搜索
[FreeCourseSite.com] Udemy - Machine Learning & Deep Learning in Python & R
磁力链接/BT种子名称
[FreeCourseSite.com] Udemy - Machine Learning & Deep Learning in Python & R
磁力链接/BT种子简介
种子哈希:
92ad725996b751c3257f45ce5da3aff93e706b87
文件大小:
13.23G
已经下载:
860
次
下载速度:
极快
收录时间:
2021-05-21
最近下载:
2024-12-01
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:92AD725996B751C3257F45CE5DA3AFF93E706B87
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
最近搜索
3igu-005
四岁
ays005
tushy lana.rhoades 1080p
新井リマ
untouched 4k
070924-001-1pon
飘飘欲仙
まゆこ
お兄ちゃん、朝までずっとギュッてして!+女未あかね編
2023上海车展抄底
mast-009
the equalizer 3
人气火爆小萝莉淫乱调教啪啪,【爸妈调教女儿】薄纱情趣粉嫩胴
韩国+伦理
the mandalorian s01e07
华语av
dsbtv
atkd-250
推油
thinner
海角社区+妈
银河护卫队h版
【重磅合集】
talia
rdt ぷっくり膨らんだ肉厚マ○コのマン筋を無防備
色气大奶妹
vixen.24.09.
fc2ppv-4364209
tiktok2024
文件列表
27. ANN in R/8. Saving - Restoring Models and Using Callbacks.mp4
226.5 MB
37. Time Series - Preprocessing in Python/3. Time Series - Visualization in Python.mp4
173.2 MB
18. Ensemble technique 3 - Boosting/7. XGBoosting in R.mp4
169.1 MB
26. ANN in Python/9. Building Neural Network for Regression Problem.mp4
163.5 MB
26. ANN in Python/11. Saving - Restoring Models and Using Callbacks.mp4
158.9 MB
23. Creating Support Vector Machine Model in R/4. Classification SVM model using Linear Kernel.mp4
145.9 MB
27. ANN in R/6. Building Regression Model with Functional API.mp4
137.5 MB
27. ANN in R/3. Building,Compiling and Training.mp4
137.1 MB
34. Transfer Learning Basics/6. Project - Transfer Learning - VGG16.mp4
135.4 MB
7. Linear Regression/20. Ridge regression and Lasso in Python.mp4
135.1 MB
25. Neural Networks - Stacking cells to create network/3. Back Propagation.mp4
128.1 MB
38. Time Series - Important Concepts/5. Differencing in Python.mp4
118.5 MB
37. Time Series - Preprocessing in Python/5. Time Series - Feature Engineering in Python.mp4
118.2 MB
27. ANN in R/2. Data Normalization and Test-Train Split.mp4
117.2 MB
5. Introduction to Machine Learning/1. Introduction to Machine Learning.mp4
114.5 MB
37. Time Series - Preprocessing in Python/1. Data Loading in Python.mp4
114.1 MB
23. Creating Support Vector Machine Model in R/8. SVM based Regression Model in R.mp4
111.3 MB
7. Linear Regression/21. Ridge regression and Lasso in R.mp4
108.5 MB
14. Simple Decision Trees/13. Building a Regression Tree in R.mp4
108.3 MB
35. Transfer Learning in R/1. Project - Transfer Learning - VGG16 (Implementation).mp4
106.5 MB
37. Time Series - Preprocessing in Python/7. Time Series - Upsampling and Downsampling in Python.mp4
105.6 MB
6. Data Preprocessing/16. Bi-variate analysis and Variable transformation.mp4
105.3 MB
27. ANN in R/4. Evaluating and Predicting.mp4
104.1 MB
6. Data Preprocessing/8. EDD in R.mp4
101.7 MB
3. Setting up R Studio and R crash course/7. Creating Barplots in R.mp4
101.4 MB
7. Linear Regression/3. Assessing accuracy of predicted coefficients.mp4
96.6 MB
26. ANN in Python/10. Using Functional API for complex architectures.mp4
96.6 MB
18. Ensemble technique 3 - Boosting/5. AdaBoosting in R.mp4
93.0 MB
32. Project Creating CNN model from scratch/1. Project in R - Data Preprocessing.mp4
92.0 MB
24. Introduction - Deep Learning/4. Python - Creating Perceptron model.mp4
90.8 MB
15. Simple Classification Tree/5. Building a classification Tree in R.mp4
89.2 MB
27. ANN in R/5. ANN with NeuralNets Package.mp4
88.5 MB
23. Creating Support Vector Machine Model in R/6. Polynomial Kernel with Hyperparameter Tuning.mp4
87.2 MB
6. Data Preprocessing/25. Correlation Matrix in R.mp4
87.2 MB
3. Setting up R Studio and R crash course/3. Packages in R.mp4
87.0 MB
15. Simple Classification Tree/4. Classification tree in Python Training.mp4
86.7 MB
14. Simple Decision Trees/18. Pruning a Tree in R.mp4
86.1 MB
26. ANN in Python/7. Compiling and Training the Neural Network model.mp4
85.6 MB
17. Ensemble technique 2 - Random Forests/3. Using Grid Search in Python.mp4
84.6 MB
27. ANN in R/7. Complex Architectures using Functional API.mp4
83.4 MB
26. ANN in Python/6. Building the Neural Network using Keras.mp4
83.0 MB
7. Linear Regression/17. Subset selection techniques.mp4
82.9 MB
8. Classification Models Data Preparation/1. The Data and the Data Dictionary.mp4
82.8 MB
8. Classification Models Data Preparation/4. EDD in Python.mp4
81.4 MB
16. Ensemble technique 1 - Bagging/2. Ensemble technique 1 - Bagging in Python.mp4
81.1 MB
7. Linear Regression/15. Test-Train Split in R.mp4
79.3 MB
12. K-Nearest Neighbors classifier/4. K-Nearest Neighbors classifier.mp4
79.1 MB
18. Ensemble technique 3 - Boosting/6. Ensemble technique 3c - XGBoost in Python.mp4
78.6 MB
40. Time Series - ARIMA model/3. ARIMA model in Python.mp4
78.0 MB
11. Linear Discriminant Analysis (LDA)/3. Linear Discriminant Analysis in R.mp4
78.0 MB
12. K-Nearest Neighbors classifier/3. Test-Train Split in R.mp4
77.8 MB
14. Simple Decision Trees/17. Pruning a tree in Python.mp4
77.1 MB
31. Project Creating CNN model from scratch in Python/3. Project - Data Preprocessing in Python.mp4
75.3 MB
30. Creating CNN model in R/3. Creating Model Architecture.mp4
75.1 MB
6. Data Preprocessing/23. Correlation Analysis.mp4
75.1 MB
6. Data Preprocessing/10. Outlier Treatment in Python.mp4
73.7 MB
26. ANN in Python/8. Evaluating performance and Predicting using Keras.mp4
73.3 MB
7. Linear Regression/10. Multiple Linear Regression in Python.mp4
73.1 MB
6. Data Preprocessing/3. The Dataset and the Data Dictionary.mp4
72.6 MB
18. Ensemble technique 3 - Boosting/3. Gradient Boosting in R.mp4
72.4 MB
30. Creating CNN model in R/5. Model Performance.mp4
71.4 MB
28. CNN - Basics/5. Channels.mp4
71.1 MB
