搜索
[Tutorialsplanet.NET] Udemy - Practical Machine Learning by Example in Python
磁力链接/BT种子名称
[Tutorialsplanet.NET] Udemy - Practical Machine Learning by Example in Python
磁力链接/BT种子简介
种子哈希:
95d11bf1715ebcbdabf34eb9a5b871202a26dd8f
文件大小:
2.71G
已经下载:
1198
次
下载速度:
极快
收录时间:
2021-05-25
最近下载:
2024-11-22
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:95D11BF1715EBCBDABF34EB9A5B871202A26DD8F
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
最近搜索
一穴双屌
轮流
the majestic 2001
設楽ゆうひ无码
儿子 大奶妈妈
大学生在国外
the continental
naughtyamerica hollywood
无套偷拍
gloomhaven xci
상어
老公++不行
sand land
evil 2019 1080p
欧美+露
strike 2017 s06
附近人
小雅
糖心vlog萝莉泡芙
小学生穿着
freakmobmedia+22
รวมคลิปสั้นๆฮิตๆใน
rob巴西黑屌
Олег троицкий
nsps-117
毛嘴
cetd-303
left 4 dead 2
凌辱女儿
自家小母狗
文件列表
4. Foundations NumPy/6. Linear Regression Example.mp4
67.8 MB
2. Python Quick Start/12. Classes.mp4
65.5 MB
7. Foundations Pandas/2. Loading and inspecting data example.mp4
61.9 MB
3. Example Logistic Regression/3. Data analysis.mp4
61.8 MB
9. Example Sentiment Analysis/11. Transfer Learning Example.mp4
60.6 MB
6. Example Image recognition/14. Hyperparameter tuning example.mp4
55.0 MB
2. Python Quick Start/3. String formatting.mp4
54.9 MB
4. Foundations NumPy/5. Introduction to Linear Regression.mp4
54.8 MB
6. Example Image recognition/8. Model training.mp4
52.7 MB
10. Example Fraud detection/9. Making predictions.mp4
51.8 MB
3. Example Logistic Regression/8. Gradient descent.mp4
48.5 MB
9. Example Sentiment Analysis/5. Data Preparation.mp4
46.5 MB
8. Example Recommendations/8. Model definition.mp4
44.3 MB
10. Example Fraud detection/2. Data analysis.mp4
43.8 MB
3. Example Logistic Regression/12. Making predictions.mp4
42.3 MB
7. Foundations Pandas/5. Sorting and transforming data example.mp4
41.8 MB
9. Example Sentiment Analysis/12. Fine Tuning and Prediction.mp4
41.5 MB
6. Example Image recognition/2. Data analysis.mp4
40.2 MB
3. Example Logistic Regression/6. The forward function.mp4
39.7 MB
8. Example Recommendations/5. Data preparation.mp4
37.9 MB
1. Course Structure and Development Environment/8. Sharing Colab Notebooks.mp4
37.4 MB
7. Foundations Pandas/7. Visualizing data.mp4
37.0 MB
2. Python Quick Start/2. Basic Syntax.mp4
36.9 MB
7. Foundations Pandas/3. Indexing and selecting data example.mp4
36.7 MB
9. Example Sentiment Analysis/8. Model Training.mp4
36.5 MB
2. Python Quick Start/11. Defining functions.mp4
36.4 MB
7. Foundations Pandas/6. Aggregations example.mp4
35.6 MB
2. Python Quick Start/13. File IO and Modules.mp4
35.4 MB
4. Foundations NumPy/10. Visualizing data.mp4
35.4 MB
1. Course Structure and Development Environment/2. Course Quick Tips.mp4
33.6 MB
2. Python Quick Start/10. Dictionaries.mp4
33.6 MB
4. Foundations NumPy/11. Images.mp4
33.3 MB
6. Example Image recognition/7. Model definition.mp4
33.2 MB
1. Course Structure and Development Environment/1. Course Structure and Development Environment.mp4
32.9 MB
9. Example Sentiment Analysis/2. Data Analysis.mp4
32.0 MB
3. Example Logistic Regression/11. Model training.mp4
31.4 MB
8. Example Recommendations/12. Making predictions.mp4
31.0 MB
8. Example Recommendations/9. Model training.mp4
30.8 MB
8. Example Recommendations/2. Data analysis.mp4
30.5 MB
9. Example Sentiment Analysis/7. Model Definition.mp4
30.4 MB
5. Foundations Tensorflow/2. Model example.mp4
30.4 MB
10. Example Fraud detection/4. Unsupervised learning.mp4
30.3 MB
10. Example Fraud detection/11. Common questions.mp4
30.2 MB
3. Example Logistic Regression/1. The problem.mp4
29.3 MB
6. Example Image recognition/16. Common questions.mp4
