MuerBT磁力搜索 BT种子搜索利器 免费下载BT种子,超5000万条种子数据

[FCSNEW.NET] ZeroToMastery - PyTorch for Deep Learning Bootcamp Zero to Mastery

磁力链接/BT种子名称

[FCSNEW.NET] ZeroToMastery - PyTorch for Deep Learning Bootcamp Zero to Mastery

磁力链接/BT种子简介

种子哈希:9a2111d2c1208c883603a4eee111d34b05a9baf4
文件大小: 18.47G
已经下载:51次
下载速度:极快
收录时间:2025-09-23
最近下载:2025-10-07

移花宫入口

移花宫.com邀月.com怜星.com花无缺.comyhgbt.icuyhgbt.top

磁力链接下载

magnet:?xt=urn:btih:9A2111D2C1208C883603A4EEE111D34B05A9BAF4
推荐使用PIKPAK网盘下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看

下载BT种子文件

磁力链接 迅雷下载 PIKPAK在线播放 世界之窗 91视频 含羞草 欲漫涩 逼哩逼哩 成人快手 51品茶 抖阴破解版 极乐禁地 91短视频 抖音Max TikTok成人版 PornHub 听泉鉴鲍 少女日记 草榴社区 哆哔涩漫 呦乐园 萝莉岛 悠悠禁区 悠悠禁区 拔萝卜 疯马秀

最近搜索

性爱之旅 身材白皙光滑 抽搐妹 yong 女技 黑丝美少妇 ryu enami reiko kobayakawa 真实公公 丰乳肥臀的姐姐 cdts 大大蜜桃 最新流出酒店偷拍+️斯文眼镜干部大叔把包养的白袜妹子抱起来放到桌子干 自慰器 表情很骚 学妹+大一学生 行拍 狐鬼嬉春 littlesubgirl 钻石泄密+约炮大神 高中的女生 sgki-066 不卡 sone-605 探花 3p 舞蹈姐姐 强推萝莉 下架 哇哇大叫 精品御姐 oae-227

