.7 MB
10. Logistic Regression/12. Predicting probabilities, assigning classes and making Confusion Matrix in R.mp4
58.4 MB
6. Data Preprocessing/18. Variable transformation in R.mp4
58.1 MB
6. Data Preprocessing/24. Correlation Analysis in Python.mp4
58.0 MB
29. Creating CNN model in Python/3. CNN model in Python - Training and results.mp4
57.8 MB
23. Creating Support Vector Machine Model in R/1. Importing Data into R.mp4
56.3 MB
39. Time Series - Implementation in Python/4. Auto Regression Model creation in Python.mp4
56.1 MB
33. Project Data Augmentation for avoiding overfitting/2. Project - Data Augmentation Training and Results.mp4
55.6 MB
28. CNN - Basics/4. Filters and Feature maps.mp4
55.3 MB
10. Logistic Regression/9. Creating Confusion Matrix in Python.mp4
53.7 MB
28. CNN - Basics/1. CNN Introduction.mp4
53.6 MB
23. Creating Support Vector Machine Model in R/2. Test-Train Split.mp4
52.9 MB
39. Time Series - Implementation in Python/5. Auto Regression with Walk Forward validation in Python.mp4
52.0 MB
31. Project Creating CNN model from scratch in Python/1. Project - Introduction.mp4
51.8 MB
10. Logistic Regression/2. Training a Simple Logistic Model in Python.mp4
50.2 MB
8. Classification Models Data Preparation/6. Outlier treatment in Python.mp4
49.6 MB
2. Setting up Python and Jupyter Notebook/9. Working with Pandas Library of Python.mp4
49.2 MB
28. CNN - Basics/6. PoolingLayer.mp4
49.2 MB
17. Ensemble technique 2 - Random Forests/2. Ensemble technique 2 - Random Forests in Python.mp4
49.0 MB
32. Project Creating CNN model from scratch/2. CNN Project in R - Structure and Compile.mp4
48.3 MB
22. Creating Support Vector Machine Model in Python/9. Classification model - Preprocessing.mp4
47.6 MB
15. Simple Classification Tree/3. Classification tree in Python Preprocessing.mp4
47.6 MB
25. Neural Networks - Stacking cells to create network/5. Hyperparameter.mp4
47.6 MB
7. Linear Regression/14. Test train split in Python.mp4
47.1 MB
24. Introduction - Deep Learning/2. Perceptron.mp4
46.9 MB
30. Creating CNN model in R/6. Comparison - Pooling vs Without Pooling in R.mp4
46.8 MB
8. Classification Models Data Preparation/13. Dummy variable creation in R.mp4
46.5 MB
26. ANN in Python/4. Normalization and Test-Train split.mp4
46.4 MB
6. Data Preprocessing/17. Variable transformation and deletion in Python.mp4
46.3 MB
6. Data Preprocessing/22. Dummy variable creation in R.mp4
46.1 MB
14. Simple Decision Trees/11. Splitting Data into Test and Train Set in R.mp4
46.1 MB
2. Setting up Python and Jupyter Notebook/8. Working with Numpy Library of Python.mp4
46.0 MB
14. Simple Decision Trees/2. Understanding a Regression Tree.mp4
45.8 MB
14. Simple Decision Trees/6. Importing the Data set into R.mp4
45.8 MB
7. Linear Regression/4. Assessing Model Accuracy RSE and R squared.mp4
45.7 MB
7. Linear Regression/2. Basic Equations and Ordinary Least Squares (OLS) method.mp4
45.5 MB
39. Time Series - Implementation in Python/2. Naive (Persistence) model in Python.mp4
45.5 MB
29. Creating CNN model in Python/2. CNN model in Python - structure and Compile.mp4
45.3 MB
14. Simple Decision Trees/1. Basics of Decision Trees.mp4
44.7 MB
12. K-Nearest Neighbors classifier/6. K-Nearest Neighbors in Python Part 2.mp4
44.4 MB
3. Setting up R Studio and R crash course/8. Creating Histograms in R.mp4
44.1 MB
7. Linear Regression/12. Test-train split.mp4
43.9 MB
13. Comparing results from 3 models/1. Understanding the results of classification models.mp4
43.7 MB
33. Project Data Augmentation for avoiding overfitting/1. Project - Data Augmentation Preprocessing.mp4
43.4 MB
40. Time Series - ARIMA model/1. ACF and PACF.mp4
43.2 MB
11. Linear Discriminant Analysis (LDA)/1. Linear Discriminant Analysis.mp4
42.9 MB
2. Setting up Python and Jupyter Notebook/4. Introduction to Jupyter.mp4
42.9 MB
7. Linear Regression/6. Simple Linear Regression in R.mp4
42.8 MB
3. Setting up R Studio and R crash course/4. Inputting data part 1 Inbuilt datasets of R.mp4
42.7 MB
29. Creating CNN model in Python/1. CNN model in Python - Preprocessing.mp4
42.6 MB
25. Neural Networks - Stacking cells to create network/1. Basic Terminologies.mp4
42.4 MB
2. Setting up Python and Jupyter Notebook/10. Working with Seaborn Library of Python.mp4
42.3 MB
21. Support Vector Machines/1. Kernel Based Support Vector Machines.mp4
42.1 MB
18. Ensemble technique 3 - Boosting/2. Ensemble technique 3a - Boosting in Python.mp4
41.8 MB
5. Introduction to Machine Learning/2. Building a Machine Learning Model.mp4
41.4 MB
