搜索
[FCSNEW.NET] ZeroToMastery - PyTorch for Deep Learning Bootcamp Zero to Mastery
磁力链接/BT种子名称
[FCSNEW.NET] ZeroToMastery - PyTorch for Deep Learning Bootcamp Zero to Mastery
磁力链接/BT种子简介
种子哈希:
9a2111d2c1208c883603a4eee111d34b05a9baf4
文件大小:
18.47G
已经下载:
51
次
下载速度:
极快
收录时间:
2025-09-23
最近下载:
2025-10-07
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:9A2111D2C1208C883603A4EEE111D34B05A9BAF4
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
世界之窗
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
极乐禁地
91短视频
抖音Max
TikTok成人版
PornHub
听泉鉴鲍
少女日记
草榴社区
哆哔涩漫
呦乐园
萝莉岛
悠悠禁区
悠悠禁区
拔萝卜
疯马秀
最近搜索
性爱之旅
身材白皙光滑
抽搐妹
yong
女技
黑丝美少妇
ryu enami reiko kobayakawa
真实公公
丰乳肥臀的姐姐
cdts
大大蜜桃
最新流出酒店偷拍+️斯文眼镜干部大叔把包养的白袜妹子抱起来放到桌子干
自慰器
表情很骚
学妹+大一学生
行拍
狐鬼嬉春
littlesubgirl
钻石泄密+约炮大神
高中的女生
sgki-066
不卡
sone-605
探花 3p
舞蹈姐姐
强推萝莉
下架
哇哇大叫
精品御姐
oae-227
文件列表
10. Section 08 PyTorch Paper Replicating/36. Creating a Transformer Encoder Layer with In-Built PyTorch Layer.mp4
137.5 MB
10. Section 08 PyTorch Paper Replicating/37. Bringing Our Own Vision Transformer to Life - Part 1 Gathering the Pieces of the Puzzle.mp4
134.7 MB
5. Section 03 PyTorch Computer Vision/22. Model 2 Coding Our First Convolutional Neural Network with PyTorch.mp4
130.7 MB
11. Section 09 PyTorch Model Deployment/23. Creating a Function to Make and Time Predictions with Our Models.mp4
128.5 MB
8. Section 06 PyTorch Transfer Learning/12. Freezing the Base Layers of Our Model and Updating the Classifier Head.mp4
121.4 MB
11. Section 09 PyTorch Model Deployment/49. Training Food Vision Big Our Biggest Model Yet!.mp4
121.3 MB
10. Section 08 PyTorch Paper Replicating/30. Turning Equation 2 into Code.mp4
119.3 MB
10. Section 08 PyTorch Paper Replicating/44. Getting a Pretrained Vision Transformer from Torchvision and Setting it Up.mp4
117.8 MB
5. Section 03 PyTorch Computer Vision/25. Model 2 Using a Trick to Find the Input and Output Shapes of Each of Our Layers.mp4
117.0 MB
6. Section 04 PyTorch Custom Datasets/14. Writing a PyTorch Custom Dataset Class from Scratch to Load Our Images.mp4
115.2 MB
3. Section 01 PyTorch Workflow/15. Reviewing the Steps in a Training Loop Step by Step.mp4
114.9 MB
10. Section 08 PyTorch Paper Replicating/11. Breaking Down the Four Equations Overview and a Trick for Reading Papers.mp4
113.3 MB
7. Section 05 PyTorch Going Modular/4. Writing the Outline for Our First Python Script to Setup the Data.mp4
112.7 MB
9. Section 07 PyTorch Experiment Tracking/16. Creating Functions to Prepare Our Feature Extractor Models.mp4
112.5 MB
4. Section 02 PyTorch Neural Network Classification/10. Setting Up a Loss Function Optimizer and Evaluation Function for Our Classification Network.mp4
112.2 MB
5. Section 03 PyTorch Computer Vision/5. Getting a Computer Vision Dataset and Checking Out Its- Input and Output Shapes.mp4
112.1 MB
3. Section 01 PyTorch Workflow/18. Reviewing What Happens in a Testing Loop Step by Step.mp4
112.1 MB
7. Section 05 PyTorch Going Modular/9. Creating a Training Script to Train Our Model in One Line of Code.mp4
111.1 MB
1. Introduction/1. PyTorch for Deep Learning Bootcamp Zero to Mastery.mp4
109.6 MB
10. Section 08 PyTorch Paper Replicating/23. Creating the Patch Embedding Layer with PyTorch.mp4
109.6 MB
6. Section 04 PyTorch Custom Datasets/18. Exploring State of the Art Data Augmentation With Torchvision Transforms.mp4
108.8 MB
10. Section 08 PyTorch Paper Replicating/16. Calculating the Input and Output Shape of the Embedding Layer by Hand.mp4
108.3 MB
5. Section 03 PyTorch Computer Vision/31. Making Predictions Across the Whole Test Dataset and Importing Libraries to Plot a Confusion Matrix.mp4
106.9 MB
5. Section 03 PyTorch Computer Vision/23. Model 2 Breaking Down Conv2D Step by Step.mp4
104.7 MB
9. Section 07 PyTorch Experiment Tracking/7. Setting Up a Way to Track a Single Model Experiment with TensorBoard.mp4
104.1 MB
4. Section 02 PyTorch Neural Network Classification/13. Writing Code to Download a Helper Function to Visualize Our Models Predictions.mp4
101.5 MB
4. Section 02 PyTorch Neural Network Classification/29. Training a Multi-Class Classification Model and Troubleshooting Code on the Fly.mp4
100.7 MB
7. Section 05 PyTorch Going Modular/5. Creating a Python Script to Create Our PyTorch DataLoaders.mp4
100.6 MB
11. Section 09 PyTorch Model Deployment/56. Deploying Food Vision Big to Hugging Face Spaces.mp4
100.4 MB
6. Section 04 PyTorch Custom Datasets/3. Downloading a Custom Dataset of Pizza, Steak and Sushi Images.mp4
98.9 MB
11. Section 09 PyTorch Model Deployment/39. Turning Our Food Vision Mini Demo App Into a Python Script.mp4
97.6 MB
8. Section 06 PyTorch Transfer Learning/7. Turning Our Data into DataLoaders with Automatic Created Transforms.mp4
95.3 MB
12. Introduction to PyTorch 2.0 and torch.compile/21. Experiment 3 - Training a Non-Compiled Model for Multiple Runs.mp4
94.8 MB
5. Section 03 PyTorch Computer Vision/12. Writing Training and Testing Loops for Our Batched Data.mp4
94.6 MB
10. Section 08 PyTorch Paper Replicating/28. Equation 2 Multihead Attention Overview.mp4
94.5 MB
3. Section 01 PyTorch Workflow/17. Writing Testing Loop Code and Discussing What's Happening Step by Step.mp4
94.1 MB
4. Section 02 PyTorch Neural Network Classification/22. Writing Training and Testing Code for Our First Non-Linear Model.mp4
93.9 MB
11. Section 09 PyTorch Model Deployment/42. Uploading Our Food Vision Mini App to Hugging Face Spaces Programmatically.mp4
93.7 MB
8. Section 06 PyTorch Transfer Learning/6. Turning Our Data into DataLoaders with Manually Created Transforms.mp4
93.4 MB
8. Section 06 PyTorch Transfer Learning/8. Which Pretrained Model Should You Use.mp4
92.8 MB
10. Section 08 PyTorch Paper Replicating/13. Breaking Down Equations 2 and 3.mp4
91.8 MB
10. Section 08 PyTorch Paper Replicating/27. Equation 1 Putting it All Together.mp4
91.0 MB
10. Section 08 PyTorch Paper Replicating/17. Turning a Single Image into Patches (Part 1 Patching the Top Row).mp4
91.0 MB
9. Section 07 PyTorch Experiment Tracking/19. Viewing Our Modelling Experiments in TensorBoard.mp4
89.5 MB
5. Section 03 PyTorch Computer Vision/24. Model 2 Breaking Down MaxPool2D Step by Step.mp4
89.3 MB
10. Section 08 PyTorch Paper Replicating/15. Breaking Down Table 1.mp4
88.9 MB
11. Section 09 PyTorch Model Deployment/3. Where Is My Model Going to Go.mp4
87.9 MB
10. Section 08 PyTorch Paper Replicating/20. Exploring the Outputs of Our Convolutional Patch Embedding Layer.mp4
87.8 MB
12. Introduction to PyTorch 2.0 and torch.compile/18. Comparing the Results of Experiments 1 and 2.mp4
87.1 MB
3. Section 01 PyTorch Workflow/19. Writing Code to Save a PyTorch Model.mp4
86.8 MB
10. Section 08 PyTorch Paper Replicating/24. Creating the Class Token Embedding.mp4
85.5 MB
4. Section 02 PyTorch Neural Network Classification/11. Going from Model Logits to Prediction Probabilities to Prediction Labels.mp4
85.4 MB
10. Section 08 PyTorch Paper Replicating/18. Turning a Single Image into Patches (Part 2 Patching the Entire Image).mp4
85.3 MB
7. Section 05 PyTorch Going Modular/6. Turning Our Model Building Code into a Python Script.mp4
84.9 MB
5. Section 03 PyTorch Computer Vision/9. Model 0 Creating a Baseline Model with Two Linear Layers.mp4
83.8 MB
9. Section 07 PyTorch Experiment Tracking/17. Coding Out the Steps to Run a Series of Modelling Experiments.mp4
83.6 MB
10. Section 08 PyTorch Paper Replicating/40. Creating a Loss Function and Optimizer from the ViT Paper.mp4
83.4 MB
6. Section 04 PyTorch Custom Datasets/8. Transforming Data (Part 2) Visualizing Transformed Images.mp4
83.3 MB
12. Introduction to PyTorch 2.0 and torch.compile/20. Preparing Functions for Experiments 3 and 4.mp4
82.7 MB
10. Section 08 PyTorch Paper Replicating/3. Where Can You Find Machine Learning Research Papers and Code.mp4
82.4 MB
4. Section 02 PyTorch Neural Network Classification/16. Writing Training and Testing Code to See if Our New and Upgraded Model Performs Better.mp4
82.2 MB
10. Section 08 PyTorch Paper Replicating/19. Creating Patch Embeddings with a Convolutional Layer.mp4
82.1 MB
10. Section 08 PyTorch Paper Replicating/38. Bringing Our Own Vision Transformer to Life - Part 2 Putting Together the Forward Method.mp4
82.1 MB
11. Section 09 PyTorch Model Deployment/32. Bringing Food Vision Mini to Life in a Live Web Application.mp4
81.9 MB
10. Section 08 PyTorch Paper Replicating/1. What Is a Machine Learning Research Paper.mp4
81.6 MB
10. Section 08 PyTorch Paper Replicating/25. Creating the Class Token Embedding - Less Birds.mp4
81.2 MB
3. Section 01 PyTorch Workflow/13. PyTorch Training Loop Steps and Intuition.mp4
81.0 MB
10. Section 08 PyTorch Paper Replicating/29. Equation 2 Layernorm Overview.mp4
81.0 MB
4. Section 02 PyTorch Neural Network Classification/12. Coding a Training and Testing Optimization Loop for Our Classification Model.mp4
80.2 MB
7. Section 05 PyTorch Going Modular/2. Going Modular Notebook (Part 1) Running It End to End.mp4
79.9 MB
6. Section 04 PyTorch Custom Datasets/34. Predicting on Custom Data (Part 3) Getting Our Custom Image Into the Right Format.mp4
79.9 MB
3. Section 01 PyTorch Workflow/6. Creating Our First PyTorch Model for Linear Regression.mp4
79.9 MB
11. Section 09 PyTorch Model Deployment/47. Creating a Function to Split Our Food 101 Dataset into Smaller Portions.mp4
79.5 MB
11. Section 09 PyTorch Model Deployment/27. Visualizing the Performance vs Speed Trade-off.mp4
78.9 MB
6. Section 04 PyTorch Custom Datasets/16. Writing a Helper Function to Visualize Random Images from Our Custom Dataset.mp4
78.7 MB
12. Introduction to PyTorch 2.0 and torch.compile/22. Experiment 4 - Training a Compiled Model for Multiple Runs.mp4
78.5 MB
10. Section 08 PyTorch Paper Replicating/12. Breaking Down Equation 1.mp4
78.2 MB
9. Section 07 PyTorch Experiment Tracking/6. Preparing a Pretrained Model for Our Own Problem.mp4
77.9 MB
2. Section 00 PyTorch Fundamentals/7. What Is and Why PyTorch.mp4
77.8 MB
8. Section 06 PyTorch Transfer Learning/9. Setting Up a Pretrained Model with Torchvision.mp4
77.3 MB
3. Section 01 PyTorch Workflow/12. Setting Up an Optimizer and a Loss Function.mp4
77.2 MB