22. Creating Support Vector Machine Model in Python/7. SVM based Regression Model in Python.mp4
70.9 MB
30. Creating CNN model in R/2. Data Preprocessing.mp4
70.3 MB
8. Classification Models Data Preparation/5. EDD in R.mp4
69.7 MB
41. Time Series - SARIMA model/2. SARIMA model in Python.mp4
69.5 MB
31. Project Creating CNN model from scratch in Python/4. Project - Training CNN model in Python.mp4
69.2 MB
4. Basics of Statistics/3. Describing data Graphically.mp4
68.6 MB
2. Setting up Python and Jupyter Notebook/3. Opening Jupyter Notebook.mp4
68.4 MB
12. K-Nearest Neighbors classifier/7. K-Nearest Neighbors in R.mp4
68.0 MB
2. Setting up Python and Jupyter Notebook/6. Strings in Python Python Basics.mp4
67.6 MB
22. Creating Support Vector Machine Model in Python/11. SVM Based classification model.mp4
67.2 MB
35. Transfer Learning in R/2. Project - Transfer Learning - VGG16 (Performance).mp4
67.2 MB
37. Time Series - Preprocessing in Python/2. Time Series - Visualization Basics.mp4
66.8 MB
7. Linear Regression/18. Subset selection in R.mp4
66.6 MB
7. Linear Regression/5. Simple Linear Regression in Python.mp4
66.5 MB
36. Time Series Analysis and Forecasting/5. Time Series - Basic Notations.mp4
65.5 MB
7. Linear Regression/11. Multiple Linear Regression in R.srt
65.4 MB
7. Linear Regression/11. Multiple Linear Regression in R.mp4
65.4 MB
25. Neural Networks - Stacking cells to create network/4. Some Important Concepts.mp4
65.2 MB
6. Data Preprocessing/7. EDD in Python.mp4
64.8 MB
26. ANN in Python/12. Hyperparameter Tuning.mp4
63.6 MB
23. Creating Support Vector Machine Model in R/5. Hyperparameter Tuning for Linear Kernel.mp4
63.4 MB
25. Neural Networks - Stacking cells to create network/2. Gradient Descent.mp4
63.3 MB
2. Setting up Python and Jupyter Notebook/7. Lists, Tuples and Directories Python Basics.mp4
63.2 MB
3. Setting up R Studio and R crash course/6. Inputting data part 3 Importing from CSV or Text files.mp4
63.0 MB
38. Time Series - Important Concepts/3. Decomposing Time Series in Python.mp4
62.8 MB
37. Time Series - Preprocessing in Python/4. Time Series - Feature Engineering Basics.mp4
62.4 MB
16. Ensemble technique 1 - Bagging/3. Bagging in R.mp4
61.8 MB
29. Creating CNN model in Python/4. Comparison - Pooling vs Without Pooling in Python.mp4
60.8 MB
22. Creating Support Vector Machine Model in Python/12. Hyper Parameter Tuning.mp4
60.5 MB
39. Time Series - Implementation in Python/1. Test Train Split in Python.mp4
60.2 MB
23. Creating Support Vector Machine Model in R/7. Radial Kernel with Hyperparameter Tuning.mp4
59.4 MB
39. Time Series - Implementation in Python/7. Moving Average model in Python.mp4
59.4 MB
32. Project Creating CNN model from scratch/5. Project in R - Data Augmentation.mp4
59.1 MB
26. ANN in Python/3. Dataset for classification.mp4
58.9 MB
20. Support Vector Classifier/1. Support Vector classifiers.mp4
58.9 MB
7. Linear Regression/8. The F - statistic.mp4
58.7 MB
10. Logistic Regression/12. Predicting probabilities, assigning classes and making Confusion Matrix in R.mp4
58.4 MB
6. Data Preprocessing/18. Variable transformation in R.mp4
58.1 MB
6. Data Preprocessing/24. Correlation Analysis in Python.mp4
58.0 MB
29. Creating CNN model in Python/3. CNN model in Python - Training and results.mp4
57.8 MB
23. Creating Support Vector Machine Model in R/1. Importing Data into R.mp4
56.3 MB
39. Time Series - Implementation in Python/4. Auto Regression Model creation in Python.mp4
56.1 MB
33. Project Data Augmentation for avoiding overfitting/2. Project - Data Augmentation Training and Results.mp4
55.6 MB
28. CNN - Basics/4. Filters and Feature maps.mp4
55.3 MB
10. Logistic Regression/9. Creating Confusion Matrix in Python.mp4
53.7 MB
28. CNN - Basics/1. CNN Introduction.mp4
53.6 MB
23. Creating Support Vector Machine Model in R/2. Test-Train Split.mp4
52.9 MB
39. Time Series - Implementation in Python/5. Auto Regression with Walk Forward validation in Python.mp4
52.0 MB
31. Project Creating CNN model from scratch in Python/1. Project - Introduction.mp4
51.8 MB
10. Logistic Regression/2. Training a Simple Logistic Model in Python.mp4
50.2 MB
8. Classification Models Data Preparation/6. Outlier treatment in Python.mp4
49.6 MB
2. Setting up Python and Jupyter Notebook/9. Working with Pandas Library of Python.mp4
49.2 MB
28. CNN - Basics/6. PoolingLayer.mp4
49.2 MB
17. Ensemble technique 2 - Random Forests/2. Ensemble technique 2 - Random Forests in Python.mp4
49.0 MB
32. Project Creating CNN model from scratch/2. CNN Project in R - Structure and Compile.mp4
48.3 MB
22. Creating Support Vector Machine Model in Python/9. Classification model - Preprocessing.mp4
47.6 MB
15. Simple Classification Tree/3. Classification tree in Python Preprocessing.mp4
47.6 MB
25. Neural Networks - Stacking cells to create network/5. Hyperparameter.mp4
47.6 MB
7. Linear Regression/14. Test train split in Python.mp4
47.1 MB
24. Introduction - Deep Learning/2. Perceptron.mp4
46.9 MB
30. Creating CNN model in R/6. Comparison - Pooling vs Without Pooling in R.mp4
46.8 MB
8. Classification Models Data Preparation/13. Dummy variable creation in R.mp4
46.5 MB
26. ANN in Python/4. Normalization and Test-Train split.mp4
46.4 MB
6. Data Preprocessing/17. Variable transformation and deletion in Python.mp4
46.3 MB
6. Data Preprocessing/22. Dummy variable creation in R.mp4
46.1 MB
14. Simple Decision Trees/11. Splitting Data into Test and Train Set in R.mp4
46.1 MB
2. Setting up Python and Jupyter Notebook/8. Working with Numpy Library of Python.mp4
46.0 MB
14. Simple Decision Trees/2. Understanding a Regression Tree.mp4
45.8 MB