12. K-Nearest Neighbors classifier/1. Test-Train Split.mp4
41.2 MB
41. Time Series - SARIMA model/1. SARIMA model.mp4
40.9 MB
3. Setting up R Studio and R crash course/2. Basics of R and R studio.mp4
40.7 MB
37. Time Series - Preprocessing in Python/9. Moving Average.mp4
40.6 MB
4. Basics of Statistics/4. Measures of Centers.mp4
40.4 MB
22. Creating Support Vector Machine Model in Python/6. Standardizing the data.mp4
40.3 MB
8. Classification Models Data Preparation/11. Variable transformation in R.mp4
39.9 MB
14. Simple Decision Trees/4. The Data set for this part.mp4
39.1 MB
12. K-Nearest Neighbors classifier/5. K-Nearest Neighbors in Python Part 1.mp4
39.0 MB
22. Creating Support Vector Machine Model in Python/14. Radial Kernel with Hyperparameter Tuning.mp4
39.0 MB
22. Creating Support Vector Machine Model in Python/2. The Data set for the Regression problem.mp4
39.0 MB
6. Data Preprocessing/20. Dummy variable creation Handling qualitative data.mp4
38.6 MB
3. Setting up R Studio and R crash course/1. Installing R and R studio.mp4
37.5 MB
10. Logistic Regression/10. Evaluating performance of model.mp4
36.9 MB
24. Introduction - Deep Learning/3. Activation Functions.mp4
36.3 MB
36. Time Series Analysis and Forecasting/4. Forecasting model creation - Steps 1 (Goal).mp4
36.2 MB
7. Linear Regression/7. Multiple Linear Regression.mp4
36.0 MB
7. Linear Regression/19. Shrinkage methods Ridge and Lasso.mp4
35.0 MB
12. K-Nearest Neighbors classifier/2. Test-Train Split in Python.mp4
34.7 MB
10. Logistic Regression/1. Logistic Regression.mp4
34.5 MB
38. Time Series - Important Concepts/4. Differencing.mp4
33.9 MB
30. Creating CNN model in R/4. Compiling and training.mp4
33.8 MB
40. Time Series - ARIMA model/4. ARIMA model with Walk Forward Validation in Python.mp4
33.7 MB
28. CNN - Basics/3. Padding.mp4
33.2 MB
6. Data Preprocessing/11. Outlier Treatment in R.mp4
32.2 MB
17. Ensemble technique 2 - Random Forests/4. Random Forest in R.mp4
32.2 MB
18. Ensemble technique 3 - Boosting/1. Boosting.mp4
32.1 MB
18. Ensemble technique 3 - Boosting/4. Ensemble technique 3b - AdaBoost in Python.mp4
32.0 MB
34. Transfer Learning Basics/5. Transfer Learning.mp4
31.4 MB
19. Maximum Margin Classifier/2. The Concept of a Hyperplane.mp4
30.8 MB
1. Introduction/1. Introduction.mp4
30.8 MB
8. Classification Models Data Preparation/10. Variable transformation and Deletion in Python.mp4
30.7 MB
24. Introduction - Deep Learning/1. Introduction to Neural Networks and Course flow.mp4
30.5 MB
15. Simple Classification Tree/1. Classification tree.mp4
29.6 MB
16. Ensemble technique 1 - Bagging/1. Ensemble technique 1 - Bagging.mp4
29.5 MB
6. Data Preprocessing/4. Importing Data in Python.mp4
29.2 MB
10. Logistic Regression/4. Result of Simple Logistic Regression.mp4
28.2 MB
6. Data Preprocessing/21. Dummy variable creation in Python.mp4
27.8 MB
8. Classification Models Data Preparation/12. Dummy variable creation in Python.mp4
27.7 MB
10. Logistic Regression/6. Training multiple predictor Logistic model in Python.mp4
27.5 MB
6. Data Preprocessing/14. Missing Value imputation in R.mp4
27.3 MB
36. Time Series Analysis and Forecasting/2. Time Series Forecasting - Use cases.mp4
27.2 MB
14. Simple Decision Trees/5. Importing the Data set into Python.mp4
27.1 MB
22. Creating Support Vector Machine Model in Python/3. Importing data for regression model.mp4
27.1 MB
10. Logistic Regression/3. Training a Simple Logistic model in R.mp4
26.8 MB
3. Setting up R Studio and R crash course/5. Inputting data part 2 Manual data entry.mp4
26.8 MB
8. Classification Models Data Preparation/7. Outlier Treatment in R.mp4
26.6 MB
7. Linear Regression/13. Bias Variance trade-off.mp4
26.3 MB
6. Data Preprocessing/12. Missing Value Imputation.mp4
26.2 MB
14. Simple Decision Trees/8. Dummy Variable creation in Python.mp4
26.2 MB
14. Simple Decision Trees/10. Test-Train split in Python.mp4
26.1 MB
22. Creating Support Vector Machine Model in Python/5. Test-Train Split.mp4
26.1 MB
32. Project Creating CNN model from scratch/3. Project in R - Training.mp4
25.8 MB
6. Data Preprocessing/9. Outlier Treatment.mp4
25.7 MB
6. Data Preprocessing/6. Univariate analysis and EDD.mp4
25.4 MB
39. Time Series - Implementation in Python/6. Moving Average model -Basics.mp4
25.3 MB
32. Project Creating CNN model from scratch/6. Project in R - Validation Performance.mp4
24.8 MB
6. Data Preprocessing/13. Missing Value Imputation in Python.mp4
24.6 MB
32. Project Creating CNN model from scratch/4. Project in R - Model Performance.mp4
24.3 MB
