搜索
[FreeCourseSite.com] Udemy - Machine Learning A-Z Become Kaggle Master
磁力链接/BT种子名称
[FreeCourseSite.com] Udemy - Machine Learning A-Z Become Kaggle Master
磁力链接/BT种子简介
种子哈希:
9e378efb6e2f67de46c6c3660d9675be50bfc21f
文件大小:
13.97G
已经下载:
8445
次
下载速度:
极快
收录时间:
2021-03-08
最近下载:
2025-01-01
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:9E378EFB6E2F67DE46C6C3660D9675BE50BFC21F
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
少女初夜
萝莉岛
最近搜索
apns-113
ts+of
潮牌试衣间
高颜值 娇滴滴
江苏徐州周立珊
+oae-205
女阴合集
cyndi lauper
klcouple6699
核弹+伪娘
国产探花 良家
野外露出喷水
二十歳
dvd av
推特
全方位
《硬核重磅✅反差尤物》平时高冷御姐床上喜欢一边被羞辱一边挨操+纯欲的外表与放荡的淫叫+形成剧烈反差+
换纸尿裤
venom the last dance bluray
2023.12
黑丝传媒
御姐反差
dolittle ita
瀧
khip-015
【最新封神❤️极品乱伦】海角社区乱伦大神《恋母少年》
熟女探花
女厕看逼
pedo
开阳
文件列表
17. Logistic Regression/4. Case Study.mp4
207.8 MB
7. Data Visualisation/2. Seaborn.mp4
193.7 MB
15. Model Selection Part1/4. Gridsearch Case study Part2.mp4
187.6 MB
7. Data Visualisation/1. Matplotlib.mp4
181.2 MB
2. Numpy/3. Numpy Operations Part2.mp4
178.2 MB
18. Support Vector Machine (SVM)/14. Case Study 4.mp4
172.4 MB
4. Some Fun With Maths/1. Linear Algebra Vectors.mp4
170.3 MB
23. Dimension Reduction/1. Introduction.mp4
164.3 MB
20. Ensembling/16. Case Study Part1.mp4
148.4 MB
9. Simple Linear Regression/7. LR Case Study Part1.mp4
144.2 MB
26. Project Kaggle/2. Playing With The Data.mp4
143.7 MB
20. Ensembling/17. Case Study Part2.mp4
143.3 MB
26. Project Kaggle/17. Building Machine Learning model part2.mp4
141.7 MB
10. Multiple Linear Regression/9. Case Study Part4.mp4
138.6 MB
2. Numpy/2. Numpy Operations Part1.mp4
135.0 MB
19. Decision Tree/9. DT Case Study Part1.mp4
131.5 MB
15. Model Selection Part1/3. Gridsearch Case study Part1.mp4
130.3 MB
26. Project Kaggle/16. Building Machine Learning model part1.mp4
130.0 MB
23. Dimension Reduction/5. Case Study Part2.mp4
129.0 MB
26. Project Kaggle/5. Train, Test And Cross Validation Split.mp4
121.9 MB
14. Model Performance Metrics/1. Performance Metrics Part1.mp4
119.4 MB
7. Data Visualisation/3. Case Study.mp4
118.7 MB
26. Project Kaggle/3. Translating the Problem In Machine Learning World.mp4
118.5 MB
1. Python Fundamentals/5. Variables in Python.mp4
115.8 MB
24. Advanced Machine Learning Algorithms/8. Case Study.mp4
111.4 MB
1. Python Fundamentals/11. String Part1.mp4
111.2 MB
21. Model Selection Part2/1. Model Selection Part1.mp4
109.4 MB
25. Deep Learning/6. Neural Network Playground.mp4
108.7 MB
10. Multiple Linear Regression/3. Case Study part2.mp4
103.2 MB
23. Dimension Reduction/2. PCA.mp4
103.2 MB
26. Project Kaggle/4. Dealing with Text Data.mp4
102.8 MB
23. Dimension Reduction/3. Maths Behind PCA.mp4
101.5 MB
22. Unsupervised Learning/9. Case Study Part1.mp4
100.5 MB
19. Decision Tree/10. DT Case Study Part2.mp4
100.4 MB
16. Naive Bayes/9. Case Study 1.mp4
100.1 MB
4. Some Fun With Maths/2. Linear Algebra Matrix Part1.mp4
99.9 MB
1. Python Fundamentals/1. Introduction to the course.mp4