14. Simple Decision Trees/6. Importing the Data set into R.mp4
45.8 MB
7. Linear Regression/4. Assessing Model Accuracy RSE and R squared.mp4
45.7 MB
7. Linear Regression/2. Basic Equations and Ordinary Least Squares (OLS) method.mp4
45.5 MB
39. Time Series - Implementation in Python/2. Naive (Persistence) model in Python.mp4
45.5 MB
29. Creating CNN model in Python/2. CNN model in Python - structure and Compile.mp4
45.3 MB
14. Simple Decision Trees/1. Basics of Decision Trees.mp4
44.7 MB
12. K-Nearest Neighbors classifier/6. K-Nearest Neighbors in Python Part 2.mp4
44.4 MB
3. Setting up R Studio and R crash course/8. Creating Histograms in R.mp4
44.1 MB
7. Linear Regression/12. Test-train split.mp4
43.9 MB
13. Comparing results from 3 models/1. Understanding the results of classification models.mp4
43.7 MB
33. Project Data Augmentation for avoiding overfitting/1. Project - Data Augmentation Preprocessing.mp4
43.4 MB
40. Time Series - ARIMA model/1. ACF and PACF.mp4
43.2 MB
11. Linear Discriminant Analysis (LDA)/1. Linear Discriminant Analysis.mp4
42.9 MB
2. Setting up Python and Jupyter Notebook/4. Introduction to Jupyter.mp4
42.9 MB
7. Linear Regression/6. Simple Linear Regression in R.mp4
42.8 MB
3. Setting up R Studio and R crash course/4. Inputting data part 1 Inbuilt datasets of R.mp4
42.7 MB
29. Creating CNN model in Python/1. CNN model in Python - Preprocessing.mp4
42.6 MB
25. Neural Networks - Stacking cells to create network/1. Basic Terminologies.mp4
42.4 MB
2. Setting up Python and Jupyter Notebook/10. Working with Seaborn Library of Python.mp4
42.3 MB
21. Support Vector Machines/1. Kernel Based Support Vector Machines.mp4
42.1 MB
18. Ensemble technique 3 - Boosting/2. Ensemble technique 3a - Boosting in Python.mp4
41.8 MB
5. Introduction to Machine Learning/2. Building a Machine Learning Model.mp4
41.4 MB
12. K-Nearest Neighbors classifier/1. Test-Train Split.mp4
41.2 MB
41. Time Series - SARIMA model/1. SARIMA model.mp4
40.9 MB
3. Setting up R Studio and R crash course/2. Basics of R and R studio.mp4
40.7 MB
37. Time Series - Preprocessing in Python/9. Moving Average.mp4
40.6 MB
4. Basics of Statistics/4. Measures of Centers.mp4
40.4 MB
22. Creating Support Vector Machine Model in Python/6. Standardizing the data.mp4
40.3 MB
8. Classification Models Data Preparation/11. Variable transformation in R.mp4
39.9 MB
14. Simple Decision Trees/4. The Data set for this part.mp4
39.1 MB
12. K-Nearest Neighbors classifier/5. K-Nearest Neighbors in Python Part 1.mp4
39.0 MB
22. Creating Support Vector Machine Model in Python/14. Radial Kernel with Hyperparameter Tuning.mp4
39.0 MB
22. Creating Support Vector Machine Model in Python/2. The Data set for the Regression problem.mp4
39.0 MB
6. Data Preprocessing/20. Dummy variable creation Handling qualitative data.mp4
38.6 MB
3. Setting up R Studio and R crash course/1. Installing R and R studio.mp4
37.5 MB
10. Logistic Regression/10. Evaluating performance of model.mp4
36.9 MB
24. Introduction - Deep Learning/3. Activation Functions.mp4
36.3 MB
36. Time Series Analysis and Forecasting/4. Forecasting model creation - Steps 1 (Goal).mp4
36.2 MB
7. Linear Regression/7. Multiple Linear Regression.mp4
36.0 MB
7. Linear Regression/19. Shrinkage methods Ridge and Lasso.mp4
35.0 MB
12. K-Nearest Neighbors classifier/2. Test-Train Split in Python.mp4
34.7 MB
10. Logistic Regression/1. Logistic Regression.mp4
34.5 MB
38. Time Series - Important Concepts/4. Differencing.mp4
33.9 MB
30. Creating CNN model in R/4. Compiling and training.mp4
33.8 MB
40. Time Series - ARIMA model/4. ARIMA model with Walk Forward Validation in Python.mp4
33.7 MB
28. CNN - Basics/3. Padding.mp4
33.2 MB
6. Data Preprocessing/11. Outlier Treatment in R.mp4
32.2 MB
17. Ensemble technique 2 - Random Forests/4. Random Forest in R.mp4
32.2 MB
18. Ensemble technique 3 - Boosting/1. Boosting.mp4
32.1 MB
18. Ensemble technique 3 - Boosting/4. Ensemble technique 3b - AdaBoost in Python.mp4
32.0 MB
34. Transfer Learning Basics/5. Transfer Learning.mp4
31.4 MB
19. Maximum Margin Classifier/2. The Concept of a Hyperplane.mp4
30.8 MB
1. Introduction/1. Introduction.mp4
30.8 MB
8. Classification Models Data Preparation/10. Variable transformation and Deletion in Python.mp4
30.7 MB
24. Introduction - Deep Learning/1. Introduction to Neural Networks and Course flow.mp4
30.5 MB
15. Simple Classification Tree/1. Classification tree.mp4
29.6 MB
16. Ensemble technique 1 - Bagging/1. Ensemble technique 1 - Bagging.mp4
29.5 MB
6. Data Preprocessing/4. Importing Data in Python.mp4
29.2 MB
10. Logistic Regression/4. Result of Simple Logistic Regression.mp4
28.2 MB
6. Data Preprocessing/21. Dummy variable creation in Python.mp4
27.8 MB
8. Classification Models Data Preparation/12. Dummy variable creation in Python.mp4
27.7 MB
10. Logistic Regression/6. Training multiple predictor Logistic model in Python.mp4
27.5 MB
6. Data Preprocessing/14. Missing Value imputation in R.mp4
27.3 MB
36. Time Series Analysis and Forecasting/2. Time Series Forecasting - Use cases.mp4
27.2 MB
14. Simple Decision Trees/5. Importing the Data set into Python.mp4
27.1 MB
22. Creating Support Vector Machine Model in Python/3. Importing data for regression model.mp4
27.1 MB
10. Logistic Regression/3. Training a Simple Logistic model in R.mp4
26.8 MB
3. Setting up R Studio and R crash course/5. Inputting data part 2 Manual data entry.mp4
26.8 MB
8. Classification Models Data Preparation/7. Outlier Treatment in R.mp4
26.6 MB
7. Linear Regression/13. Bias Variance trade-off.mp4
26.3 MB
6. Data Preprocessing/12. Missing Value Imputation.mp4
26.2 MB