22. Creating Support Vector Machine Model in Python/13. Polynomial Kernel with Hyperparameter Tuning.mp4
24.0 MB
4. Basics of Statistics/5. Measures of Dispersion.mp4
24.0 MB
27. ANN in R/1. Installing Keras and Tensorflow.mp4
23.9 MB
8. Classification Models Data Preparation/8. Missing Value Imputation in Python.mp4
23.7 MB
7. Linear Regression/9. Interpreting results of Categorical variables.mp4
23.6 MB
19. Maximum Margin Classifier/3. Maximum Margin Classifier.mp4
23.6 MB
6. Data Preprocessing/1. Gathering Business Knowledge.mp4
23.4 MB
13. Comparing results from 3 models/2. Summary of the three models.mp4
23.3 MB
8. Classification Models Data Preparation/2. Data Import in Python.mp4
23.1 MB
4. Basics of Statistics/1. Types of Data.mp4
22.8 MB
14. Simple Decision Trees/15. Plotting decision tree in Python.mp4
22.5 MB
40. Time Series - ARIMA model/2. ARIMA model - Basics.mp4
22.4 MB
34. Transfer Learning Basics/4. GoogLeNet.mp4
22.4 MB
38. Time Series - Important Concepts/2. Random Walk.mp4
22.2 MB
10. Logistic Regression/8. Confusion Matrix.mp4
22.1 MB
31. Project Creating CNN model from scratch in Python/5. Project in Python - model results.mp4
22.1 MB
34. Transfer Learning Basics/1. ILSVRC.mp4
21.9 MB
2. Setting up Python and Jupyter Notebook/2. This is a milestone!.mp4
21.7 MB
6. Data Preprocessing/2. Data Exploration.mp4
21.5 MB
9. The Three classification models/1. Three Classifiers and the problem statement.mp4
21.3 MB
6. Data Preprocessing/19. Non-usable variables.mp4
21.2 MB
26. ANN in Python/2. Installing Tensorflow and Keras.mp4
21.0 MB
8. Classification Models Data Preparation/9. Missing Value imputation in R.mp4
20.0 MB
15. Simple Classification Tree/2. The Data set for Classification problem.mp4
19.5 MB
22. Creating Support Vector Machine Model in Python/8. The Data set for the Classification problem.mp4
19.4 MB
14. Simple Decision Trees/16. Pruning a tree.mp4
19.4 MB
17. Ensemble technique 2 - Random Forests/1. Ensemble technique 2 - Random Forests.mp4
19.1 MB
14. Simple Decision Trees/7. Missing value treatment in Python.mp4
18.8 MB
14. Simple Decision Trees/12. Creating Decision tree in Python.mp4
18.7 MB
6. Data Preprocessing/15. Seasonality in Data.mp4
17.8 MB
37. Time Series - Preprocessing in Python/6. Time Series - Upsampling and Downsampling.mp4
17.8 MB
9. The Three classification models/2. Why can't we use Linear Regression.mp4
17.8 MB
39. Time Series - Implementation in Python/3. Auto Regression Model - Basics.mp4
17.7 MB
28. CNN - Basics/2. Stride.mp4
17.4 MB
7. Linear Regression/16. Regression models other than OLS.mp4
17.3 MB
14. Simple Decision Trees/14. Evaluating model performance in Python.mp4
17.2 MB
2. Setting up Python and Jupyter Notebook/1. Installing Python and Anaconda.mp4
17.1 MB
10. Logistic Regression/7. Training multiple predictor Logistic model in R.mp4
16.6 MB
10. Logistic Regression/7. Training multiple predictor Logistic model in R.srt
16.2 MB
14. Simple Decision Trees/9. Dependent- Independent Data split in Python.mp4
15.9 MB
22. Creating Support Vector Machine Model in Python/4. X-y Split.mp4
15.9 MB
26. ANN in Python/1. Keras and Tensorflow.mp4
15.6 MB
37. Time Series - Preprocessing in Python/8. Time Series - Power Transformation.mp4
15.6 MB
7. Linear Regression/22. Heteroscedasticity.mp4
15.2 MB
14. Simple Decision Trees/3. The stopping criteria for controlling tree growth.mp4
14.6 MB
8. Classification Models Data Preparation/3. Importing the dataset into R.mp4
14.1 MB
6. Data Preprocessing/5. Importing the dataset into R.mp4
13.7 MB
2. Setting up Python and Jupyter Notebook/5. Arithmetic operators in Python Python Basics.mp4
13.4 MB
36. Time Series Analysis and Forecasting/1. Introduction.mp4
12.9 MB
42. Bonus Section/1. The final milestone!.mp4
12.4 MB
11. Linear Discriminant Analysis (LDA)/2. LDA in Python.mp4
12.0 MB
38. Time Series - Important Concepts/1. White Noise.mp4
11.9 MB
4. Basics of Statistics/2. Types of Statistics.mp4
11.5 MB
26. ANN in Python/5. Different ways to create ANN using Keras.mp4
11.3 MB
20. Support Vector Classifier/2. Limitations of Support Vector Classifiers.mp4
11.3 MB
19. Maximum Margin Classifier/4. Limitations of Maximum Margin Classifier.mp4
11.1 MB
34. Transfer Learning Basics/3. VGG16NET.mp4
10.9 MB
36. Time Series Analysis and Forecasting/3. Forecasting model creation - Steps.mp4
10.6 MB
22. Creating Support Vector Machine Model in Python/10. Classification model - Standardizing the data.mp4
10.2 MB
7. Linear Regression/1. The Problem Statement.mp4
9.8 MB
10. Logistic Regression/11. Evaluating model performance in Python.mp4