29.2 MB
9. Example Sentiment Analysis/4. Supervised Learning.mp4
29.0 MB
3. Example Logistic Regression/17. Improving the model.mp4
28.4 MB
1. Course Structure and Development Environment/4. Jupyter notebook Text Cells.mp4
28.4 MB
6. Example Image recognition/5. Data preparation.mp4
28.3 MB
8. Example Recommendations/4. Model selection.mp4
28.3 MB
1. Course Structure and Development Environment/9. Artificial Intelligence, Machine Learning, and Deep Learning.mp4
26.4 MB
10. Example Fraud detection/7. Model training.mp4
26.3 MB
4. Foundations NumPy/2. Creating data with NumPy.mp4
26.2 MB
3. Example Logistic Regression/10. Backpropagation.mp4
25.1 MB
9. Example Sentiment Analysis/10. Transfer Learning with BERT.mp4
24.9 MB
5. Foundations Tensorflow/5. Training example.mp4
24.7 MB
2. Python Quick Start/7. Flow control.mp4
24.6 MB
5. Foundations Tensorflow/12. The Three Body Problem.mp4
24.6 MB
1. Course Structure and Development Environment/6. Jupyter notebook Math Markup and Magic Commands.mp4
24.5 MB
6. Example Image recognition/6. CNN Model Layers.mp4
24.1 MB
6. Example Image recognition/4. Model selection.mp4
23.9 MB
6. Example Image recognition/13. Hyperparameter tuning.mp4
23.5 MB
2. Python Quick Start/8. Lists.mp4
23.4 MB
10. Example Fraud detection/1. The problem.mp4
23.4 MB
3. Example Logistic Regression/5. The model.mp4
23.3 MB
10. Example Fraud detection/6. Model definition.mp4
22.5 MB
3. Example Logistic Regression/7. Loss and cost functions.mp4
20.8 MB
2. Python Quick Start/6. Type conversion.mp4
20.6 MB
8. Example Recommendations/15. Common questions.mp4
20.5 MB
6. Example Image recognition/1. The problem.mp4
20.4 MB
5. Foundations Tensorflow/4. Activation functions.mp4
20.3 MB
5. Foundations Tensorflow/7. Loss functions.mp4
20.1 MB
3. Example Logistic Regression/15. Test vs. train accuracy.mp4
19.9 MB
8. Example Recommendations/13. Error analysis.mp4
19.5 MB
3. Example Logistic Regression/16. Speeding up training.mp4
19.0 MB
5. Foundations Tensorflow/1. About this section.mp4
19.0 MB
8. Example Recommendations/7. Embedding layers.mp4
18.0 MB
8. Example Recommendations/1. The problem.mp4
17.9 MB
4. Foundations NumPy/9. Statistics and linear algebra.mp4
17.8 MB
1. Course Structure and Development Environment/3. Introduction to Jupyter Notebook.mp4
17.7 MB
10. Example Fraud detection/5. Data preparation.mp4
17.7 MB
5. Foundations Tensorflow/8. Optimizers.mp4
17.2 MB
2. Python Quick Start/4. Literal string interpolation.mp4
16.6 MB
5. Foundations Tensorflow/11. Saving and restoring models.mp4
16.3 MB
6. Example Image recognition/11. Error analysis.mp4
16.2 MB
1. Course Structure and Development Environment/5. Jupyter notebook Code Cells.mp4
15.8 MB
4. Foundations NumPy/3. Basic operations.mp4
15.4 MB
3. Example Logistic Regression/2. Machine Learning Development Process.mp4
14.7 MB
4. Foundations NumPy/8. More Complex Models.mp4
14.2 MB
5. Foundations Tensorflow/3. Model layers.mp4
13.8 MB
9. Example Sentiment Analysis/1. The Problem.mp4
13.8 MB
6. Example Image recognition/10. Making predictions.mp4
12.9 MB
11. Next steps/1. Next steps.mp4
12.2 MB
4. Foundations NumPy/13. Reshaping data.mp4
11.7 MB
7. Foundations Pandas/1. What is Pandas and why is it useful.mp4
9.4 MB
4. Foundations NumPy/1. What is NumPy and why it is needed.mp4
8.5 MB
2. Python Quick Start/1. About this section.mp4
7.8 MB
2. Python Quick Start/15. Prompting for passwords.mp4
7.4 MB
5. Foundations Tensorflow/10. Prediction example.mp4
7.1 MB
8. Example Recommendations/11. Predictions.mp4
6.0 MB