98.4 MB
26. Project Kaggle/1. Introduction to the Problem Statement.mp4
97.9 MB
14. Model Performance Metrics/2. Performance Metrics Part2.mp4
94.9 MB
1. Python Fundamentals/2. Introduction to Kaggle.mp4
94.4 MB
18. Support Vector Machine (SVM)/11. Case Study 2.mp4
94.4 MB
11. HotstarNetflix Real world Case Study for Multiple Linear Regression/4. Building Model Part2.mp4
92.1 MB
1. Python Fundamentals/14. List Part2.mp4
91.6 MB
1. Python Fundamentals/10. Functions.mp4
89.8 MB
26. Project Kaggle/6. Understanding Evaluation Matrix Log Loss.mp4
89.7 MB
13. KNN/11. Classification Case1.mp4
88.3 MB
10. Multiple Linear Regression/2. Case Study part1.mp4
87.1 MB
8. Exploratory Data Analysis/10. Univariate Analysis Part1.mp4
86.8 MB
1. Python Fundamentals/3. Installation of Python and Anaconda.mp4
86.3 MB
11. HotstarNetflix Real world Case Study for Multiple Linear Regression/2. Playing With Data.mp4
85.3 MB
16. Naive Bayes/3. Practical Example from NB with One Column.mp4
84.5 MB
4. Some Fun With Maths/3. Linear Algebra Matrix Part2.mp4
81.8 MB
1. Python Fundamentals/9. for while Loop.mp4
81.6 MB
8. Exploratory Data Analysis/8. Data Cleaning part1.mp4
79.9 MB
20. Ensembling/18. Case Study Part3.mp4
79.1 MB
16. Naive Bayes/10. Case Study 2 Part1.mp4
78.2 MB
18. Support Vector Machine (SVM)/7. SVM Case Study Part1.mp4
77.7 MB
1. Python Fundamentals/15. List Part3.mp4
77.1 MB
16. Naive Bayes/1. Introduction to Naive Bayes.mp4
76.9 MB
20. Ensembling/5. Case study.mp4
76.6 MB
10. Multiple Linear Regression/7. Case Study Part2.mp4
76.4 MB
26. Project Kaggle/12. Significance of first categorical column.mp4
75.2 MB
12. Gradient Descent/8. Gradient Descent case study.mp4
75.1 MB
20. Ensembling/2. Bagging.mp4
74.7 MB
18. Support Vector Machine (SVM)/10. Kernel Part2.mp4
74.6 MB
26. Project Kaggle/9. First Categorical column analysis.mp4
74.6 MB
13. KNN/10. Case Study.mp4
74.1 MB
1. Python Fundamentals/20. Comprehentions.mp4
74.0 MB
10. Multiple Linear Regression/4. Case Study part3.mp4
72.0 MB
10. Multiple Linear Regression/6. Case Study Part1.mp4
71.9 MB
26. Project Kaggle/7. Building A Worst Model.mp4
71.8 MB
1. Python Fundamentals/17. Tuples.mp4
70.6 MB
26. Project Kaggle/14. Third Categorical column.mp4
70.0 MB
10. Multiple Linear Regression/8. Case Study Part3.mp4
69.8 MB
3. Pandas/3. DataFrame.mp4
69.4 MB
18. Support Vector Machine (SVM)/8. SVM Case Study Part2.mp4
69.4 MB
18. Support Vector Machine (SVM)/3. Hyperplane Part2.mp4
68.5 MB
24. Advanced Machine Learning Algorithms/4. Optimal Solution.mp4
68.4 MB
10. Multiple Linear Regression/11. Case Study Part6 (RFE).mp4
67.3 MB
1. Python Fundamentals/8. If else Loop.mp4
67.1 MB
1. Python Fundamentals/16. List Part4.mp4
67.0 MB
25. Deep Learning/5. Multi Layered Perceptron.mp4
66.9 MB
16. Naive Bayes/2. Bayes Theorem.mp4
66.1 MB
25. Deep Learning/3. History.mp4
64.9 MB
1. Python Fundamentals/19. Dictionaries.mp4
64.6 MB
3. Pandas/2. Series.mp4