文件列表

  • 10. Section 08 PyTorch Paper Replicating/36. Creating a Transformer Encoder Layer with In-Built PyTorch Layer.mp4 137.5 MB
  • 10. Section 08 PyTorch Paper Replicating/37. Bringing Our Own Vision Transformer to Life - Part 1 Gathering the Pieces of the Puzzle.mp4 134.7 MB
  • 5. Section 03 PyTorch Computer Vision/22. Model 2 Coding Our First Convolutional Neural Network with PyTorch.mp4 130.7 MB
  • 11. Section 09 PyTorch Model Deployment/23. Creating a Function to Make and Time Predictions with Our Models.mp4 128.5 MB
  • 8. Section 06 PyTorch Transfer Learning/12. Freezing the Base Layers of Our Model and Updating the Classifier Head.mp4 121.4 MB
  • 11. Section 09 PyTorch Model Deployment/49. Training Food Vision Big Our Biggest Model Yet!.mp4 121.3 MB
  • 10. Section 08 PyTorch Paper Replicating/30. Turning Equation 2 into Code.mp4 119.3 MB
  • 10. Section 08 PyTorch Paper Replicating/44. Getting a Pretrained Vision Transformer from Torchvision and Setting it Up.mp4 117.8 MB
  • 5. Section 03 PyTorch Computer Vision/25. Model 2 Using a Trick to Find the Input and Output Shapes of Each of Our Layers.mp4 117.0 MB
  • 6. Section 04 PyTorch Custom Datasets/14. Writing a PyTorch Custom Dataset Class from Scratch to Load Our Images.mp4 115.2 MB
  • 3. Section 01 PyTorch Workflow/15. Reviewing the Steps in a Training Loop Step by Step.mp4 114.9 MB
  • 10. Section 08 PyTorch Paper Replicating/11. Breaking Down the Four Equations Overview and a Trick for Reading Papers.mp4 113.3 MB
  • 7. Section 05 PyTorch Going Modular/4. Writing the Outline for Our First Python Script to Setup the Data.mp4 112.7 MB
  • 9. Section 07 PyTorch Experiment Tracking/16. Creating Functions to Prepare Our Feature Extractor Models.mp4 112.5 MB
  • 4. Section 02 PyTorch Neural Network Classification/10. Setting Up a Loss Function Optimizer and Evaluation Function for Our Classification Network.mp4 112.2 MB
  • 5. Section 03 PyTorch Computer Vision/5. Getting a Computer Vision Dataset and Checking Out Its- Input and Output Shapes.mp4 112.1 MB
  • 3. Section 01 PyTorch Workflow/18. Reviewing What Happens in a Testing Loop Step by Step.mp4 112.1 MB
  • 7. Section 05 PyTorch Going Modular/9. Creating a Training Script to Train Our Model in One Line of Code.mp4 111.1 MB
  • 1. Introduction/1. PyTorch for Deep Learning Bootcamp Zero to Mastery.mp4 109.6 MB
  • 10. Section 08 PyTorch Paper Replicating/23. Creating the Patch Embedding Layer with PyTorch.mp4 109.6 MB
  • 6. Section 04 PyTorch Custom Datasets/18. Exploring State of the Art Data Augmentation With Torchvision Transforms.mp4 108.8 MB
  • 10. Section 08 PyTorch Paper Replicating/16. Calculating the Input and Output Shape of the Embedding Layer by Hand.mp4 108.3 MB
  • 5. Section 03 PyTorch Computer Vision/31. Making Predictions Across the Whole Test Dataset and Importing Libraries to Plot a Confusion Matrix.mp4 106.9 MB
  • 5. Section 03 PyTorch Computer Vision/23. Model 2 Breaking Down Conv2D Step by Step.mp4 104.7 MB
  • 9. Section 07 PyTorch Experiment Tracking/7. Setting Up a Way to Track a Single Model Experiment with TensorBoard.mp4 104.1 MB
  • 4. Section 02 PyTorch Neural Network Classification/13. Writing Code to Download a Helper Function to Visualize Our Models Predictions.mp4 101.5 MB
  • 4. Section 02 PyTorch Neural Network Classification/29. Training a Multi-Class Classification Model and Troubleshooting Code on the Fly.mp4 100.7 MB
  • 7. Section 05 PyTorch Going Modular/5. Creating a Python Script to Create Our PyTorch DataLoaders.mp4 100.6 MB
  • 11. Section 09 PyTorch Model Deployment/56. Deploying Food Vision Big to Hugging Face Spaces.mp4 100.4 MB
  • 6. Section 04 PyTorch Custom Datasets/3. Downloading a Custom Dataset of Pizza, Steak and Sushi Images.mp4 98.9 MB
  • 11. Section 09 PyTorch Model Deployment/39. Turning Our Food Vision Mini Demo App Into a Python Script.mp4 97.6 MB
  • 8. Section 06 PyTorch Transfer Learning/7. Turning Our Data into DataLoaders with Automatic Created Transforms.mp4 95.3 MB
  • 12. Introduction to PyTorch 2.0 and torch.compile/21. Experiment 3 - Training a Non-Compiled Model for Multiple Runs.mp4 94.8 MB
  • 5. Section 03 PyTorch Computer Vision/12. Writing Training and Testing Loops for Our Batched Data.mp4 94.6 MB
  • 10. Section 08 PyTorch Paper Replicating/28. Equation 2 Multihead Attention Overview.mp4 94.5 MB
  • 3. Section 01 PyTorch Workflow/17. Writing Testing Loop Code and Discussing What's Happening Step by Step.mp4 94.1 MB
  • 4. Section 02 PyTorch Neural Network Classification/22. Writing Training and Testing Code for Our First Non-Linear Model.mp4 93.9 MB
  • 11. Section 09 PyTorch Model Deployment/42. Uploading Our Food Vision Mini App to Hugging Face Spaces Programmatically.mp4 93.7 MB
  • 8. Section 06 PyTorch Transfer Learning/6. Turning Our Data into DataLoaders with Manually Created Transforms.mp4 93.4 MB
  • 8. Section 06 PyTorch Transfer Learning/8. Which Pretrained Model Should You Use.mp4 92.8 MB
  • 10. Section 08 PyTorch Paper Replicating/13. Breaking Down Equations 2 and 3.mp4 91.8 MB
  • 10. Section 08 PyTorch Paper Replicating/27. Equation 1 Putting it All Together.mp4 91.0 MB
  • 10. Section 08 PyTorch Paper Replicating/17. Turning a Single Image into Patches (Part 1 Patching the Top Row).mp4 91.0 MB
  • 9. Section 07 PyTorch Experiment Tracking/19. Viewing Our Modelling Experiments in TensorBoard.mp4 89.5 MB
  • 5. Section 03 PyTorch Computer Vision/24. Model 2 Breaking Down MaxPool2D Step by Step.mp4 89.3 MB
  • 10. Section 08 PyTorch Paper Replicating/15. Breaking Down Table 1.mp4 88.9 MB
  • 11. Section 09 PyTorch Model Deployment/3. Where Is My Model Going to Go.mp4 87.9 MB
  • 10. Section 08 PyTorch Paper Replicating/20. Exploring the Outputs of Our Convolutional Patch Embedding Layer.mp4 87.8 MB
  • 12. Introduction to PyTorch 2.0 and torch.compile/18. Comparing the Results of Experiments 1 and 2.mp4 87.1 MB
  • 3. Section 01 PyTorch Workflow/19. Writing Code to Save a PyTorch Model.mp4 86.8 MB
  • 10. Section 08 PyTorch Paper Replicating/24. Creating the Class Token Embedding.mp4 85.5 MB
  • 4. Section 02 PyTorch Neural Network Classification/11. Going from Model Logits to Prediction Probabilities to Prediction Labels.mp4 85.4 MB
  • 10. Section 08 PyTorch Paper Replicating/18. Turning a Single Image into Patches (Part 2 Patching the Entire Image).mp4 85.3 MB
  • 7. Section 05 PyTorch Going Modular/6. Turning Our Model Building Code into a Python Script.mp4 84.9 MB
  • 5. Section 03 PyTorch Computer Vision/9. Model 0 Creating a Baseline Model with Two Linear Layers.mp4 83.8 MB
  • 9. Section 07 PyTorch Experiment Tracking/17. Coding Out the Steps to Run a Series of Modelling Experiments.mp4 83.6 MB
  • 10. Section 08 PyTorch Paper Replicating/40. Creating a Loss Function and Optimizer from the ViT Paper.mp4 83.4 MB
  • 6. Section 04 PyTorch Custom Datasets/8. Transforming Data (Part 2) Visualizing Transformed Images.mp4 83.3 MB
  • 12. Introduction to PyTorch 2.0 and torch.compile/20. Preparing Functions for Experiments 3 and 4.mp4 82.7 MB
  • 10. Section 08 PyTorch Paper Replicating/3. Where Can You Find Machine Learning Research Papers and Code.mp4 82.4 MB
  • 4. Section 02 PyTorch Neural Network Classification/16. Writing Training and Testing Code to See if Our New and Upgraded Model Performs Better.mp4 82.2 MB
  • 10. Section 08 PyTorch Paper Replicating/19. Creating Patch Embeddings with a Convolutional Layer.mp4 82.1 MB
  • 10. Section 08 PyTorch Paper Replicating/38. Bringing Our Own Vision Transformer to Life - Part 2 Putting Together the Forward Method.mp4 82.1 MB
  • 11. Section 09 PyTorch Model Deployment/32. Bringing Food Vision Mini to Life in a Live Web Application.mp4 81.9 MB
  • 10. Section 08 PyTorch Paper Replicating/1. What Is a Machine Learning Research Paper.mp4 81.6 MB
  • 10. Section 08 PyTorch Paper Replicating/25. Creating the Class Token Embedding - Less Birds.mp4 81.2 MB
  • 3. Section 01 PyTorch Workflow/13. PyTorch Training Loop Steps and Intuition.mp4 81.0 MB
  • 10. Section 08 PyTorch Paper Replicating/29. Equation 2 Layernorm Overview.mp4 81.0 MB
  • 4. Section 02 PyTorch Neural Network Classification/12. Coding a Training and Testing Optimization Loop for Our Classification Model.mp4 80.2 MB
  • 7. Section 05 PyTorch Going Modular/2. Going Modular Notebook (Part 1) Running It End to End.mp4 79.9 MB
  • 6. Section 04 PyTorch Custom Datasets/34. Predicting on Custom Data (Part 3) Getting Our Custom Image Into the Right Format.mp4 79.9 MB
  • 3. Section 01 PyTorch Workflow/6. Creating Our First PyTorch Model for Linear Regression.mp4 79.9 MB
  • 11. Section 09 PyTorch Model Deployment/47. Creating a Function to Split Our Food 101 Dataset into Smaller Portions.mp4 79.5 MB
  • 11. Section 09 PyTorch Model Deployment/27. Visualizing the Performance vs Speed Trade-off.mp4 78.9 MB
  • 6. Section 04 PyTorch Custom Datasets/16. Writing a Helper Function to Visualize Random Images from Our Custom Dataset.mp4 78.7 MB
  • 12. Introduction to PyTorch 2.0 and torch.compile/22. Experiment 4 - Training a Compiled Model for Multiple Runs.mp4 78.5 MB
  • 10. Section 08 PyTorch Paper Replicating/12. Breaking Down Equation 1.mp4 78.2 MB
  • 9. Section 07 PyTorch Experiment Tracking/6. Preparing a Pretrained Model for Our Own Problem.mp4 77.9 MB
  • 2. Section 00 PyTorch Fundamentals/7. What Is and Why PyTorch.mp4 77.8 MB
  • 8. Section 06 PyTorch Transfer Learning/9. Setting Up a Pretrained Model with Torchvision.mp4 77.3 MB
  • 3. Section 01 PyTorch Workflow/12. Setting Up an Optimizer and a Loss Function.mp4 77.2 MB
  • 6. Section 04 PyTorch Custom Datasets/27. Discussing the Balance Between Overfitting and Underfitting and How to Deal With Each.mp4 75.6 MB
  • 5. Section 03 PyTorch Computer Vision/10. Creating a Loss Function an Optimizer for Model 0.mp4 75.3 MB
  • 2. Section 00 PyTorch Fundamentals/30. Different Ways of Accessing a GPU in PyTorch.mp4 75.1 MB
  • 9. Section 07 PyTorch Experiment Tracking/9. Exploring Our Single Models Results with TensorBoard.mp4 74.7 MB
  • 12. Introduction to PyTorch 2.0 and torch.compile/7. Setting the Default Device in PyTorch 2.0.mp4 74.6 MB
  • 12. Introduction to PyTorch 2.0 and torch.compile/17. Experiment 2 - Single Run with Torch Compile.mp4 73.6 MB
  • 10. Section 08 PyTorch Paper Replicating/33. Turning Equation 3 into Code.mp4 73.5 MB
  • 6. Section 04 PyTorch Custom Datasets/36. Predicting on Custom Data (Part 5) Putting It All Together.mp4 73.1 MB
  • 6. Section 04 PyTorch Custom Datasets/20. Building a Baseline Model (Part 2) Replicating Tiny VGG from Scratch.mp4 73.1 MB
  • 6. Section 04 PyTorch Custom Datasets/5. Becoming One With the Data (Part 2) Visualizing a Random Image.mp4 72.8 MB
  • 3. Section 01 PyTorch Workflow/9. Checking Out the Internals of Our PyTorch Model.mp4 71.8 MB
  • 4. Section 02 PyTorch Neural Network Classification/9. Recreating and Exploring the Insides of Our Model Using nn.Sequential.mp4 71.1 MB
  • 3. Section 01 PyTorch Workflow/10. Making Predictions With Our Random Model Using Inference Mode.mp4 71.0 MB
  • 11. Section 09 PyTorch Model Deployment/41. Downloading Our Food Vision Mini App Files from Google Colab.mp4 70.8 MB
  • 11. Section 09 PyTorch Model Deployment/54. Creating an App Script for Our Food Vision Big Model Gradio Demo.mp4 70.3 MB
  • 12. Introduction to PyTorch 2.0 and torch.compile/9. Creating a Function to Setup Our Model and Transforms.mp4 70.2 MB
  • 10. Section 08 PyTorch Paper Replicating/14. Breaking Down Equation 4.mp4 70.0 MB
  • 10. Section 08 PyTorch Paper Replicating/5. Getting Setup for Coding in Google Colab.mp4 69.7 MB
  • 5. Section 03 PyTorch Computer Vision/19. Training and Testing Model 1 with Our Training and Testing Functions.mp4 69.4 MB
  • 10. Section 08 PyTorch Paper Replicating/26. Creating the Position Embedding.mp4 69.4 MB