11. Next steps/2. Thank you.mp4
3.2 MB
2. Python Quick Start/12. Classes.srt
16.7 kB
4. Foundations NumPy/6. Linear Regression Example.srt
16.3 kB
4. Foundations NumPy/5. Introduction to Linear Regression.srt
14.8 kB
3. Example Logistic Regression/3. Data analysis.srt
12.8 kB
10. Example Fraud detection/9. Making predictions.srt
12.3 kB
3. Example Logistic Regression/12. Making predictions.srt
12.0 kB
3. Example Logistic Regression/8. Gradient descent.srt
11.8 kB
8. Example Recommendations/8. Model definition.srt
11.7 kB
2. Python Quick Start/11. Defining functions.srt
11.5 kB
6. Example Image recognition/2. Data analysis.srt
10.9 kB
9. Example Sentiment Analysis/11. Transfer Learning Example.srt
10.5 kB
2. Python Quick Start/13. File IO and Modules.srt
10.4 kB
9. Example Sentiment Analysis/5. Data Preparation.srt
9.9 kB
2. Python Quick Start/3. String formatting.srt
9.6 kB
9. Example Sentiment Analysis/12. Fine Tuning and Prediction.srt
9.5 kB
9. Example Sentiment Analysis/8. Model Training.srt
9.4 kB
7. Foundations Pandas/2. Loading and inspecting data example.srt
9.3 kB
3. Example Logistic Regression/11. Model training.srt
9.1 kB
1. Course Structure and Development Environment/2. Course Quick Tips.srt
8.8 kB
2. Python Quick Start/2. Basic Syntax.srt
8.7 kB
8. Example Recommendations/5. Data preparation.srt
8.7 kB
6. Example Image recognition/14. Hyperparameter tuning example.srt
8.7 kB
1. Course Structure and Development Environment/8. Sharing Colab Notebooks.srt
8.5 kB
10. Example Fraud detection/2. Data analysis.srt
8.2 kB
4. Foundations NumPy/11. Images.srt
7.9 kB
3. Example Logistic Regression/6. The forward function.srt
7.6 kB
7. Foundations Pandas/5. Sorting and transforming data example.srt
7.4 kB
2. Python Quick Start/4. Literal string interpolation.srt
7.3 kB
2. Python Quick Start/7. Flow control.srt
7.2 kB
6. Example Image recognition/8. Model training.srt
7.2 kB
2. Python Quick Start/8. Lists.srt
7.2 kB
7. Foundations Pandas/7. Visualizing data.srt
7.2 kB
9. Example Sentiment Analysis/7. Model Definition.srt
7.1 kB
2. Python Quick Start/10. Dictionaries.srt
7.1 kB
8. Example Recommendations/12. Making predictions.srt
7.1 kB
3. Example Logistic Regression/17. Improving the model.srt
7.0 kB
7. Foundations Pandas/3. Indexing and selecting data example.srt
7.0 kB
5. Foundations Tensorflow/2. Model example.srt
7.0 kB
9. Example Sentiment Analysis/10. Transfer Learning with BERT.srt
6.8 kB
8. Example Recommendations/4. Model selection.srt
6.7 kB
3. Example Logistic Regression/10. Backpropagation.srt
6.6 kB
8. Example Recommendations/9. Model training.srt
6.6 kB
10. Example Fraud detection/7. Model training.srt
6.3 kB
10. Example Fraud detection/11. Common questions.srt
6.0 kB
3. Example Logistic Regression/15. Test vs. train accuracy.srt
6.0 kB
4. Foundations NumPy/10. Visualizing data.srt
6.0 kB
6. Example Image recognition/6. CNN Model Layers.srt
5.9 kB
4. Foundations NumPy/9. Statistics and linear algebra.srt
5.9 kB
10. Example Fraud detection/4. Unsupervised learning.srt
5.8 kB
6. Example Image recognition/5. Data preparation.srt
5.8 kB
6. Example Image recognition/11. Error analysis.srt
5.8 kB
4. Foundations NumPy/2. Creating data with NumPy.srt
5.8 kB
1. Course Structure and Development Environment/1. Course Structure and Development Environment.srt
5.7 kB
1. Course Structure and Development Environment/9. Artificial Intelligence, Machine Learning, and Deep Learning.srt
5.7 kB
3. Example Logistic Regression/5. The model.srt
5.6 kB
8. Example Recommendations/13. Error analysis.srt