6. Section 04 PyTorch Custom Datasets/27. Discussing the Balance Between Overfitting and Underfitting and How to Deal With Each.mp4
75.6 MB
5. Section 03 PyTorch Computer Vision/10. Creating a Loss Function an Optimizer for Model 0.mp4
75.3 MB
2. Section 00 PyTorch Fundamentals/30. Different Ways of Accessing a GPU in PyTorch.mp4
75.1 MB
9. Section 07 PyTorch Experiment Tracking/9. Exploring Our Single Models Results with TensorBoard.mp4
74.7 MB
12. Introduction to PyTorch 2.0 and torch.compile/7. Setting the Default Device in PyTorch 2.0.mp4
74.6 MB
12. Introduction to PyTorch 2.0 and torch.compile/17. Experiment 2 - Single Run with Torch Compile.mp4
73.6 MB
10. Section 08 PyTorch Paper Replicating/33. Turning Equation 3 into Code.mp4
73.5 MB
6. Section 04 PyTorch Custom Datasets/36. Predicting on Custom Data (Part 5) Putting It All Together.mp4
73.1 MB
6. Section 04 PyTorch Custom Datasets/20. Building a Baseline Model (Part 2) Replicating Tiny VGG from Scratch.mp4
73.1 MB
6. Section 04 PyTorch Custom Datasets/5. Becoming One With the Data (Part 2) Visualizing a Random Image.mp4
72.8 MB
3. Section 01 PyTorch Workflow/9. Checking Out the Internals of Our PyTorch Model.mp4
71.8 MB
4. Section 02 PyTorch Neural Network Classification/9. Recreating and Exploring the Insides of Our Model Using nn.Sequential.mp4
71.1 MB
3. Section 01 PyTorch Workflow/10. Making Predictions With Our Random Model Using Inference Mode.mp4
71.0 MB
11. Section 09 PyTorch Model Deployment/41. Downloading Our Food Vision Mini App Files from Google Colab.mp4
70.8 MB
11. Section 09 PyTorch Model Deployment/54. Creating an App Script for Our Food Vision Big Model Gradio Demo.mp4
70.3 MB
12. Introduction to PyTorch 2.0 and torch.compile/9. Creating a Function to Setup Our Model and Transforms.mp4
70.2 MB
10. Section 08 PyTorch Paper Replicating/14. Breaking Down Equation 4.mp4
70.0 MB
10. Section 08 PyTorch Paper Replicating/5. Getting Setup for Coding in Google Colab.mp4
69.7 MB
5. Section 03 PyTorch Computer Vision/19. Training and Testing Model 1 with Our Training and Testing Functions.mp4
69.4 MB
10. Section 08 PyTorch Paper Replicating/26. Creating the Position Embedding.mp4
69.4 MB
10. Section 08 PyTorch Paper Replicating/42. Discussing what Our Training Setup Is Missing.mp4
68.9 MB
8. Section 06 PyTorch Transfer Learning/16. Creating a Function Predict On and Plot Images.mp4
68.6 MB
5. Section 03 PyTorch Computer Vision/1. What Is a Computer Vision Problem and What We Are Going to Cover.mp4
68.4 MB
11. Section 09 PyTorch Model Deployment/13. Training Our EffNetB2 Feature Extractor and Inspecting the Loss Curves.mp4
68.3 MB
10. Section 08 PyTorch Paper Replicating/39. Getting a Visual Summary of Our Custom Vision Transformer.mp4
68.1 MB
6. Section 04 PyTorch Custom Datasets/24. Creating a Train Function to Train and Evaluate Our Models.mp4
67.6 MB
10. Section 08 PyTorch Paper Replicating/50. PyTorch Paper Replicating Main Takeaways, Exercises and Extra-Curriculum.mp4
67.4 MB
6. Section 04 PyTorch Custom Datasets/23. Creating Training and Testing loop Functions.mp4
67.2 MB
11. Section 09 PyTorch Model Deployment/24. Making and Timing Predictions with EffNetB2.mp4
66.6 MB
3. Section 01 PyTorch Workflow/16. Running Our Training Loop Epoch by Epoch and Seeing What Happens.mp4
66.5 MB
11. Section 09 PyTorch Model Deployment/57. PyTorch Mode Deployment Main Takeaways, Extra-Curriculum and Exercises.mp4
66.5 MB
6. Section 04 PyTorch Custom Datasets/21. Building a Baseline Model (Part 3) Doing a Forward Pass to Test Our Model Shapes.mp4
66.0 MB
5. Section 03 PyTorch Computer Vision/13. Writing an Evaluation Function to Get Our Models Results.mp4
65.5 MB
11. Section 09 PyTorch Model Deployment/45. Preparing an EffNetB2 Feature Extractor Model for Food Vision Big.mp4
65.1 MB
5. Section 03 PyTorch Computer Vision/34. Recapping What We Have Covered Plus Exercises and Extra-Curriculum.mp4
64.8 MB
9. Section 07 PyTorch Experiment Tracking/2. Getting Setup by Importing Torch Libraries and Going Modular Code.mp4
64.7 MB
3. Section 01 PyTorch Workflow/24. Putting Everything Together (Part 3) Training a Model.mp4
64.6 MB
4. Section 02 PyTorch Neural Network Classification/26. Creating a Multi-Class Classification Model with PyTorch.mp4
64.5 MB
4. Section 02 PyTorch Neural Network Classification/20. Introducing the Missing Piece for Our Classification Model Non-Linearity.mp4
63.9 MB
12. Introduction to PyTorch 2.0 and torch.compile/1. Introduction to PyTorch 2.0.mp4
63.7 MB
2. Section 00 PyTorch Fundamentals/25. Reshaping, Viewing and Stacking Tensors.mp4
63.4 MB
11. Section 09 PyTorch Model Deployment/10. Creating an EffNetB2 Feature Extractor Model.mp4
63.2 MB
4. Section 02 PyTorch Neural Network Classification/31. Discussing a Few More Classification Metrics.mp4
63.1 MB
5. Section 03 PyTorch Computer Vision/8. Turning Our Datasets Into DataLoaders.mp4
62.8 MB
2. Section 00 PyTorch Fundamentals/29. PyTorch Reproducibility (Taking the Random Out of Random).mp4
62.1 MB
11. Section 09 PyTorch Model Deployment/36. Creating an Examples Directory with Example Food Vision Mini Images.mp4
62.1 MB
7. Section 05 PyTorch Going Modular/7. Turning Our Model Training Code into a Python Script.mp4
61.8 MB
6. Section 04 PyTorch Custom Datasets/28. Creating Augmented Training Datasets and DataLoaders for Model 1.mp4
61.8 MB
9. Section 07 PyTorch Experiment Tracking/4. Turning Our Data into DataLoaders Using Manual Transforms.mp4
61.7 MB
5. Section 03 PyTorch Computer Vision/33. Saving and Loading Our Best Performing Model.mp4
61.6 MB
7. Section 05 PyTorch Going Modular/10. Going Modular Summary, Exercises and Extra-Curriculum.mp4
60.8 MB
10. Section 08 PyTorch Paper Replicating/7. Turning Our Food Vision Mini Images into PyTorch DataLoaders.mp4
60.5 MB
6. Section 04 PyTorch Custom Datasets/9. Loading All of Our Images and Turning Them Into Tensors With ImageFolder.mp4
60.5 MB
2. Section 00 PyTorch Fundamentals/13. Introduction to PyTorch Tensors.mp4
60.4 MB
4. Section 02 PyTorch Neural Network Classification/25. Putting It All Together (Part 1) Building a Multiclass Dataset.mp4
60.3 MB
2. Section 00 PyTorch Fundamentals/22. Matrix Multiplication (Part 3) Dealing With Tensor Shape Errors.mp4
59.9 MB
10. Section 08 PyTorch Paper Replicating/21. Flattening Our Convolutional Feature Maps into a Sequence of Patch Embeddings.mp4
59.8 MB
9. Section 07 PyTorch Experiment Tracking/20. Loading In the Best Model and Making Predictions on Random Images from the Test Set.mp4
59.2 MB
6. Section 04 PyTorch Custom Datasets/25. Training and Evaluating Model 0 With Our Training Functions.mp4
59.1 MB
10. Section 08 PyTorch Paper Replicating/4. What We Are Going to Cover.mp4
59.0 MB
8. Section 06 PyTorch Transfer Learning/1. Introduction What is Transfer Learning and Why Use It.mp4
58.7 MB
12. Introduction to PyTorch 2.0 and torch.compile/12. Getting More Speedups with TensorFloat-32.mp4
58.5 MB
7. Section 05 PyTorch Going Modular/1. What Is Going Modular and What We Are Going to Cover.mp4
58.0 MB
5. Section 03 PyTorch Computer Vision/15. Model 1 Creating a Model with Non-Linear Functions.mp4
57.7 MB
11. Section 09 PyTorch Model Deployment/28. Gradio Overview and Installation.mp4
57.7 MB
4. Section 02 PyTorch Neural Network Classification/28. Going from Logits to Prediction Probabilities to Prediction Labels with a Multi-Class Model.mp4
57.7 MB
9. Section 07 PyTorch Experiment Tracking/3. Creating a Function to Download Data.mp4
57.4 MB
10. Section 08 PyTorch Paper Replicating/32. Equation 3 Replication Overview.mp4
57.1 MB
5. Section 03 PyTorch Computer Vision/4. Discussing and Importing the Base Computer Vision Libraries in PyTorch.mp4
57.1 MB
6. Section 04 PyTorch Custom Datasets/1. What Is a Custom Dataset and What We Are Going to Cover.mp4
56.8 MB
4. Section 02 PyTorch Neural Network Classification/1. Introduction to Machine Learning Classification With PyTorch.mp4
56.6 MB
6. Section 04 PyTorch Custom Datasets/4. Becoming One With the Data (Part 1) Exploring the Data Format.mp4
56.4 MB
6. Section 04 PyTorch Custom Datasets/26. Plotting the Loss Curves of Model 0.mp4
56.3 MB
11. Section 09 PyTorch Model Deployment/43. Running Food Vision Mini on Hugging Face Spaces and Trying it Out.mp4
56.2 MB
11. Section 09 PyTorch Model Deployment/22. Outlining the Steps for Making and Timing Predictions for Our Models.mp4
56.0 MB
3. Section 01 PyTorch Workflow/23. Putting Everything Together (Part 2) Building a Model.mp4
56.0 MB
11. Section 09 PyTorch Model Deployment/30. Creating a Predict Function to Map Our Food Vision Mini Inputs to Outputs.mp4
55.8 MB
8. Section 06 PyTorch Transfer Learning/4. Downloading Our Previously Written Code from Going Modular.mp4
55.7 MB
9. Section 07 PyTorch Experiment Tracking/5. Turning Our Data into DataLoaders Using Automatic Transforms.mp4
55.5 MB
11. Section 09 PyTorch Model Deployment/34. Outlining the File Structure of Our Deployed App.mp4
55.3 MB
8. Section 06 PyTorch Transfer Learning/3. Installing the Latest Versions of Torch and Torchvision.mp4
55.1 MB
5. Section 03 PyTorch Computer Vision/21. Model 2 Convolutional Neural Networks High Level Overview.mp4
54.8 MB
10. Section 08 PyTorch Paper Replicating/35. Combining Equation 2 and 3 to Create the Transformer Encoder.mp4
54.7 MB
4. Section 02 PyTorch Neural Network Classification/4. Making a Toy Classification Dataset.mp4
54.5 MB
3. Section 01 PyTorch Workflow/14. Writing Code for a PyTorch Training Loop.mp4
54.4 MB
10. Section 08 PyTorch Paper Replicating/46. Training a Pretrained ViT Feature Extractor Model for Food Vision Mini.mp4
54.4 MB
6. Section 04 PyTorch Custom Datasets/17. Turning Our Custom Datasets Into DataLoaders.mp4
54.2 MB
6. Section 04 PyTorch Custom Datasets/11. Turning Our Image Datasets into PyTorch DataLoaders.mp4
54.2 MB
4. Section 02 PyTorch Neural Network Classification/21. Building Our First Neural Network with Non-Linearity.mp4
54.2 MB
6. Section 04 PyTorch Custom Datasets/10. Visualizing a Loaded Image From the Train Dataset.mp4
54.0 MB
2. Section 00 PyTorch Fundamentals/14. Creating Random Tensors in PyTorch.mp4
53.5 MB
11. Section 09 PyTorch Model Deployment/17. Creating a Vision Transformer Feature Extractor Model.mp4