  • 10. Section 08 PyTorch Paper Replicating/42. Discussing what Our Training Setup Is Missing.mp4 68.9 MB
  • 8. Section 06 PyTorch Transfer Learning/16. Creating a Function Predict On and Plot Images.mp4 68.6 MB
  • 5. Section 03 PyTorch Computer Vision/1. What Is a Computer Vision Problem and What We Are Going to Cover.mp4 68.4 MB
  • 11. Section 09 PyTorch Model Deployment/13. Training Our EffNetB2 Feature Extractor and Inspecting the Loss Curves.mp4 68.3 MB
  • 10. Section 08 PyTorch Paper Replicating/39. Getting a Visual Summary of Our Custom Vision Transformer.mp4 68.1 MB
  • 6. Section 04 PyTorch Custom Datasets/24. Creating a Train Function to Train and Evaluate Our Models.mp4 67.6 MB
  • 10. Section 08 PyTorch Paper Replicating/50. PyTorch Paper Replicating Main Takeaways, Exercises and Extra-Curriculum.mp4 67.4 MB
  • 6. Section 04 PyTorch Custom Datasets/23. Creating Training and Testing loop Functions.mp4 67.2 MB
  • 11. Section 09 PyTorch Model Deployment/24. Making and Timing Predictions with EffNetB2.mp4 66.6 MB
  • 3. Section 01 PyTorch Workflow/16. Running Our Training Loop Epoch by Epoch and Seeing What Happens.mp4 66.5 MB
  • 11. Section 09 PyTorch Model Deployment/57. PyTorch Mode Deployment Main Takeaways, Extra-Curriculum and Exercises.mp4 66.5 MB
  • 6. Section 04 PyTorch Custom Datasets/21. Building a Baseline Model (Part 3) Doing a Forward Pass to Test Our Model Shapes.mp4 66.0 MB
  • 5. Section 03 PyTorch Computer Vision/13. Writing an Evaluation Function to Get Our Models Results.mp4 65.5 MB
  • 11. Section 09 PyTorch Model Deployment/45. Preparing an EffNetB2 Feature Extractor Model for Food Vision Big.mp4 65.1 MB
  • 5. Section 03 PyTorch Computer Vision/34. Recapping What We Have Covered Plus Exercises and Extra-Curriculum.mp4 64.8 MB
  • 9. Section 07 PyTorch Experiment Tracking/2. Getting Setup by Importing Torch Libraries and Going Modular Code.mp4 64.7 MB
  • 3. Section 01 PyTorch Workflow/24. Putting Everything Together (Part 3) Training a Model.mp4 64.6 MB
  • 4. Section 02 PyTorch Neural Network Classification/26. Creating a Multi-Class Classification Model with PyTorch.mp4 64.5 MB
  • 4. Section 02 PyTorch Neural Network Classification/20. Introducing the Missing Piece for Our Classification Model Non-Linearity.mp4 63.9 MB
  • 12. Introduction to PyTorch 2.0 and torch.compile/1. Introduction to PyTorch 2.0.mp4 63.7 MB
  • 2. Section 00 PyTorch Fundamentals/25. Reshaping, Viewing and Stacking Tensors.mp4 63.4 MB
  • 11. Section 09 PyTorch Model Deployment/10. Creating an EffNetB2 Feature Extractor Model.mp4 63.2 MB
  • 4. Section 02 PyTorch Neural Network Classification/31. Discussing a Few More Classification Metrics.mp4 63.1 MB
  • 5. Section 03 PyTorch Computer Vision/8. Turning Our Datasets Into DataLoaders.mp4 62.8 MB
  • 2. Section 00 PyTorch Fundamentals/29. PyTorch Reproducibility (Taking the Random Out of Random).mp4 62.1 MB
  • 11. Section 09 PyTorch Model Deployment/36. Creating an Examples Directory with Example Food Vision Mini Images.mp4 62.1 MB
  • 7. Section 05 PyTorch Going Modular/7. Turning Our Model Training Code into a Python Script.mp4 61.8 MB
  • 6. Section 04 PyTorch Custom Datasets/28. Creating Augmented Training Datasets and DataLoaders for Model 1.mp4 61.8 MB
  • 9. Section 07 PyTorch Experiment Tracking/4. Turning Our Data into DataLoaders Using Manual Transforms.mp4 61.7 MB
  • 5. Section 03 PyTorch Computer Vision/33. Saving and Loading Our Best Performing Model.mp4 61.6 MB
  • 7. Section 05 PyTorch Going Modular/10. Going Modular Summary, Exercises and Extra-Curriculum.mp4 60.8 MB
  • 10. Section 08 PyTorch Paper Replicating/7. Turning Our Food Vision Mini Images into PyTorch DataLoaders.mp4 60.5 MB
  • 6. Section 04 PyTorch Custom Datasets/9. Loading All of Our Images and Turning Them Into Tensors With ImageFolder.mp4 60.5 MB
  • 2. Section 00 PyTorch Fundamentals/13. Introduction to PyTorch Tensors.mp4 60.4 MB
  • 4. Section 02 PyTorch Neural Network Classification/25. Putting It All Together (Part 1) Building a Multiclass Dataset.mp4 60.3 MB
  • 2. Section 00 PyTorch Fundamentals/22. Matrix Multiplication (Part 3) Dealing With Tensor Shape Errors.mp4 59.9 MB
  • 10. Section 08 PyTorch Paper Replicating/21. Flattening Our Convolutional Feature Maps into a Sequence of Patch Embeddings.mp4 59.8 MB
  • 9. Section 07 PyTorch Experiment Tracking/20. Loading In the Best Model and Making Predictions on Random Images from the Test Set.mp4 59.2 MB
  • 6. Section 04 PyTorch Custom Datasets/25. Training and Evaluating Model 0 With Our Training Functions.mp4 59.1 MB
  • 10. Section 08 PyTorch Paper Replicating/4. What We Are Going to Cover.mp4 59.0 MB
  • 8. Section 06 PyTorch Transfer Learning/1. Introduction What is Transfer Learning and Why Use It.mp4 58.7 MB
  • 12. Introduction to PyTorch 2.0 and torch.compile/12. Getting More Speedups with TensorFloat-32.mp4 58.5 MB
  • 7. Section 05 PyTorch Going Modular/1. What Is Going Modular and What We Are Going to Cover.mp4 58.0 MB
  • 5. Section 03 PyTorch Computer Vision/15. Model 1 Creating a Model with Non-Linear Functions.mp4 57.7 MB
  • 11. Section 09 PyTorch Model Deployment/28. Gradio Overview and Installation.mp4 57.7 MB
  • 4. Section 02 PyTorch Neural Network Classification/28. Going from Logits to Prediction Probabilities to Prediction Labels with a Multi-Class Model.mp4 57.7 MB
  • 9. Section 07 PyTorch Experiment Tracking/3. Creating a Function to Download Data.mp4 57.4 MB
  • 10. Section 08 PyTorch Paper Replicating/32. Equation 3 Replication Overview.mp4 57.1 MB
  • 5. Section 03 PyTorch Computer Vision/4. Discussing and Importing the Base Computer Vision Libraries in PyTorch.mp4 57.1 MB
  • 6. Section 04 PyTorch Custom Datasets/1. What Is a Custom Dataset and What We Are Going to Cover.mp4 56.8 MB
  • 4. Section 02 PyTorch Neural Network Classification/1. Introduction to Machine Learning Classification With PyTorch.mp4 56.6 MB
  • 6. Section 04 PyTorch Custom Datasets/4. Becoming One With the Data (Part 1) Exploring the Data Format.mp4 56.4 MB
  • 6. Section 04 PyTorch Custom Datasets/26. Plotting the Loss Curves of Model 0.mp4 56.3 MB
  • 11. Section 09 PyTorch Model Deployment/43. Running Food Vision Mini on Hugging Face Spaces and Trying it Out.mp4 56.2 MB
  • 11. Section 09 PyTorch Model Deployment/22. Outlining the Steps for Making and Timing Predictions for Our Models.mp4 56.0 MB
  • 3. Section 01 PyTorch Workflow/23. Putting Everything Together (Part 2) Building a Model.mp4 56.0 MB
  • 11. Section 09 PyTorch Model Deployment/30. Creating a Predict Function to Map Our Food Vision Mini Inputs to Outputs.mp4 55.8 MB
  • 8. Section 06 PyTorch Transfer Learning/4. Downloading Our Previously Written Code from Going Modular.mp4 55.7 MB
  • 9. Section 07 PyTorch Experiment Tracking/5. Turning Our Data into DataLoaders Using Automatic Transforms.mp4 55.5 MB
  • 11. Section 09 PyTorch Model Deployment/34. Outlining the File Structure of Our Deployed App.mp4 55.3 MB
  • 8. Section 06 PyTorch Transfer Learning/3. Installing the Latest Versions of Torch and Torchvision.mp4 55.1 MB
  • 5. Section 03 PyTorch Computer Vision/21. Model 2 Convolutional Neural Networks High Level Overview.mp4 54.8 MB
  • 10. Section 08 PyTorch Paper Replicating/35. Combining Equation 2 and 3 to Create the Transformer Encoder.mp4 54.7 MB
  • 4. Section 02 PyTorch Neural Network Classification/4. Making a Toy Classification Dataset.mp4 54.5 MB
  • 3. Section 01 PyTorch Workflow/14. Writing Code for a PyTorch Training Loop.mp4 54.4 MB
  • 10. Section 08 PyTorch Paper Replicating/46. Training a Pretrained ViT Feature Extractor Model for Food Vision Mini.mp4 54.4 MB
  • 6. Section 04 PyTorch Custom Datasets/17. Turning Our Custom Datasets Into DataLoaders.mp4 54.2 MB
  • 6. Section 04 PyTorch Custom Datasets/11. Turning Our Image Datasets into PyTorch DataLoaders.mp4 54.2 MB
  • 4. Section 02 PyTorch Neural Network Classification/21. Building Our First Neural Network with Non-Linearity.mp4 54.2 MB
  • 6. Section 04 PyTorch Custom Datasets/10. Visualizing a Loaded Image From the Train Dataset.mp4 54.0 MB
  • 2. Section 00 PyTorch Fundamentals/14. Creating Random Tensors in PyTorch.mp4 53.5 MB
  • 11. Section 09 PyTorch Model Deployment/17. Creating a Vision Transformer Feature Extractor Model.mp4 53.5 MB
  • 11. Section 09 PyTorch Model Deployment/26. Comparing EffNetB2 and ViT Model Statistics.mp4 53.2 MB
  • 12. Introduction to PyTorch 2.0 and torch.compile/16. Experiment 1 - Single Run without Torch Compile.mp4 53.1 MB
  • 8. Section 06 PyTorch Transfer Learning/11. Getting a Summary of the Different Layers of Our Model.mp4 53.1 MB
  • 10. Section 08 PyTorch Paper Replicating/34. Transformer Encoder Overview.mp4 52.7 MB
  • 2. Section 00 PyTorch Fundamentals/26. Squeezing, Unsqueezing and Permuting Tensors.mp4 52.5 MB
  • 6. Section 04 PyTorch Custom Datasets/31. Plotting the Loss Curves of All of Our Models Against Each Other.mp4 52.5 MB
  • 3. Section 01 PyTorch Workflow/8. Discussing Some of the Most Important PyTorch Model Building Classes.mp4 52.2 MB
  • 7. Section 05 PyTorch Going Modular/8. Turning Our Utility Function to Save a Model into a Python Script.mp4 51.7 MB
  • 4. Section 02 PyTorch Neural Network Classification/7. Coding a Small Neural Network to Handle Our Classification Data.mp4 51.7 MB
  • 6. Section 04 PyTorch Custom Datasets/37. Summary of What We Have Covered Plus Exercises and Extra-Curriculum.mp4 51.2 MB
  • 6. Section 04 PyTorch Custom Datasets/13. Creating a Helper Function to Get Class Names From a Directory.mp4 51.0 MB
  • 5. Section 03 PyTorch Computer Vision/27. Model 2 Training Our First CNN and Evaluating Its Results.mp4 50.9 MB
  • 3. Section 01 PyTorch Workflow/20. Writing Code to Load a PyTorch Model.mp4 50.9 MB
  • 6. Section 04 PyTorch Custom Datasets/7. Transforming Data (Part 1) Turning Images Into Tensors.mp4 50.9 MB
  • 10. Section 08 PyTorch Paper Replicating/10. Breaking Down Figure 1 of the ViT Paper.mp4 50.7 MB
  • 2. Section 00 PyTorch Fundamentals/17. Dealing With Tensor Data Types.mp4 50.6 MB
  • 10. Section 08 PyTorch Paper Replicating/9. Replicating a Vision Transformer - High Level Overview.mp4 50.6 MB
  • 7. Section 05 PyTorch Going Modular/3. Downloading a Dataset.mp4 50.5 MB
  • 8. Section 06 PyTorch Transfer Learning/17. Making and Plotting Predictions on Test Images.mp4 50.5 MB
  • 12. Introduction to PyTorch 2.0 and torch.compile/6. Getting Info from Our GPUs and Seeing if They're Capable of Using PyTorch 2.0.mp4 50.5 MB
  • 9. Section 07 PyTorch Experiment Tracking/11. Adapting Our Train Function to Be Able to Track Multiple Experiments.mp4 50.4 MB
  • 11. Section 09 PyTorch Model Deployment/25. Making and Timing Predictions with ViT.mp4 49.8 MB
  • 4. Section 02 PyTorch Neural Network Classification/5. Turning Our Data into Tensors and Making a Training and Test Split.mp4 49.7 MB
  • 4. Section 02 PyTorch Neural Network Classification/14. Discussing Options to Improve a Model.mp4 49.6 MB
  • 5. Section 03 PyTorch Computer Vision/29. Making Predictions on Random Test Samples with the Best Trained Model.mp4 49.6 MB
  • 4. Section 02 PyTorch Neural Network Classification/30. Making Predictions with and Evaluating Our Multi-Class Classification Model.mp4 49.5 MB
  • 5. Section 03 PyTorch Computer Vision/2. Computer Vision Input and Output Shapes.mp4 49.1 MB
  • 6. Section 04 PyTorch Custom Datasets/12. Creating a Custom Dataset Class in PyTorch High Level Overview.mp4 49.1 MB
  • 4. Section 02 PyTorch Neural Network Classification/24. Replicating Non-Linear Activation Functions with Pure PyTorch.mp4 48.9 MB
  • 9. Section 07 PyTorch Experiment Tracking/10. Creating a Function to Create SummaryWriter Instances.mp4 48.7 MB
  • 11. Section 09 PyTorch Model Deployment/29. Gradio Function Outline.mp4 48.6 MB
  • 6. Section 04 PyTorch Custom Datasets/19. Building a Baseline Model (Part 1) Loading and Transforming Data.mp4 48.2 MB