9.5 MB
19. Maximum Margin Classifier/1. Content flow.mp4
9.1 MB
10. Logistic Regression/5. Logistic with multiple predictors.mp4
8.9 MB
37. Time Series - Preprocessing in Python/10. Exponential Smoothing.mp4
8.8 MB
30. Creating CNN model in R/1. CNN on MNIST Fashion Dataset - Model Architecture.mp4
7.7 MB
34. Transfer Learning Basics/2. LeNET.mp4
7.3 MB
15. Simple Classification Tree/6. Advantages and Disadvantages of Decision Trees.mp4
7.2 MB
41. Time Series - SARIMA model/3. Stationary time Series.mp4
5.9 MB
22. Creating Support Vector Machine Model in Python/1. Regression and Classification Models.mp4
4.2 MB
37. Time Series - Preprocessing in Python/3. Time Series - Visualization in Python.srt
29.6 kB
25. Neural Networks - Stacking cells to create network/3. Back Propagation.srt
25.4 kB
26. ANN in Python/9. Building Neural Network for Regression Problem.srt
24.3 kB
27. ANN in R/8. Saving - Restoring Models and Using Callbacks.srt
21.9 kB
7. Linear Regression/20. Ridge regression and Lasso in Python.srt
21.4 kB
26. ANN in Python/11. Saving - Restoring Models and Using Callbacks.srt
21.3 kB
34. Transfer Learning Basics/6. Project - Transfer Learning - VGG16.srt
20.9 kB
2. Setting up Python and Jupyter Notebook/7. Lists, Tuples and Directories Python Basics.srt
20.6 kB
5. Introduction to Machine Learning/1. Introduction to Machine Learning.srt
20.2 kB
6. Data Preprocessing/16. Bi-variate analysis and Variable transformation.srt
19.8 kB
37. Time Series - Preprocessing in Python/5. Time Series - Feature Engineering in Python.srt
19.7 kB
18. Ensemble technique 3 - Boosting/7. XGBoosting in R.srt
18.9 kB
2. Setting up Python and Jupyter Notebook/6. Strings in Python Python Basics.srt
18.4 kB
8. Classification Models Data Preparation/4. EDD in Python.srt
18.2 kB
23. Creating Support Vector Machine Model in R/4. Classification SVM model using Linear Kernel.srt
18.2 kB
37. Time Series - Preprocessing in Python/1. Data Loading in Python.srt
18.1 kB
37. Time Series - Preprocessing in Python/7. Time Series - Upsampling and Downsampling in Python.srt
18.0 kB
7. Linear Regression/3. Assessing accuracy of predicted coefficients.srt
17.8 kB
27. ANN in R/3. Building,Compiling and Training.srt
16.7 kB
38. Time Series - Important Concepts/5. Differencing in Python.srt
16.1 kB
24. Introduction - Deep Learning/4. Python - Creating Perceptron model.srt
16.1 kB
14. Simple Decision Trees/13. Building a Regression Tree in R.srt
15.9 kB
3. Setting up R Studio and R crash course/7. Creating Barplots in R.srt
15.4 kB
15. Simple Classification Tree/4. Classification tree in Python Training.srt
14.9 kB
40. Time Series - ARIMA model/3. ARIMA model in Python.srt
14.6 kB
7. Linear Regression/10. Multiple Linear Regression in Python.srt
14.6 kB
35. Transfer Learning in R/1. Project - Transfer Learning - VGG16 (Implementation).srt
14.5 kB
6. Data Preprocessing/10. Outlier Treatment in Python.srt
14.5 kB
17. Ensemble technique 2 - Random Forests/3. Using Grid Search in Python.srt
14.0 kB
7. Linear Regression/17. Subset selection techniques.srt
14.0 kB
25. Neural Networks - Stacking cells to create network/4. Some Important Concepts.srt
14.0 kB
27. ANN in R/6. Building Regression Model with Functional API.srt
13.9 kB
2. Setting up Python and Jupyter Notebook/4. Introduction to Jupyter.srt
13.5 kB
6. Data Preprocessing/8. EDD in R.srt
13.5 kB
7. Linear Regression/5. Simple Linear Regression in Python.srt
13.4 kB
26. ANN in Python/10. Using Functional API for complex architectures.srt
13.3 kB
26. ANN in Python/6. Building the Neural Network using Keras.srt
13.2 kB
27. ANN in R/2. Data Normalization and Test-Train Split.srt
13.2 kB
4. Basics of Statistics/3. Describing data Graphically.srt
13.1 kB
25. Neural Networks - Stacking cells to create network/2. Gradient Descent.srt
13.0 kB
22. Creating Support Vector Machine Model in Python/11. SVM Based classification model.srt
12.7 kB
7. Linear Regression/21. Ridge regression and Lasso in R.srt
12.7 kB
16. Ensemble technique 1 - Bagging/2. Ensemble technique 1 - Bagging in Python.srt
12.6 kB
3. Setting up R Studio and R crash course/3. Packages in R.srt
12.5 kB
23. Creating Support Vector Machine Model in R/8. SVM based Regression Model in R.srt
12.3 kB
39. Time Series - Implementation in Python/1. Test Train Split in Python.srt
12.3 kB
3. Setting up R Studio and R crash course/2. Basics of R and R studio.srt
12.3 kB
14. Simple Decision Trees/2. Understanding a Regression Tree.srt
12.2 kB
6. Data Preprocessing/23. Correlation Analysis.srt