64.5 MB
22. Unsupervised Learning/10. Case Study Part2.mp4
64.3 MB
18. Support Vector Machine (SVM)/13. Case Study 3 Part2.mp4
64.3 MB
12. Gradient Descent/1. Pre-Req For Gradient Descent Part1.mp4
64.2 MB
8. Exploratory Data Analysis/11. Univariate Analysis Part2.mp4
63.8 MB
8. Exploratory Data Analysis/13. Bivariate Analysis.mp4
63.5 MB
26. Project Kaggle/1.1 training.zip.zip
62.9 MB
16. Naive Bayes/4. Practical Example from NB with Multiple Columns.mp4
62.7 MB
3. Pandas/7. loc and iloc.mp4
62.3 MB
22. Unsupervised Learning/1. Introduction to Clustering.mp4
62.0 MB
26. Project Kaggle/8. Evaluating Worst ML Model.mp4
61.7 MB
18. Support Vector Machine (SVM)/1. Introduction.mp4
61.6 MB
9. Simple Linear Regression/4. How LR Works.mp4
61.5 MB
6. Hypothesis Testing/6. z Table.mp4
61.5 MB
1. Python Fundamentals/18. Sets.mp4
61.0 MB
22. Unsupervised Learning/3. Kmeans.mp4
60.5 MB
13. KNN/4. Accuracy of KNN.mp4
59.9 MB
18. Support Vector Machine (SVM)/12. Case Study 3 Part1.mp4
58.7 MB
16. Naive Bayes/7. Laplace Smoothing.mp4
57.9 MB
11. HotstarNetflix Real world Case Study for Multiple Linear Regression/3. Building Model Part1.mp4
57.7 MB
5. Inferential Statistics/2. Probability Theory.mp4
57.4 MB
16. Naive Bayes/5. Naive Bayes On Text Data Part1.mp4
57.4 MB
26. Project Kaggle/10. Response encoding and one hot encoder.mp4
57.3 MB
13. KNN/1. Introduction to Classification.mp4
56.7 MB
7. Data Visualisation/4. Seaborn On Time Series Data.mp4
56.7 MB
22. Unsupervised Learning/4. Maths Behind Kmeans.mp4
56.4 MB
8. Exploratory Data Analysis/7. Data Sourcing and Cleaning part6.mp4
56.3 MB
20. Ensembling/11. Adaboost Case Study.mp4
56.3 MB
9. Simple Linear Regression/8. LR Case Study Part2.mp4
56.0 MB
13. KNN/13. Classification Case3.mp4
55.5 MB
9. Simple Linear Regression/5. Some Fun With Maths Behind LR.mp4
55.3 MB
9. Simple Linear Regression/6. R Square.mp4
55.0 MB
13. KNN/12. Classification Case2.mp4
54.8 MB
15. Model Selection Part1/1. Model Creation Case1.mp4
54.6 MB
22. Unsupervised Learning/6. Kmeans plus.mp4
54.3 MB
26. Project Kaggle/21. Building Machine Learning model part6.mp4
53.3 MB
26. Project Kaggle/15. Data pre-processing before building machine learning model.mp4
53.0 MB
3. Pandas/6. Indexes.mp4
52.5 MB
18. Support Vector Machine (SVM)/9. Kernel Part1.mp4
51.6 MB
25. Deep Learning/2. Introduction.mp4
51.1 MB
24. Advanced Machine Learning Algorithms/6. Regularization.mp4
51.0 MB
11. HotstarNetflix Real world Case Study for Multiple Linear Regression/5. Building Model Part3.mp4
50.9 MB
26. Project Kaggle/11. Laplace Smoothing and Calibrated classifier.mp4
50.6 MB
13. KNN/5. Effectiveness of KNN.mp4
50.6 MB
13. KNN/6. Distance Metrics.mp4
50.2 MB
13. KNN/3. Introduction to KNN.mp4
49.4 MB
3. Pandas/10. groupby.mp4
49.2 MB
9. Simple Linear Regression/9. LR Case Study Part3.mp4
48.7 MB
16. Naive Bayes/6. Naive Bayes On Text Data Part2.mp4
48.3 MB
10. Multiple Linear Regression/10. Case Study Part5.mp4