  • 4. Section 02 PyTorch Neural Network Classification/8. Making Our Neural Network Visual.mp4 48.1 MB
  • 9. Section 07 PyTorch Experiment Tracking/15. Turning Our Datasets into DataLoaders Ready for Experimentation.mp4 48.1 MB
  • 3. Section 01 PyTorch Workflow/26. Putting Everything Together (Part 5) Saving and Loading a Trained Model.mp4 47.6 MB
  • 2. Section 00 PyTorch Fundamentals/4. Anatomy of Neural Networks.mp4 46.4 MB
  • 11. Section 09 PyTorch Model Deployment/1. What is Machine Learning Model Deployment and Why Deploy a Machine Learning Model.mp4 46.1 MB
  • 3. Section 01 PyTorch Workflow/2. Getting Setup and What We Are Covering.mp4 46.0 MB
  • 11. Section 09 PyTorch Model Deployment/37. Writing Code to Move Our Saved EffNetB2 Model File.mp4 45.9 MB
  • 2. Section 00 PyTorch Fundamentals/20. Matrix Multiplication (Part 1).mp4 45.6 MB
  • 2. Section 00 PyTorch Fundamentals/12. Getting Setup to Write PyTorch Code.mp4 45.4 MB
  • 11. Section 09 PyTorch Model Deployment/52. Saving Food 101 Class Names to a Text File and Reading them Back In.mp4 45.0 MB
  • 12. Introduction to PyTorch 2.0 and torch.compile/11. Setting the Batch Size and Data Size Programmatically.mp4 44.9 MB
  • 12. Introduction to PyTorch 2.0 and torch.compile/14. Creating Training and Test DataLoaders.mp4 44.8 MB
  • 8. Section 06 PyTorch Transfer Learning/15. Outlining the Steps to Make Predictions on the Test Images.mp4 44.6 MB
  • 6. Section 04 PyTorch Custom Datasets/15. Compare Our Custom Dataset Class to the Original ImageFolder Class.mp4 44.5 MB
  • 4. Section 02 PyTorch Neural Network Classification/3. Typical Architecture of a Classification Neural Network (Overview).mp4 44.5 MB
  • 8. Section 06 PyTorch Transfer Learning/5. Downloading Pizza, Steak, Sushi Image Data from Github.mp4 44.5 MB
  • 3. Section 01 PyTorch Workflow/11. Training a Model Intuition (The Things We Need).mp4 44.5 MB
  • 11. Section 09 PyTorch Model Deployment/46. Downloading the Food 101 Dataset.mp4 44.2 MB
  • 8. Section 06 PyTorch Transfer Learning/13. Training Our First Transfer Learning Feature Extractor Model.mp4 43.9 MB
  • 11. Section 09 PyTorch Model Deployment/16. Collecting Important Statistics and Performance Metrics for Our EffNetB2 Model.mp4 43.4 MB
  • 5. Section 03 PyTorch Computer Vision/32. Evaluating Our Best Models Predictions with a Confusion Matrix.mp4 43.3 MB
  • 11. Section 09 PyTorch Model Deployment/7. Getting Setup to Code.mp4 43.1 MB
  • 9. Section 07 PyTorch Experiment Tracking/14. Downloading Datasets for Our Modelling Experiments.mp4 43.0 MB
  • 2. Section 00 PyTorch Fundamentals/31. Setting up Device Agnostic Code and Putting Tensors On and Off the GPU.mp4 43.0 MB
  • 10. Section 08 PyTorch Paper Replicating/43. Plotting a Loss Curve for Our ViT Model.mp4 42.8 MB
  • 4. Section 02 PyTorch Neural Network Classification/18. Building and Training a Model to Fit on Straight Line Data.mp4 42.6 MB
  • 12. Introduction to PyTorch 2.0 and torch.compile/24. Potential Extensions and Resources to Learn More.mp4 42.3 MB
  • 2. Section 00 PyTorch Fundamentals/18. Getting Tensor Attributes.mp4 42.3 MB
  • 4. Section 02 PyTorch Neural Network Classification/27. Setting Up a Loss Function and Optimizer for Our Multi-Class Model.mp4 42.2 MB
  • 12. Introduction to PyTorch 2.0 and torch.compile/15. Preparing Training and Testing Loops with Timing Steps.mp4 42.0 MB
  • 6. Section 04 PyTorch Custom Datasets/33. Predicting on Custom Data (Part2) Loading In a Custom Image With PyTorch.mp4 42.0 MB
  • 12. Introduction to PyTorch 2.0 and torch.compile/23. Comparing the Results of Experiments 3 and 4.mp4 41.7 MB
  • 12. Introduction to PyTorch 2.0 and torch.compile/10. Discussing How to Get Better Relative Speedups for Training Models.mp4 41.7 MB
  • 5. Section 03 PyTorch Computer Vision/17. Turing Our Training Loop into a Function.mp4 41.6 MB
  • 12. Introduction to PyTorch 2.0 and torch.compile/13. Downloading the CIFAR10 Dataset.mp4 41.2 MB
  • 11. Section 09 PyTorch Model Deployment/19. Training Our ViT Feature Extractor Model and Inspecting Its Loss Curves.mp4 41.2 MB
  • 4. Section 02 PyTorch Neural Network Classification/15. Creating a New Model with More Layers and Hidden Units.mp4 41.2 MB
  • 12. Introduction to PyTorch 2.0 and torch.compile/19. Saving the Results of Experiments 1 and 2.mp4 41.0 MB
  • 8. Section 06 PyTorch Transfer Learning/18. Making a Prediction on a Custom Image.mp4 40.9 MB
  • 6. Section 04 PyTorch Custom Datasets/29. Constructing and Training Model 1.mp4 40.8 MB
  • 6. Section 04 PyTorch Custom Datasets/22. Using the Torchinfo Package to Get a Summary of Our Model.mp4 40.5 MB
  • 11. Section 09 PyTorch Model Deployment/5. Some Tools and Places to Deploy Machine Learning Models.mp4 40.4 MB
  • 3. Section 01 PyTorch Workflow/7. Breaking Down What's Happening in Our PyTorch Linear regression Model.mp4 40.4 MB
  • 3. Section 01 PyTorch Workflow/3. Creating a Simple Dataset Using the Linear Regression Formula.mp4 39.9 MB
  • 11. Section 09 PyTorch Model Deployment/11. Create a Function to Make an EffNetB2 Feature Extractor Model and Transforms.mp4 39.8 MB
  • 10. Section 08 PyTorch Paper Replicating/41. Training our Custom ViT on Food Vision Mini.mp4 39.6 MB
  • 11. Section 09 PyTorch Model Deployment/4. How Is My Model Going to Function.mp4 39.4 MB
  • 11. Section 09 PyTorch Model Deployment/48. Turning Our Food 101 Datasets into DataLoaders.mp4 39.1 MB
  • 4. Section 02 PyTorch Neural Network Classification/17. Creating a Straight Line Dataset to See if Our Model is Learning Anything.mp4 38.8 MB
  • 3. Section 01 PyTorch Workflow/4. Splitting Our Data Into Training and Test Sets.mp4 38.7 MB
  • 2. Section 00 PyTorch Fundamentals/11. Important Resources For This Course.mp4 38.3 MB
  • 9. Section 07 PyTorch Experiment Tracking/1. What Is Experiment Tracking and Why Track Experiments.mp4 38.2 MB
  • 10. Section 08 PyTorch Paper Replicating/45. Preparing Data to Be Used with a Pretrained ViT.mp4 38.0 MB
  • 5. Section 03 PyTorch Computer Vision/6. Visualizing Random Samples of Data.mp4 37.7 MB
  • 3. Section 01 PyTorch Workflow/5. Building a function to Visualize Our Data.mp4 37.6 MB
  • 8. Section 06 PyTorch Transfer Learning/14. Plotting the Loss Curves of Our Transfer Learning Model.mp4 37.5 MB
  • 5. Section 03 PyTorch Computer Vision/28. Comparing the Results of Our Modelling Experiments.mp4 37.5 MB
  • 2. Section 00 PyTorch Fundamentals/32. PyTorch Fundamentals Exercises and Extra-Curriculum.mp4 37.4 MB
  • 5. Section 03 PyTorch Computer Vision/30. Plotting Our Best Model Predictions on Random Test Samples and Evaluating Them.mp4 37.2 MB
  • 5. Section 03 PyTorch Computer Vision/3. What Is a Convolutional Neural Network (CNN).mp4 36.5 MB
  • 11. Section 09 PyTorch Model Deployment/33. Getting Ready to Deploy Our App Hugging Face Spaces Overview.mp4 36.4 MB
  • 12. Introduction to PyTorch 2.0 and torch.compile/8. Discussing the Experiments We Are Going to Run for PyTorch 2.0.mp4 36.1 MB
  • 2. Section 00 PyTorch Fundamentals/28. PyTorch Tensors and NumPy.mp4 35.9 MB
  • 8. Section 06 PyTorch Transfer Learning/2. Where Can You Find Pretrained Models and What We Are Going to Cover.mp4 35.8 MB
  • 10. Section 08 PyTorch Paper Replicating/31. Checking the Inputs and Outputs of Equation.mp4 35.3 MB
  • 11. Section 09 PyTorch Model Deployment/15. Getting the Size of Our EffNetB2 Model in Megabytes.mp4 35.3 MB
  • 10. Section 08 PyTorch Paper Replicating/22. Visualizing a Single Sequence Vector of Patch Embeddings.mp4 35.0 MB
  • 8. Section 06 PyTorch Transfer Learning/19. Main Takeaways, Exercises and Extra Curriculum.mp4 34.4 MB
  • 9. Section 07 PyTorch Experiment Tracking/18. Running Eight Different Modelling Experiments in 5 Minutes.mp4 34.4 MB
  • 5. Section 03 PyTorch Computer Vision/7. DataLoader Overview Understanding Mini-Batch.mp4 34.3 MB
  • 11. Section 09 PyTorch Model Deployment/9. Outlining Our Food Vision Mini Deployment Goals and Modelling Experiments.mp4 34.0 MB
  • 3. Section 01 PyTorch Workflow/27. PyTorch Workflow Exercises and Extra-Curriculum.mp4 33.8 MB
  • 3. Section 01 PyTorch Workflow/25. Putting Everything Together (Part 4) Making Predictions With a Trained Model.mp4 33.8 MB
  • 11. Section 09 PyTorch Model Deployment/31. Creating a List of Examples to Pass to Our Gradio Demo.mp4 33.3 MB
  • 4. Section 02 PyTorch Neural Network Classification/32. PyTorch Classification Exercises and Extra-Curriculum.mp4 32.9 MB
  • 2. Section 00 PyTorch Fundamentals/21. Matrix Multiplication (Part 2) The Two Main Rules of Matrix Multiplication.mp4 32.8 MB
  • 11. Section 09 PyTorch Model Deployment/38. Turning Our EffNetB2 Model Creation Function Into a Python Script.mp4 32.5 MB
  • 11. Section 09 PyTorch Model Deployment/50. Outlining the File Structure for Our Food Vision Big.mp4 32.4 MB
  • 5. Section 03 PyTorch Computer Vision/18. Turing Our Testing Loop into a Function.mp4 32.3 MB
  • 2. Section 00 PyTorch Fundamentals/27. Selecting Data From Tensors (Indexing).mp4 32.3 MB
  • 2. Section 00 PyTorch Fundamentals/3. Machine Learning vs. Deep Learning.mp4 32.0 MB
  • 10. Section 08 PyTorch Paper Replicating/6. Downloading Data for Food Vision Mini.mp4 31.6 MB
  • 8. Section 06 PyTorch Transfer Learning/10. Different Kinds of Transfer Learning.mp4 31.5 MB
  • 6. Section 04 PyTorch Custom Datasets/32. Predicting on Custom Data (Part 1) Downloading an Image.mp4 31.2 MB
  • 4. Section 02 PyTorch Neural Network Classification/23. Making Predictions with and Evaluating Our First Non-Linear Model.mp4 31.1 MB
  • 5. Section 03 PyTorch Computer Vision/14. Setup Device-Agnostic Code for Running Experiments on the GPU.mp4 31.1 MB
  • 2. Section 00 PyTorch Fundamentals/9. What We Are Going To Cover With PyTorch.mp4 31.1 MB
  • 2. Section 00 PyTorch Fundamentals/23. Finding the Min Max Mean and Sum of Tensors (Tensor Aggregation).mp4 30.8 MB
  • 5. Section 03 PyTorch Computer Vision/11. Creating a Function to Time Our Modelling Code.mp4 30.7 MB
  • 4. Section 02 PyTorch Neural Network Classification/19. Evaluating Our Models Predictions on Straight Line Data.mp4 30.4 MB
  • 3. Section 01 PyTorch Workflow/22. Putting Everything Together (Part 1) Data.mp4 30.1 MB
  • 6. Section 04 PyTorch Custom Datasets/2. Importing PyTorch and Setting Up Device-Agnostic Code.mp4 30.0 MB
  • 9. Section 07 PyTorch Experiment Tracking/22. Main Takeaways, Exercises and Extra Curriculum.mp4 29.8 MB
  • 9. Section 07 PyTorch Experiment Tracking/13. Discussing the Experiments We Are Going to Try.mp4 29.7 MB
  • 4. Section 02 PyTorch Neural Network Classification/2. Classification Problem Example Input and Output Shapes.mp4 29.4 MB
  • 9. Section 07 PyTorch Experiment Tracking/12. What Experiments Should You Try.mp4 27.9 MB
  • 12. Introduction to PyTorch 2.0 and torch.compile/3. Getting Started with PyTorch 2.0 in Google Colab.mp4 27.8 MB
  • 10. Section 08 PyTorch Paper Replicating/48. Discussing the Trade-Offs Between Using a Larger Model for Deployments.mp4 27.7 MB
  • 11. Section 09 PyTorch Model Deployment/2. Three Questions to Ask for Machine Learning Model Deployment.mp4 27.3 MB
  • 3. Section 01 PyTorch Workflow/21. Setting Up to Practice Everything We Have Done Using Device-Agnostic Code.mp4 27.2 MB
  • 11. Section 09 PyTorch Model Deployment/55. Zipping and Downloading Our Food Vision Big App Files.mp4 27.1 MB
  • 11. Section 09 PyTorch Model Deployment/21. Collecting Stats About Our ViT Feature Extractor.mp4 26.9 MB
  • 6. Section 04 PyTorch Custom Datasets/6. Becoming One With the Data (Part 3) Visualizing a Random Image with Matplotlib.mp4 26.7 MB
  • 5. Section 03 PyTorch Computer Vision/20. Getting a Results Dictionary for Model 1.mp4 26.3 MB
  • 11. Section 09 PyTorch Model Deployment/20. Saving Our ViT Feature Extractor and Inspecting Its Size.mp4 26.3 MB