5.6 kB
2. Python Quick Start/6. Type conversion.srt
5.6 kB
9. Example Sentiment Analysis/2. Data Analysis.srt
5.5 kB
10. Example Fraud detection/6. Model definition.srt
5.5 kB
8. Example Recommendations/2. Data analysis.srt
5.5 kB
9. Example Sentiment Analysis/4. Supervised Learning.srt
5.5 kB
6. Example Image recognition/4. Model selection.srt
5.4 kB
1. Course Structure and Development Environment/6. Jupyter notebook Math Markup and Magic Commands.srt
5.4 kB
6. Example Image recognition/7. Model definition.srt
5.3 kB
5. Foundations Tensorflow/5. Training example.srt
5.3 kB
6. Example Image recognition/13. Hyperparameter tuning.srt
5.2 kB
4. Foundations NumPy/3. Basic operations.srt
5.2 kB
6. Example Image recognition/16. Common questions.srt
5.1 kB
3. Example Logistic Regression/1. The problem.srt
5.1 kB
5. Foundations Tensorflow/4. Activation functions.srt
5.1 kB
3. Example Logistic Regression/7. Loss and cost functions.srt
4.9 kB
5. Foundations Tensorflow/7. Loss functions.srt
4.5 kB
4. Foundations NumPy/8. More Complex Models.srt
4.4 kB
5. Foundations Tensorflow/11. Saving and restoring models.srt
4.3 kB
8. Example Recommendations/7. Embedding layers.srt
4.2 kB
7. Foundations Pandas/6. Aggregations example.srt
4.1 kB
3. Example Logistic Regression/16. Speeding up training.srt
4.0 kB
1. Course Structure and Development Environment/3. Introduction to Jupyter Notebook.srt
4.0 kB
1. Course Structure and Development Environment/5. Jupyter notebook Code Cells.srt
4.0 kB
10. Example Fraud detection/5. Data preparation.srt
3.9 kB
6. Example Image recognition/1. The problem.srt
3.9 kB
3. Example Logistic Regression/2. Machine Learning Development Process.srt
3.9 kB
10. Example Fraud detection/1. The problem.srt
3.8 kB
4. Foundations NumPy/13. Reshaping data.srt
3.8 kB
5. Foundations Tensorflow/12. The Three Body Problem.srt
3.7 kB
8. Example Recommendations/15. Common questions.srt
3.6 kB
8. Example Recommendations/1. The problem.srt
3.4 kB
1. Course Structure and Development Environment/4. Jupyter notebook Text Cells.srt
3.3 kB
6. Example Image recognition/10. Making predictions.srt
3.0 kB
5. Foundations Tensorflow/1. About this section.srt
3.0 kB
9. Example Sentiment Analysis/1. The Problem.srt
3.0 kB
5. Foundations Tensorflow/8. Optimizers.srt
2.9 kB
5. Foundations Tensorflow/3. Model layers.srt
2.8 kB
6. Example Image recognition/19. What you learned in this section.html
2.7 kB
11. Next steps/1. Next steps.srt
2.6 kB
5. Foundations Tensorflow/10. Prediction example.srt
2.4 kB
2. Python Quick Start/15. Prompting for passwords.srt
2.4 kB
7. Foundations Pandas/1. What is Pandas and why is it useful.srt
2.3 kB
5. Foundations Tensorflow/13. What you learned in this section.html
1.7 kB
3. Example Logistic Regression/18. What you learned in this section.html
1.6 kB
4. Foundations NumPy/1. What is NumPy and why it is needed.srt
1.5 kB
10. Example Fraud detection/13. What you learned in this section.html
1.4 kB
2. Python Quick Start/1. About this section.srt
1.3 kB
8. Example Recommendations/11. Predictions.srt
1.3 kB
8. Example Recommendations/16. What you learned in this section.html
1.1 kB
4. Foundations NumPy/14. What you learned in this section.html
823 Bytes
1. Course Structure and Development Environment/10. What you learned in this section.html
674 Bytes
2. Python Quick Start/16. What you learned in this section.html
584 Bytes
7. Foundations Pandas/9. What you learned in this section.html
555 Bytes
11. Next steps/2. Thank you.srt
538 Bytes
9. Example Sentiment Analysis/14. What you learned in this section.html