53.5 MB
11. Section 09 PyTorch Model Deployment/26. Comparing EffNetB2 and ViT Model Statistics.mp4
53.2 MB
12. Introduction to PyTorch 2.0 and torch.compile/16. Experiment 1 - Single Run without Torch Compile.mp4
53.1 MB
8. Section 06 PyTorch Transfer Learning/11. Getting a Summary of the Different Layers of Our Model.mp4
53.1 MB
10. Section 08 PyTorch Paper Replicating/34. Transformer Encoder Overview.mp4
52.7 MB
2. Section 00 PyTorch Fundamentals/26. Squeezing, Unsqueezing and Permuting Tensors.mp4
52.5 MB
6. Section 04 PyTorch Custom Datasets/31. Plotting the Loss Curves of All of Our Models Against Each Other.mp4
52.5 MB
3. Section 01 PyTorch Workflow/8. Discussing Some of the Most Important PyTorch Model Building Classes.mp4
52.2 MB
7. Section 05 PyTorch Going Modular/8. Turning Our Utility Function to Save a Model into a Python Script.mp4
51.7 MB
4. Section 02 PyTorch Neural Network Classification/7. Coding a Small Neural Network to Handle Our Classification Data.mp4
51.7 MB
6. Section 04 PyTorch Custom Datasets/37. Summary of What We Have Covered Plus Exercises and Extra-Curriculum.mp4
51.2 MB
6. Section 04 PyTorch Custom Datasets/13. Creating a Helper Function to Get Class Names From a Directory.mp4
51.0 MB
5. Section 03 PyTorch Computer Vision/27. Model 2 Training Our First CNN and Evaluating Its Results.mp4
50.9 MB
3. Section 01 PyTorch Workflow/20. Writing Code to Load a PyTorch Model.mp4
50.9 MB
6. Section 04 PyTorch Custom Datasets/7. Transforming Data (Part 1) Turning Images Into Tensors.mp4
50.9 MB
10. Section 08 PyTorch Paper Replicating/10. Breaking Down Figure 1 of the ViT Paper.mp4
50.7 MB
2. Section 00 PyTorch Fundamentals/17. Dealing With Tensor Data Types.mp4
50.6 MB
10. Section 08 PyTorch Paper Replicating/9. Replicating a Vision Transformer - High Level Overview.mp4
50.6 MB
7. Section 05 PyTorch Going Modular/3. Downloading a Dataset.mp4
50.5 MB
8. Section 06 PyTorch Transfer Learning/17. Making and Plotting Predictions on Test Images.mp4
50.5 MB
12. Introduction to PyTorch 2.0 and torch.compile/6. Getting Info from Our GPUs and Seeing if They're Capable of Using PyTorch 2.0.mp4
50.5 MB
9. Section 07 PyTorch Experiment Tracking/11. Adapting Our Train Function to Be Able to Track Multiple Experiments.mp4
50.4 MB
11. Section 09 PyTorch Model Deployment/25. Making and Timing Predictions with ViT.mp4
49.8 MB
4. Section 02 PyTorch Neural Network Classification/5. Turning Our Data into Tensors and Making a Training and Test Split.mp4
49.7 MB
4. Section 02 PyTorch Neural Network Classification/14. Discussing Options to Improve a Model.mp4
49.6 MB
5. Section 03 PyTorch Computer Vision/29. Making Predictions on Random Test Samples with the Best Trained Model.mp4
49.6 MB
4. Section 02 PyTorch Neural Network Classification/30. Making Predictions with and Evaluating Our Multi-Class Classification Model.mp4
49.5 MB
5. Section 03 PyTorch Computer Vision/2. Computer Vision Input and Output Shapes.mp4
49.1 MB
6. Section 04 PyTorch Custom Datasets/12. Creating a Custom Dataset Class in PyTorch High Level Overview.mp4
49.1 MB
4. Section 02 PyTorch Neural Network Classification/24. Replicating Non-Linear Activation Functions with Pure PyTorch.mp4
48.9 MB
9. Section 07 PyTorch Experiment Tracking/10. Creating a Function to Create SummaryWriter Instances.mp4
48.7 MB
11. Section 09 PyTorch Model Deployment/29. Gradio Function Outline.mp4
48.6 MB
6. Section 04 PyTorch Custom Datasets/19. Building a Baseline Model (Part 1) Loading and Transforming Data.mp4
48.2 MB
4. Section 02 PyTorch Neural Network Classification/8. Making Our Neural Network Visual.mp4
48.1 MB
9. Section 07 PyTorch Experiment Tracking/15. Turning Our Datasets into DataLoaders Ready for Experimentation.mp4
48.1 MB
3. Section 01 PyTorch Workflow/26. Putting Everything Together (Part 5) Saving and Loading a Trained Model.mp4
47.6 MB
2. Section 00 PyTorch Fundamentals/4. Anatomy of Neural Networks.mp4
46.4 MB
11. Section 09 PyTorch Model Deployment/1. What is Machine Learning Model Deployment and Why Deploy a Machine Learning Model.mp4
46.1 MB
3. Section 01 PyTorch Workflow/2. Getting Setup and What We Are Covering.mp4
46.0 MB
11. Section 09 PyTorch Model Deployment/37. Writing Code to Move Our Saved EffNetB2 Model File.mp4
45.9 MB
2. Section 00 PyTorch Fundamentals/20. Matrix Multiplication (Part 1).mp4
45.6 MB
2. Section 00 PyTorch Fundamentals/12. Getting Setup to Write PyTorch Code.mp4
45.4 MB
11. Section 09 PyTorch Model Deployment/52. Saving Food 101 Class Names to a Text File and Reading them Back In.mp4
45.0 MB
12. Introduction to PyTorch 2.0 and torch.compile/11. Setting the Batch Size and Data Size Programmatically.mp4
44.9 MB
12. Introduction to PyTorch 2.0 and torch.compile/14. Creating Training and Test DataLoaders.mp4
44.8 MB
8. Section 06 PyTorch Transfer Learning/15. Outlining the Steps to Make Predictions on the Test Images.mp4
44.6 MB
6. Section 04 PyTorch Custom Datasets/15. Compare Our Custom Dataset Class to the Original ImageFolder Class.mp4
44.5 MB
4. Section 02 PyTorch Neural Network Classification/3. Typical Architecture of a Classification Neural Network (Overview).mp4
44.5 MB
8. Section 06 PyTorch Transfer Learning/5. Downloading Pizza, Steak, Sushi Image Data from Github.mp4
44.5 MB
3. Section 01 PyTorch Workflow/11. Training a Model Intuition (The Things We Need).mp4
44.5 MB
11. Section 09 PyTorch Model Deployment/46. Downloading the Food 101 Dataset.mp4
44.2 MB
8. Section 06 PyTorch Transfer Learning/13. Training Our First Transfer Learning Feature Extractor Model.mp4
43.9 MB
11. Section 09 PyTorch Model Deployment/16. Collecting Important Statistics and Performance Metrics for Our EffNetB2 Model.mp4
43.4 MB
5. Section 03 PyTorch Computer Vision/32. Evaluating Our Best Models Predictions with a Confusion Matrix.mp4
43.3 MB
11. Section 09 PyTorch Model Deployment/7. Getting Setup to Code.mp4
43.1 MB
9. Section 07 PyTorch Experiment Tracking/14. Downloading Datasets for Our Modelling Experiments.mp4
43.0 MB
2. Section 00 PyTorch Fundamentals/31. Setting up Device Agnostic Code and Putting Tensors On and Off the GPU.mp4
43.0 MB
10. Section 08 PyTorch Paper Replicating/43. Plotting a Loss Curve for Our ViT Model.mp4
42.8 MB
4. Section 02 PyTorch Neural Network Classification/18. Building and Training a Model to Fit on Straight Line Data.mp4
42.6 MB
12. Introduction to PyTorch 2.0 and torch.compile/24. Potential Extensions and Resources to Learn More.mp4
42.3 MB
2. Section 00 PyTorch Fundamentals/18. Getting Tensor Attributes.mp4
42.3 MB
4. Section 02 PyTorch Neural Network Classification/27. Setting Up a Loss Function and Optimizer for Our Multi-Class Model.mp4
42.2 MB
12. Introduction to PyTorch 2.0 and torch.compile/15. Preparing Training and Testing Loops with Timing Steps.mp4
42.0 MB
6. Section 04 PyTorch Custom Datasets/33. Predicting on Custom Data (Part2) Loading In a Custom Image With PyTorch.mp4
42.0 MB
12. Introduction to PyTorch 2.0 and torch.compile/23. Comparing the Results of Experiments 3 and 4.mp4
41.7 MB
12. Introduction to PyTorch 2.0 and torch.compile/10. Discussing How to Get Better Relative Speedups for Training Models.mp4
41.7 MB
5. Section 03 PyTorch Computer Vision/17. Turing Our Training Loop into a Function.mp4
41.6 MB
12. Introduction to PyTorch 2.0 and torch.compile/13. Downloading the CIFAR10 Dataset.mp4
41.2 MB
11. Section 09 PyTorch Model Deployment/19. Training Our ViT Feature Extractor Model and Inspecting Its Loss Curves.mp4
41.2 MB
4. Section 02 PyTorch Neural Network Classification/15. Creating a New Model with More Layers and Hidden Units.mp4
41.2 MB
12. Introduction to PyTorch 2.0 and torch.compile/19. Saving the Results of Experiments 1 and 2.mp4
41.0 MB
8. Section 06 PyTorch Transfer Learning/18. Making a Prediction on a Custom Image.mp4
40.9 MB
6. Section 04 PyTorch Custom Datasets/29. Constructing and Training Model 1.mp4
40.8 MB
6. Section 04 PyTorch Custom Datasets/22. Using the Torchinfo Package to Get a Summary of Our Model.mp4
40.5 MB
11. Section 09 PyTorch Model Deployment/5. Some Tools and Places to Deploy Machine Learning Models.mp4
40.4 MB
3. Section 01 PyTorch Workflow/7. Breaking Down What's Happening in Our PyTorch Linear regression Model.mp4
40.4 MB
3. Section 01 PyTorch Workflow/3. Creating a Simple Dataset Using the Linear Regression Formula.mp4
39.9 MB
11. Section 09 PyTorch Model Deployment/11. Create a Function to Make an EffNetB2 Feature Extractor Model and Transforms.mp4
39.8 MB
10. Section 08 PyTorch Paper Replicating/41. Training our Custom ViT on Food Vision Mini.mp4
39.6 MB
11. Section 09 PyTorch Model Deployment/4. How Is My Model Going to Function.mp4
39.4 MB
11. Section 09 PyTorch Model Deployment/48. Turning Our Food 101 Datasets into DataLoaders.mp4
39.1 MB
4. Section 02 PyTorch Neural Network Classification/17. Creating a Straight Line Dataset to See if Our Model is Learning Anything.mp4
38.8 MB
3. Section 01 PyTorch Workflow/4. Splitting Our Data Into Training and Test Sets.mp4
38.7 MB
2. Section 00 PyTorch Fundamentals/11. Important Resources For This Course.mp4
38.3 MB
9. Section 07 PyTorch Experiment Tracking/1. What Is Experiment Tracking and Why Track Experiments.mp4
38.2 MB
10. Section 08 PyTorch Paper Replicating/45. Preparing Data to Be Used with a Pretrained ViT.mp4
38.0 MB
5. Section 03 PyTorch Computer Vision/6. Visualizing Random Samples of Data.mp4
37.7 MB
3. Section 01 PyTorch Workflow/5. Building a function to Visualize Our Data.mp4
37.6 MB
8. Section 06 PyTorch Transfer Learning/14. Plotting the Loss Curves of Our Transfer Learning Model.mp4
37.5 MB
5. Section 03 PyTorch Computer Vision/28. Comparing the Results of Our Modelling Experiments.mp4
37.5 MB
2. Section 00 PyTorch Fundamentals/32. PyTorch Fundamentals Exercises and Extra-Curriculum.mp4
37.4 MB
5. Section 03 PyTorch Computer Vision/30. Plotting Our Best Model Predictions on Random Test Samples and Evaluating Them.mp4
37.2 MB
5. Section 03 PyTorch Computer Vision/3. What Is a Convolutional Neural Network (CNN).mp4
36.5 MB
11. Section 09 PyTorch Model Deployment/33. Getting Ready to Deploy Our App Hugging Face Spaces Overview.mp4