14. Simple Decision Trees/8. Dummy Variable creation in Python.mp4
26.2 MB
14. Simple Decision Trees/10. Test-Train split in Python.mp4
26.1 MB
22. Creating Support Vector Machine Model in Python/5. Test-Train Split.mp4
26.1 MB
32. Project Creating CNN model from scratch/3. Project in R - Training.mp4
25.8 MB
6. Data Preprocessing/9. Outlier Treatment.mp4
25.7 MB
6. Data Preprocessing/6. Univariate analysis and EDD.mp4
25.4 MB
39. Time Series - Implementation in Python/6. Moving Average model -Basics.mp4
25.3 MB
32. Project Creating CNN model from scratch/6. Project in R - Validation Performance.mp4
24.8 MB
6. Data Preprocessing/13. Missing Value Imputation in Python.mp4
24.6 MB
32. Project Creating CNN model from scratch/4. Project in R - Model Performance.mp4
24.3 MB
22. Creating Support Vector Machine Model in Python/13. Polynomial Kernel with Hyperparameter Tuning.mp4
24.0 MB
4. Basics of Statistics/5. Measures of Dispersion.mp4
24.0 MB
27. ANN in R/1. Installing Keras and Tensorflow.mp4
23.9 MB
8. Classification Models Data Preparation/8. Missing Value Imputation in Python.mp4
23.7 MB
7. Linear Regression/9. Interpreting results of Categorical variables.mp4
23.6 MB
19. Maximum Margin Classifier/3. Maximum Margin Classifier.mp4
23.6 MB
6. Data Preprocessing/1. Gathering Business Knowledge.mp4
23.4 MB
13. Comparing results from 3 models/2. Summary of the three models.mp4
23.3 MB
8. Classification Models Data Preparation/2. Data Import in Python.mp4
23.1 MB
4. Basics of Statistics/1. Types of Data.mp4
22.8 MB
14. Simple Decision Trees/15. Plotting decision tree in Python.mp4
22.5 MB
40. Time Series - ARIMA model/2. ARIMA model - Basics.mp4
22.4 MB
34. Transfer Learning Basics/4. GoogLeNet.mp4
22.4 MB
38. Time Series - Important Concepts/2. Random Walk.mp4
22.2 MB
10. Logistic Regression/8. Confusion Matrix.mp4
22.1 MB
31. Project Creating CNN model from scratch in Python/5. Project in Python - model results.mp4
22.1 MB
34. Transfer Learning Basics/1. ILSVRC.mp4
21.9 MB
2. Setting up Python and Jupyter Notebook/2. This is a milestone!.mp4
21.7 MB
6. Data Preprocessing/2. Data Exploration.mp4
21.5 MB
9. The Three classification models/1. Three Classifiers and the problem statement.mp4
21.3 MB
6. Data Preprocessing/19. Non-usable variables.mp4
21.2 MB
26. ANN in Python/2. Installing Tensorflow and Keras.mp4
21.0 MB
8. Classification Models Data Preparation/9. Missing Value imputation in R.mp4
20.0 MB
15. Simple Classification Tree/2. The Data set for Classification problem.mp4
19.5 MB
22. Creating Support Vector Machine Model in Python/8. The Data set for the Classification problem.mp4
19.4 MB
14. Simple Decision Trees/16. Pruning a tree.mp4
19.4 MB
17. Ensemble technique 2 - Random Forests/1. Ensemble technique 2 - Random Forests.mp4
19.1 MB
14. Simple Decision Trees/7. Missing value treatment in Python.mp4
18.8 MB
14. Simple Decision Trees/12. Creating Decision tree in Python.mp4
18.7 MB
6. Data Preprocessing/15. Seasonality in Data.mp4
17.8 MB
37. Time Series - Preprocessing in Python/6. Time Series - Upsampling and Downsampling.mp4
17.8 MB
9. The Three classification models/2. Why can't we use Linear Regression.mp4
17.8 MB
39. Time Series - Implementation in Python/3. Auto Regression Model - Basics.mp4
17.7 MB
28. CNN - Basics/2. Stride.mp4
17.4 MB
7. Linear Regression/16. Regression models other than OLS.mp4
17.3 MB
14. Simple Decision Trees/14. Evaluating model performance in Python.mp4
17.2 MB
2. Setting up Python and Jupyter Notebook/1. Installing Python and Anaconda.mp4
17.1 MB
10. Logistic Regression/7. Training multiple predictor Logistic model in R.mp4
16.6 MB
10. Logistic Regression/7. Training multiple predictor Logistic model in R.srt
16.2 MB
14. Simple Decision Trees/9. Dependent- Independent Data split in Python.mp4
15.9 MB
22. Creating Support Vector Machine Model in Python/4. X-y Split.mp4
15.9 MB
26. ANN in Python/1. Keras and Tensorflow.mp4
15.6 MB
37. Time Series - Preprocessing in Python/8. Time Series - Power Transformation.mp4
15.6 MB
7. Linear Regression/22. Heteroscedasticity.mp4
15.2 MB
14. Simple Decision Trees/3. The stopping criteria for controlling tree growth.mp4
14.6 MB
8. Classification Models Data Preparation/3. Importing the dataset into R.mp4
14.1 MB
6. Data Preprocessing/5. Importing the dataset into R.mp4
13.7 MB
2. Setting up Python and Jupyter Notebook/5. Arithmetic operators in Python Python Basics.mp4
13.4 MB
36. Time Series Analysis and Forecasting/1. Introduction.mp4
12.9 MB
42. Bonus Section/1. The final milestone!.mp4
12.4 MB
11. Linear Discriminant Analysis (LDA)/2. LDA in Python.mp4
12.0 MB
38. Time Series - Important Concepts/1. White Noise.mp4
11.9 MB
4. Basics of Statistics/2. Types of Statistics.mp4
11.5 MB
26. ANN in Python/5. Different ways to create ANN using Keras.mp4
11.3 MB
20. Support Vector Classifier/2. Limitations of Support Vector Classifiers.mp4
11.3 MB
19. Maximum Margin Classifier/4. Limitations of Maximum Margin Classifier.mp4
11.1 MB
34. Transfer Learning Basics/3. VGG16NET.mp4
10.9 MB
36. Time Series Analysis and Forecasting/3. Forecasting model creation - Steps.mp4
10.6 MB
22. Creating Support Vector Machine Model in Python/10. Classification model - Standardizing the data.mp4
10.2 MB
7. Linear Regression/1. The Problem Statement.mp4
9.8 MB
10. Logistic Regression/11. Evaluating model performance in Python.mp4
9.5 MB
19. Maximum Margin Classifier/1. Content flow.mp4
9.1 MB
10. Logistic Regression/5. Logistic with multiple predictors.mp4
8.9 MB
37. Time Series - Preprocessing in Python/10. Exponential Smoothing.mp4
8.8 MB