12.2 kB
11. Linear Discriminant Analysis (LDA)/1. Linear Discriminant Analysis.srt
12.2 kB
32. Project Creating CNN model from scratch/1. Project in R - Data Preprocessing.srt
12.2 kB
2. Setting up Python and Jupyter Notebook/8. Working with Numpy Library of Python.srt
12.1 kB
37. Time Series - Preprocessing in Python/4. Time Series - Feature Engineering Basics.srt
12.0 kB
6. Data Preprocessing/7. EDD in Python.srt
11.9 kB
41. Time Series - SARIMA model/2. SARIMA model in Python.srt
11.9 kB
23. Creating Support Vector Machine Model in R/6. Polynomial Kernel with Hyperparameter Tuning.srt
11.8 kB
18. Ensemble technique 3 - Boosting/6. Ensemble technique 3c - XGBoost in Python.srt
11.7 kB
8. Classification Models Data Preparation/5. EDD in R.srt
11.6 kB
14. Simple Decision Trees/1. Basics of Decision Trees.srt
11.5 kB
7. Linear Regression/12. Test-train split.srt
11.1 kB
20. Support Vector Classifier/1. Support Vector classifiers.srt
11.1 kB
10. Logistic Regression/9. Creating Confusion Matrix in Python.srt
11.1 kB
25. Neural Networks - Stacking cells to create network/1. Basic Terminologies.srt
11.1 kB
22. Creating Support Vector Machine Model in Python/12. Hyper Parameter Tuning.srt
11.0 kB
14. Simple Decision Trees/17. Pruning a tree in Python.srt
11.0 kB
10. Logistic Regression/2. Training a Simple Logistic Model in Python.srt
10.9 kB
12. K-Nearest Neighbors classifier/1. Test-Train Split.srt
10.8 kB
18. Ensemble technique 3 - Boosting/5. AdaBoosting in R.srt
10.8 kB
22. Creating Support Vector Machine Model in Python/7. SVM based Regression Model in Python.srt
10.7 kB
7. Linear Regression/2. Basic Equations and Ordinary Least Squares (OLS) method.srt
10.7 kB
38. Time Series - Important Concepts/3. Decomposing Time Series in Python.srt
10.7 kB
37. Time Series - Preprocessing in Python/2. Time Series - Visualization Basics.srt
10.5 kB
5. Introduction to Machine Learning/2. Building a Machine Learning Model.srt
10.5 kB
11. Linear Discriminant Analysis (LDA)/3. Linear Discriminant Analysis in R.srt
10.5 kB
24. Introduction - Deep Learning/2. Perceptron.srt
10.5 kB
39. Time Series - Implementation in Python/4. Auto Regression Model creation in Python.srt
10.4 kB
15. Simple Classification Tree/5. Building a classification Tree in R.srt
10.4 kB
2. Setting up Python and Jupyter Notebook/9. Working with Pandas Library of Python.srt
10.4 kB
27. ANN in R/4. Evaluating and Predicting.srt
10.4 kB
26. ANN in Python/7. Compiling and Training the Neural Network model.srt
10.3 kB
12. K-Nearest Neighbors classifier/4. K-Nearest Neighbors classifier.srt
10.2 kB
6. Data Preprocessing/18. Variable transformation in R.srt
10.2 kB
2. Setting up Python and Jupyter Notebook/3. Opening Jupyter Notebook.srt
10.1 kB
26. ANN in Python/12. Hyperparameter Tuning.srt
10.0 kB
12. K-Nearest Neighbors classifier/3. Test-Train Split in R.srt
10.0 kB
26. ANN in Python/8. Evaluating performance and Predicting using Keras.srt
10.0 kB
7. Linear Regression/8. The F - statistic.srt
9.9 kB
14. Simple Decision Trees/18. Pruning a Tree in R.srt
9.9 kB
36. Time Series Analysis and Forecasting/5. Time Series - Basic Notations.srt
9.9 kB
39. Time Series - Implementation in Python/7. Moving Average model in Python.srt
9.8 kB
6. Data Preprocessing/25. Correlation Matrix in R.srt
9.8 kB
8. Classification Models Data Preparation/6. Outlier treatment in Python.srt
9.8 kB
10. Logistic Regression/10. Evaluating performance of model.srt
9.6 kB
7. Linear Regression/15. Test-Train Split in R.srt
9.6 kB
8. Classification Models Data Preparation/1. The Data and the Data Dictionary.srt
9.5 kB
25. Neural Networks - Stacking cells to create network/5. Hyperparameter.srt
9.5 kB
7. Linear Regression/6. Simple Linear Regression in R.srt
9.5 kB
31. Project Creating CNN model from scratch in Python/3. Project - Data Preprocessing in Python.srt
9.4 kB
31. Project Creating CNN model from scratch in Python/4. Project - Training CNN model in Python.srt
9.4 kB
6. Data Preprocessing/17. Variable transformation and deletion in Python.srt
9.2 kB
7. Linear Regression/19. Shrinkage methods Ridge and Lasso.srt
9.2 kB
12. K-Nearest Neighbors classifier/7. K-Nearest Neighbors in R.srt
9.2 kB
15. Simple Classification Tree/3. Classification tree in Python Preprocessing.srt
9.1 kB
22. Creating Support Vector Machine Model in Python/9. Classification model - Preprocessing.srt
9.1 kB
23. Creating Support Vector Machine Model in R/1. Importing Data into R.srt
9.1 kB
27. ANN in R/7. Complex Architectures using Functional API.srt
9.1 kB