36.4 MB
12. Introduction to PyTorch 2.0 and torch.compile/8. Discussing the Experiments We Are Going to Run for PyTorch 2.0.mp4
36.1 MB
2. Section 00 PyTorch Fundamentals/28. PyTorch Tensors and NumPy.mp4
35.9 MB
8. Section 06 PyTorch Transfer Learning/2. Where Can You Find Pretrained Models and What We Are Going to Cover.mp4
35.8 MB
10. Section 08 PyTorch Paper Replicating/31. Checking the Inputs and Outputs of Equation.mp4
35.3 MB
11. Section 09 PyTorch Model Deployment/15. Getting the Size of Our EffNetB2 Model in Megabytes.mp4
35.3 MB
10. Section 08 PyTorch Paper Replicating/22. Visualizing a Single Sequence Vector of Patch Embeddings.mp4
35.0 MB
8. Section 06 PyTorch Transfer Learning/19. Main Takeaways, Exercises and Extra Curriculum.mp4
34.4 MB
9. Section 07 PyTorch Experiment Tracking/18. Running Eight Different Modelling Experiments in 5 Minutes.mp4
34.4 MB
5. Section 03 PyTorch Computer Vision/7. DataLoader Overview Understanding Mini-Batch.mp4
34.3 MB
11. Section 09 PyTorch Model Deployment/9. Outlining Our Food Vision Mini Deployment Goals and Modelling Experiments.mp4
34.0 MB
3. Section 01 PyTorch Workflow/27. PyTorch Workflow Exercises and Extra-Curriculum.mp4
33.8 MB
3. Section 01 PyTorch Workflow/25. Putting Everything Together (Part 4) Making Predictions With a Trained Model.mp4
33.8 MB
11. Section 09 PyTorch Model Deployment/31. Creating a List of Examples to Pass to Our Gradio Demo.mp4
33.3 MB
4. Section 02 PyTorch Neural Network Classification/32. PyTorch Classification Exercises and Extra-Curriculum.mp4
32.9 MB
2. Section 00 PyTorch Fundamentals/21. Matrix Multiplication (Part 2) The Two Main Rules of Matrix Multiplication.mp4
32.8 MB
11. Section 09 PyTorch Model Deployment/38. Turning Our EffNetB2 Model Creation Function Into a Python Script.mp4
32.5 MB
11. Section 09 PyTorch Model Deployment/50. Outlining the File Structure for Our Food Vision Big.mp4
32.4 MB
5. Section 03 PyTorch Computer Vision/18. Turing Our Testing Loop into a Function.mp4
32.3 MB
2. Section 00 PyTorch Fundamentals/27. Selecting Data From Tensors (Indexing).mp4
32.3 MB
2. Section 00 PyTorch Fundamentals/3. Machine Learning vs. Deep Learning.mp4
32.0 MB
10. Section 08 PyTorch Paper Replicating/6. Downloading Data for Food Vision Mini.mp4
31.6 MB
8. Section 06 PyTorch Transfer Learning/10. Different Kinds of Transfer Learning.mp4
31.5 MB
6. Section 04 PyTorch Custom Datasets/32. Predicting on Custom Data (Part 1) Downloading an Image.mp4
31.2 MB
4. Section 02 PyTorch Neural Network Classification/23. Making Predictions with and Evaluating Our First Non-Linear Model.mp4
31.1 MB
5. Section 03 PyTorch Computer Vision/14. Setup Device-Agnostic Code for Running Experiments on the GPU.mp4
31.1 MB
2. Section 00 PyTorch Fundamentals/9. What We Are Going To Cover With PyTorch.mp4
31.1 MB
2. Section 00 PyTorch Fundamentals/23. Finding the Min Max Mean and Sum of Tensors (Tensor Aggregation).mp4
30.8 MB
5. Section 03 PyTorch Computer Vision/11. Creating a Function to Time Our Modelling Code.mp4
30.7 MB
4. Section 02 PyTorch Neural Network Classification/19. Evaluating Our Models Predictions on Straight Line Data.mp4
30.4 MB
3. Section 01 PyTorch Workflow/22. Putting Everything Together (Part 1) Data.mp4
30.1 MB
6. Section 04 PyTorch Custom Datasets/2. Importing PyTorch and Setting Up Device-Agnostic Code.mp4
30.0 MB
9. Section 07 PyTorch Experiment Tracking/22. Main Takeaways, Exercises and Extra Curriculum.mp4
29.8 MB
9. Section 07 PyTorch Experiment Tracking/13. Discussing the Experiments We Are Going to Try.mp4
29.7 MB
4. Section 02 PyTorch Neural Network Classification/2. Classification Problem Example Input and Output Shapes.mp4
29.4 MB
9. Section 07 PyTorch Experiment Tracking/12. What Experiments Should You Try.mp4
27.9 MB
12. Introduction to PyTorch 2.0 and torch.compile/3. Getting Started with PyTorch 2.0 in Google Colab.mp4
27.8 MB
10. Section 08 PyTorch Paper Replicating/48. Discussing the Trade-Offs Between Using a Larger Model for Deployments.mp4
27.7 MB
11. Section 09 PyTorch Model Deployment/2. Three Questions to Ask for Machine Learning Model Deployment.mp4
27.3 MB
3. Section 01 PyTorch Workflow/21. Setting Up to Practice Everything We Have Done Using Device-Agnostic Code.mp4
27.2 MB
11. Section 09 PyTorch Model Deployment/55. Zipping and Downloading Our Food Vision Big App Files.mp4
27.1 MB
11. Section 09 PyTorch Model Deployment/21. Collecting Stats About Our ViT Feature Extractor.mp4
26.9 MB
6. Section 04 PyTorch Custom Datasets/6. Becoming One With the Data (Part 3) Visualizing a Random Image with Matplotlib.mp4
26.7 MB
5. Section 03 PyTorch Computer Vision/20. Getting a Results Dictionary for Model 1.mp4
26.3 MB
11. Section 09 PyTorch Model Deployment/20. Saving Our ViT Feature Extractor and Inspecting Its Size.mp4
26.3 MB
10. Section 08 PyTorch Paper Replicating/47. Saving Our Pretrained ViT Model to File and Inspecting Its Size.mp4
26.0 MB
11. Section 09 PyTorch Model Deployment/8. Downloading a Dataset for Food Vision Mini.mp4
25.6 MB
11. Section 09 PyTorch Model Deployment/35. Creating a Food Vision Mini Demo Directory to House Our App Files.mp4
25.4 MB
2. Section 00 PyTorch Fundamentals/10. How To and How Not To Approach This Course.mp4
25.3 MB
11. Section 09 PyTorch Model Deployment/40. Creating a Requirements File for Our Food Vision Mini App.mp4
25.1 MB
9. Section 07 PyTorch Experiment Tracking/8. Training a Single Model and Saving the Results to TensorBoard.mp4
25.1 MB
6. Section 04 PyTorch Custom Datasets/35. Predicting on Custom Data (Part 4) Turning Our Models Raw Outputs Into Prediction Labels.mp4
24.2 MB
10. Section 08 PyTorch Paper Replicating/49. Making Predictions on a Custom Image with Our Pretrained ViT.mp4
24.1 MB
10. Section 08 PyTorch Paper Replicating/8. Visualizing a Single Image.mp4
23.9 MB
2. Section 00 PyTorch Fundamentals/6. What Can Deep Learning Be Used For.mp4
23.7 MB
11. Section 09 PyTorch Model Deployment/51. Downloading an Example Image and Moving Our Food Vision Big Model File.mp4
22.9 MB
2. Section 00 PyTorch Fundamentals/19. Manipulating Tensors (Tensor Operations).mp4
22.8 MB
9. Section 07 PyTorch Experiment Tracking/21. Making a Prediction on Our Own Custom Image with the Best Model.mp4
22.8 MB
11. Section 09 PyTorch Model Deployment/44. Food Vision Big Project Outline.mp4
22.7 MB
5. Section 03 PyTorch Computer Vision/16. Model 1 Creating a Loss Function and Optimizer.mp4
22.2 MB
6. Section 04 PyTorch Custom Datasets/30. Plotting the Loss Curves of Model 1.mp4
20.9 MB
3. Section 01 PyTorch Workflow/1. Introduction and Where You Can Get Help.mp4
19.6 MB
6. Section 04 PyTorch Custom Datasets/38. Exercise Imposter Syndrome.mp4
19.6 MB
11. Section 09 PyTorch Model Deployment/6. What We Are Going to Cover.mp4
19.5 MB
5. Section 03 PyTorch Computer Vision/26. Model 2 Setting Up a Loss Function and Optimizer.mp4
19.0 MB
2. Section 00 PyTorch Fundamentals/2. The Number 1 Rule of Machine Learning and What Is Deep Learning Good For.mp4
19.0 MB
4. Section 02 PyTorch Neural Network Classification/6. Laying Out Steps for Modelling and Setting Up Device-Agnostic Code.mp4
18.8 MB
2. Section 00 PyTorch Fundamentals/5. Different Types of Learning Paradigms.mp4
18.8 MB
11. Section 09 PyTorch Model Deployment/12. Creating DataLoaders for EffNetB2.mp4
18.4 MB
2. Section 00 PyTorch Fundamentals/16. Creating a Tensor Range and Tensors Like Other Tensors.mp4
18.3 MB
1. Introduction/2. Course Welcome and What Is Deep Learning.mp4
18.1 MB
12. Introduction to PyTorch 2.0 and torch.compile/5. Getting Setup for PyTorch 2.0.mp4
17.9 MB
11. Section 09 PyTorch Model Deployment/53. Turning Our EffNetB2 Feature Extractor Creation Function into a Python Script.mp4
16.4 MB
11. Section 09 PyTorch Model Deployment/14. Saving Our EffNetB2 Model to File.mp4
15.4 MB
2. Section 00 PyTorch Fundamentals/15. Creating Tensors With Zeros and Ones in PyTorch.mp4
14.6 MB
2. Section 00 PyTorch Fundamentals/8. What Are Tensors.mp4
14.5 MB
2. Section 00 PyTorch Fundamentals/24. Finding The Positional Min and Max of Tensors.mp4
13.7 MB
10. Section 08 PyTorch Paper Replicating/2. Why Replicate a Machine Learning Research Paper.mp4
13.3 MB
12. Introduction to PyTorch 2.0 and torch.compile/4. PyTorch 2.0 - 30 Second Intro.mp4
12.7 MB
11. Section 09 PyTorch Model Deployment/18. Creating DataLoaders for Our ViT Feature Extractor Model.mp4
11.0 MB
12. Introduction to PyTorch 2.0 and torch.compile/2. What We Are Going to Cover and PyTorch 2 Reference Materials.mp4
10.4 MB
13. Where To Go From Here/1. Thank You!.mp4
10.0 MB
2. Section 00 PyTorch Fundamentals/1. Why Use Machine Learning or Deep Learning.mp4
8.5 MB
13. Where To Go From Here/6. LinkedIn Endorsements.html
355.4 kB
13. Where To Go From Here/5. ZTM Events Every Month.html
352.7 kB
13. Where To Go From Here/4. Learning Guideline.html
351.7 kB
13. Where To Go From Here/3. Become An Alumni.html
350.8 kB
13. Where To Go From Here/2. Review This Course!.html
349.9 kB
5. Section 03 PyTorch Computer Vision/35. Implement a New Life System.html
133.6 kB
4. Section 02 PyTorch Neural Network Classification/33. Course Check-In.html
99.4 kB
3. Section 01 PyTorch Workflow/28. Unlimited Updates.html
67.0 kB
2. Section 00 PyTorch Fundamentals/33. Let's Have Some Fun (+ Free Resources).html
39.8 kB
5. Section 03 PyTorch Computer Vision/22. Model 2 Coding Our First Convolutional Neural Network with PyTorch.en.srt
35.3 kB
11. Section 09 PyTorch Model Deployment/49. Training Food Vision Big Our Biggest Model Yet!.en.srt
31.7 kB
5. Section 03 PyTorch Computer Vision/12. Writing Training and Testing Loops for Our Batched Data.en.srt
28.8 kB
5. Section 03 PyTorch Computer Vision/5. Getting a Computer Vision Dataset and Checking Out Its- Input and Output Shapes.en.srt
26.4 kB
5. Section 03 PyTorch Computer Vision/23. Model 2 Breaking Down Conv2D Step by Step.en.srt
26.1 kB
3. Section 01 PyTorch Workflow/15. Reviewing the Steps in a Training Loop Step by Step.en.srt
25.9 kB
4. Section 02 PyTorch Neural Network Classification/10. Setting Up a Loss Function Optimizer and Evaluation Function for Our Classification Network.en.srt
25.5 kB