30. Creating CNN model in R/1. CNN on MNIST Fashion Dataset - Model Architecture.mp4
7.7 MB
34. Transfer Learning Basics/2. LeNET.mp4
7.3 MB
15. Simple Classification Tree/6. Advantages and Disadvantages of Decision Trees.mp4
7.2 MB
41. Time Series - SARIMA model/3. Stationary time Series.mp4
5.9 MB
22. Creating Support Vector Machine Model in Python/1. Regression and Classification Models.mp4
4.2 MB
37. Time Series - Preprocessing in Python/3. Time Series - Visualization in Python.srt
29.6 kB
25. Neural Networks - Stacking cells to create network/3. Back Propagation.srt
25.4 kB
26. ANN in Python/9. Building Neural Network for Regression Problem.srt
24.3 kB
27. ANN in R/8. Saving - Restoring Models and Using Callbacks.srt
21.9 kB
7. Linear Regression/20. Ridge regression and Lasso in Python.srt
21.4 kB
26. ANN in Python/11. Saving - Restoring Models and Using Callbacks.srt
21.3 kB
34. Transfer Learning Basics/6. Project - Transfer Learning - VGG16.srt
20.9 kB
2. Setting up Python and Jupyter Notebook/7. Lists, Tuples and Directories Python Basics.srt
20.6 kB
5. Introduction to Machine Learning/1. Introduction to Machine Learning.srt
20.2 kB
6. Data Preprocessing/16. Bi-variate analysis and Variable transformation.srt
19.8 kB
37. Time Series - Preprocessing in Python/5. Time Series - Feature Engineering in Python.srt
19.7 kB
18. Ensemble technique 3 - Boosting/7. XGBoosting in R.srt
18.9 kB
2. Setting up Python and Jupyter Notebook/6. Strings in Python Python Basics.srt
18.4 kB
8. Classification Models Data Preparation/4. EDD in Python.srt
18.2 kB
23. Creating Support Vector Machine Model in R/4. Classification SVM model using Linear Kernel.srt
18.2 kB
37. Time Series - Preprocessing in Python/1. Data Loading in Python.srt
18.1 kB
37. Time Series - Preprocessing in Python/7. Time Series - Upsampling and Downsampling in Python.srt
18.0 kB
7. Linear Regression/3. Assessing accuracy of predicted coefficients.srt
17.8 kB
27. ANN in R/3. Building,Compiling and Training.srt
16.7 kB
38. Time Series - Important Concepts/5. Differencing in Python.srt
16.1 kB
24. Introduction - Deep Learning/4. Python - Creating Perceptron model.srt
16.1 kB
14. Simple Decision Trees/13. Building a Regression Tree in R.srt
15.9 kB
3. Setting up R Studio and R crash course/7. Creating Barplots in R.srt
15.4 kB
15. Simple Classification Tree/4. Classification tree in Python Training.srt
14.9 kB
40. Time Series - ARIMA model/3. ARIMA model in Python.srt
14.6 kB
7. Linear Regression/10. Multiple Linear Regression in Python.srt
14.6 kB
35. Transfer Learning in R/1. Project - Transfer Learning - VGG16 (Implementation).srt
14.5 kB
6. Data Preprocessing/10. Outlier Treatment in Python.srt
14.5 kB
17. Ensemble technique 2 - Random Forests/3. Using Grid Search in Python.srt
14.0 kB
7. Linear Regression/17. Subset selection techniques.srt
14.0 kB
25. Neural Networks - Stacking cells to create network/4. Some Important Concepts.srt
14.0 kB
27. ANN in R/6. Building Regression Model with Functional API.srt
13.9 kB
2. Setting up Python and Jupyter Notebook/4. Introduction to Jupyter.srt
13.5 kB
6. Data Preprocessing/8. EDD in R.srt
13.5 kB
7. Linear Regression/5. Simple Linear Regression in Python.srt
13.4 kB
26. ANN in Python/10. Using Functional API for complex architectures.srt
13.3 kB
26. ANN in Python/6. Building the Neural Network using Keras.srt
13.2 kB
27. ANN in R/2. Data Normalization and Test-Train Split.srt
13.2 kB
4. Basics of Statistics/3. Describing data Graphically.srt
13.1 kB
25. Neural Networks - Stacking cells to create network/2. Gradient Descent.srt
13.0 kB
22. Creating Support Vector Machine Model in Python/11. SVM Based classification model.srt
12.7 kB
7. Linear Regression/21. Ridge regression and Lasso in R.srt
12.7 kB
16. Ensemble technique 1 - Bagging/2. Ensemble technique 1 - Bagging in Python.srt
12.6 kB
3. Setting up R Studio and R crash course/3. Packages in R.srt
12.5 kB
23. Creating Support Vector Machine Model in R/8. SVM based Regression Model in R.srt
12.3 kB
39. Time Series - Implementation in Python/1. Test Train Split in Python.srt
12.3 kB
3. Setting up R Studio and R crash course/2. Basics of R and R studio.srt
12.3 kB
14. Simple Decision Trees/2. Understanding a Regression Tree.srt
12.2 kB
6. Data Preprocessing/23. Correlation Analysis.srt
12.2 kB
11. Linear Discriminant Analysis (LDA)/1. Linear Discriminant Analysis.srt
12.2 kB
32. Project Creating CNN model from scratch/1. Project in R - Data Preprocessing.srt
12.2 kB
2. Setting up Python and Jupyter Notebook/8. Working with Numpy Library of Python.srt
12.1 kB
37. Time Series - Preprocessing in Python/4. Time Series - Feature Engineering Basics.srt
12.0 kB
6. Data Preprocessing/7. EDD in Python.srt
11.9 kB
41. Time Series - SARIMA model/2. SARIMA model in Python.srt
11.9 kB
23. Creating Support Vector Machine Model in R/6. Polynomial Kernel with Hyperparameter Tuning.srt
11.8 kB
18. Ensemble technique 3 - Boosting/6. Ensemble technique 3c - XGBoost in Python.srt
11.7 kB
8. Classification Models Data Preparation/5. EDD in R.srt
11.6 kB
14. Simple Decision Trees/1. Basics of Decision Trees.srt
11.5 kB
7. Linear Regression/12. Test-train split.srt
11.1 kB
20. Support Vector Classifier/1. Support Vector classifiers.srt
11.1 kB
10. Logistic Regression/9. Creating Confusion Matrix in Python.srt
11.1 kB
25. Neural Networks - Stacking cells to create network/1. Basic Terminologies.srt
11.1 kB
22. Creating Support Vector Machine Model in Python/12. Hyper Parameter Tuning.srt
11.0 kB
14. Simple Decision Trees/17. Pruning a tree in Python.srt
11.0 kB
10. Logistic Regression/2. Training a Simple Logistic Model in Python.srt
