搜索
[FreeCourseSite.com] Udemy - Python for Machine Learning The Complete Beginner's Course
磁力链接/BT种子名称
[FreeCourseSite.com] Udemy - Python for Machine Learning The Complete Beginner's Course
磁力链接/BT种子简介
种子哈希:
98080f07fd2f9c7a224c602bd749d0ef908e182b
文件大小:
685.33M
已经下载:
959
次
下载速度:
极快
收录时间:
2022-03-24
最近下载:
2024-11-09
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:98080F07FD2F9C7A224C602BD749D0EF908E182B
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
最近搜索
印奴文化
oppenheimer 2023 2160p
overtime
【徐媛】
晓可耐 女朋友
vrxs-129
女子spa
sone-192
情侣分手
福利姬合集
啪啪篇
半糖主播【我有大白兔绝色佳人蜜桃波波奶】
達磨さん転んだ
oppenheime 2023 2160p
alien
迷奸
日本少女偶像全裸
女儿国
水宜方spa
thank you for it all
密码房校花
dog double penetration
love potion k9
丽江夫妻4p
火爆全网泡良达人金先生五星酒店约炮+极品欲姐某银行理
子兔子
巨乳轻熟女给小狼狗揉捏奶头挑起性欲 少年忍不住后入不演了
fc2-ppv-958022
婚纱店
穿戴
文件列表
3. Multiple Linear Regression/3. Implementation in python Encoding Categorical Data.mp4
30.3 MB
4. Classification Algorithms K-Nearest Neighbors/7. Implementation in python Splitting data into Train and Test Sets.mp4
20.6 MB
8. Recommender System/6. Sorting by title and rating.mp4
20.3 MB
7. Clustering/6. Implementation in python.mp4
19.9 MB
3. Multiple Linear Regression/6. Implementation in python Predicting the Test Set results.mp4
18.7 MB
5. Classification Algorithms Decision Tree/6. Implementation in python Encoding Categorical Data.mp4
17.8 MB
1. Introduction to Machine Learning/6. Supervised learning vs Unsupervised learning.mp4
15.0 MB
6. Classification Algorithms Logistic regression/7. Implementation in python Results prediction & Confusion matrix.mp4
14.1 MB
3. Multiple Linear Regression/2. Implementation in python Exploring the dataset.mp4
14.0 MB
8. Recommender System/13. Correlation between the most-rated movies.mp4
13.9 MB
2. Simple Linear Regression/6. Implementation in python Creating a linear regression object.mp4
13.9 MB
6. Classification Algorithms Logistic regression/5. Implementation in python Pre-processing.mp4
13.8 MB
7. Clustering/14. 3D Visualization of the predicted values.mp4
13.5 MB
7. Clustering/10. Importing the dataset.mp4
13.4 MB
8. Recommender System/17. Repeating the process for another movie.mp4
13.3 MB
4. Classification Algorithms K-Nearest Neighbors/9. Implementation in python Importing the KNN classifier.mp4
13.1 MB
7. Clustering/11. Visualizing the dataset.mp4
13.0 MB
3. Multiple Linear Regression/8. Root Mean Squared Error in Python.mp4
12.4 MB
8. Recommender System/10. Data pre-processing.mp4
11.3 MB
6. Classification Algorithms Logistic regression/8. Logistic Regression vs Linear Regression.mp4
11.3 MB
5. Classification Algorithms Decision Tree/8. Implementation in python Results prediction & Accuracy.mp4
10.9 MB
8. Recommender System/4. Implementation in python Importing libraries & datasets.mp4
10.8 MB
4. Classification Algorithms K-Nearest Neighbors/10. Implementation in python Results prediction & Confusion matrix.mp4
10.1 MB
7. Clustering/15. Number of predicted clusters.mp4
9.9 MB
2. Simple Linear Regression/5. Implementation in python Distribution of the data.mp4
9.9 MB
4. Classification Algorithms K-Nearest Neighbors/6. Implementation in python Importing the dataset.mp4
9.7 MB
2. Simple Linear Regression/1. Introduction to regression.mp4
9.4 MB
8. Recommender System/11. Sorting the most-rated movies.mp4
9.3 MB
3. Multiple Linear Regression/4. Implementation in python Splitting data into Train and Test Sets.mp4
9.3 MB
3. Multiple Linear Regression/5. Implementation in python Training the model on the Training set.mp4
9.0 MB
6. Classification Algorithms Logistic regression/6. Implementation in python Training the model.mp4
8.2 MB
7. Clustering/13. 3D Visualization of the clusters.mp4
8.2 MB
7. Clustering/8. Density-based clustering.mp4
8.2 MB
2. Simple Linear Regression/2. How Does Linear Regression Work.mp4
8.1 MB