5. Section 03 PyTorch Computer Vision/24. Model 2 Breaking Down MaxPool2D Step by Step.en.srt
25.2 kB
4. Section 02 PyTorch Neural Network Classification/12. Coding a Training and Testing Optimization Loop for Our Classification Model.en.srt
25.2 kB
10. Section 08 PyTorch Paper Replicating/23. Creating the Patch Embedding Layer with PyTorch.en.srt
25.1 kB
4. Section 02 PyTorch Neural Network Classification/11. Going from Model Logits to Prediction Probabilities to Prediction Labels.en.srt
24.8 kB
4. Section 02 PyTorch Neural Network Classification/13. Writing Code to Download a Helper Function to Visualize Our Models Predictions.en.srt
24.6 kB
10. Section 08 PyTorch Paper Replicating/37. Bringing Our Own Vision Transformer to Life - Part 1 Gathering the Pieces of the Puzzle.en.srt
24.5 kB
10. Section 08 PyTorch Paper Replicating/36. Creating a Transformer Encoder Layer with In-Built PyTorch Layer.en.srt
24.4 kB
4. Section 02 PyTorch Neural Network Classification/29. Training a Multi-Class Classification Model and Troubleshooting Code on the Fly.en.srt
24.2 kB
11. Section 09 PyTorch Model Deployment/27. Visualizing the Performance vs Speed Trade-off.en.srt
24.1 kB
7. Section 05 PyTorch Going Modular/9. Creating a Training Script to Train Our Model in One Line of Code.en.srt
24.0 kB
10. Section 08 PyTorch Paper Replicating/28. Equation 2 Multihead Attention Overview.en.srt
24.0 kB
6. Section 04 PyTorch Custom Datasets/18. Exploring State of the Art Data Augmentation With Torchvision Transforms.en.srt
24.0 kB
5. Section 03 PyTorch Computer Vision/31. Making Predictions Across the Whole Test Dataset and Importing Libraries to Plot a Confusion Matrix.en.srt
24.0 kB
11. Section 09 PyTorch Model Deployment/42. Uploading Our Food Vision Mini App to Hugging Face Spaces Programmatically.en.srt
23.9 kB
10. Section 08 PyTorch Paper Replicating/30. Turning Equation 2 into Code.en.srt
23.9 kB
5. Section 03 PyTorch Computer Vision/9. Model 0 Creating a Baseline Model with Two Linear Layers.en.srt
23.4 kB
3. Section 01 PyTorch Workflow/19. Writing Code to Save a PyTorch Model.en.srt
23.3 kB
10. Section 08 PyTorch Paper Replicating/16. Calculating the Input and Output Shape of the Embedding Layer by Hand.en.srt
23.1 kB
9. Section 07 PyTorch Experiment Tracking/7. Setting Up a Way to Track a Single Model Experiment with TensorBoard.en.srt
23.0 kB
5. Section 03 PyTorch Computer Vision/13. Writing an Evaluation Function to Get Our Models Results.en.srt
22.9 kB
6. Section 04 PyTorch Custom Datasets/16. Writing a Helper Function to Visualize Random Images from Our Custom Dataset.en.srt
22.9 kB
3. Section 01 PyTorch Workflow/12. Setting Up an Optimizer and a Loss Function.en.srt
22.6 kB
2. Section 00 PyTorch Fundamentals/13. Introduction to PyTorch Tensors.en.srt
22.6 kB
5. Section 03 PyTorch Computer Vision/25. Model 2 Using a Trick to Find the Input and Output Shapes of Each of Our Layers.en.srt
22.3 kB
2. Section 00 PyTorch Fundamentals/25. Reshaping, Viewing and Stacking Tensors.en.srt
21.8 kB
10. Section 08 PyTorch Paper Replicating/44. Getting a Pretrained Vision Transformer from Torchvision and Setting it Up.en.srt
21.7 kB
6. Section 04 PyTorch Custom Datasets/34. Predicting on Custom Data (Part 3) Getting Our Custom Image Into the Right Format.en.srt
21.7 kB
10. Section 08 PyTorch Paper Replicating/19. Creating Patch Embeddings with a Convolutional Layer.en.srt
21.6 kB
11. Section 09 PyTorch Model Deployment/56. Deploying Food Vision Big to Hugging Face Spaces.en.srt
21.5 kB
5. Section 03 PyTorch Computer Vision/8. Turning Our Datasets Into DataLoaders.en.srt
21.4 kB
6. Section 04 PyTorch Custom Datasets/3. Downloading a Custom Dataset of Pizza, Steak and Sushi Images.en.srt
21.4 kB
11. Section 09 PyTorch Model Deployment/3. Where Is My Model Going to Go.en.srt
21.4 kB
4. Section 02 PyTorch Neural Network Classification/16. Writing Training and Testing Code to See if Our New and Upgraded Model Performs Better.en.srt
21.4 kB
11. Section 09 PyTorch Model Deployment/39. Turning Our Food Vision Mini Demo App Into a Python Script.en.srt
21.4 kB
10. Section 08 PyTorch Paper Replicating/17. Turning a Single Image into Patches (Part 1 Patching the Top Row).en.srt
21.4 kB
12. Introduction to PyTorch 2.0 and torch.compile/20. Preparing Functions for Experiments 3 and 4.en.srt
21.4 kB
3. Section 01 PyTorch Workflow/18. Reviewing What Happens in a Testing Loop Step by Step.en.srt
21.4 kB
4. Section 02 PyTorch Neural Network Classification/26. Creating a Multi-Class Classification Model with PyTorch.en.srt
21.3 kB
8. Section 06 PyTorch Transfer Learning/12. Freezing the Base Layers of Our Model and Updating the Classifier Head.en.srt
21.3 kB
6. Section 04 PyTorch Custom Datasets/14. Writing a PyTorch Custom Dataset Class from Scratch to Load Our Images.en.srt
21.2 kB
3. Section 01 PyTorch Workflow/17. Writing Testing Loop Code and Discussing What's Happening Step by Step.en.srt
21.2 kB
11. Section 09 PyTorch Model Deployment/32. Bringing Food Vision Mini to Life in a Live Web Application.en.srt
21.2 kB
3. Section 01 PyTorch Workflow/24. Putting Everything Together (Part 3) Training a Model.en.srt
21.2 kB
11. Section 09 PyTorch Model Deployment/23. Creating a Function to Make and Time Predictions with Our Models.en.srt
21.1 kB
9. Section 07 PyTorch Experiment Tracking/16. Creating Functions to Prepare Our Feature Extractor Models.en.srt
21.0 kB
10. Section 08 PyTorch Paper Replicating/20. Exploring the Outputs of Our Convolutional Patch Embedding Layer.en.srt
21.0 kB
7. Section 05 PyTorch Going Modular/4. Writing the Outline for Our First Python Script to Setup the Data.en.srt
21.0 kB
10. Section 08 PyTorch Paper Replicating/27. Equation 1 Putting it All Together.en.srt
20.7 kB
11. Section 09 PyTorch Model Deployment/47. Creating a Function to Split Our Food 101 Dataset into Smaller Portions.en.srt
20.5 kB
8. Section 06 PyTorch Transfer Learning/7. Turning Our Data into DataLoaders with Automatic Created Transforms.en.srt
20.5 kB
6. Section 04 PyTorch Custom Datasets/36. Predicting on Custom Data (Part 5) Putting It All Together.en.srt
20.4 kB
6. Section 04 PyTorch Custom Datasets/23. Creating Training and Testing loop Functions.en.srt
20.1 kB
6. Section 04 PyTorch Custom Datasets/27. Discussing the Balance Between Overfitting and Underfitting and How to Deal With Each.en.srt
20.0 kB
3. Section 01 PyTorch Workflow/6. Creating Our First PyTorch Model for Linear Regression.en.srt
19.9 kB
2. Section 00 PyTorch Fundamentals/22. Matrix Multiplication (Part 3) Dealing With Tensor Shape Errors.en.srt
19.9 kB
4. Section 02 PyTorch Neural Network Classification/25. Putting It All Together (Part 1) Building a Multiclass Dataset.en.srt
19.8 kB
10. Section 08 PyTorch Paper Replicating/24. Creating the Class Token Embedding.en.srt
19.8 kB
4. Section 02 PyTorch Neural Network Classification/5. Turning Our Data into Tensors and Making a Training and Test Split.en.srt
19.6 kB
5. Section 03 PyTorch Computer Vision/33. Saving and Loading Our Best Performing Model.en.srt
19.6 kB
4. Section 02 PyTorch Neural Network Classification/4. Making a Toy Classification Dataset.en.srt
19.6 kB
10. Section 08 PyTorch Paper Replicating/18. Turning a Single Image into Patches (Part 2 Patching the Entire Image).en.srt
19.5 kB
10. Section 08 PyTorch Paper Replicating/25. Creating the Class Token Embedding - Less Birds.en.srt
19.4 kB
5. Section 03 PyTorch Computer Vision/1. What Is a Computer Vision Problem and What We Are Going to Cover.en.srt
19.3 kB
9. Section 07 PyTorch Experiment Tracking/17. Coding Out the Steps to Run a Series of Modelling Experiments.en.srt
19.3 kB
4. Section 02 PyTorch Neural Network Classification/22. Writing Training and Testing Code for Our First Non-Linear Model.en.srt
19.2 kB
8. Section 06 PyTorch Transfer Learning/9. Setting Up a Pretrained Model with Torchvision.en.srt
18.9 kB
5. Section 03 PyTorch Computer Vision/2. Computer Vision Input and Output Shapes.en.srt
18.7 kB
10. Section 08 PyTorch Paper Replicating/26. Creating the Position Embedding.en.srt
18.7 kB
5. Section 03 PyTorch Computer Vision/19. Training and Testing Model 1 with Our Training and Testing Functions.en.srt
18.7 kB
6. Section 04 PyTorch Custom Datasets/20. Building a Baseline Model (Part 2) Replicating Tiny VGG from Scratch.en.srt
18.7 kB
6. Section 04 PyTorch Custom Datasets/5. Becoming One With the Data (Part 2) Visualizing a Random Image.en.srt
18.6 kB
5. Section 03 PyTorch Computer Vision/29. Making Predictions on Random Test Samples with the Best Trained Model.en.srt
18.5 kB
11. Section 09 PyTorch Model Deployment/41. Downloading Our Food Vision Mini App Files from Google Colab.en.srt
18.5 kB
3. Section 01 PyTorch Workflow/13. PyTorch Training Loop Steps and Intuition.en.srt
18.5 kB
6. Section 04 PyTorch Custom Datasets/31. Plotting the Loss Curves of All of Our Models Against Each Other.en.srt
18.3 kB
4. Section 02 PyTorch Neural Network Classification/21. Building Our First Neural Network with Non-Linearity.en.srt
18.3 kB
6. Section 04 PyTorch Custom Datasets/8. Transforming Data (Part 2) Visualizing Transformed Images.en.srt
18.3 kB
10. Section 08 PyTorch Paper Replicating/11. Breaking Down the Four Equations Overview and a Trick for Reading Papers.en.srt
18.2 kB
8. Section 06 PyTorch Transfer Learning/8. Which Pretrained Model Should You Use.en.srt
18.1 kB
9. Section 07 PyTorch Experiment Tracking/19. Viewing Our Modelling Experiments in TensorBoard.en.srt
18.1 kB
7. Section 05 PyTorch Going Modular/5. Creating a Python Script to Create Our PyTorch DataLoaders.en.srt
18.0 kB
8. Section 06 PyTorch Transfer Learning/6. Turning Our Data into DataLoaders with Manually Created Transforms.en.srt
18.0 kB
4. Section 02 PyTorch Neural Network Classification/9. Recreating and Exploring the Insides of Our Model Using nn.Sequential.en.srt
18.0 kB
7. Section 05 PyTorch Going Modular/1. What Is Going Modular and What We Are Going to Cover.en.srt
17.9 kB
2. Section 00 PyTorch Fundamentals/7. What Is and Why PyTorch.en.srt
17.8 kB
4. Section 02 PyTorch Neural Network Classification/1. Introduction to Machine Learning Classification With PyTorch.en.srt
17.8 kB