  • 10. Section 08 PyTorch Paper Replicating/47. Saving Our Pretrained ViT Model to File and Inspecting Its Size.mp4 26.0 MB
  • 11. Section 09 PyTorch Model Deployment/8. Downloading a Dataset for Food Vision Mini.mp4 25.6 MB
  • 11. Section 09 PyTorch Model Deployment/35. Creating a Food Vision Mini Demo Directory to House Our App Files.mp4 25.4 MB
  • 2. Section 00 PyTorch Fundamentals/10. How To and How Not To Approach This Course.mp4 25.3 MB
  • 11. Section 09 PyTorch Model Deployment/40. Creating a Requirements File for Our Food Vision Mini App.mp4 25.1 MB
  • 9. Section 07 PyTorch Experiment Tracking/8. Training a Single Model and Saving the Results to TensorBoard.mp4 25.1 MB
  • 6. Section 04 PyTorch Custom Datasets/35. Predicting on Custom Data (Part 4) Turning Our Models Raw Outputs Into Prediction Labels.mp4 24.2 MB
  • 10. Section 08 PyTorch Paper Replicating/49. Making Predictions on a Custom Image with Our Pretrained ViT.mp4 24.1 MB
  • 10. Section 08 PyTorch Paper Replicating/8. Visualizing a Single Image.mp4 23.9 MB
  • 2. Section 00 PyTorch Fundamentals/6. What Can Deep Learning Be Used For.mp4 23.7 MB
  • 11. Section 09 PyTorch Model Deployment/51. Downloading an Example Image and Moving Our Food Vision Big Model File.mp4 22.9 MB
  • 2. Section 00 PyTorch Fundamentals/19. Manipulating Tensors (Tensor Operations).mp4 22.8 MB
  • 9. Section 07 PyTorch Experiment Tracking/21. Making a Prediction on Our Own Custom Image with the Best Model.mp4 22.8 MB
  • 11. Section 09 PyTorch Model Deployment/44. Food Vision Big Project Outline.mp4 22.7 MB
  • 5. Section 03 PyTorch Computer Vision/16. Model 1 Creating a Loss Function and Optimizer.mp4 22.2 MB
  • 6. Section 04 PyTorch Custom Datasets/30. Plotting the Loss Curves of Model 1.mp4 20.9 MB
  • 3. Section 01 PyTorch Workflow/1. Introduction and Where You Can Get Help.mp4 19.6 MB
  • 6. Section 04 PyTorch Custom Datasets/38. Exercise Imposter Syndrome.mp4 19.6 MB
  • 11. Section 09 PyTorch Model Deployment/6. What We Are Going to Cover.mp4 19.5 MB
  • 5. Section 03 PyTorch Computer Vision/26. Model 2 Setting Up a Loss Function and Optimizer.mp4 19.0 MB
  • 2. Section 00 PyTorch Fundamentals/2. The Number 1 Rule of Machine Learning and What Is Deep Learning Good For.mp4 19.0 MB
  • 4. Section 02 PyTorch Neural Network Classification/6. Laying Out Steps for Modelling and Setting Up Device-Agnostic Code.mp4 18.8 MB
  • 2. Section 00 PyTorch Fundamentals/5. Different Types of Learning Paradigms.mp4 18.8 MB
  • 11. Section 09 PyTorch Model Deployment/12. Creating DataLoaders for EffNetB2.mp4 18.4 MB
  • 2. Section 00 PyTorch Fundamentals/16. Creating a Tensor Range and Tensors Like Other Tensors.mp4 18.3 MB
  • 1. Introduction/2. Course Welcome and What Is Deep Learning.mp4 18.1 MB
  • 12. Introduction to PyTorch 2.0 and torch.compile/5. Getting Setup for PyTorch 2.0.mp4 17.9 MB
  • 11. Section 09 PyTorch Model Deployment/53. Turning Our EffNetB2 Feature Extractor Creation Function into a Python Script.mp4 16.4 MB
  • 11. Section 09 PyTorch Model Deployment/14. Saving Our EffNetB2 Model to File.mp4 15.4 MB
  • 2. Section 00 PyTorch Fundamentals/15. Creating Tensors With Zeros and Ones in PyTorch.mp4 14.6 MB
  • 2. Section 00 PyTorch Fundamentals/8. What Are Tensors.mp4 14.5 MB
  • 2. Section 00 PyTorch Fundamentals/24. Finding The Positional Min and Max of Tensors.mp4 13.7 MB
  • 10. Section 08 PyTorch Paper Replicating/2. Why Replicate a Machine Learning Research Paper.mp4 13.3 MB
  • 12. Introduction to PyTorch 2.0 and torch.compile/4. PyTorch 2.0 - 30 Second Intro.mp4 12.7 MB
  • 11. Section 09 PyTorch Model Deployment/18. Creating DataLoaders for Our ViT Feature Extractor Model.mp4 11.0 MB
  • 12. Introduction to PyTorch 2.0 and torch.compile/2. What We Are Going to Cover and PyTorch 2 Reference Materials.mp4 10.4 MB
  • 13. Where To Go From Here/1. Thank You!.mp4 10.0 MB
  • 2. Section 00 PyTorch Fundamentals/1. Why Use Machine Learning or Deep Learning.mp4 8.5 MB
  • 13. Where To Go From Here/6. LinkedIn Endorsements.html 355.4 kB
  • 13. Where To Go From Here/5. ZTM Events Every Month.html 352.7 kB
  • 13. Where To Go From Here/4. Learning Guideline.html 351.7 kB
  • 13. Where To Go From Here/3. Become An Alumni.html 350.8 kB
  • 13. Where To Go From Here/2. Review This Course!.html 349.9 kB
  • 5. Section 03 PyTorch Computer Vision/35. Implement a New Life System.html 133.6 kB
  • 4. Section 02 PyTorch Neural Network Classification/33. Course Check-In.html 99.4 kB
  • 3. Section 01 PyTorch Workflow/28. Unlimited Updates.html 67.0 kB
  • 2. Section 00 PyTorch Fundamentals/33. Let's Have Some Fun (+ Free Resources).html 39.8 kB
  • 5. Section 03 PyTorch Computer Vision/22. Model 2 Coding Our First Convolutional Neural Network with PyTorch.en.srt 35.3 kB
  • 11. Section 09 PyTorch Model Deployment/49. Training Food Vision Big Our Biggest Model Yet!.en.srt 31.7 kB
  • 5. Section 03 PyTorch Computer Vision/12. Writing Training and Testing Loops for Our Batched Data.en.srt 28.8 kB
  • 5. Section 03 PyTorch Computer Vision/5. Getting a Computer Vision Dataset and Checking Out Its- Input and Output Shapes.en.srt 26.4 kB
  • 5. Section 03 PyTorch Computer Vision/23. Model 2 Breaking Down Conv2D Step by Step.en.srt 26.1 kB
  • 3. Section 01 PyTorch Workflow/15. Reviewing the Steps in a Training Loop Step by Step.en.srt 25.9 kB
  • 4. Section 02 PyTorch Neural Network Classification/10. Setting Up a Loss Function Optimizer and Evaluation Function for Our Classification Network.en.srt 25.5 kB
  • 5. Section 03 PyTorch Computer Vision/24. Model 2 Breaking Down MaxPool2D Step by Step.en.srt 25.2 kB
  • 4. Section 02 PyTorch Neural Network Classification/12. Coding a Training and Testing Optimization Loop for Our Classification Model.en.srt 25.2 kB
  • 10. Section 08 PyTorch Paper Replicating/23. Creating the Patch Embedding Layer with PyTorch.en.srt 25.1 kB
  • 4. Section 02 PyTorch Neural Network Classification/11. Going from Model Logits to Prediction Probabilities to Prediction Labels.en.srt 24.8 kB
  • 4. Section 02 PyTorch Neural Network Classification/13. Writing Code to Download a Helper Function to Visualize Our Models Predictions.en.srt 24.6 kB
  • 10. Section 08 PyTorch Paper Replicating/37. Bringing Our Own Vision Transformer to Life - Part 1 Gathering the Pieces of the Puzzle.en.srt 24.5 kB
  • 10. Section 08 PyTorch Paper Replicating/36. Creating a Transformer Encoder Layer with In-Built PyTorch Layer.en.srt 24.4 kB
  • 4. Section 02 PyTorch Neural Network Classification/29. Training a Multi-Class Classification Model and Troubleshooting Code on the Fly.en.srt 24.2 kB
  • 11. Section 09 PyTorch Model Deployment/27. Visualizing the Performance vs Speed Trade-off.en.srt 24.1 kB
  • 7. Section 05 PyTorch Going Modular/9. Creating a Training Script to Train Our Model in One Line of Code.en.srt 24.0 kB
  • 10. Section 08 PyTorch Paper Replicating/28. Equation 2 Multihead Attention Overview.en.srt 24.0 kB
  • 6. Section 04 PyTorch Custom Datasets/18. Exploring State of the Art Data Augmentation With Torchvision Transforms.en.srt 24.0 kB
  • 5. Section 03 PyTorch Computer Vision/31. Making Predictions Across the Whole Test Dataset and Importing Libraries to Plot a Confusion Matrix.en.srt 24.0 kB
  • 11. Section 09 PyTorch Model Deployment/42. Uploading Our Food Vision Mini App to Hugging Face Spaces Programmatically.en.srt 23.9 kB
  • 10. Section 08 PyTorch Paper Replicating/30. Turning Equation 2 into Code.en.srt 23.9 kB
  • 5. Section 03 PyTorch Computer Vision/9. Model 0 Creating a Baseline Model with Two Linear Layers.en.srt 23.4 kB
  • 3. Section 01 PyTorch Workflow/19. Writing Code to Save a PyTorch Model.en.srt 23.3 kB
  • 10. Section 08 PyTorch Paper Replicating/16. Calculating the Input and Output Shape of the Embedding Layer by Hand.en.srt 23.1 kB
  • 9. Section 07 PyTorch Experiment Tracking/7. Setting Up a Way to Track a Single Model Experiment with TensorBoard.en.srt 23.0 kB
  • 5. Section 03 PyTorch Computer Vision/13. Writing an Evaluation Function to Get Our Models Results.en.srt 22.9 kB
  • 6. Section 04 PyTorch Custom Datasets/16. Writing a Helper Function to Visualize Random Images from Our Custom Dataset.en.srt 22.9 kB
  • 3. Section 01 PyTorch Workflow/12. Setting Up an Optimizer and a Loss Function.en.srt 22.6 kB
  • 2. Section 00 PyTorch Fundamentals/13. Introduction to PyTorch Tensors.en.srt 22.6 kB
  • 5. Section 03 PyTorch Computer Vision/25. Model 2 Using a Trick to Find the Input and Output Shapes of Each of Our Layers.en.srt 22.3 kB
  • 2. Section 00 PyTorch Fundamentals/25. Reshaping, Viewing and Stacking Tensors.en.srt 21.8 kB
  • 10. Section 08 PyTorch Paper Replicating/44. Getting a Pretrained Vision Transformer from Torchvision and Setting it Up.en.srt 21.7 kB
  • 6. Section 04 PyTorch Custom Datasets/34. Predicting on Custom Data (Part 3) Getting Our Custom Image Into the Right Format.en.srt 21.7 kB
  • 10. Section 08 PyTorch Paper Replicating/19. Creating Patch Embeddings with a Convolutional Layer.en.srt 21.6 kB
  • 11. Section 09 PyTorch Model Deployment/56. Deploying Food Vision Big to Hugging Face Spaces.en.srt 21.5 kB
  • 5. Section 03 PyTorch Computer Vision/8. Turning Our Datasets Into DataLoaders.en.srt 21.4 kB
  • 6. Section 04 PyTorch Custom Datasets/3. Downloading a Custom Dataset of Pizza, Steak and Sushi Images.en.srt 21.4 kB
  • 11. Section 09 PyTorch Model Deployment/3. Where Is My Model Going to Go.en.srt 21.4 kB
  • 4. Section 02 PyTorch Neural Network Classification/16. Writing Training and Testing Code to See if Our New and Upgraded Model Performs Better.en.srt 21.4 kB
  • 11. Section 09 PyTorch Model Deployment/39. Turning Our Food Vision Mini Demo App Into a Python Script.en.srt 21.4 kB
  • 10. Section 08 PyTorch Paper Replicating/17. Turning a Single Image into Patches (Part 1 Patching the Top Row).en.srt 21.4 kB
  • 12. Introduction to PyTorch 2.0 and torch.compile/20. Preparing Functions for Experiments 3 and 4.en.srt 21.4 kB
  • 3. Section 01 PyTorch Workflow/18. Reviewing What Happens in a Testing Loop Step by Step.en.srt 21.4 kB
  • 4. Section 02 PyTorch Neural Network Classification/26. Creating a Multi-Class Classification Model with PyTorch.en.srt 21.3 kB
  • 8. Section 06 PyTorch Transfer Learning/12. Freezing the Base Layers of Our Model and Updating the Classifier Head.en.srt 21.3 kB
  • 6. Section 04 PyTorch Custom Datasets/14. Writing a PyTorch Custom Dataset Class from Scratch to Load Our Images.en.srt 21.2 kB
  • 3. Section 01 PyTorch Workflow/17. Writing Testing Loop Code and Discussing What's Happening Step by Step.en.srt 21.2 kB
  • 11. Section 09 PyTorch Model Deployment/32. Bringing Food Vision Mini to Life in a Live Web Application.en.srt 21.2 kB
  • 3. Section 01 PyTorch Workflow/24. Putting Everything Together (Part 3) Training a Model.en.srt 21.2 kB
  • 11. Section 09 PyTorch Model Deployment/23. Creating a Function to Make and Time Predictions with Our Models.en.srt 21.1 kB
  • 9. Section 07 PyTorch Experiment Tracking/16. Creating Functions to Prepare Our Feature Extractor Models.en.srt 21.0 kB
  • 10. Section 08 PyTorch Paper Replicating/20. Exploring the Outputs of Our Convolutional Patch Embedding Layer.en.srt 21.0 kB
  • 7. Section 05 PyTorch Going Modular/4. Writing the Outline for Our First Python Script to Setup the Data.en.srt 21.0 kB
  • 10. Section 08 PyTorch Paper Replicating/27. Equation 1 Putting it All Together.en.srt 20.7 kB
  • 11. Section 09 PyTorch Model Deployment/47. Creating a Function to Split Our Food 101 Dataset into Smaller Portions.en.srt 20.5 kB
  • 8. Section 06 PyTorch Transfer Learning/7. Turning Our Data into DataLoaders with Automatic Created Transforms.en.srt 20.5 kB
  • 6. Section 04 PyTorch Custom Datasets/36. Predicting on Custom Data (Part 5) Putting It All Together.en.srt 20.4 kB
  • 6. Section 04 PyTorch Custom Datasets/23. Creating Training and Testing loop Functions.en.srt 20.1 kB