425 Bytes
5. Foundations Tensorflow/12.2 New Neural Network Could Solve The Three-Body Problem 100 Million Times Faster.html
174 Bytes
1. Course Structure and Development Environment/8.1 Saving notebooks to Github or Drive.html
170 Bytes
3. Example Logistic Regression/3.1 Github repo.html
159 Bytes
7. Foundations Pandas/5.1 Sorting data.html
153 Bytes
9. Example Sentiment Analysis/2.2 Github repo.html
149 Bytes
1. Course Structure and Development Environment/7. Introduction to Notebooks.html
148 Bytes
10. Example Fraud detection/10. Prediction and error analysis.html
148 Bytes
10. Example Fraud detection/12. Improving the model.html
148 Bytes
10. Example Fraud detection/3. Analyze credit card data set.html
148 Bytes
10. Example Fraud detection/8. Training the model.html
148 Bytes
2. Python Quick Start/14. Plot several math functions.html
148 Bytes
2. Python Quick Start/5. Experiment with string formatting.html
148 Bytes
2. Python Quick Start/9. Dot product.html
148 Bytes
3. Example Logistic Regression/13. Training a model.html
148 Bytes
3. Example Logistic Regression/14. Optional Wine Classification.html
148 Bytes
3. Example Logistic Regression/4. Analyze Iris flower data set.html
148 Bytes
3. Example Logistic Regression/9. Experiment with gradient descent.html
148 Bytes
4. Foundations NumPy/12. Visualizing data.html
148 Bytes
4. Foundations NumPy/4. Experiment with NumPy.html
148 Bytes
4. Foundations NumPy/7. Experiment with Linear Regression.html
148 Bytes
5. Foundations Tensorflow/6. Train a basic model.html
148 Bytes
5. Foundations Tensorflow/9. Experiment with optimizers.html
148 Bytes
6. Example Image recognition/12. Prediction and error analysis.html
148 Bytes
6. Example Image recognition/15. Model improvement.html
148 Bytes
6. Example Image recognition/17. Optional Real images.html
148 Bytes
6. Example Image recognition/18. Optional Other image types.html
148 Bytes
6. Example Image recognition/3. Analyze MNIST data set.html
148 Bytes
6. Example Image recognition/9. Training a model.html
148 Bytes
7. Foundations Pandas/4. Experiment with Pandas.html
148 Bytes
7. Foundations Pandas/8. Visualizing data with Pandas.html
148 Bytes
8. Example Recommendations/10. Training the model.html
148 Bytes
8. Example Recommendations/14. Making recommendations and error analysis.html
148 Bytes
8. Example Recommendations/3. Analyze MovieLens data set.html
148 Bytes
8. Example Recommendations/6. Prepare data.html
148 Bytes
9. Example Sentiment Analysis/13. Transfer Learning with BERT.html
148 Bytes
9. Example Sentiment Analysis/3. Analyze Sentiment Data Set.html
148 Bytes
9. Example Sentiment Analysis/6. Prepare Data.html
148 Bytes
9. Example Sentiment Analysis/9. Training the Model.html
148 Bytes
1. Course Structure and Development Environment/3.2 IBM Watson Studio Notebooks.html
147 Bytes
2. Python Quick Start/3.2 printf style formatting.html
139 Bytes
5. Foundations Tensorflow/4.2 Tensorflow activations.html
138 Bytes
5. Foundations Tensorflow/2.1 Sequential models.html
137 Bytes
5. Foundations Tensorflow/8.2 Tensorflow optimizers.html
137 Bytes
7. Foundations Pandas/7.1 Pandas visualization user guide.html
135 Bytes
5. Foundations Tensorflow/7.1 Loss functions.html
133 Bytes
5. Foundations Tensorflow/10.1 Model API.html
132 Bytes
5. Foundations Tensorflow/11.1 Model API.html
132 Bytes
7. Foundations Pandas/3.1 User Guide Indexing and Selecting Data.html
130 Bytes
9. Example Sentiment Analysis/2.1 Data set.html
129 Bytes
7. Foundations Pandas/6.1 Pandas group by API.html