10. Section 08 PyTorch Paper Replicating/10. Breaking Down Figure 1 of the ViT Paper.en.srt
17.7 kB
10. Section 08 PyTorch Paper Replicating/40. Creating a Loss Function and Optimizer from the ViT Paper.en.srt
17.7 kB
4. Section 02 PyTorch Neural Network Classification/20. Introducing the Missing Piece for Our Classification Model Non-Linearity.en.srt
17.6 kB
6. Section 04 PyTorch Custom Datasets/28. Creating Augmented Training Datasets and DataLoaders for Model 1.en.srt
17.6 kB
8. Section 06 PyTorch Transfer Learning/1. Introduction What is Transfer Learning and Why Use It.en.srt
17.5 kB
12. Introduction to PyTorch 2.0 and torch.compile/17. Experiment 2 - Single Run with Torch Compile.en.srt
17.4 kB
4. Section 02 PyTorch Neural Network Classification/28. Going from Logits to Prediction Probabilities to Prediction Labels with a Multi-Class Model.en.srt
17.4 kB
6. Section 04 PyTorch Custom Datasets/1. What Is a Custom Dataset and What We Are Going to Cover.en.srt
17.2 kB
3. Section 01 PyTorch Workflow/16. Running Our Training Loop Epoch by Epoch and Seeing What Happens.en.srt
17.1 kB
9. Section 07 PyTorch Experiment Tracking/6. Preparing a Pretrained Model for Our Own Problem.en.srt
16.9 kB
4. Section 02 PyTorch Neural Network Classification/18. Building and Training a Model to Fit on Straight Line Data.en.srt
16.9 kB
2. Section 00 PyTorch Fundamentals/4. Anatomy of Neural Networks.en.srt
16.7 kB
10. Section 08 PyTorch Paper Replicating/33. Turning Equation 3 into Code.en.srt
16.7 kB
4. Section 02 PyTorch Neural Network Classification/7. Coding a Small Neural Network to Handle Our Classification Data.en.srt
16.7 kB
11. Section 09 PyTorch Model Deployment/26. Comparing EffNetB2 and ViT Model Statistics.en.srt
16.6 kB
5. Section 03 PyTorch Computer Vision/10. Creating a Loss Function an Optimizer for Model 0.en.srt
16.6 kB
5. Section 03 PyTorch Computer Vision/6. Visualizing Random Samples of Data.en.srt
16.5 kB
2. Section 00 PyTorch Fundamentals/30. Different Ways of Accessing a GPU in PyTorch.en.srt
16.5 kB
4. Section 02 PyTorch Neural Network Classification/2. Classification Problem Example Input and Output Shapes.en.srt
16.5 kB
3. Section 01 PyTorch Workflow/10. Making Predictions With Our Random Model Using Inference Mode.en.srt
16.5 kB
2. Section 00 PyTorch Fundamentals/29. PyTorch Reproducibility (Taking the Random Out of Random).en.srt
16.4 kB
2. Section 00 PyTorch Fundamentals/14. Creating Random Tensors in PyTorch.en.srt
16.4 kB
9. Section 07 PyTorch Experiment Tracking/20. Loading In the Best Model and Making Predictions on Random Images from the Test Set.en.srt
16.4 kB
3. Section 01 PyTorch Workflow/23. Putting Everything Together (Part 2) Building a Model.en.srt
16.3 kB
3. Section 01 PyTorch Workflow/9. Checking Out the Internals of Our PyTorch Model.en.srt
16.3 kB
10. Section 08 PyTorch Paper Replicating/13. Breaking Down Equations 2 and 3.en.srt
16.2 kB
6. Section 04 PyTorch Custom Datasets/25. Training and Evaluating Model 0 With Our Training Functions.en.srt
16.2 kB
11. Section 09 PyTorch Model Deployment/54. Creating an App Script for Our Food Vision Big Model Gradio Demo.en.srt
16.1 kB
12. Introduction to PyTorch 2.0 and torch.compile/18. Comparing the Results of Experiments 1 and 2.en.srt
15.9 kB
10. Section 08 PyTorch Paper Replicating/9. Replicating a Vision Transformer - High Level Overview.en.srt
15.9 kB
4. Section 02 PyTorch Neural Network Classification/31. Discussing a Few More Classification Metrics.en.srt
15.9 kB
8. Section 06 PyTorch Transfer Learning/16. Creating a Function Predict On and Plot Images.en.srt
15.9 kB
11. Section 09 PyTorch Model Deployment/1. What is Machine Learning Model Deployment and Why Deploy a Machine Learning Model.en.srt
15.8 kB
12. Introduction to PyTorch 2.0 and torch.compile/9. Creating a Function to Setup Our Model and Transforms.en.srt
15.7 kB
2. Section 00 PyTorch Fundamentals/26. Squeezing, Unsqueezing and Permuting Tensors.en.srt
15.7 kB
3. Section 01 PyTorch Workflow/3. Creating a Simple Dataset Using the Linear Regression Formula.en.srt
15.6 kB
12. Introduction to PyTorch 2.0 and torch.compile/7. Setting the Default Device in PyTorch 2.0.en.srt
15.6 kB
11. Section 09 PyTorch Model Deployment/45. Preparing an EffNetB2 Feature Extractor Model for Food Vision Big.en.srt
15.6 kB
12. Introduction to PyTorch 2.0 and torch.compile/21. Experiment 3 - Training a Non-Compiled Model for Multiple Runs.en.srt
15.6 kB
5. Section 03 PyTorch Computer Vision/15. Model 1 Creating a Model with Non-Linear Functions.en.srt
15.6 kB
12. Introduction to PyTorch 2.0 and torch.compile/22. Experiment 4 - Training a Compiled Model for Multiple Runs.en.srt
15.5 kB
9. Section 07 PyTorch Experiment Tracking/9. Exploring Our Single Models Results with TensorBoard.en.srt
15.4 kB
4. Section 02 PyTorch Neural Network Classification/24. Replicating Non-Linear Activation Functions with Pure PyTorch.en.srt
15.4 kB
11. Section 09 PyTorch Model Deployment/22. Outlining the Steps for Making and Timing Predictions for Our Models.en.srt
15.3 kB
9. Section 07 PyTorch Experiment Tracking/10. Creating a Function to Create SummaryWriter Instances.en.srt
15.3 kB
6. Section 04 PyTorch Custom Datasets/9. Loading All of Our Images and Turning Them Into Tensors With ImageFolder.en.srt
15.3 kB
11. Section 09 PyTorch Model Deployment/10. Creating an EffNetB2 Feature Extractor Model.en.srt
15.2 kB
11. Section 09 PyTorch Model Deployment/13. Training Our EffNetB2 Feature Extractor and Inspecting the Loss Curves.en.srt
15.2 kB
9. Section 07 PyTorch Experiment Tracking/3. Creating a Function to Download Data.en.srt
15.1 kB
10. Section 08 PyTorch Paper Replicating/4. What We Are Going to Cover.en.srt
15.0 kB
12. Introduction to PyTorch 2.0 and torch.compile/16. Experiment 1 - Single Run without Torch Compile.en.srt
15.0 kB
6. Section 04 PyTorch Custom Datasets/24. Creating a Train Function to Train and Evaluate Our Models.en.srt
15.0 kB
12. Introduction to PyTorch 2.0 and torch.compile/12. Getting More Speedups with TensorFloat-32.en.srt
14.9 kB
7. Section 05 PyTorch Going Modular/6. Turning Our Model Building Code into a Python Script.en.srt
14.8 kB
11. Section 09 PyTorch Model Deployment/28. Gradio Overview and Installation.en.srt
14.8 kB
5. Section 03 PyTorch Computer Vision/21. Model 2 Convolutional Neural Networks High Level Overview.en.srt
14.8 kB
11. Section 09 PyTorch Model Deployment/24. Making and Timing Predictions with EffNetB2.en.srt
14.7 kB
10. Section 08 PyTorch Paper Replicating/15. Breaking Down Table 1.en.srt
14.7 kB
11. Section 09 PyTorch Model Deployment/30. Creating a Predict Function to Map Our Food Vision Mini Inputs to Outputs.en.srt
14.7 kB
10. Section 08 PyTorch Paper Replicating/32. Equation 3 Replication Overview.en.srt
14.6 kB
4. Section 02 PyTorch Neural Network Classification/14. Discussing Options to Improve a Model.en.srt
14.6 kB
10. Section 08 PyTorch Paper Replicating/21. Flattening Our Convolutional Feature Maps into a Sequence of Patch Embeddings.en.srt
14.6 kB
10. Section 08 PyTorch Paper Replicating/7. Turning Our Food Vision Mini Images into PyTorch DataLoaders.en.srt
14.4 kB
3. Section 01 PyTorch Workflow/14. Writing Code for a PyTorch Training Loop.en.srt
14.3 kB
5. Section 03 PyTorch Computer Vision/30. Plotting Our Best Model Predictions on Random Test Samples and Evaluating Them.en.srt
14.3 kB
2. Section 00 PyTorch Fundamentals/17. Dealing With Tensor Data Types.en.srt
14.3 kB
11. Section 09 PyTorch Model Deployment/36. Creating an Examples Directory with Example Food Vision Mini Images.en.srt
14.1 kB
2. Section 00 PyTorch Fundamentals/18. Getting Tensor Attributes.en.srt
14.1 kB
2. Section 00 PyTorch Fundamentals/27. Selecting Data From Tensors (Indexing).en.srt
14.0 kB
10. Section 08 PyTorch Paper Replicating/50. PyTorch Paper Replicating Main Takeaways, Exercises and Extra-Curriculum.en.srt
14.0 kB
3. Section 01 PyTorch Workflow/4. Splitting Our Data Into Training and Test Sets.en.srt
14.0 kB
10. Section 08 PyTorch Paper Replicating/29. Equation 2 Layernorm Overview.en.srt
14.0 kB
10. Section 08 PyTorch Paper Replicating/42. Discussing what Our Training Setup Is Missing.en.srt
13.9 kB
9. Section 07 PyTorch Experiment Tracking/2. Getting Setup by Importing Torch Libraries and Going Modular Code.en.srt
13.9 kB
5. Section 03 PyTorch Computer Vision/4. Discussing and Importing the Base Computer Vision Libraries in PyTorch.en.srt
13.9 kB
11. Section 09 PyTorch Model Deployment/43. Running Food Vision Mini on Hugging Face Spaces and Trying it Out.en.srt
13.8 kB
6. Section 04 PyTorch Custom Datasets/21. Building a Baseline Model (Part 3) Doing a Forward Pass to Test Our Model Shapes.en.srt
13.8 kB
3. Section 01 PyTorch Workflow/11. Training a Model Intuition (The Things We Need).en.srt
13.8 kB
10. Section 08 PyTorch Paper Replicating/38. Bringing Our Own Vision Transformer to Life - Part 2 Putting Together the Forward Method.en.srt
13.7 kB
10. Section 08 PyTorch Paper Replicating/12. Breaking Down Equation 1.en.srt
13.7 kB
5. Section 03 PyTorch Computer Vision/27. Model 2 Training Our First CNN and Evaluating Its Results.en.srt
13.6 kB
2. Section 00 PyTorch Fundamentals/12. Getting Setup to Write PyTorch Code.en.srt
13.6 kB
4. Section 02 PyTorch Neural Network Classification/15. Creating a New Model with More Layers and Hidden Units.en.srt
13.5 kB
11. Section 09 PyTorch Model Deployment/2. Three Questions to Ask for Machine Learning Model Deployment.en.srt
13.5 kB
3. Section 01 PyTorch Workflow/20. Writing Code to Load a PyTorch Model.en.srt
13.5 kB
10. Section 08 PyTorch Paper Replicating/5. Getting Setup for Coding in Google Colab.en.srt
13.4 kB
3. Section 01 PyTorch Workflow/26. Putting Everything Together (Part 5) Saving and Loading a Trained Model.en.srt
13.4 kB
2. Section 00 PyTorch Fundamentals/20. Matrix Multiplication (Part 1).en.srt
13.3 kB
5. Section 03 PyTorch Computer Vision/17. Turing Our Training Loop into a Function.en.srt
13.3 kB
6. Section 04 PyTorch Custom Datasets/11. Turning Our Image Datasets into PyTorch DataLoaders.en.srt
13.3 kB
6. Section 04 PyTorch Custom Datasets/13. Creating a Helper Function to Get Class Names From a Directory.en.srt