10.9 kB
12. K-Nearest Neighbors classifier/1. Test-Train Split.srt
10.8 kB
18. Ensemble technique 3 - Boosting/5. AdaBoosting in R.srt
10.8 kB
22. Creating Support Vector Machine Model in Python/7. SVM based Regression Model in Python.srt
10.7 kB
7. Linear Regression/2. Basic Equations and Ordinary Least Squares (OLS) method.srt
10.7 kB
38. Time Series - Important Concepts/3. Decomposing Time Series in Python.srt
10.7 kB
37. Time Series - Preprocessing in Python/2. Time Series - Visualization Basics.srt
10.5 kB
5. Introduction to Machine Learning/2. Building a Machine Learning Model.srt
10.5 kB
11. Linear Discriminant Analysis (LDA)/3. Linear Discriminant Analysis in R.srt
10.5 kB
24. Introduction - Deep Learning/2. Perceptron.srt
10.5 kB
39. Time Series - Implementation in Python/4. Auto Regression Model creation in Python.srt
10.4 kB
15. Simple Classification Tree/5. Building a classification Tree in R.srt
10.4 kB
2. Setting up Python and Jupyter Notebook/9. Working with Pandas Library of Python.srt
10.4 kB
27. ANN in R/4. Evaluating and Predicting.srt
10.4 kB
26. ANN in Python/7. Compiling and Training the Neural Network model.srt
10.3 kB
12. K-Nearest Neighbors classifier/4. K-Nearest Neighbors classifier.srt
10.2 kB
6. Data Preprocessing/18. Variable transformation in R.srt
10.2 kB
2. Setting up Python and Jupyter Notebook/3. Opening Jupyter Notebook.srt
10.1 kB
26. ANN in Python/12. Hyperparameter Tuning.srt
10.0 kB
12. K-Nearest Neighbors classifier/3. Test-Train Split in R.srt
10.0 kB
26. ANN in Python/8. Evaluating performance and Predicting using Keras.srt
10.0 kB
7. Linear Regression/8. The F - statistic.srt
9.9 kB
14. Simple Decision Trees/18. Pruning a Tree in R.srt
9.9 kB
36. Time Series Analysis and Forecasting/5. Time Series - Basic Notations.srt
9.9 kB
39. Time Series - Implementation in Python/7. Moving Average model in Python.srt
9.8 kB
6. Data Preprocessing/25. Correlation Matrix in R.srt
9.8 kB
8. Classification Models Data Preparation/6. Outlier treatment in Python.srt
9.8 kB
10. Logistic Regression/10. Evaluating performance of model.srt
9.6 kB
7. Linear Regression/15. Test-Train Split in R.srt
9.6 kB
8. Classification Models Data Preparation/1. The Data and the Data Dictionary.srt
9.5 kB
25. Neural Networks - Stacking cells to create network/5. Hyperparameter.srt
9.5 kB
7. Linear Regression/6. Simple Linear Regression in R.srt
9.5 kB
31. Project Creating CNN model from scratch in Python/3. Project - Data Preprocessing in Python.srt
9.4 kB
31. Project Creating CNN model from scratch in Python/4. Project - Training CNN model in Python.srt
9.4 kB
6. Data Preprocessing/17. Variable transformation and deletion in Python.srt
9.2 kB
7. Linear Regression/19. Shrinkage methods Ridge and Lasso.srt
9.2 kB
12. K-Nearest Neighbors classifier/7. K-Nearest Neighbors in R.srt
9.2 kB
15. Simple Classification Tree/3. Classification tree in Python Preprocessing.srt
9.1 kB
22. Creating Support Vector Machine Model in Python/9. Classification model - Preprocessing.srt
9.1 kB
23. Creating Support Vector Machine Model in R/1. Importing Data into R.srt
9.1 kB
27. ANN in R/7. Complex Architectures using Functional API.srt
9.1 kB
35. Transfer Learning in R/2. Project - Transfer Learning - VGG16 (Performance).srt
9.0 kB
39. Time Series - Implementation in Python/5. Auto Regression with Walk Forward validation in Python.srt
9.0 kB
6. Data Preprocessing/3. The Dataset and the Data Dictionary.srt
9.0 kB
7. Linear Regression/14. Test train split in Python.srt
8.9 kB
40. Time Series - ARIMA model/1. ACF and PACF.srt
8.9 kB
10. Logistic Regression/1. Logistic Regression.srt
8.8 kB
18. Ensemble technique 3 - Boosting/3. Gradient Boosting in R.srt
8.8 kB
27. ANN in R/5. ANN with NeuralNets Package.srt
8.6 kB
7. Linear Regression/4. Assessing Model Accuracy RSE and R squared.srt
8.6 kB
2. Setting up Python and Jupyter Notebook/10. Working with Seaborn Library of Python.srt
8.4 kB
7. Linear Regression/18. Subset selection in R.srt
8.4 kB
39. Time Series - Implementation in Python/2. Naive (Persistence) model in Python.srt
8.4 kB
24. Introduction - Deep Learning/3. Activation Functions.srt
8.4 kB
28. CNN - Basics/1. CNN Introduction.srt
8.3 kB
26. ANN in Python/3. Dataset for classification.srt
8.1 kB
41. Time Series - SARIMA model/1. SARIMA model.srt
8.1 kB
4. Basics of Statistics/4. Measures of Centers.srt
8.1 kB
32. Project Creating CNN model from scratch/5. Project in R - Data Augmentation.srt
8.0 kB
18. Ensemble technique 3 - Boosting/1. Boosting.srt
8.0 kB
37. Time Series - Preprocessing in Python/9. Moving Average.srt
8.0 kB
28. CNN - Basics/4. Filters and Feature maps.srt
7.8 kB
13. Comparing results from 3 models/1. Understanding the results of classification models.srt
7.7 kB
31. Project Creating CNN model from scratch in Python/1. Project - Introduction.srt
7.7 kB
30. Creating CNN model in R/2. Data Preprocessing.srt
7.6 kB
10. Logistic Regression/12. Predicting probabilities, assigning classes and making Confusion Matrix in R.srt
7.6 kB
12. K-Nearest Neighbors classifier/2. Test-Train Split in Python.srt
7.6 kB
16. Ensemble technique 1 - Bagging/1. Ensemble technique 1 - Bagging.srt
7.4 kB
29. Creating CNN model in Python/2. CNN model in Python - structure and Compile.srt
7.4 kB
22. Creating Support Vector Machine Model in Python/14. Radial Kernel with Hyperparameter Tuning.srt
7.4 kB
33. Project Data Augmentation for avoiding overfitting/1. Project - Data Augmentation Preprocessing.srt
7.4 kB
14. Simple Decision Trees/6. Importing the Data set into R.srt
7.4 kB