7. Clustering/12. Defining the classifier.mp4
8.0 MB
2. Simple Linear Regression/4. Implementation in python Importing libraries & datasets.mp4
7.9 MB
8. Recommender System/1. Introduction.mp4
7.9 MB
1. Introduction to Machine Learning/1. What is Machine Learning.mp4
7.8 MB
7. Clustering/7. Hierarchical clustering.mp4
7.8 MB
8. Recommender System/9. Jointplot of the ratings and number of ratings.mp4
7.6 MB
6. Classification Algorithms Logistic regression/4. Implementation in python Splitting data into Train and Test Sets.mp4
7.5 MB
7. Clustering/4. Elbow method.mp4
7.4 MB
8. Recommender System/16. Sorting values.mp4
7.2 MB
6. Classification Algorithms Logistic regression/3. Implementation in python Importing libraries & datasets.mp4
7.2 MB
7. Clustering/3. K-Means Clustering Algorithm.mp4
6.9 MB
6. Classification Algorithms Logistic regression/1. Introduction.mp4
6.9 MB
1. Introduction to Machine Learning/2. Applications of Machine Learning.mp4
6.8 MB
5. Classification Algorithms Decision Tree/1. Introduction to decision trees.mp4
6.8 MB
5. Classification Algorithms Decision Tree/4. Decision tree structure.mp4
6.7 MB
3. Multiple Linear Regression/1. Understanding Multiple linear regression.mp4
6.6 MB
1. Introduction to Machine Learning/4. What is Supervised learning.mp4
6.5 MB
4. Classification Algorithms K-Nearest Neighbors/4. K-Nearest Neighbours (KNN) using python.mp4
6.4 MB
8. Recommender System/14. Sorting the data by correlation.mp4
6.4 MB
8. Recommender System/8. Frequency distribution.mp4
6.3 MB
4. Classification Algorithms K-Nearest Neighbors/2. K-Nearest Neighbors algorithm.mp4
6.3 MB
3. Multiple Linear Regression/7. Evaluating the performance of the regression model.mp4
6.3 MB
5. Classification Algorithms Decision Tree/3. Exploring the dataset.mp4
6.2 MB
1. Introduction to Machine Learning/5. What is Unsupervised learning.mp4
6.2 MB
7. Clustering/5. Steps of the Elbow method.mp4
6.1 MB
4. Classification Algorithms K-Nearest Neighbors/8. Implementation in python Feature Scaling.mp4
6.0 MB
8. Recommender System/7. Histogram showing number of ratings.mp4
5.9 MB
6. Classification Algorithms Logistic regression/2. Implementation steps.mp4
5.8 MB
8. Recommender System/12. Grabbing the ratings for two movies.mp4
5.7 MB
2. Simple Linear Regression/3. Line representation.mp4
5.7 MB
5. Classification Algorithms Decision Tree/2. What is Entropy.mp4
5.5 MB
4. Classification Algorithms K-Nearest Neighbors/5. Implementation in python Importing required libraries.mp4
5.4 MB
5. Classification Algorithms Decision Tree/7. Implementation in python Splitting data into Train and Test Sets.mp4
5.2 MB
8. Recommender System/3. Content-based Recommender System.mp4
5.1 MB
8. Recommender System/15. Filtering out movies.mp4
5.0 MB
4. Classification Algorithms K-Nearest Neighbors/1. Introduction to classification.mp4
4.9 MB
5. Classification Algorithms Decision Tree/5. Implementation in python Importing libraries & datasets.mp4
4.9 MB
7. Clustering/1. Introduction to clustering.mp4
4.5 MB
8. Recommender System/5. Merging datasets into one dataframe.mp4
4.4 MB
8. Recommender System/2. Collaborative Filtering in Recommender Systems.mp4
4.4 MB
7. Clustering/2. Use cases.mp4
4.2 MB
7. Clustering/9. Implementation of k-means clustering in python.mp4
4.1 MB
1. Introduction to Machine Learning/3. Machine learning Methods.mp4
3.9 MB
4. Classification Algorithms K-Nearest Neighbors/3. Example of KNN.mp4
3.7 MB
9. Conclusion/1. Conclusion.mp4
2.9 MB
1. Introduction to Machine Learning/7.14 u.data
2.1 MB
1. Introduction to Machine Learning/7.12 Recommender Systems with Python.ipynb
125.3 kB
1. Introduction to Machine Learning/7.4 K-means algorithm numpy&pandas clustering.ipynb
104.8 kB
1. Introduction to Machine Learning/7.10 Movie_Id_Titles.original
51.0 kB
1. Introduction to Machine Learning/7.5 KNN_Binary_Classification.ipynb