13.2 kB
6. Section 04 PyTorch Custom Datasets/7. Transforming Data (Part 1) Turning Images Into Tensors.en.srt
13.1 kB
6. Section 04 PyTorch Custom Datasets/19. Building a Baseline Model (Part 1) Loading and Transforming Data.en.srt
13.1 kB
8. Section 06 PyTorch Transfer Learning/13. Training Our First Transfer Learning Feature Extractor Model.en.srt
13.1 kB
3. Section 01 PyTorch Workflow/5. Building a function to Visualize Our Data.en.srt
13.1 kB
10. Section 08 PyTorch Paper Replicating/1. What Is a Machine Learning Research Paper.en.srt
13.0 kB
2. Section 00 PyTorch Fundamentals/28. PyTorch Tensors and NumPy.en.copy.srt
12.9 kB
2. Section 00 PyTorch Fundamentals/28. PyTorch Tensors and NumPy.en.srt
12.9 kB
10. Section 08 PyTorch Paper Replicating/34. Transformer Encoder Overview.en.srt
12.8 kB
3. Section 01 PyTorch Workflow/2. Getting Setup and What We Are Covering.en.srt
12.7 kB
4. Section 02 PyTorch Neural Network Classification/8. Making Our Neural Network Visual.en.srt
12.7 kB
11. Section 09 PyTorch Model Deployment/4. How Is My Model Going to Function.en.srt
12.7 kB
9. Section 07 PyTorch Experiment Tracking/1. What Is Experiment Tracking and Why Track Experiments.en.srt
12.6 kB
7. Section 05 PyTorch Going Modular/2. Going Modular Notebook (Part 1) Running It End to End.en.srt
12.6 kB
4. Section 02 PyTorch Neural Network Classification/30. Making Predictions with and Evaluating Our Multi-Class Classification Model.en.srt
12.4 kB
6. Section 04 PyTorch Custom Datasets/4. Becoming One With the Data (Part 1) Exploring the Data Format.en.srt
12.4 kB
2. Section 00 PyTorch Fundamentals/21. Matrix Multiplication (Part 2) The Two Main Rules of Matrix Multiplication.en.srt
12.3 kB
11. Section 09 PyTorch Model Deployment/9. Outlining Our Food Vision Mini Deployment Goals and Modelling Experiments.en.srt
12.3 kB
8. Section 06 PyTorch Transfer Learning/3. Installing the Latest Versions of Torch and Torchvision.en.srt
12.3 kB
2. Section 00 PyTorch Fundamentals/9. What We Are Going To Cover With PyTorch.en.srt
12.3 kB
6. Section 04 PyTorch Custom Datasets/33. Predicting on Custom Data (Part2) Loading In a Custom Image With PyTorch.en.srt
12.2 kB
4. Section 02 PyTorch Neural Network Classification/17. Creating a Straight Line Dataset to See if Our Model is Learning Anything.en.srt
12.1 kB
12. Introduction to PyTorch 2.0 and torch.compile/14. Creating Training and Test DataLoaders.en.srt
12.1 kB
10. Section 08 PyTorch Paper Replicating/3. Where Can You Find Machine Learning Research Papers and Code.en.srt
12.1 kB
9. Section 07 PyTorch Experiment Tracking/15. Turning Our Datasets into DataLoaders Ready for Experimentation.en.srt
12.1 kB
11. Section 09 PyTorch Model Deployment/34. Outlining the File Structure of Our Deployed App.en.srt
12.0 kB
6. Section 04 PyTorch Custom Datasets/10. Visualizing a Loaded Image From the Train Dataset.en.srt
12.0 kB
2. Section 00 PyTorch Fundamentals/31. Setting up Device Agnostic Code and Putting Tensors On and Off the GPU.en.srt
11.9 kB
8. Section 06 PyTorch Transfer Learning/5. Downloading Pizza, Steak, Sushi Image Data from Github.en.srt
11.9 kB
8. Section 06 PyTorch Transfer Learning/4. Downloading Our Previously Written Code from Going Modular.en.srt
11.8 kB
4. Section 02 PyTorch Neural Network Classification/3. Typical Architecture of a Classification Neural Network (Overview).en.srt
11.8 kB
8. Section 06 PyTorch Transfer Learning/17. Making and Plotting Predictions on Test Images.en.srt
11.7 kB
12. Introduction to PyTorch 2.0 and torch.compile/10. Discussing How to Get Better Relative Speedups for Training Models.en.srt
11.5 kB
9. Section 07 PyTorch Experiment Tracking/4. Turning Our Data into DataLoaders Using Manual Transforms.en.srt
11.5 kB
5. Section 03 PyTorch Computer Vision/7. DataLoader Overview Understanding Mini-Batch.en.srt
11.5 kB
11. Section 09 PyTorch Model Deployment/17. Creating a Vision Transformer Feature Extractor Model.en.srt
11.5 kB
10. Section 08 PyTorch Paper Replicating/39. Getting a Visual Summary of Our Custom Vision Transformer.en.srt
11.5 kB
8. Section 06 PyTorch Transfer Learning/11. Getting a Summary of the Different Layers of Our Model.en.srt
11.4 kB
11. Section 09 PyTorch Model Deployment/46. Downloading the Food 101 Dataset.en.srt
11.3 kB
12. Introduction to PyTorch 2.0 and torch.compile/13. Downloading the CIFAR10 Dataset.en.srt
11.2 kB
6. Section 04 PyTorch Custom Datasets/12. Creating a Custom Dataset Class in PyTorch High Level Overview.en.srt
11.2 kB
8. Section 06 PyTorch Transfer Learning/15. Outlining the Steps to Make Predictions on the Test Images.en.srt
11.2 kB
8. Section 06 PyTorch Transfer Learning/10. Different Kinds of Transfer Learning.en.srt
11.2 kB
11. Section 09 PyTorch Model Deployment/19. Training Our ViT Feature Extractor Model and Inspecting Its Loss Curves.en.srt
11.1 kB
10. Section 08 PyTorch Paper Replicating/35. Combining Equation 2 and 3 to Create the Transformer Encoder.en.srt
11.1 kB
6. Section 04 PyTorch Custom Datasets/17. Turning Our Custom Datasets Into DataLoaders.en.srt
11.1 kB
6. Section 04 PyTorch Custom Datasets/37. Summary of What We Have Covered Plus Exercises and Extra-Curriculum.en.srt
11.0 kB
6. Section 04 PyTorch Custom Datasets/29. Constructing and Training Model 1.en.srt
11.0 kB
11. Section 09 PyTorch Model Deployment/37. Writing Code to Move Our Saved EffNetB2 Model File.en.srt
10.9 kB
10. Section 08 PyTorch Paper Replicating/14. Breaking Down Equation 4.en.srt
10.9 kB
2. Section 00 PyTorch Fundamentals/6. What Can Deep Learning Be Used For.en.srt
10.8 kB
6. Section 04 PyTorch Custom Datasets/22. Using the Torchinfo Package to Get a Summary of Our Model.en.srt
10.8 kB
12. Introduction to PyTorch 2.0 and torch.compile/11. Setting the Batch Size and Data Size Programmatically.en.srt
10.8 kB
2. Section 00 PyTorch Fundamentals/3. Machine Learning vs. Deep Learning.en.srt
10.8 kB
5. Section 03 PyTorch Computer Vision/34. Recapping What We Have Covered Plus Exercises and Extra-Curriculum.en.srt
10.8 kB
5. Section 03 PyTorch Computer Vision/28. Comparing the Results of Our Modelling Experiments.en.srt
10.7 kB
11. Section 09 PyTorch Model Deployment/57. PyTorch Mode Deployment Main Takeaways, Extra-Curriculum and Exercises.en.srt
10.7 kB
11. Section 09 PyTorch Model Deployment/52. Saving Food 101 Class Names to a Text File and Reading them Back In.en.srt
10.6 kB
5. Section 03 PyTorch Computer Vision/32. Evaluating Our Best Models Predictions with a Confusion Matrix.en.srt
10.5 kB
2. Section 00 PyTorch Fundamentals/2. The Number 1 Rule of Machine Learning and What Is Deep Learning Good For.en.srt
10.4 kB
10. Section 08 PyTorch Paper Replicating/46. Training a Pretrained ViT Feature Extractor Model for Food Vision Mini.en.srt
10.4 kB
9. Section 07 PyTorch Experiment Tracking/5. Turning Our Data into DataLoaders Using Automatic Transforms.en.srt
10.3 kB
3. Section 01 PyTorch Workflow/21. Setting Up to Practice Everything We Have Done Using Device-Agnostic Code.en.srt
10.3 kB
4. Section 02 PyTorch Neural Network Classification/27. Setting Up a Loss Function and Optimizer for Our Multi-Class Model.en.srt
10.3 kB
12. Introduction to PyTorch 2.0 and torch.compile/6. Getting Info from Our GPUs and Seeing if They're Capable of Using PyTorch 2.0.en.srt
10.3 kB
7. Section 05 PyTorch Going Modular/8. Turning Our Utility Function to Save a Model into a Python Script.en.srt
10.2 kB
2. Section 00 PyTorch Fundamentals/23. Finding the Min Max Mean and Sum of Tensors (Tensor Aggregation).en.srt
10.1 kB
5. Section 03 PyTorch Computer Vision/18. Turing Our Testing Loop into a Function.en.srt
10.1 kB
11. Section 09 PyTorch Model Deployment/33. Getting Ready to Deploy Our App Hugging Face Spaces Overview.en.srt
10.1 kB
8. Section 06 PyTorch Transfer Learning/18. Making a Prediction on a Custom Image.en.srt
10.0 kB
2. Section 00 PyTorch Fundamentals/11. Important Resources For This Course.en.srt
10.0 kB
9. Section 07 PyTorch Experiment Tracking/14. Downloading Datasets for Our Modelling Experiments.en.srt
9.9 kB
3. Section 01 PyTorch Workflow/22. Putting Everything Together (Part 1) Data.en.srt
9.9 kB
8. Section 06 PyTorch Transfer Learning/2. Where Can You Find Pretrained Models and What We Are Going to Cover.en.srt
9.9 kB
12. Introduction to PyTorch 2.0 and torch.compile/24. Potential Extensions and Resources to Learn More.en.srt
9.8 kB
2. Section 00 PyTorch Fundamentals/10. How To and How Not To Approach This Course.en.srt
9.8 kB
3. Section 01 PyTorch Workflow/7. Breaking Down What's Happening in Our PyTorch Linear regression Model.en.srt
9.8 kB
1. Introduction/2. Course Welcome and What Is Deep Learning.en.srt
9.8 kB
11. Section 09 PyTorch Model Deployment/16. Collecting Important Statistics and Performance Metrics for Our EffNetB2 Model.en.srt
9.8 kB
12. Introduction to PyTorch 2.0 and torch.compile/1. Introduction to PyTorch 2.0.en.srt
9.7 kB
4. Section 02 PyTorch Neural Network Classification/19. Evaluating Our Models Predictions on Straight Line Data.en.srt
9.7 kB
12. Introduction to PyTorch 2.0 and torch.compile/8. Discussing the Experiments We Are Going to Run for PyTorch 2.0.en.srt
9.6 kB
11. Section 09 PyTorch Model Deployment/21. Collecting Stats About Our ViT Feature Extractor.en.srt
9.6 kB
7. Section 05 PyTorch Going Modular/10. Going Modular Summary, Exercises and Extra-Curriculum.en.srt
9.6 kB
11. Section 09 PyTorch Model Deployment/7. Getting Setup to Code.en.srt
9.6 kB
6. Section 04 PyTorch Custom Datasets/15. Compare Our Custom Dataset Class to the Original ImageFolder Class.en.srt
9.5 kB
11. Section 09 PyTorch Model Deployment/5. Some Tools and Places to Deploy Machine Learning Models.en.srt
9.5 kB
4. Section 02 PyTorch Neural Network Classification/23. Making Predictions with and Evaluating Our First Non-Linear Model.en.srt
9.5 kB
10. Section 08 PyTorch Paper Replicating/43. Plotting a Loss Curve for Our ViT Model.en.srt
9.3 kB
3. Section 01 PyTorch Workflow/25. Putting Everything Together (Part 4) Making Predictions With a Trained Model.en.srt
9.2 kB
5. Section 03 PyTorch Computer Vision/11. Creating a Function to Time Our Modelling Code.en.srt
9.2 kB