35. Transfer Learning in R/2. Project - Transfer Learning - VGG16 (Performance).srt
9.0 kB
39. Time Series - Implementation in Python/5. Auto Regression with Walk Forward validation in Python.srt
9.0 kB
6. Data Preprocessing/3. The Dataset and the Data Dictionary.srt
9.0 kB
7. Linear Regression/14. Test train split in Python.srt
8.9 kB
40. Time Series - ARIMA model/1. ACF and PACF.srt
8.9 kB
10. Logistic Regression/1. Logistic Regression.srt
8.8 kB
18. Ensemble technique 3 - Boosting/3. Gradient Boosting in R.srt
8.8 kB
27. ANN in R/5. ANN with NeuralNets Package.srt
8.6 kB
7. Linear Regression/4. Assessing Model Accuracy RSE and R squared.srt
8.6 kB
2. Setting up Python and Jupyter Notebook/10. Working with Seaborn Library of Python.srt
8.4 kB
7. Linear Regression/18. Subset selection in R.srt
8.4 kB
39. Time Series - Implementation in Python/2. Naive (Persistence) model in Python.srt
8.4 kB
24. Introduction - Deep Learning/3. Activation Functions.srt
8.4 kB
28. CNN - Basics/1. CNN Introduction.srt
8.3 kB
26. ANN in Python/3. Dataset for classification.srt
8.1 kB
41. Time Series - SARIMA model/1. SARIMA model.srt
8.1 kB
4. Basics of Statistics/4. Measures of Centers.srt
8.1 kB
32. Project Creating CNN model from scratch/5. Project in R - Data Augmentation.srt
8.0 kB
18. Ensemble technique 3 - Boosting/1. Boosting.srt
8.0 kB
37. Time Series - Preprocessing in Python/9. Moving Average.srt
8.0 kB
28. CNN - Basics/4. Filters and Feature maps.srt
7.8 kB
13. Comparing results from 3 models/1. Understanding the results of classification models.srt
7.7 kB
31. Project Creating CNN model from scratch in Python/1. Project - Introduction.srt
7.7 kB
30. Creating CNN model in R/2. Data Preprocessing.srt
7.6 kB
10. Logistic Regression/12. Predicting probabilities, assigning classes and making Confusion Matrix in R.srt
7.6 kB
12. K-Nearest Neighbors classifier/2. Test-Train Split in Python.srt
7.6 kB
16. Ensemble technique 1 - Bagging/1. Ensemble technique 1 - Bagging.srt
7.4 kB
29. Creating CNN model in Python/2. CNN model in Python - structure and Compile.srt
7.4 kB
22. Creating Support Vector Machine Model in Python/14. Radial Kernel with Hyperparameter Tuning.srt
7.4 kB
33. Project Data Augmentation for avoiding overfitting/1. Project - Data Augmentation Preprocessing.srt
7.4 kB
14. Simple Decision Trees/6. Importing the Data set into R.srt
7.4 kB
23. Creating Support Vector Machine Model in R/7. Radial Kernel with Hyperparameter Tuning.srt
7.4 kB
16. Ensemble technique 1 - Bagging/3. Bagging in R.srt
7.3 kB
3. Setting up R Studio and R crash course/6. Inputting data part 3 Importing from CSV or Text files.srt
7.2 kB
6. Data Preprocessing/24. Correlation Analysis in Python.srt
7.1 kB
7. Linear Regression/13. Bias Variance trade-off.srt
7.1 kB
23. Creating Support Vector Machine Model in R/5. Hyperparameter Tuning for Linear Kernel.srt
7.1 kB
12. K-Nearest Neighbors classifier/6. K-Nearest Neighbors in Python Part 2.srt
7.1 kB
33. Project Data Augmentation for avoiding overfitting/2. Project - Data Augmentation Training and Results.srt
7.0 kB
3. Setting up R Studio and R crash course/1. Installing R and R studio.srt
7.0 kB
8. Classification Models Data Preparation/11. Variable transformation in R.srt
6.9 kB
15. Simple Classification Tree/1. Classification tree.srt
6.9 kB
21. Support Vector Machines/1. Kernel Based Support Vector Machines.srt
6.9 kB
17. Ensemble technique 2 - Random Forests/2. Ensemble technique 2 - Random Forests in Python.srt
6.9 kB
38. Time Series - Important Concepts/4. Differencing.srt
6.9 kB
30. Creating CNN model in R/5. Model Performance.srt
6.7 kB
22. Creating Support Vector Machine Model in Python/6. Standardizing the data.srt
6.7 kB
8. Classification Models Data Preparation/13. Dummy variable creation in R.srt
6.6 kB
6. Data Preprocessing/4. Importing Data in Python.srt
6.6 kB
36. Time Series Analysis and Forecasting/4. Forecasting model creation - Steps 1 (Goal).srt
6.6 kB
29. Creating CNN model in Python/3. CNN model in Python - Training and results.srt
6.6 kB
7. Linear Regression/7. Multiple Linear Regression.srt
6.5 kB
30. Creating CNN model in R/3. Creating Model Architecture.srt
6.4 kB
28. CNN - Basics/5. Channels.srt
6.4 kB
6. Data Preprocessing/21. Dummy variable creation in Python.srt
6.4 kB
40. Time Series - ARIMA model/4. ARIMA model with Walk Forward Validation in Python.srt
6.4 kB
14. Simple Decision Trees/10. Test-Train split in Python.srt
6.3 kB
22. Creating Support Vector Machine Model in Python/5. Test-Train Split.srt
6.3 kB