25.8 kB
1. Introduction to Machine Learning/7.6 linear_regression_houseprice.ipynb
16.7 kB
1. Introduction to Machine Learning/7.2 Decision_tree.ipynb
14.7 kB
1. Introduction to Machine Learning/7.15 user data.csv
10.9 kB
1. Introduction to Machine Learning/7.11 MultipleLinearRegression.ipynb
8.7 kB
8. Recommender System/6. Sorting by title and rating.srt
5.8 kB
3. Multiple Linear Regression/3. Implementation in python Encoding Categorical Data.srt
5.8 kB
1. Introduction to Machine Learning/6. Supervised learning vs Unsupervised learning.srt
4.6 kB
1. Introduction to Machine Learning/7.8 mall customers data.csv
4.4 kB
1. Introduction to Machine Learning/7.9 mallCustomerData.txt
4.0 kB
7. Clustering/6. Implementation in python.srt
3.7 kB
3. Multiple Linear Regression/2. Implementation in python Exploring the dataset.srt
3.6 kB
5. Classification Algorithms Decision Tree/6. Implementation in python Encoding Categorical Data.srt
3.5 kB
7. Clustering/10. Importing the dataset.srt
3.3 kB
8. Recommender System/4. Implementation in python Importing libraries & datasets.srt
3.2 kB
7. Clustering/11. Visualizing the dataset.srt
2.9 kB
6. Classification Algorithms Logistic regression/8. Logistic Regression vs Linear Regression.srt
2.9 kB
4. Classification Algorithms K-Nearest Neighbors/7. Implementation in python Splitting data into Train and Test Sets.srt
2.9 kB
3. Multiple Linear Regression/6. Implementation in python Predicting the Test Set results.srt
2.9 kB
2. Simple Linear Regression/6. Implementation in python Creating a linear regression object.srt
2.9 kB
7. Clustering/14. 3D Visualization of the predicted values.srt
2.8 kB
1. Introduction to Machine Learning/7.7 logistic_regression_Binary_Classification.ipynb
2.8 kB
5. Classification Algorithms Decision Tree/8. Implementation in python Results prediction & Accuracy.srt
2.7 kB
8. Recommender System/17. Repeating the process for another movie.srt
2.6 kB
6. Classification Algorithms Logistic regression/7. Implementation in python Results prediction & Confusion matrix.srt
2.6 kB
1. Introduction to Machine Learning/7.1 50_Startups.csv
2.4 kB
3. Multiple Linear Regression/8. Root Mean Squared Error in Python.srt
2.3 kB
8. Recommender System/10. Data pre-processing.srt
2.2 kB
2. Simple Linear Regression/5. Implementation in python Distribution of the data.srt
2.2 kB
7. Clustering/15. Number of predicted clusters.srt
2.1 kB
1. Introduction to Machine Learning/1. What is Machine Learning.srt
2.1 kB
8. Recommender System/13. Correlation between the most-rated movies.srt
2.1 kB
4. Classification Algorithms K-Nearest Neighbors/9. Implementation in python Importing the KNN classifier.srt
2.0 kB
1. Introduction to Machine Learning/2. Applications of Machine Learning.srt
2.0 kB
6. Classification Algorithms Logistic regression/5. Implementation in python Pre-processing.srt
1.9 kB
2. Simple Linear Regression/1. Introduction to regression.srt
1.9 kB
2. Simple Linear Regression/2. How Does Linear Regression Work.srt
1.9 kB
6. Classification Algorithms Logistic regression/3. Implementation in python Importing libraries & datasets.srt
1.9 kB
7. Clustering/4. Elbow method.srt
1.8 kB
7. Clustering/8. Density-based clustering.srt
1.8 kB
7. Clustering/12. Defining the classifier.srt
1.7 kB
6. Classification Algorithms Logistic regression/4. Implementation in python Splitting data into Train and Test Sets.srt
1.6 kB
7. Clustering/13. 3D Visualization of the clusters.srt
1.6 kB
8. Recommender System/1. Introduction.srt
1.6 kB
7. Clustering/3. K-Means Clustering Algorithm.srt
1.6 kB
3. Multiple Linear Regression/4. Implementation in python Splitting data into Train and Test Sets.srt
1.6 kB
5. Classification Algorithms Decision Tree/1. Introduction to decision trees.srt
1.5 kB
8. Recommender System/12. Grabbing the ratings for two movies.srt