5. Section 03 PyTorch Computer Vision/3. What Is a Convolutional Neural Network (CNN).en.srt
9.0 kB
3. Section 01 PyTorch Workflow/8. Discussing Some of the Most Important PyTorch Model Building Classes.en.srt
9.0 kB
11. Section 09 PyTorch Model Deployment/11. Create a Function to Make an EffNetB2 Feature Extractor Model and Transforms.en.srt
8.9 kB
9. Section 07 PyTorch Experiment Tracking/12. What Experiments Should You Try.en.srt
8.9 kB
11. Section 09 PyTorch Model Deployment/25. Making and Timing Predictions with ViT.en.srt
8.9 kB
10. Section 08 PyTorch Paper Replicating/45. Preparing Data to Be Used with a Pretrained ViT.en.srt
8.8 kB
10. Section 08 PyTorch Paper Replicating/31. Checking the Inputs and Outputs of Equation.en.srt
8.8 kB
8. Section 06 PyTorch Transfer Learning/14. Plotting the Loss Curves of Our Transfer Learning Model.en.srt
8.7 kB
2. Section 00 PyTorch Fundamentals/19. Manipulating Tensors (Tensor Operations).en.srt
8.6 kB
11. Section 09 PyTorch Model Deployment/50. Outlining the File Structure for Our Food Vision Big.en.srt
8.6 kB
11. Section 09 PyTorch Model Deployment/48. Turning Our Food 101 Datasets into DataLoaders.en.srt
8.5 kB
6. Section 04 PyTorch Custom Datasets/2. Importing PyTorch and Setting Up Device-Agnostic Code.en.srt
8.4 kB
11. Section 09 PyTorch Model Deployment/6. What We Are Going to Cover.en.srt
8.4 kB
9. Section 07 PyTorch Experiment Tracking/13. Discussing the Experiments We Are Going to Try.en.srt
8.4 kB
2. Section 00 PyTorch Fundamentals/8. What Are Tensors.en.srt
8.2 kB
2. Section 00 PyTorch Fundamentals/32. PyTorch Fundamentals Exercises and Extra-Curriculum.en.srt
8.0 kB
1. Introduction/7. Set Your Learning Streak Goal.html
8.0 kB
7. Section 05 PyTorch Going Modular/3. Downloading a Dataset.en.srt
8.0 kB
7. Section 05 PyTorch Going Modular/7. Turning Our Model Training Code into a Python Script.en.srt
7.9 kB
11. Section 09 PyTorch Model Deployment/20. Saving Our ViT Feature Extractor and Inspecting Its Size.en.srt
7.9 kB
6. Section 04 PyTorch Custom Datasets/6. Becoming One With the Data (Part 3) Visualizing a Random Image with Matplotlib.en.srt
7.6 kB
12. Introduction to PyTorch 2.0 and torch.compile/15. Preparing Training and Testing Loops with Timing Steps.en.srt
7.6 kB
12. Introduction to PyTorch 2.0 and torch.compile/23. Comparing the Results of Experiments 3 and 4.en.srt
7.5 kB
10. Section 08 PyTorch Paper Replicating/41. Training our Custom ViT on Food Vision Mini.en.srt
7.5 kB
9. Section 07 PyTorch Experiment Tracking/22. Main Takeaways, Exercises and Extra Curriculum.en.srt
7.5 kB
2. Section 00 PyTorch Fundamentals/5. Different Types of Learning Paradigms.en.srt
7.5 kB
10. Section 08 PyTorch Paper Replicating/22. Visualizing a Single Sequence Vector of Patch Embeddings.en.srt
7.4 kB
3. Section 01 PyTorch Workflow/27. PyTorch Workflow Exercises and Extra-Curriculum.en.srt
7.3 kB
11. Section 09 PyTorch Model Deployment/15. Getting the Size of Our EffNetB2 Model in Megabytes.en.srt
7.3 kB
11. Section 09 PyTorch Model Deployment/31. Creating a List of Examples to Pass to Our Gradio Demo.en.srt
7.3 kB
5. Section 03 PyTorch Computer Vision/20. Getting a Results Dictionary for Model 1.en.srt
7.3 kB
6. Section 04 PyTorch Custom Datasets/32. Predicting on Custom Data (Part 1) Downloading an Image.en.srt
7.3 kB
12. Introduction to PyTorch 2.0 and torch.compile/3. Getting Started with PyTorch 2.0 in Google Colab.en.srt
7.2 kB
12. Introduction to PyTorch 2.0 and torch.compile/19. Saving the Results of Experiments 1 and 2.en.srt
7.1 kB
1. Introduction/6. ZTM Plugin + Understanding Your Video Player.html
7.1 kB
2. Section 00 PyTorch Fundamentals/1. Why Use Machine Learning or Deep Learning.en.srt
7.0 kB
5. Section 03 PyTorch Computer Vision/14. Setup Device-Agnostic Code for Running Experiments on the GPU.en.srt
7.0 kB
1. Introduction/4. Course Companion Book + Code + More.html
6.9 kB
4. Section 02 PyTorch Neural Network Classification/6. Laying Out Steps for Modelling and Setting Up Device-Agnostic Code.en.srt
6.9 kB
1. Introduction/5. Machine Learning + Python Monthly.html
6.8 kB
6. Section 04 PyTorch Custom Datasets/35. Predicting on Custom Data (Part 4) Turning Our Models Raw Outputs Into Prediction Labels.en.srt
6.7 kB
2. Section 00 PyTorch Fundamentals/16. Creating a Tensor Range and Tensors Like Other Tensors.en.srt
6.7 kB
9. Section 07 PyTorch Experiment Tracking/18. Running Eight Different Modelling Experiments in 5 Minutes.en.srt
6.6 kB
11. Section 09 PyTorch Model Deployment/40. Creating a Requirements File for Our Food Vision Mini App.en.srt
6.5 kB
11. Section 09 PyTorch Model Deployment/44. Food Vision Big Project Outline.en.srt
6.3 kB
11. Section 09 PyTorch Model Deployment/35. Creating a Food Vision Mini Demo Directory to House Our App Files.en.srt
6.3 kB
10. Section 08 PyTorch Paper Replicating/6. Downloading Data for Food Vision Mini.en.srt
6.2 kB
9. Section 07 PyTorch Experiment Tracking/8. Training a Single Model and Saving the Results to TensorBoard.en.srt
6.2 kB
9. Section 07 PyTorch Experiment Tracking/11. Adapting Our Train Function to Be Able to Track Multiple Experiments.en.srt
6.0 kB
6. Section 04 PyTorch Custom Datasets/30. Plotting the Loss Curves of Model 1.en.srt
6.0 kB
10. Section 08 PyTorch Paper Replicating/8. Visualizing a Single Image.en.srt
5.9 kB
11. Section 09 PyTorch Model Deployment/51. Downloading an Example Image and Moving Our Food Vision Big Model File.en.srt
5.9 kB
8. Section 06 PyTorch Transfer Learning/19. Main Takeaways, Exercises and Extra Curriculum.en.srt
5.9 kB
1. Introduction/1. PyTorch for Deep Learning Bootcamp Zero to Mastery.en.srt
5.8 kB
11. Section 09 PyTorch Model Deployment/55. Zipping and Downloading Our Food Vision Big App Files.en.srt
5.7 kB
3. Section 01 PyTorch Workflow/1. Introduction and Where You Can Get Help.en.srt
5.6 kB
11. Section 09 PyTorch Model Deployment/8. Downloading a Dataset for Food Vision Mini.en.srt
5.6 kB
10. Section 08 PyTorch Paper Replicating/2. Why Replicate a Machine Learning Research Paper.en.srt
5.5 kB
10. Section 08 PyTorch Paper Replicating/47. Saving Our Pretrained ViT Model to File and Inspecting Its Size.en.srt
5.5 kB
10. Section 08 PyTorch Paper Replicating/49. Making Predictions on a Custom Image with Our Pretrained ViT.en.srt
5.4 kB
12. Introduction to PyTorch 2.0 and torch.compile/4. PyTorch 2.0 - 30 Second Intro.en.srt
5.3 kB
10. Section 08 PyTorch Paper Replicating/48. Discussing the Trade-Offs Between Using a Larger Model for Deployments.en.srt
5.3 kB
9. Section 07 PyTorch Experiment Tracking/21. Making a Prediction on Our Own Custom Image with the Best Model.en.srt
5.3 kB
5. Section 03 PyTorch Computer Vision/16. Model 1 Creating a Loss Function and Optimizer.en.srt
5.0 kB
11. Section 09 PyTorch Model Deployment/38. Turning Our EffNetB2 Model Creation Function Into a Python Script.en.srt
5.0 kB
4. Section 02 PyTorch Neural Network Classification/32. PyTorch Classification Exercises and Extra-Curriculum.en.srt
4.9 kB
11. Section 09 PyTorch Model Deployment/14. Saving Our EffNetB2 Model to File.en.srt
4.8 kB
6. Section 04 PyTorch Custom Datasets/38. Exercise Imposter Syndrome.en.srt
4.8 kB
1. Introduction/3. Exercise Meet Your Classmates and Instructor.html
4.6 kB
2. Section 00 PyTorch Fundamentals/24. Finding The Positional Min and Max of Tensors.en.srt
4.4 kB
2. Section 00 PyTorch Fundamentals/15. Creating Tensors With Zeros and Ones in PyTorch.en.srt
4.4 kB
11. Section 09 PyTorch Model Deployment/18. Creating DataLoaders for Our ViT Feature Extractor Model.en.srt
4.2 kB
5. Section 03 PyTorch Computer Vision/26. Model 2 Setting Up a Loss Function and Optimizer.en.srt
4.1 kB
12. Introduction to PyTorch 2.0 and torch.compile/5. Getting Setup for PyTorch 2.0.en.srt
3.6 kB
11. Section 09 PyTorch Model Deployment/53. Turning Our EffNetB2 Feature Extractor Creation Function into a Python Script.en.srt
3.6 kB
12. Introduction to PyTorch 2.0 and torch.compile/2. What We Are Going to Cover and PyTorch 2 Reference Materials.en.srt
2.5 kB
13. Where To Go From Here/1. Thank You!.en.srt
2.0 kB
0. Websites you may like/[FCSNEW.NET].url
119 Bytes
1. Introduction/0. Websites you may like/[FCSNEW.NET].url
119 Bytes
1. Introduction/[FCSNEW.NET].url
119 Bytes
10. Section 08 PyTorch Paper Replicating/0. Websites you may like/[FCSNEW.NET].url
119 Bytes
10. Section 08 PyTorch Paper Replicating/[FCSNEW.NET].url
119 Bytes
11. Section 09 PyTorch Model Deployment/0. Websites you may like/[FCSNEW.NET].url
119 Bytes
11. Section 09 PyTorch Model Deployment/[FCSNEW.NET].url
119 Bytes
12. Introduction to PyTorch 2.0 and torch.compile/0. Websites you may like/[FCSNEW.NET].url
119 Bytes
12. Introduction to PyTorch 2.0 and torch.compile/[FCSNEW.NET].url
119 Bytes
13. Where To Go From Here/0. Websites you may like/[FCSNEW.NET].url
119 Bytes
13. Where To Go From Here/[FCSNEW.NET].url
119 Bytes
2. Section 00 PyTorch Fundamentals/0. Websites you may like/[FCSNEW.NET].url
119 Bytes
2. Section 00 PyTorch Fundamentals/[FCSNEW.NET].url
119 Bytes
3. Section 01 PyTorch Workflow/0. Websites you may like/[FCSNEW.NET].url
119 Bytes
3. Section 01 PyTorch Workflow/[FCSNEW.NET].url
119 Bytes
4. Section 02 PyTorch Neural Network Classification/0. Websites you may like/[FCSNEW.NET].url
119 Bytes
4. Section 02 PyTorch Neural Network Classification/[FCSNEW.NET].url
119 Bytes
5. Section 03 PyTorch Computer Vision/0. Websites you may like/[FCSNEW.NET].url
119 Bytes
5. Section 03 PyTorch Computer Vision/[FCSNEW.NET].url
119 Bytes
6. Section 04 PyTorch Custom Datasets/0. Websites you may like/[FCSNEW.NET].url
119 Bytes
6. Section 04 PyTorch Custom Datasets/[FCSNEW.NET].url
119 Bytes
7. Section 05 PyTorch Going Modular/0. Websites you may like/[FCSNEW.NET].url
119 Bytes
7. Section 05 PyTorch Going Modular/[FCSNEW.NET].url
119 Bytes
8. Section 06 PyTorch Transfer Learning/0. Websites you may like/[FCSNEW.NET].url
119 Bytes
8. Section 06 PyTorch Transfer Learning/[FCSNEW.NET].url
119 Bytes
9. Section 07 PyTorch Experiment Tracking/0. Websites you may like/[FCSNEW.NET].url
119 Bytes
9. Section 07 PyTorch Experiment Tracking/[FCSNEW.NET].url
119 Bytes
[FCSNEW.NET].url
119 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!