128 Bytes
[Tutorialsplanet.NET].url
128 Bytes
8. Example Recommendations/15.2 BellKor solution.html
126 Bytes
1. Course Structure and Development Environment/4.1 Markdown cheat sheet.html
125 Bytes
7. Foundations Pandas/2.2 Pandas IO.html
124 Bytes
4. Foundations NumPy/9.2 Statistics functions.html
122 Bytes
2. Python Quick Start/3.1 Format string syntax.html
120 Bytes
8. Example Recommendations/15.1 Other solutions.html
120 Bytes
10. Example Fraud detection/11.1 Building Autoencoders in Keras.html
118 Bytes
4. Foundations NumPy/9.1 Linear algebra.html
118 Bytes
5. Foundations Tensorflow/8.1 Stochastic gradient descent and related optimizers.html
118 Bytes
9. Example Sentiment Analysis/1.2 Natural Language Processing (NLP).html
118 Bytes
9. Example Sentiment Analysis/4.1 Natural Language Processing (NLP).html
118 Bytes
1. Course Structure and Development Environment/3.6 AWS Sagemaker Notebook Instances.html
117 Bytes
6. Example Image recognition/7.2 Sequential model guide.html
117 Bytes
8. Example Recommendations/8.1 Keras functional API.html
115 Bytes
8. Example Recommendations/2.1 Collaborative filtering article.html
114 Bytes
4. Foundations NumPy/11.3 Image manipulation with NumPy.html
113 Bytes
4. Foundations NumPy/11.1 Hughes 500.html
112 Bytes
1. Course Structure and Development Environment/1.1 Github repo.html
110 Bytes
5. Foundations Tensorflow/2.2 Github repo.html
110 Bytes
5. Foundations Tensorflow/4.1 Activation functions.html
110 Bytes
5. Foundations Tensorflow/12.1 Three Body Problem.html
109 Bytes
9. Example Sentiment Analysis/1.1 Sentiment Analysis.html
109 Bytes
1. Course Structure and Development Environment/6.1 LaTeX syntax.html
108 Bytes
4. Foundations NumPy/11.2 Aviation.html
104 Bytes
8. Example Recommendations/15.3 Netflix prize.html
104 Bytes
9. Example Sentiment Analysis/5.1 GloVe Vectors.html
101 Bytes
6. Example Image recognition/7.1 Keras CNN layers.html
99 Bytes
1. Course Structure and Development Environment/3.5 Kaggle Notebooks.html
96 Bytes
8. Example Recommendations/7.1 Keras Embedding Layers documentation.html
96 Bytes
1. Course Structure and Development Environment/3.1 Google Colaboratory.html
95 Bytes
10. Example Fraud detection/2.1 Github repo.html
94 Bytes
4. Foundations NumPy/10.1 Matplotlib home page.html
94 Bytes
6. Example Image recognition/1.1 The MNIST database of handwritten digits.html
94 Bytes
6. Example Image recognition/2.1 Example Github repository.html
94 Bytes
6. Example Image recognition/4.1 MNIST models and their accuracy.html
94 Bytes
7. Foundations Pandas/2.1 Github repo.html
94 Bytes
8. Example Recommendations/2.2 Github repo.html
94 Bytes
6. Example Image recognition/10.1 Keras Model API.html
91 Bytes
1. Course Structure and Development Environment/3.4 Microsoft Azure Notebooks.html
89 Bytes
4. Foundations NumPy/2.2 NumPy documentation.html
88 Bytes
5. Foundations Tensorflow/1.1 Tensorflow home page.html
87 Bytes
7. Foundations Pandas/1.1 Pandas Home Page.html
86 Bytes
1. Course Structure and Development Environment/3.3 CoCalc.html
80 Bytes
4. Foundations NumPy/2.1 NumPy home page.html
79 Bytes
1. Course Structure and Development Environment/[DesireCourse.Net].url
51 Bytes
6. Example Image recognition/[DesireCourse.Net].url
51 Bytes
9. Example Sentiment Analysis/[DesireCourse.Net].url
51 Bytes
1. Course Structure and Development Environment/[CourseClub.Me].url
48 Bytes
6. Example Image recognition/[CourseClub.Me].url
48 Bytes
9. Example Sentiment Analysis/[CourseClub.Me].url
48 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>