23. Creating Support Vector Machine Model in R/7. Radial Kernel with Hyperparameter Tuning.srt
7.4 kB
16. Ensemble technique 1 - Bagging/3. Bagging in R.srt
7.3 kB
3. Setting up R Studio and R crash course/6. Inputting data part 3 Importing from CSV or Text files.srt
7.2 kB
6. Data Preprocessing/24. Correlation Analysis in Python.srt
7.1 kB
7. Linear Regression/13. Bias Variance trade-off.srt
7.1 kB
23. Creating Support Vector Machine Model in R/5. Hyperparameter Tuning for Linear Kernel.srt
7.1 kB
12. K-Nearest Neighbors classifier/6. K-Nearest Neighbors in Python Part 2.srt
7.1 kB
33. Project Data Augmentation for avoiding overfitting/2. Project - Data Augmentation Training and Results.srt
7.0 kB
3. Setting up R Studio and R crash course/1. Installing R and R studio.srt
7.0 kB
8. Classification Models Data Preparation/11. Variable transformation in R.srt
6.9 kB
15. Simple Classification Tree/1. Classification tree.srt
6.9 kB
21. Support Vector Machines/1. Kernel Based Support Vector Machines.srt
6.9 kB
17. Ensemble technique 2 - Random Forests/2. Ensemble technique 2 - Random Forests in Python.srt
6.9 kB
38. Time Series - Important Concepts/4. Differencing.srt
6.9 kB
30. Creating CNN model in R/5. Model Performance.srt
6.7 kB
22. Creating Support Vector Machine Model in Python/6. Standardizing the data.srt
6.7 kB
8. Classification Models Data Preparation/13. Dummy variable creation in R.srt
6.6 kB
6. Data Preprocessing/4. Importing Data in Python.srt
6.6 kB
36. Time Series Analysis and Forecasting/4. Forecasting model creation - Steps 1 (Goal).srt
6.6 kB
29. Creating CNN model in Python/3. CNN model in Python - Training and results.srt
6.6 kB
7. Linear Regression/7. Multiple Linear Regression.srt
6.5 kB
30. Creating CNN model in R/3. Creating Model Architecture.srt
6.4 kB
28. CNN - Basics/5. Channels.srt
6.4 kB
6. Data Preprocessing/21. Dummy variable creation in Python.srt
6.4 kB
40. Time Series - ARIMA model/4. ARIMA model with Walk Forward Validation in Python.srt
6.4 kB
14. Simple Decision Trees/10. Test-Train split in Python.srt
6.3 kB
22. Creating Support Vector Machine Model in Python/5. Test-Train Split.srt
6.3 kB
8. Classification Models Data Preparation/12. Dummy variable creation in Python.srt
6.3 kB
3. Setting up R Studio and R crash course/8. Creating Histograms in R.srt
6.3 kB
26. ANN in Python/4. Normalization and Test-Train split.srt
6.3 kB
6. Data Preprocessing/22. Dummy variable creation in R.srt
6.2 kB
23. Creating Support Vector Machine Model in R/2. Test-Train Split.srt
6.2 kB
6. Data Preprocessing/19. Non-usable variables.srt
6.2 kB
10. Logistic Regression/6. Training multiple predictor Logistic model in Python.srt
6.2 kB
13. Comparing results from 3 models/2. Summary of the three models.srt
6.1 kB
7. Linear Regression/9. Interpreting results of Categorical variables.srt
6.1 kB
10. Logistic Regression/4. Result of Simple Logistic Regression.srt
6.0 kB
14. Simple Decision Trees/5. Importing the Data set into Python.srt
6.0 kB
22. Creating Support Vector Machine Model in Python/3. Importing data for regression model.srt
6.0 kB
28. CNN - Basics/6. PoolingLayer.srt
6.0 kB
14. Simple Decision Trees/11. Splitting Data into Test and Train Set in R.srt
6.0 kB
12. K-Nearest Neighbors classifier/5. K-Nearest Neighbors in Python Part 1.srt
6.0 kB
6. Data Preprocessing/20. Dummy variable creation Handling qualitative data.srt
5.9 kB
29. Creating CNN model in Python/1. CNN model in Python - Preprocessing.srt
5.9 kB
29. Creating CNN model in Python/4. Comparison - Pooling vs Without Pooling in Python.srt
5.7 kB
32. Project Creating CNN model from scratch/2. CNN Project in R - Structure and Compile.srt
5.7 kB
9. The Three classification models/2. Why can't we use Linear Regression.srt
5.6 kB
34. Transfer Learning Basics/5. Transfer Learning.srt
5.6 kB
18. Ensemble technique 3 - Boosting/2. Ensemble technique 3a - Boosting in Python.srt
5.6 kB
14. Simple Decision Trees/8. Dummy Variable creation in Python.srt
5.5 kB
19. Maximum Margin Classifier/2. The Concept of a Hyperplane.srt
5.4 kB
14. Simple Decision Trees/15. Plotting decision tree in Python.srt
5.4 kB
8. Classification Models Data Preparation/2. Data Import in Python.srt
5.4 kB
4. Basics of Statistics/5. Measures of Dispersion.srt
5.4 kB
40. Time Series - ARIMA model/2. ARIMA model - Basics.srt
5.2 kB
6. Data Preprocessing/9. Outlier Treatment.srt
5.2 kB
4. Basics of Statistics/1. Types of Data.srt
5.2 kB
39. Time Series - Implementation in Python/6. Moving Average model -Basics.srt
5.1 kB
28. CNN - Basics/3. Padding.srt
5.1 kB
10. Logistic Regression/8. Confusion Matrix.srt
5.0 kB
6. Data Preprocessing/11. Outlier Treatment in R.srt
5.0 kB
8. Classification Models Data Preparation/8. Missing Value Imputation in Python.srt
4.9 kB
8. Classification Models Data Preparation/7. Outlier Treatment in R.srt
4.9 kB
6. Data Preprocessing/13. Missing Value Imputation in Python.srt
4.9 kB
24. Introduction - Deep Learning/1. Introduction to Neural Networks and Course flow.srt
4.9 kB
17. Ensemble technique 2 - Random Forests/4. Random Forest in R.srt
4.9 kB
7. Linear Regression/16. Regression models other than OLS.srt
4.9 kB
14. Simple Decision Trees/14. Evaluating model performance in Python.srt
4.8 kB
3. Setting up R Studio and R crash course/4. Inputting data part 1 Inbuilt datasets of R.srt
4.8 kB
34. Transfer Learning Basics/1. ILSVRC.srt
4.7 kB
17. Ensemble technique 2 - Random Forests/1. Ensemble technique 2 - Random Forests.srt
4.7 kB
38. Time Series - Important Concepts/2. Random Walk.srt
4.7 kB
14. Simple Decision Trees/16. Pruning a tree.srt
4.6 kB
1. Introduction/1. Introduction.srt
4.6 kB