1.5 kB
8. Recommender System/14. Sorting the data by correlation.srt
1.5 kB
2. Simple Linear Regression/4. Implementation in python Importing libraries & datasets.srt
1.5 kB
3. Multiple Linear Regression/1. Understanding Multiple linear regression.srt
1.5 kB
5. Classification Algorithms Decision Tree/2. What is Entropy.srt
1.5 kB
6. Classification Algorithms Logistic regression/1. Introduction.srt
1.5 kB
4. Classification Algorithms K-Nearest Neighbors/10. Implementation in python Results prediction & Confusion matrix.srt
1.4 kB
8. Recommender System/9. Jointplot of the ratings and number of ratings.srt
1.4 kB
5. Classification Algorithms Decision Tree/3. Exploring the dataset.srt
1.4 kB
5. Classification Algorithms Decision Tree/4. Decision tree structure.srt
1.4 kB
3. Multiple Linear Regression/7. Evaluating the performance of the regression model.srt
1.3 kB
1. Introduction to Machine Learning/4. What is Supervised learning.srt
1.3 kB
4. Classification Algorithms K-Nearest Neighbors/6. Implementation in python Importing the dataset.srt
1.3 kB
7. Clustering/7. Hierarchical clustering.srt
1.3 kB
8. Recommender System/8. Frequency distribution.srt
1.3 kB
4. Classification Algorithms K-Nearest Neighbors/4. K-Nearest Neighbours (KNN) using python.srt
1.2 kB
6. Classification Algorithms Logistic regression/6. Implementation in python Training the model.srt
1.2 kB
4. Classification Algorithms K-Nearest Neighbors/1. Introduction to classification.srt
1.2 kB
8. Recommender System/16. Sorting values.srt
1.1 kB
7. Clustering/5. Steps of the Elbow method.srt
1.1 kB
1. Introduction to Machine Learning/5. What is Unsupervised learning.srt
1.0 kB
7. Clustering/2. Use cases.srt
1.0 kB
3. Multiple Linear Regression/5. Implementation in python Training the model on the Training set.srt
1.0 kB
6. Classification Algorithms Logistic regression/2. Implementation steps.srt
954 Bytes
4. Classification Algorithms K-Nearest Neighbors/2. K-Nearest Neighbors algorithm.srt
921 Bytes
5. Classification Algorithms Decision Tree/7. Implementation in python Splitting data into Train and Test Sets.srt
879 Bytes
8. Recommender System/11. Sorting the most-rated movies.srt
879 Bytes
5. Classification Algorithms Decision Tree/5. Implementation in python Importing libraries & datasets.srt
869 Bytes
7. Clustering/9. Implementation of k-means clustering in python.srt
836 Bytes
7. Clustering/1. Introduction to clustering.srt
832 Bytes
2. Simple Linear Regression/3. Line representation.srt
828 Bytes
8. Recommender System/7. Histogram showing number of ratings.srt
779 Bytes
8. Recommender System/3. Content-based Recommender System.srt
765 Bytes
8. Recommender System/15. Filtering out movies.srt
726 Bytes
8. Recommender System/2. Collaborative Filtering in Recommender Systems.srt
674 Bytes
1. Introduction to Machine Learning/7.13 salaries.csv
657 Bytes
8. Recommender System/5. Merging datasets into one dataframe.srt
622 Bytes
1. Introduction to Machine Learning/3. Machine learning Methods.srt
437 Bytes
4. Classification Algorithms K-Nearest Neighbors/5. Implementation in python Importing required libraries.srt
434 Bytes
9. Conclusion/1. Conclusion.srt
414 Bytes
4. Classification Algorithms K-Nearest Neighbors/3. Example of KNN.srt
380 Bytes
4. Classification Algorithms K-Nearest Neighbors/8. Implementation in python Feature Scaling.srt
348 Bytes
8. Recommender System/18. Quiz Time.html
188 Bytes
1. Introduction to Machine Learning/7. Course Materials.html
148 Bytes
0. Websites you may like/[FCS Forum].url
133 Bytes
0. Websites you may like/[FreeCourseSite.com].url
127 Bytes
0. Websites you may like/[CourseClub.Me].url
122 Bytes
1. Introduction to Machine Learning/7.3 homeprices.csv
77 Bytes
0. Websites you may like/[GigaCourse.Com].url
49 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>