8. Classification Models Data Preparation/12. Dummy variable creation in Python.srt
6.3 kB
3. Setting up R Studio and R crash course/8. Creating Histograms in R.srt
6.3 kB
26. ANN in Python/4. Normalization and Test-Train split.srt
6.3 kB
6. Data Preprocessing/22. Dummy variable creation in R.srt
6.2 kB
23. Creating Support Vector Machine Model in R/2. Test-Train Split.srt
6.2 kB
6. Data Preprocessing/19. Non-usable variables.srt
6.2 kB
10. Logistic Regression/6. Training multiple predictor Logistic model in Python.srt
6.2 kB
13. Comparing results from 3 models/2. Summary of the three models.srt
6.1 kB
7. Linear Regression/9. Interpreting results of Categorical variables.srt
6.1 kB
10. Logistic Regression/4. Result of Simple Logistic Regression.srt
6.0 kB
14. Simple Decision Trees/5. Importing the Data set into Python.srt
6.0 kB
22. Creating Support Vector Machine Model in Python/3. Importing data for regression model.srt
6.0 kB
28. CNN - Basics/6. PoolingLayer.srt
6.0 kB
14. Simple Decision Trees/11. Splitting Data into Test and Train Set in R.srt
6.0 kB
12. K-Nearest Neighbors classifier/5. K-Nearest Neighbors in Python Part 1.srt
6.0 kB
6. Data Preprocessing/20. Dummy variable creation Handling qualitative data.srt
5.9 kB
29. Creating CNN model in Python/1. CNN model in Python - Preprocessing.srt
5.9 kB
29. Creating CNN model in Python/4. Comparison - Pooling vs Without Pooling in Python.srt
5.7 kB
32. Project Creating CNN model from scratch/2. CNN Project in R - Structure and Compile.srt
5.7 kB
9. The Three classification models/2. Why can't we use Linear Regression.srt
5.6 kB
34. Transfer Learning Basics/5. Transfer Learning.srt
5.6 kB
18. Ensemble technique 3 - Boosting/2. Ensemble technique 3a - Boosting in Python.srt
5.6 kB
14. Simple Decision Trees/8. Dummy Variable creation in Python.srt
5.5 kB
19. Maximum Margin Classifier/2. The Concept of a Hyperplane.srt
5.4 kB
14. Simple Decision Trees/15. Plotting decision tree in Python.srt
5.4 kB
8. Classification Models Data Preparation/2. Data Import in Python.srt
5.4 kB
4. Basics of Statistics/5. Measures of Dispersion.srt
5.4 kB
40. Time Series - ARIMA model/2. ARIMA model - Basics.srt
5.2 kB
6. Data Preprocessing/9. Outlier Treatment.srt
5.2 kB
4. Basics of Statistics/1. Types of Data.srt
5.2 kB
39. Time Series - Implementation in Python/6. Moving Average model -Basics.srt
5.1 kB
28. CNN - Basics/3. Padding.srt
5.1 kB
10. Logistic Regression/8. Confusion Matrix.srt
5.0 kB
6. Data Preprocessing/11. Outlier Treatment in R.srt
5.0 kB
8. Classification Models Data Preparation/8. Missing Value Imputation in Python.srt
4.9 kB
8. Classification Models Data Preparation/7. Outlier Treatment in R.srt
4.9 kB
6. Data Preprocessing/13. Missing Value Imputation in Python.srt
4.9 kB
24. Introduction - Deep Learning/1. Introduction to Neural Networks and Course flow.srt
4.9 kB
17. Ensemble technique 2 - Random Forests/4. Random Forest in R.srt
4.9 kB
7. Linear Regression/16. Regression models other than OLS.srt
4.9 kB
14. Simple Decision Trees/14. Evaluating model performance in Python.srt
4.8 kB
3. Setting up R Studio and R crash course/4. Inputting data part 1 Inbuilt datasets of R.srt
4.8 kB
34. Transfer Learning Basics/1. ILSVRC.srt
4.7 kB
17. Ensemble technique 2 - Random Forests/1. Ensemble technique 2 - Random Forests.srt
4.7 kB
38. Time Series - Important Concepts/2. Random Walk.srt
4.7 kB
14. Simple Decision Trees/16. Pruning a tree.srt
4.6 kB
1. Introduction/1. Introduction.srt
4.6 kB
22. Creating Support Vector Machine Model in Python/13. Polynomial Kernel with Hyperparameter Tuning.srt
4.6 kB
2. Setting up Python and Jupyter Notebook/5. Arithmetic operators in Python Python Basics.srt
4.5 kB
18. Ensemble technique 3 - Boosting/4. Ensemble technique 3b - AdaBoost in Python.srt
4.5 kB
8. Classification Models Data Preparation/10. Variable transformation and Deletion in Python.srt
4.4 kB
14. Simple Decision Trees/12. Creating Decision tree in Python.srt
4.4 kB
37. Time Series - Preprocessing in Python/6. Time Series - Upsampling and Downsampling.srt
4.4 kB
14. Simple Decision Trees/9. Dependent- Independent Data split in Python.srt
4.3 kB
22. Creating Support Vector Machine Model in Python/4. X-y Split.srt
4.3 kB
6. Data Preprocessing/12. Missing Value Imputation.srt
4.3 kB
10. Logistic Regression/3. Training a Simple Logistic model in R.srt
4.3 kB
30. Creating CNN model in R/6. Comparison - Pooling vs Without Pooling in R.srt
4.3 kB
6. Data Preprocessing/1. Gathering Business Knowledge.srt
4.2 kB
26. ANN in Python/2. Installing Tensorflow and Keras.srt