22. Creating Support Vector Machine Model in Python/13. Polynomial Kernel with Hyperparameter Tuning.srt
4.6 kB
2. Setting up Python and Jupyter Notebook/5. Arithmetic operators in Python Python Basics.srt
4.5 kB
18. Ensemble technique 3 - Boosting/4. Ensemble technique 3b - AdaBoost in Python.srt
4.5 kB
8. Classification Models Data Preparation/10. Variable transformation and Deletion in Python.srt
4.4 kB
14. Simple Decision Trees/12. Creating Decision tree in Python.srt
4.4 kB
37. Time Series - Preprocessing in Python/6. Time Series - Upsampling and Downsampling.srt
4.4 kB
14. Simple Decision Trees/9. Dependent- Independent Data split in Python.srt
4.3 kB
22. Creating Support Vector Machine Model in Python/4. X-y Split.srt
4.3 kB
6. Data Preprocessing/12. Missing Value Imputation.srt
4.3 kB
10. Logistic Regression/3. Training a Simple Logistic model in R.srt
4.3 kB
30. Creating CNN model in R/6. Comparison - Pooling vs Without Pooling in R.srt
4.3 kB
6. Data Preprocessing/1. Gathering Business Knowledge.srt
4.2 kB
26. ANN in Python/2. Installing Tensorflow and Keras.srt
4.2 kB
8. Classification Models Data Preparation/9. Missing Value imputation in R.srt
4.2 kB
6. Data Preprocessing/14. Missing Value imputation in R.srt
4.2 kB
6. Data Preprocessing/6. Univariate analysis and EDD.srt
4.1 kB
6. Data Preprocessing/15. Seasonality in Data.srt
4.1 kB
9. The Three classification models/1. Three Classifiers and the problem statement.srt
4.0 kB
6. Data Preprocessing/2. Data Exploration.srt
4.0 kB
26. ANN in Python/1. Keras and Tensorflow.srt
3.9 kB
2. Setting up Python and Jupyter Notebook/2. This is a milestone!.srt
3.9 kB
14. Simple Decision Trees/7. Missing value treatment in Python.srt
3.8 kB
39. Time Series - Implementation in Python/3. Auto Regression Model - Basics.srt
3.7 kB
14. Simple Decision Trees/3. The stopping criteria for controlling tree growth.srt
3.6 kB
19. Maximum Margin Classifier/3. Maximum Margin Classifier.srt
3.5 kB
3. Setting up R Studio and R crash course/5. Inputting data part 2 Manual data entry.srt
3.4 kB
14. Simple Decision Trees/4. The Data set for this part.srt
3.4 kB
22. Creating Support Vector Machine Model in Python/2. The Data set for the Regression problem.srt
3.4 kB
34. Transfer Learning Basics/4. GoogLeNet.srt
3.3 kB
4. Basics of Statistics/2. Types of Statistics.srt
3.2 kB
32. Project Creating CNN model from scratch/3. Project in R - Training.srt
3.2 kB
30. Creating CNN model in R/4. Compiling and training.srt
3.2 kB
28. CNN - Basics/2. Stride.srt
3.1 kB
27. ANN in R/1. Installing Keras and Tensorflow.srt
3.1 kB
10. Logistic Regression/5. Logistic with multiple predictors.srt
3.0 kB
36. Time Series Analysis and Forecasting/3. Forecasting model creation - Steps.srt
3.0 kB
31. Project Creating CNN model from scratch in Python/5. Project in Python - model results.srt
3.0 kB
7. Linear Regression/22. Heteroscedasticity.srt
2.9 kB
8. Classification Models Data Preparation/3. Importing the dataset into R.srt
2.9 kB
6. Data Preprocessing/5. Importing the dataset into R.srt
2.9 kB
37. Time Series - Preprocessing in Python/8. Time Series - Power Transformation.srt
2.7 kB
10. Logistic Regression/11. Evaluating model performance in Python.srt
2.7 kB
2. Setting up Python and Jupyter Notebook/1. Installing Python and Anaconda.srt
2.7 kB
19. Maximum Margin Classifier/4. Limitations of Maximum Margin Classifier.srt
2.7 kB
32. Project Creating CNN model from scratch/6. Project in R - Validation Performance.srt
2.6 kB
11. Linear Discriminant Analysis (LDA)/2. LDA in Python.srt
2.6 kB
38. Time Series - Important Concepts/1. White Noise.srt
2.6 kB
32. Project Creating CNN model from scratch/4. Project in R - Model Performance.srt
2.6 kB
36. Time Series Analysis and Forecasting/2. Time Series Forecasting - Use cases.srt
2.6 kB
30. Creating CNN model in R/1. CNN on MNIST Fashion Dataset - Model Architecture.srt
2.4 kB
36. Time Series Analysis and Forecasting/1. Introduction.srt
2.2 kB
37. Time Series - Preprocessing in Python/10. Exponential Smoothing.srt
2.1 kB
26. ANN in Python/5. Different ways to create ANN using Keras.srt
2.0 kB
34. Transfer Learning Basics/3. VGG16NET.srt
2.0 kB
15. Simple Classification Tree/2. The Data set for Classification problem.srt
2.0 kB
22. Creating Support Vector Machine Model in Python/8. The Data set for the Classification problem.srt
2.0 kB
22. Creating Support Vector Machine Model in Python/10. Classification model - Standardizing the data.srt
1.9 kB
34. Transfer Learning Basics/2. LeNET.srt
1.9 kB
19. Maximum Margin Classifier/1. Content flow.srt
1.8 kB
42. Bonus Section/1. The final milestone!.srt
1.8 kB
41. Time Series - SARIMA model/3. Stationary time Series.srt
1.7 kB
15. Simple Classification Tree/6. Advantages and Disadvantages of Decision Trees.srt
1.7 kB
7. Linear Regression/1. The Problem Statement.srt
1.7 kB
20. Support Vector Classifier/2. Limitations of Support Vector Classifiers.srt
1.7 kB
42. Bonus Section/2. Congratulations & About your certificate.html
1.6 kB
22. Creating Support Vector Machine Model in Python/1. Regression and Classification Models.srt
810 Bytes
23. Creating Support Vector Machine Model in R/3. More about test-train split.html
559 Bytes
1. Introduction/2. Course Resources.html
370 Bytes
31. Project Creating CNN model from scratch in Python/2. Data for the project.html
232 Bytes
0. Websites you may like/[FCS Forum].url
133 Bytes
6. Data Preprocessing/26. Quiz.html
130 Bytes
0. Websites you may like/[FreeCourseSite.com].url
127 Bytes
0. Websites you may like/[CourseClub.ME].url
122 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>