  • 6. Section 04 PyTorch Custom Datasets/27. Discussing the Balance Between Overfitting and Underfitting and How to Deal With Each.en.srt 20.0 kB
  • 3. Section 01 PyTorch Workflow/6. Creating Our First PyTorch Model for Linear Regression.en.srt 19.9 kB
  • 2. Section 00 PyTorch Fundamentals/22. Matrix Multiplication (Part 3) Dealing With Tensor Shape Errors.en.srt 19.9 kB
  • 4. Section 02 PyTorch Neural Network Classification/25. Putting It All Together (Part 1) Building a Multiclass Dataset.en.srt 19.8 kB
  • 10. Section 08 PyTorch Paper Replicating/24. Creating the Class Token Embedding.en.srt 19.8 kB
  • 4. Section 02 PyTorch Neural Network Classification/5. Turning Our Data into Tensors and Making a Training and Test Split.en.srt 19.6 kB
  • 5. Section 03 PyTorch Computer Vision/33. Saving and Loading Our Best Performing Model.en.srt 19.6 kB
  • 4. Section 02 PyTorch Neural Network Classification/4. Making a Toy Classification Dataset.en.srt 19.6 kB
  • 10. Section 08 PyTorch Paper Replicating/18. Turning a Single Image into Patches (Part 2 Patching the Entire Image).en.srt 19.5 kB
  • 10. Section 08 PyTorch Paper Replicating/25. Creating the Class Token Embedding - Less Birds.en.srt 19.4 kB
  • 5. Section 03 PyTorch Computer Vision/1. What Is a Computer Vision Problem and What We Are Going to Cover.en.srt 19.3 kB
  • 9. Section 07 PyTorch Experiment Tracking/17. Coding Out the Steps to Run a Series of Modelling Experiments.en.srt 19.3 kB
  • 4. Section 02 PyTorch Neural Network Classification/22. Writing Training and Testing Code for Our First Non-Linear Model.en.srt 19.2 kB
  • 8. Section 06 PyTorch Transfer Learning/9. Setting Up a Pretrained Model with Torchvision.en.srt 18.9 kB
  • 5. Section 03 PyTorch Computer Vision/2. Computer Vision Input and Output Shapes.en.srt 18.7 kB
  • 10. Section 08 PyTorch Paper Replicating/26. Creating the Position Embedding.en.srt 18.7 kB
  • 5. Section 03 PyTorch Computer Vision/19. Training and Testing Model 1 with Our Training and Testing Functions.en.srt 18.7 kB
  • 6. Section 04 PyTorch Custom Datasets/20. Building a Baseline Model (Part 2) Replicating Tiny VGG from Scratch.en.srt 18.7 kB
  • 6. Section 04 PyTorch Custom Datasets/5. Becoming One With the Data (Part 2) Visualizing a Random Image.en.srt 18.6 kB
  • 5. Section 03 PyTorch Computer Vision/29. Making Predictions on Random Test Samples with the Best Trained Model.en.srt 18.5 kB
  • 11. Section 09 PyTorch Model Deployment/41. Downloading Our Food Vision Mini App Files from Google Colab.en.srt 18.5 kB
  • 3. Section 01 PyTorch Workflow/13. PyTorch Training Loop Steps and Intuition.en.srt 18.5 kB
  • 6. Section 04 PyTorch Custom Datasets/31. Plotting the Loss Curves of All of Our Models Against Each Other.en.srt 18.3 kB
  • 4. Section 02 PyTorch Neural Network Classification/21. Building Our First Neural Network with Non-Linearity.en.srt 18.3 kB
  • 6. Section 04 PyTorch Custom Datasets/8. Transforming Data (Part 2) Visualizing Transformed Images.en.srt 18.3 kB
  • 10. Section 08 PyTorch Paper Replicating/11. Breaking Down the Four Equations Overview and a Trick for Reading Papers.en.srt 18.2 kB
  • 8. Section 06 PyTorch Transfer Learning/8. Which Pretrained Model Should You Use.en.srt 18.1 kB
  • 9. Section 07 PyTorch Experiment Tracking/19. Viewing Our Modelling Experiments in TensorBoard.en.srt 18.1 kB
  • 7. Section 05 PyTorch Going Modular/5. Creating a Python Script to Create Our PyTorch DataLoaders.en.srt 18.0 kB
  • 8. Section 06 PyTorch Transfer Learning/6. Turning Our Data into DataLoaders with Manually Created Transforms.en.srt 18.0 kB
  • 4. Section 02 PyTorch Neural Network Classification/9. Recreating and Exploring the Insides of Our Model Using nn.Sequential.en.srt 18.0 kB
  • 7. Section 05 PyTorch Going Modular/1. What Is Going Modular and What We Are Going to Cover.en.srt 17.9 kB
  • 2. Section 00 PyTorch Fundamentals/7. What Is and Why PyTorch.en.srt 17.8 kB
  • 4. Section 02 PyTorch Neural Network Classification/1. Introduction to Machine Learning Classification With PyTorch.en.srt 17.8 kB
  • 10. Section 08 PyTorch Paper Replicating/10. Breaking Down Figure 1 of the ViT Paper.en.srt 17.7 kB
  • 10. Section 08 PyTorch Paper Replicating/40. Creating a Loss Function and Optimizer from the ViT Paper.en.srt 17.7 kB
  • 4. Section 02 PyTorch Neural Network Classification/20. Introducing the Missing Piece for Our Classification Model Non-Linearity.en.srt 17.6 kB
  • 6. Section 04 PyTorch Custom Datasets/28. Creating Augmented Training Datasets and DataLoaders for Model 1.en.srt 17.6 kB
  • 8. Section 06 PyTorch Transfer Learning/1. Introduction What is Transfer Learning and Why Use It.en.srt 17.5 kB
  • 12. Introduction to PyTorch 2.0 and torch.compile/17. Experiment 2 - Single Run with Torch Compile.en.srt 17.4 kB
  • 4. Section 02 PyTorch Neural Network Classification/28. Going from Logits to Prediction Probabilities to Prediction Labels with a Multi-Class Model.en.srt 17.4 kB
  • 6. Section 04 PyTorch Custom Datasets/1. What Is a Custom Dataset and What We Are Going to Cover.en.srt 17.2 kB
  • 3. Section 01 PyTorch Workflow/16. Running Our Training Loop Epoch by Epoch and Seeing What Happens.en.srt 17.1 kB
  • 9. Section 07 PyTorch Experiment Tracking/6. Preparing a Pretrained Model for Our Own Problem.en.srt 16.9 kB
  • 4. Section 02 PyTorch Neural Network Classification/18. Building and Training a Model to Fit on Straight Line Data.en.srt 16.9 kB
  • 2. Section 00 PyTorch Fundamentals/4. Anatomy of Neural Networks.en.srt 16.7 kB
  • 10. Section 08 PyTorch Paper Replicating/33. Turning Equation 3 into Code.en.srt 16.7 kB
  • 4. Section 02 PyTorch Neural Network Classification/7. Coding a Small Neural Network to Handle Our Classification Data.en.srt 16.7 kB
  • 11. Section 09 PyTorch Model Deployment/26. Comparing EffNetB2 and ViT Model Statistics.en.srt 16.6 kB
  • 5. Section 03 PyTorch Computer Vision/10. Creating a Loss Function an Optimizer for Model 0.en.srt 16.6 kB
  • 5. Section 03 PyTorch Computer Vision/6. Visualizing Random Samples of Data.en.srt 16.5 kB
  • 2. Section 00 PyTorch Fundamentals/30. Different Ways of Accessing a GPU in PyTorch.en.srt 16.5 kB
  • 4. Section 02 PyTorch Neural Network Classification/2. Classification Problem Example Input and Output Shapes.en.srt 16.5 kB
  • 3. Section 01 PyTorch Workflow/10. Making Predictions With Our Random Model Using Inference Mode.en.srt 16.5 kB
  • 2. Section 00 PyTorch Fundamentals/29. PyTorch Reproducibility (Taking the Random Out of Random).en.srt 16.4 kB
  • 2. Section 00 PyTorch Fundamentals/14. Creating Random Tensors in PyTorch.en.srt 16.4 kB
  • 9. Section 07 PyTorch Experiment Tracking/20. Loading In the Best Model and Making Predictions on Random Images from the Test Set.en.srt 16.4 kB
  • 3. Section 01 PyTorch Workflow/23. Putting Everything Together (Part 2) Building a Model.en.srt 16.3 kB
  • 3. Section 01 PyTorch Workflow/9. Checking Out the Internals of Our PyTorch Model.en.srt 16.3 kB
  • 10. Section 08 PyTorch Paper Replicating/13. Breaking Down Equations 2 and 3.en.srt 16.2 kB
  • 6. Section 04 PyTorch Custom Datasets/25. Training and Evaluating Model 0 With Our Training Functions.en.srt 16.2 kB
  • 11. Section 09 PyTorch Model Deployment/54. Creating an App Script for Our Food Vision Big Model Gradio Demo.en.srt 16.1 kB
  • 12. Introduction to PyTorch 2.0 and torch.compile/18. Comparing the Results of Experiments 1 and 2.en.srt 15.9 kB
  • 10. Section 08 PyTorch Paper Replicating/9. Replicating a Vision Transformer - High Level Overview.en.srt 15.9 kB
  • 4. Section 02 PyTorch Neural Network Classification/31. Discussing a Few More Classification Metrics.en.srt 15.9 kB
  • 8. Section 06 PyTorch Transfer Learning/16. Creating a Function Predict On and Plot Images.en.srt 15.9 kB
  • 11. Section 09 PyTorch Model Deployment/1. What is Machine Learning Model Deployment and Why Deploy a Machine Learning Model.en.srt 15.8 kB
  • 12. Introduction to PyTorch 2.0 and torch.compile/9. Creating a Function to Setup Our Model and Transforms.en.srt 15.7 kB
  • 2. Section 00 PyTorch Fundamentals/26. Squeezing, Unsqueezing and Permuting Tensors.en.srt 15.7 kB
  • 3. Section 01 PyTorch Workflow/3. Creating a Simple Dataset Using the Linear Regression Formula.en.srt 15.6 kB
  • 12. Introduction to PyTorch 2.0 and torch.compile/7. Setting the Default Device in PyTorch 2.0.en.srt 15.6 kB
  • 11. Section 09 PyTorch Model Deployment/45. Preparing an EffNetB2 Feature Extractor Model for Food Vision Big.en.srt 15.6 kB
  • 12. Introduction to PyTorch 2.0 and torch.compile/21. Experiment 3 - Training a Non-Compiled Model for Multiple Runs.en.srt 15.6 kB
  • 5. Section 03 PyTorch Computer Vision/15. Model 1 Creating a Model with Non-Linear Functions.en.srt 15.6 kB
  • 12. Introduction to PyTorch 2.0 and torch.compile/22. Experiment 4 - Training a Compiled Model for Multiple Runs.en.srt 15.5 kB
  • 9. Section 07 PyTorch Experiment Tracking/9. Exploring Our Single Models Results with TensorBoard.en.srt 15.4 kB
  • 4. Section 02 PyTorch Neural Network Classification/24. Replicating Non-Linear Activation Functions with Pure PyTorch.en.srt 15.4 kB
  • 11. Section 09 PyTorch Model Deployment/22. Outlining the Steps for Making and Timing Predictions for Our Models.en.srt 15.3 kB
  • 9. Section 07 PyTorch Experiment Tracking/10. Creating a Function to Create SummaryWriter Instances.en.srt 15.3 kB
  • 6. Section 04 PyTorch Custom Datasets/9. Loading All of Our Images and Turning Them Into Tensors With ImageFolder.en.srt 15.3 kB
  • 11. Section 09 PyTorch Model Deployment/10. Creating an EffNetB2 Feature Extractor Model.en.srt 15.2 kB
  • 11. Section 09 PyTorch Model Deployment/13. Training Our EffNetB2 Feature Extractor and Inspecting the Loss Curves.en.srt 15.2 kB
  • 9. Section 07 PyTorch Experiment Tracking/3. Creating a Function to Download Data.en.srt 15.1 kB
  • 10. Section 08 PyTorch Paper Replicating/4. What We Are Going to Cover.en.srt 15.0 kB
  • 12. Introduction to PyTorch 2.0 and torch.compile/16. Experiment 1 - Single Run without Torch Compile.en.srt 15.0 kB
  • 6. Section 04 PyTorch Custom Datasets/24. Creating a Train Function to Train and Evaluate Our Models.en.srt 15.0 kB
  • 12. Introduction to PyTorch 2.0 and torch.compile/12. Getting More Speedups with TensorFloat-32.en.srt 14.9 kB
  • 7. Section 05 PyTorch Going Modular/6. Turning Our Model Building Code into a Python Script.en.srt 14.8 kB
  • 11. Section 09 PyTorch Model Deployment/28. Gradio Overview and Installation.en.srt 14.8 kB
  • 5. Section 03 PyTorch Computer Vision/21. Model 2 Convolutional Neural Networks High Level Overview.en.srt 14.8 kB
  • 11. Section 09 PyTorch Model Deployment/24. Making and Timing Predictions with EffNetB2.en.srt 14.7 kB
  • 10. Section 08 PyTorch Paper Replicating/15. Breaking Down Table 1.en.srt 14.7 kB
  • 11. Section 09 PyTorch Model Deployment/30. Creating a Predict Function to Map Our Food Vision Mini Inputs to Outputs.en.srt 14.7 kB
  • 10. Section 08 PyTorch Paper Replicating/32. Equation 3 Replication Overview.en.srt 14.6 kB
  • 4. Section 02 PyTorch Neural Network Classification/14. Discussing Options to Improve a Model.en.srt 14.6 kB
  • 10. Section 08 PyTorch Paper Replicating/21. Flattening Our Convolutional Feature Maps into a Sequence of Patch Embeddings.en.srt 14.6 kB
  • 10. Section 08 PyTorch Paper Replicating/7. Turning Our Food Vision Mini Images into PyTorch DataLoaders.en.srt 14.4 kB
  • 3. Section 01 PyTorch Workflow/14. Writing Code for a PyTorch Training Loop.en.srt 14.3 kB
  • 5. Section 03 PyTorch Computer Vision/30. Plotting Our Best Model Predictions on Random Test Samples and Evaluating Them.en.srt 14.3 kB
  • 2. Section 00 PyTorch Fundamentals/17. Dealing With Tensor Data Types.en.srt 14.3 kB
  • 11. Section 09 PyTorch Model Deployment/36. Creating an Examples Directory with Example Food Vision Mini Images.en.srt 14.1 kB