4.2 kB
8. Classification Models Data Preparation/9. Missing Value imputation in R.srt
4.2 kB
6. Data Preprocessing/14. Missing Value imputation in R.srt
4.2 kB
6. Data Preprocessing/6. Univariate analysis and EDD.srt
4.1 kB
6. Data Preprocessing/15. Seasonality in Data.srt
4.1 kB
9. The Three classification models/1. Three Classifiers and the problem statement.srt
4.0 kB
6. Data Preprocessing/2. Data Exploration.srt
4.0 kB
26. ANN in Python/1. Keras and Tensorflow.srt
3.9 kB
2. Setting up Python and Jupyter Notebook/2. This is a milestone!.srt
3.9 kB
14. Simple Decision Trees/7. Missing value treatment in Python.srt
3.8 kB
39. Time Series - Implementation in Python/3. Auto Regression Model - Basics.srt
3.7 kB
14. Simple Decision Trees/3. The stopping criteria for controlling tree growth.srt
3.6 kB
19. Maximum Margin Classifier/3. Maximum Margin Classifier.srt
3.5 kB
3. Setting up R Studio and R crash course/5. Inputting data part 2 Manual data entry.srt
3.4 kB
14. Simple Decision Trees/4. The Data set for this part.srt
3.4 kB
22. Creating Support Vector Machine Model in Python/2. The Data set for the Regression problem.srt
3.4 kB
34. Transfer Learning Basics/4. GoogLeNet.srt
3.3 kB
4. Basics of Statistics/2. Types of Statistics.srt
3.2 kB
32. Project Creating CNN model from scratch/3. Project in R - Training.srt
3.2 kB
30. Creating CNN model in R/4. Compiling and training.srt
3.2 kB
28. CNN - Basics/2. Stride.srt
3.1 kB
27. ANN in R/1. Installing Keras and Tensorflow.srt
3.1 kB
10. Logistic Regression/5. Logistic with multiple predictors.srt
3.0 kB
36. Time Series Analysis and Forecasting/3. Forecasting model creation - Steps.srt
3.0 kB
31. Project Creating CNN model from scratch in Python/5. Project in Python - model results.srt
3.0 kB
7. Linear Regression/22. Heteroscedasticity.srt
2.9 kB
8. Classification Models Data Preparation/3. Importing the dataset into R.srt
2.9 kB
6. Data Preprocessing/5. Importing the dataset into R.srt
2.9 kB
37. Time Series - Preprocessing in Python/8. Time Series - Power Transformation.srt
2.7 kB
10. Logistic Regression/11. Evaluating model performance in Python.srt
2.7 kB
2. Setting up Python and Jupyter Notebook/1. Installing Python and Anaconda.srt
2.7 kB
19. Maximum Margin Classifier/4. Limitations of Maximum Margin Classifier.srt
2.7 kB
32. Project Creating CNN model from scratch/6. Project in R - Validation Performance.srt
2.6 kB
11. Linear Discriminant Analysis (LDA)/2. LDA in Python.srt
2.6 kB
38. Time Series - Important Concepts/1. White Noise.srt
2.6 kB
32. Project Creating CNN model from scratch/4. Project in R - Model Performance.srt
2.6 kB
36. Time Series Analysis and Forecasting/2. Time Series Forecasting - Use cases.srt
2.6 kB
30. Creating CNN model in R/1. CNN on MNIST Fashion Dataset - Model Architecture.srt
2.4 kB
36. Time Series Analysis and Forecasting/1. Introduction.srt
2.2 kB
37. Time Series - Preprocessing in Python/10. Exponential Smoothing.srt
2.1 kB
26. ANN in Python/5. Different ways to create ANN using Keras.srt
2.0 kB
34. Transfer Learning Basics/3. VGG16NET.srt
2.0 kB
15. Simple Classification Tree/2. The Data set for Classification problem.srt
2.0 kB
22. Creating Support Vector Machine Model in Python/8. The Data set for the Classification problem.srt
2.0 kB
22. Creating Support Vector Machine Model in Python/10. Classification model - Standardizing the data.srt
1.9 kB
34. Transfer Learning Basics/2. LeNET.srt
1.9 kB
19. Maximum Margin Classifier/1. Content flow.srt
1.8 kB
42. Bonus Section/1. The final milestone!.srt
1.8 kB
41. Time Series - SARIMA model/3. Stationary time Series.srt
1.7 kB
15. Simple Classification Tree/6. Advantages and Disadvantages of Decision Trees.srt
1.7 kB
7. Linear Regression/1. The Problem Statement.srt
1.7 kB
20. Support Vector Classifier/2. Limitations of Support Vector Classifiers.srt
1.7 kB
42. Bonus Section/2. Congratulations & About your certificate.html
1.6 kB
22. Creating Support Vector Machine Model in Python/1. Regression and Classification Models.srt
810 Bytes
23. Creating Support Vector Machine Model in R/3. More about test-train split.html
559 Bytes
1. Introduction/2. Course Resources.html
370 Bytes
31. Project Creating CNN model from scratch in Python/2. Data for the project.html
232 Bytes
0. Websites you may like/[FCS Forum].url
133 Bytes
6. Data Preprocessing/26. Quiz.html
130 Bytes
0. Websites you may like/[FreeCourseSite.com].url
127 Bytes
0. Websites you may like/[CourseClub.ME].url
122 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>