  • 2. Section 00 PyTorch Fundamentals/18. Getting Tensor Attributes.en.srt 14.1 kB
  • 2. Section 00 PyTorch Fundamentals/27. Selecting Data From Tensors (Indexing).en.srt 14.0 kB
  • 10. Section 08 PyTorch Paper Replicating/50. PyTorch Paper Replicating Main Takeaways, Exercises and Extra-Curriculum.en.srt 14.0 kB
  • 3. Section 01 PyTorch Workflow/4. Splitting Our Data Into Training and Test Sets.en.srt 14.0 kB
  • 10. Section 08 PyTorch Paper Replicating/29. Equation 2 Layernorm Overview.en.srt 14.0 kB
  • 10. Section 08 PyTorch Paper Replicating/42. Discussing what Our Training Setup Is Missing.en.srt 13.9 kB
  • 9. Section 07 PyTorch Experiment Tracking/2. Getting Setup by Importing Torch Libraries and Going Modular Code.en.srt 13.9 kB
  • 5. Section 03 PyTorch Computer Vision/4. Discussing and Importing the Base Computer Vision Libraries in PyTorch.en.srt 13.9 kB
  • 11. Section 09 PyTorch Model Deployment/43. Running Food Vision Mini on Hugging Face Spaces and Trying it Out.en.srt 13.8 kB
  • 6. Section 04 PyTorch Custom Datasets/21. Building a Baseline Model (Part 3) Doing a Forward Pass to Test Our Model Shapes.en.srt 13.8 kB
  • 3. Section 01 PyTorch Workflow/11. Training a Model Intuition (The Things We Need).en.srt 13.8 kB
  • 10. Section 08 PyTorch Paper Replicating/38. Bringing Our Own Vision Transformer to Life - Part 2 Putting Together the Forward Method.en.srt 13.7 kB
  • 10. Section 08 PyTorch Paper Replicating/12. Breaking Down Equation 1.en.srt 13.7 kB
  • 5. Section 03 PyTorch Computer Vision/27. Model 2 Training Our First CNN and Evaluating Its Results.en.srt 13.6 kB
  • 2. Section 00 PyTorch Fundamentals/12. Getting Setup to Write PyTorch Code.en.srt 13.6 kB
  • 4. Section 02 PyTorch Neural Network Classification/15. Creating a New Model with More Layers and Hidden Units.en.srt 13.5 kB
  • 11. Section 09 PyTorch Model Deployment/2. Three Questions to Ask for Machine Learning Model Deployment.en.srt 13.5 kB
  • 3. Section 01 PyTorch Workflow/20. Writing Code to Load a PyTorch Model.en.srt 13.5 kB
  • 10. Section 08 PyTorch Paper Replicating/5. Getting Setup for Coding in Google Colab.en.srt 13.4 kB
  • 3. Section 01 PyTorch Workflow/26. Putting Everything Together (Part 5) Saving and Loading a Trained Model.en.srt 13.4 kB
  • 2. Section 00 PyTorch Fundamentals/20. Matrix Multiplication (Part 1).en.srt 13.3 kB
  • 5. Section 03 PyTorch Computer Vision/17. Turing Our Training Loop into a Function.en.srt 13.3 kB
  • 6. Section 04 PyTorch Custom Datasets/11. Turning Our Image Datasets into PyTorch DataLoaders.en.srt 13.3 kB
  • 6. Section 04 PyTorch Custom Datasets/13. Creating a Helper Function to Get Class Names From a Directory.en.srt 13.2 kB
  • 6. Section 04 PyTorch Custom Datasets/7. Transforming Data (Part 1) Turning Images Into Tensors.en.srt 13.1 kB
  • 6. Section 04 PyTorch Custom Datasets/19. Building a Baseline Model (Part 1) Loading and Transforming Data.en.srt 13.1 kB
  • 8. Section 06 PyTorch Transfer Learning/13. Training Our First Transfer Learning Feature Extractor Model.en.srt 13.1 kB
  • 3. Section 01 PyTorch Workflow/5. Building a function to Visualize Our Data.en.srt 13.1 kB
  • 10. Section 08 PyTorch Paper Replicating/1. What Is a Machine Learning Research Paper.en.srt 13.0 kB
  • 2. Section 00 PyTorch Fundamentals/28. PyTorch Tensors and NumPy.en.copy.srt 12.9 kB
  • 2. Section 00 PyTorch Fundamentals/28. PyTorch Tensors and NumPy.en.srt 12.9 kB
  • 10. Section 08 PyTorch Paper Replicating/34. Transformer Encoder Overview.en.srt 12.8 kB
  • 3. Section 01 PyTorch Workflow/2. Getting Setup and What We Are Covering.en.srt 12.7 kB
  • 4. Section 02 PyTorch Neural Network Classification/8. Making Our Neural Network Visual.en.srt 12.7 kB
  • 11. Section 09 PyTorch Model Deployment/4. How Is My Model Going to Function.en.srt 12.7 kB
  • 9. Section 07 PyTorch Experiment Tracking/1. What Is Experiment Tracking and Why Track Experiments.en.srt 12.6 kB
  • 7. Section 05 PyTorch Going Modular/2. Going Modular Notebook (Part 1) Running It End to End.en.srt 12.6 kB
  • 4. Section 02 PyTorch Neural Network Classification/30. Making Predictions with and Evaluating Our Multi-Class Classification Model.en.srt 12.4 kB
  • 6. Section 04 PyTorch Custom Datasets/4. Becoming One With the Data (Part 1) Exploring the Data Format.en.srt 12.4 kB
  • 2. Section 00 PyTorch Fundamentals/21. Matrix Multiplication (Part 2) The Two Main Rules of Matrix Multiplication.en.srt 12.3 kB
  • 11. Section 09 PyTorch Model Deployment/9. Outlining Our Food Vision Mini Deployment Goals and Modelling Experiments.en.srt 12.3 kB
  • 8. Section 06 PyTorch Transfer Learning/3. Installing the Latest Versions of Torch and Torchvision.en.srt 12.3 kB
  • 2. Section 00 PyTorch Fundamentals/9. What We Are Going To Cover With PyTorch.en.srt 12.3 kB
  • 6. Section 04 PyTorch Custom Datasets/33. Predicting on Custom Data (Part2) Loading In a Custom Image With PyTorch.en.srt 12.2 kB
  • 4. Section 02 PyTorch Neural Network Classification/17. Creating a Straight Line Dataset to See if Our Model is Learning Anything.en.srt 12.1 kB
  • 12. Introduction to PyTorch 2.0 and torch.compile/14. Creating Training and Test DataLoaders.en.srt 12.1 kB
  • 10. Section 08 PyTorch Paper Replicating/3. Where Can You Find Machine Learning Research Papers and Code.en.srt 12.1 kB
  • 9. Section 07 PyTorch Experiment Tracking/15. Turning Our Datasets into DataLoaders Ready for Experimentation.en.srt 12.1 kB
  • 11. Section 09 PyTorch Model Deployment/34. Outlining the File Structure of Our Deployed App.en.srt 12.0 kB
  • 6. Section 04 PyTorch Custom Datasets/10. Visualizing a Loaded Image From the Train Dataset.en.srt 12.0 kB
  • 2. Section 00 PyTorch Fundamentals/31. Setting up Device Agnostic Code and Putting Tensors On and Off the GPU.en.srt 11.9 kB
  • 8. Section 06 PyTorch Transfer Learning/5. Downloading Pizza, Steak, Sushi Image Data from Github.en.srt 11.9 kB
  • 8. Section 06 PyTorch Transfer Learning/4. Downloading Our Previously Written Code from Going Modular.en.srt 11.8 kB
  • 4. Section 02 PyTorch Neural Network Classification/3. Typical Architecture of a Classification Neural Network (Overview).en.srt 11.8 kB
  • 8. Section 06 PyTorch Transfer Learning/17. Making and Plotting Predictions on Test Images.en.srt 11.7 kB
  • 12. Introduction to PyTorch 2.0 and torch.compile/10. Discussing How to Get Better Relative Speedups for Training Models.en.srt 11.5 kB
  • 9. Section 07 PyTorch Experiment Tracking/4. Turning Our Data into DataLoaders Using Manual Transforms.en.srt 11.5 kB
  • 5. Section 03 PyTorch Computer Vision/7. DataLoader Overview Understanding Mini-Batch.en.srt 11.5 kB
  • 11. Section 09 PyTorch Model Deployment/17. Creating a Vision Transformer Feature Extractor Model.en.srt 11.5 kB
  • 10. Section 08 PyTorch Paper Replicating/39. Getting a Visual Summary of Our Custom Vision Transformer.en.srt 11.5 kB
  • 8. Section 06 PyTorch Transfer Learning/11. Getting a Summary of the Different Layers of Our Model.en.srt 11.4 kB
  • 11. Section 09 PyTorch Model Deployment/46. Downloading the Food 101 Dataset.en.srt 11.3 kB
  • 12. Introduction to PyTorch 2.0 and torch.compile/13. Downloading the CIFAR10 Dataset.en.srt 11.2 kB
  • 6. Section 04 PyTorch Custom Datasets/12. Creating a Custom Dataset Class in PyTorch High Level Overview.en.srt 11.2 kB
  • 8. Section 06 PyTorch Transfer Learning/15. Outlining the Steps to Make Predictions on the Test Images.en.srt 11.2 kB
  • 8. Section 06 PyTorch Transfer Learning/10. Different Kinds of Transfer Learning.en.srt 11.2 kB
  • 11. Section 09 PyTorch Model Deployment/19. Training Our ViT Feature Extractor Model and Inspecting Its Loss Curves.en.srt 11.1 kB
  • 10. Section 08 PyTorch Paper Replicating/35. Combining Equation 2 and 3 to Create the Transformer Encoder.en.srt 11.1 kB
  • 6. Section 04 PyTorch Custom Datasets/17. Turning Our Custom Datasets Into DataLoaders.en.srt 11.1 kB
  • 6. Section 04 PyTorch Custom Datasets/37. Summary of What We Have Covered Plus Exercises and Extra-Curriculum.en.srt 11.0 kB
  • 6. Section 04 PyTorch Custom Datasets/29. Constructing and Training Model 1.en.srt 11.0 kB
  • 11. Section 09 PyTorch Model Deployment/37. Writing Code to Move Our Saved EffNetB2 Model File.en.srt 10.9 kB
  • 10. Section 08 PyTorch Paper Replicating/14. Breaking Down Equation 4.en.srt 10.9 kB
  • 2. Section 00 PyTorch Fundamentals/6. What Can Deep Learning Be Used For.en.srt 10.8 kB
  • 6. Section 04 PyTorch Custom Datasets/22. Using the Torchinfo Package to Get a Summary of Our Model.en.srt 10.8 kB
  • 12. Introduction to PyTorch 2.0 and torch.compile/11. Setting the Batch Size and Data Size Programmatically.en.srt 10.8 kB
  • 2. Section 00 PyTorch Fundamentals/3. Machine Learning vs. Deep Learning.en.srt 10.8 kB
  • 5. Section 03 PyTorch Computer Vision/34. Recapping What We Have Covered Plus Exercises and Extra-Curriculum.en.srt 10.8 kB
  • 5. Section 03 PyTorch Computer Vision/28. Comparing the Results of Our Modelling Experiments.en.srt 10.7 kB
  • 11. Section 09 PyTorch Model Deployment/57. PyTorch Mode Deployment Main Takeaways, Extra-Curriculum and Exercises.en.srt 10.7 kB
  • 11. Section 09 PyTorch Model Deployment/52. Saving Food 101 Class Names to a Text File and Reading them Back In.en.srt 10.6 kB
  • 5. Section 03 PyTorch Computer Vision/32. Evaluating Our Best Models Predictions with a Confusion Matrix.en.srt 10.5 kB
  • 2. Section 00 PyTorch Fundamentals/2. The Number 1 Rule of Machine Learning and What Is Deep Learning Good For.en.srt 10.4 kB
  • 10. Section 08 PyTorch Paper Replicating/46. Training a Pretrained ViT Feature Extractor Model for Food Vision Mini.en.srt 10.4 kB
  • 9. Section 07 PyTorch Experiment Tracking/5. Turning Our Data into DataLoaders Using Automatic Transforms.en.srt 10.3 kB
  • 3. Section 01 PyTorch Workflow/21. Setting Up to Practice Everything We Have Done Using Device-Agnostic Code.en.srt 10.3 kB
  • 4. Section 02 PyTorch Neural Network Classification/27. Setting Up a Loss Function and Optimizer for Our Multi-Class Model.en.srt 10.3 kB
  • 12. Introduction to PyTorch 2.0 and torch.compile/6. Getting Info from Our GPUs and Seeing if They're Capable of Using PyTorch 2.0.en.srt 10.3 kB
  • 7. Section 05 PyTorch Going Modular/8. Turning Our Utility Function to Save a Model into a Python Script.en.srt 10.2 kB
  • 2. Section 00 PyTorch Fundamentals/23. Finding the Min Max Mean and Sum of Tensors (Tensor Aggregation).en.srt 10.1 kB
  • 5. Section 03 PyTorch Computer Vision/18. Turing Our Testing Loop into a Function.en.srt 10.1 kB
  • 11. Section 09 PyTorch Model Deployment/33. Getting Ready to Deploy Our App Hugging Face Spaces Overview.en.srt 10.1 kB
  • 8. Section 06 PyTorch Transfer Learning/18. Making a Prediction on a Custom Image.en.srt 10.0 kB
  • 2. Section 00 PyTorch Fundamentals/11. Important Resources For This Course.en.srt 10.0 kB
  • 9. Section 07 PyTorch Experiment Tracking/14. Downloading Datasets for Our Modelling Experiments.en.srt 9.9 kB
  • 3. Section 01 PyTorch Workflow/22. Putting Everything Together (Part 1) Data.en.srt 9.9 kB
  • 8. Section 06 PyTorch Transfer Learning/2. Where Can You Find Pretrained Models and What We Are Going to Cover.en.srt 9.9 kB
  • 12. Introduction to PyTorch 2.0 and torch.compile/24. Potential Extensions and Resources to Learn More.en.srt 9.8 kB
  • 2. Section 00 PyTorch Fundamentals/10. How To and How Not To Approach This Course.en.srt 9.8 kB
  • 3. Section 01 PyTorch Workflow/7. Breaking Down What's Happening in Our PyTorch Linear regression Model.en.srt 9.8 kB
  • 1. Introduction/2. Course Welcome and What Is Deep Learning.en.srt 9.8 kB
  • 11. Section 09 PyTorch Model Deployment/16. Collecting Important Statistics and Performance Metrics for Our EffNetB2 Model.en.srt 9.8 kB
  • 12. Introduction to PyTorch 2.0 and torch.compile/1. Introduction to PyTorch 2.0.en.srt 9.7 kB
  • 4. Section 02 PyTorch Neural Network Classification/19. Evaluating Our Models Predictions on Straight Line Data.en.srt 9.7 kB
  • 12. Introduction to PyTorch 2.0 and torch.compile/8. Discussing the Experiments We Are Going to Run for PyTorch 2.0.en.srt 9.6 kB
  • 11. Section 09 PyTorch Model Deployment/21. Collecting Stats About Our ViT Feature Extractor.en.srt 9.6 kB
  • 7. Section 05 PyTorch Going Modular/10. Going Modular Summary, Exercises and Extra-Curriculum.en.srt 9.6 kB
  • 11. Section 09 PyTorch Model Deployment/7. Getting Setup to Code.en.srt 9.6 kB
  • 6. Section 04 PyTorch Custom Datasets/15. Compare Our Custom Dataset Class to the Original ImageFolder Class.en.srt 9.5 kB
  • 11. Section 09 PyTorch Model Deployment/5. Some Tools and Places to Deploy Machine Learning Models.en.srt 9.5 kB
  • 4. Section 02 PyTorch Neural Network Classification/23. Making Predictions with and Evaluating Our First Non-Linear Model.en.srt 9.5 kB
  • 10. Section 08 PyTorch Paper Replicating/43. Plotting a Loss Curve for Our ViT Model.en.srt 9.3 kB
  • 3. Section 01 PyTorch Workflow/25. Putting Everything Together (Part 4) Making Predictions With a Trained Model.en.srt 9.2 kB
  • 5. Section 03 PyTorch Computer Vision/11. Creating a Function to Time Our Modelling Code.en.srt 9.2 kB
  • 5. Section 03 PyTorch Computer Vision/3. What Is a Convolutional Neural Network (CNN).en.srt 9.0 kB
  • 3. Section 01 PyTorch Workflow/8. Discussing Some of the Most Important PyTorch Model Building Classes.en.srt 9.0 kB
  • 11. Section 09 PyTorch Model Deployment/11. Create a Function to Make an EffNetB2 Feature Extractor Model and Transforms.en.srt 8.9 kB
  • 9. Section 07 PyTorch Experiment Tracking/12. What Experiments Should You Try.en.srt 8.9 kB
  • 11. Section 09 PyTorch Model Deployment/25. Making and Timing Predictions with ViT.en.srt 8.9 kB
  • 10. Section 08 PyTorch Paper Replicating/45. Preparing Data to Be Used with a Pretrained ViT.en.srt 8.8 kB
  • 10. Section 08 PyTorch Paper Replicating/31. Checking the Inputs and Outputs of Equation.en.srt 8.8 kB
  • 8. Section 06 PyTorch Transfer Learning/14. Plotting the Loss Curves of Our Transfer Learning Model.en.srt 8.7 kB
  • 2. Section 00 PyTorch Fundamentals/19. Manipulating Tensors (Tensor Operations).en.srt 8.6 kB
  • 11. Section 09 PyTorch Model Deployment/50. Outlining the File Structure for Our Food Vision Big.en.srt 8.6 kB
  • 11. Section 09 PyTorch Model Deployment/48. Turning Our Food 101 Datasets into DataLoaders.en.srt 8.5 kB
  • 6. Section 04 PyTorch Custom Datasets/2. Importing PyTorch and Setting Up Device-Agnostic Code.en.srt 8.4 kB
  • 11. Section 09 PyTorch Model Deployment/6. What We Are Going to Cover.en.srt 8.4 kB
  • 9. Section 07 PyTorch Experiment Tracking/13. Discussing the Experiments We Are Going to Try.en.srt 8.4 kB
  • 2. Section 00 PyTorch Fundamentals/8. What Are Tensors.en.srt 8.2 kB
  • 2. Section 00 PyTorch Fundamentals/32. PyTorch Fundamentals Exercises and Extra-Curriculum.en.srt 8.0 kB
  • 1. Introduction/7. Set Your Learning Streak Goal.html 8.0 kB
  • 7. Section 05 PyTorch Going Modular/3. Downloading a Dataset.en.srt 8.0 kB
  • 7. Section 05 PyTorch Going Modular/7. Turning Our Model Training Code into a Python Script.en.srt 7.9 kB
  • 11. Section 09 PyTorch Model Deployment/20. Saving Our ViT Feature Extractor and Inspecting Its Size.en.srt 7.9 kB
  • 6. Section 04 PyTorch Custom Datasets/6. Becoming One With the Data (Part 3) Visualizing a Random Image with Matplotlib.en.srt 7.6 kB
  • 12. Introduction to PyTorch 2.0 and torch.compile/15. Preparing Training and Testing Loops with Timing Steps.en.srt 7.6 kB
  • 12. Introduction to PyTorch 2.0 and torch.compile/23. Comparing the Results of Experiments 3 and 4.en.srt 7.5 kB
  • 10. Section 08 PyTorch Paper Replicating/41. Training our Custom ViT on Food Vision Mini.en.srt 7.5 kB
  • 9. Section 07 PyTorch Experiment Tracking/22. Main Takeaways, Exercises and Extra Curriculum.en.srt 7.5 kB
  • 2. Section 00 PyTorch Fundamentals/5. Different Types of Learning Paradigms.en.srt 7.5 kB
  • 10. Section 08 PyTorch Paper Replicating/22. Visualizing a Single Sequence Vector of Patch Embeddings.en.srt 7.4 kB
  • 3. Section 01 PyTorch Workflow/27. PyTorch Workflow Exercises and Extra-Curriculum.en.srt 7.3 kB
  • 11. Section 09 PyTorch Model Deployment/15. Getting the Size of Our EffNetB2 Model in Megabytes.en.srt 7.3 kB
  • 11. Section 09 PyTorch Model Deployment/31. Creating a List of Examples to Pass to Our Gradio Demo.en.srt 7.3 kB
  • 5. Section 03 PyTorch Computer Vision/20. Getting a Results Dictionary for Model 1.en.srt 7.3 kB
  • 6. Section 04 PyTorch Custom Datasets/32. Predicting on Custom Data (Part 1) Downloading an Image.en.srt 7.3 kB
  • 12. Introduction to PyTorch 2.0 and torch.compile/3. Getting Started with PyTorch 2.0 in Google Colab.en.srt 7.2 kB
  • 12. Introduction to PyTorch 2.0 and torch.compile/19. Saving the Results of Experiments 1 and 2.en.srt 7.1 kB
  • 1. Introduction/6. ZTM Plugin + Understanding Your Video Player.html 7.1 kB
  • 2. Section 00 PyTorch Fundamentals/1. Why Use Machine Learning or Deep Learning.en.srt 7.0 kB
  • 5. Section 03 PyTorch Computer Vision/14. Setup Device-Agnostic Code for Running Experiments on the GPU.en.srt 7.0 kB
  • 1. Introduction/4. Course Companion Book + Code + More.html 6.9 kB
  • 4. Section 02 PyTorch Neural Network Classification/6. Laying Out Steps for Modelling and Setting Up Device-Agnostic Code.en.srt 6.9 kB
  • 1. Introduction/5. Machine Learning + Python Monthly.html 6.8 kB
  • 6. Section 04 PyTorch Custom Datasets/35. Predicting on Custom Data (Part 4) Turning Our Models Raw Outputs Into Prediction Labels.en.srt 6.7 kB
  • 2. Section 00 PyTorch Fundamentals/16. Creating a Tensor Range and Tensors Like Other Tensors.en.srt 6.7 kB
  • 9. Section 07 PyTorch Experiment Tracking/18. Running Eight Different Modelling Experiments in 5 Minutes.en.srt 6.6 kB
  • 11. Section 09 PyTorch Model Deployment/40. Creating a Requirements File for Our Food Vision Mini App.en.srt 6.5 kB
  • 11. Section 09 PyTorch Model Deployment/44. Food Vision Big Project Outline.en.srt 6.3 kB
  • 11. Section 09 PyTorch Model Deployment/35. Creating a Food Vision Mini Demo Directory to House Our App Files.en.srt 6.3 kB
  • 10. Section 08 PyTorch Paper Replicating/6. Downloading Data for Food Vision Mini.en.srt 6.2 kB
  • 9. Section 07 PyTorch Experiment Tracking/8. Training a Single Model and Saving the Results to TensorBoard.en.srt 6.2 kB
  • 9. Section 07 PyTorch Experiment Tracking/11. Adapting Our Train Function to Be Able to Track Multiple Experiments.en.srt 6.0 kB
  • 6. Section 04 PyTorch Custom Datasets/30. Plotting the Loss Curves of Model 1.en.srt 6.0 kB
  • 10. Section 08 PyTorch Paper Replicating/8. Visualizing a Single Image.en.srt 5.9 kB
  • 11. Section 09 PyTorch Model Deployment/51. Downloading an Example Image and Moving Our Food Vision Big Model File.en.srt 5.9 kB
  • 8. Section 06 PyTorch Transfer Learning/19. Main Takeaways, Exercises and Extra Curriculum.en.srt 5.9 kB
  • 1. Introduction/1. PyTorch for Deep Learning Bootcamp Zero to Mastery.en.srt 5.8 kB
  • 11. Section 09 PyTorch Model Deployment/55. Zipping and Downloading Our Food Vision Big App Files.en.srt 5.7 kB
  • 3. Section 01 PyTorch Workflow/1. Introduction and Where You Can Get Help.en.srt 5.6 kB
  • 11. Section 09 PyTorch Model Deployment/8. Downloading a Dataset for Food Vision Mini.en.srt 5.6 kB
  • 10. Section 08 PyTorch Paper Replicating/2. Why Replicate a Machine Learning Research Paper.en.srt 5.5 kB
  • 10. Section 08 PyTorch Paper Replicating/47. Saving Our Pretrained ViT Model to File and Inspecting Its Size.en.srt 5.5 kB
  • 10. Section 08 PyTorch Paper Replicating/49. Making Predictions on a Custom Image with Our Pretrained ViT.en.srt 5.4 kB
  • 12. Introduction to PyTorch 2.0 and torch.compile/4. PyTorch 2.0 - 30 Second Intro.en.srt 5.3 kB
  • 10. Section 08 PyTorch Paper Replicating/48. Discussing the Trade-Offs Between Using a Larger Model for Deployments.en.srt 5.3 kB
  • 9. Section 07 PyTorch Experiment Tracking/21. Making a Prediction on Our Own Custom Image with the Best Model.en.srt 5.3 kB
  • 5. Section 03 PyTorch Computer Vision/16. Model 1 Creating a Loss Function and Optimizer.en.srt 5.0 kB
  • 11. Section 09 PyTorch Model Deployment/38. Turning Our EffNetB2 Model Creation Function Into a Python Script.en.srt 5.0 kB
  • 4. Section 02 PyTorch Neural Network Classification/32. PyTorch Classification Exercises and Extra-Curriculum.en.srt 4.9 kB
  • 11. Section 09 PyTorch Model Deployment/14. Saving Our EffNetB2 Model to File.en.srt 4.8 kB
  • 6. Section 04 PyTorch Custom Datasets/38. Exercise Imposter Syndrome.en.srt 4.8 kB
  • 1. Introduction/3. Exercise Meet Your Classmates and Instructor.html 4.6 kB
  • 2. Section 00 PyTorch Fundamentals/24. Finding The Positional Min and Max of Tensors.en.srt 4.4 kB
  • 2. Section 00 PyTorch Fundamentals/15. Creating Tensors With Zeros and Ones in PyTorch.en.srt 4.4 kB
  • 11. Section 09 PyTorch Model Deployment/18. Creating DataLoaders for Our ViT Feature Extractor Model.en.srt 4.2 kB
  • 5. Section 03 PyTorch Computer Vision/26. Model 2 Setting Up a Loss Function and Optimizer.en.srt 4.1 kB
  • 12. Introduction to PyTorch 2.0 and torch.compile/5. Getting Setup for PyTorch 2.0.en.srt 3.6 kB
  • 11. Section 09 PyTorch Model Deployment/53. Turning Our EffNetB2 Feature Extractor Creation Function into a Python Script.en.srt 3.6 kB
  • 12. Introduction to PyTorch 2.0 and torch.compile/2. What We Are Going to Cover and PyTorch 2 Reference Materials.en.srt 2.5 kB
  • 13. Where To Go From Here/1. Thank You!.en.srt 2.0 kB
  • 0. Websites you may like/[FCSNEW.NET].url 119 Bytes
  • 1. Introduction/0. Websites you may like/[FCSNEW.NET].url 119 Bytes
  • 1. Introduction/[FCSNEW.NET].url 119 Bytes
  • 10. Section 08 PyTorch Paper Replicating/0. Websites you may like/[FCSNEW.NET].url 119 Bytes
  • 10. Section 08 PyTorch Paper Replicating/[FCSNEW.NET].url 119 Bytes
  • 11. Section 09 PyTorch Model Deployment/0. Websites you may like/[FCSNEW.NET].url 119 Bytes
  • 11. Section 09 PyTorch Model Deployment/[FCSNEW.NET].url 119 Bytes
  • 12. Introduction to PyTorch 2.0 and torch.compile/0. Websites you may like/[FCSNEW.NET].url 119 Bytes
  • 12. Introduction to PyTorch 2.0 and torch.compile/[FCSNEW.NET].url 119 Bytes
  • 13. Where To Go From Here/0. Websites you may like/[FCSNEW.NET].url 119 Bytes
  • 13. Where To Go From Here/[FCSNEW.NET].url 119 Bytes
  • 2. Section 00 PyTorch Fundamentals/0. Websites you may like/[FCSNEW.NET].url 119 Bytes
  • 2. Section 00 PyTorch Fundamentals/[FCSNEW.NET].url 119 Bytes
  • 3. Section 01 PyTorch Workflow/0. Websites you may like/[FCSNEW.NET].url 119 Bytes
  • 3. Section 01 PyTorch Workflow/[FCSNEW.NET].url 119 Bytes
  • 4. Section 02 PyTorch Neural Network Classification/0. Websites you may like/[FCSNEW.NET].url 119 Bytes
  • 4. Section 02 PyTorch Neural Network Classification/[FCSNEW.NET].url 119 Bytes
  • 5. Section 03 PyTorch Computer Vision/0. Websites you may like/[FCSNEW.NET].url 119 Bytes
  • 5. Section 03 PyTorch Computer Vision/[FCSNEW.NET].url 119 Bytes
  • 6. Section 04 PyTorch Custom Datasets/0. Websites you may like/[FCSNEW.NET].url 119 Bytes
  • 6. Section 04 PyTorch Custom Datasets/[FCSNEW.NET].url 119 Bytes
  • 7. Section 05 PyTorch Going Modular/0. Websites you may like/[FCSNEW.NET].url 119 Bytes
  • 7. Section 05 PyTorch Going Modular/[FCSNEW.NET].url 119 Bytes
  • 8. Section 06 PyTorch Transfer Learning/0. Websites you may like/[FCSNEW.NET].url 119 Bytes
  • 8. Section 06 PyTorch Transfer Learning/[FCSNEW.NET].url 119 Bytes
  • 9. Section 07 PyTorch Experiment Tracking/0. Websites you may like/[FCSNEW.NET].url 119 Bytes
  • 9. Section 07 PyTorch Experiment Tracking/[FCSNEW.NET].url 119 Bytes
  • [FCSNEW.NET].url 119 Bytes

随机展示

相关说明

本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!