47.9 MB
26. Project Kaggle/13. Second Categorical column.mp4
47.9 MB
23. Dimension Reduction/4. Case Study Part1.mp4
47.7 MB
24. Advanced Machine Learning Algorithms/3. Example Part2.mp4
47.3 MB
17. Logistic Regression/2. Sigmoid Function.mp4
46.5 MB
19. Decision Tree/4. Gini Index.mp4
46.3 MB
3. Pandas/5. Operations Part2.mp4
46.2 MB
3. Pandas/8. Reading CSV.mp4
44.5 MB
26. Project Kaggle/20. Building Machine Learning model part5.mp4
44.0 MB
8. Exploratory Data Analysis/14. Derived Columns.mp4
43.9 MB
17. Logistic Regression/3. Log Odds.mp4
43.9 MB
20. Ensembling/9. Adaboost Part1.mp4
43.6 MB
21. Model Selection Part2/2. Model Selection Part2.mp4
43.3 MB
13. KNN/14. Classification Case4.mp4
43.1 MB
11. HotstarNetflix Real world Case Study for Multiple Linear Regression/1. Introduction to the Problem Statement.mp4
42.8 MB
19. Decision Tree/2. Example of DT.mp4
42.6 MB
19. Decision Tree/8. Preventing Overfitting Issues in DT.mp4
42.2 MB
13. KNN/2. Defining Classification Mathematically.mp4
41.9 MB
24. Advanced Machine Learning Algorithms/5. Case study.mp4
41.9 MB
24. Advanced Machine Learning Algorithms/7. Ridge and Lasso.mp4
41.9 MB
11. HotstarNetflix Real world Case Study for Multiple Linear Regression/6. Verification of Model.mp4
41.4 MB
20. Ensembling/1. Introduction to Ensembles.mp4
41.2 MB
3. Pandas/1. Introduction.mp4
41.0 MB
20. Ensembling/15. XGboost Algorithm.mp4
40.6 MB
5. Inferential Statistics/12. Sampling.mp4
40.6 MB
20. Ensembling/10. Adaboost Part2.mp4
40.3 MB
26. Project Kaggle/18. Building Machine Learning model part3.mp4
40.3 MB
22. Unsupervised Learning/12. Hierarchial Clustering.mp4
39.9 MB
6. Hypothesis Testing/4. OneTwo Tailed Tests.mp4
39.8 MB
12. Gradient Descent/5. Gradient Descent.mp4
39.5 MB
1. Python Fundamentals/6. Numeric Operations in Python.mp4
38.7 MB
12. Gradient Descent/4. Defining Cost Functions More Formally.mp4
38.3 MB
22. Unsupervised Learning/7. Value of K.mp4
37.6 MB
21. Model Selection Part2/3. Model Selection Part3.mp4
37.4 MB
20. Ensembling/14. Boosting Part2.mp4
37.2 MB
9. Simple Linear Regression/2. Types of Machine Learning.mp4
37.1 MB
15. Model Selection Part1/2. Model Creation Case2.mp4
36.4 MB
5. Inferential Statistics/15. Confidence Interval Part1.mp4
36.2 MB
22. Unsupervised Learning/13. Case Study.mp4
36.1 MB
3. Pandas/11. Merging Part2.mp4
35.6 MB
6. Hypothesis Testing/9. p Value.mp4
35.1 MB
13. KNN/8. Finding k.mp4
34.9 MB
18. Support Vector Machine (SVM)/6. Slack Variable.mp4
34.9 MB
26. Project Kaggle/19. Building Machine Learning model part4.mp4
34.7 MB
20. Ensembling/6. Introduction to Boosting.mp4
34.7 MB
12. Gradient Descent/2. Pre-Req For Gradient Descent Part2.mp4
34.5 MB
24. Advanced Machine Learning Algorithms/9. Model Selection.mp4
32.8 MB
6. Hypothesis Testing/1. Introduction.mp4
32.6 MB
24. Advanced Machine Learning Algorithms/1. Introduction.mp4
32.4 MB
3. Pandas/9. Merging Part1.mp4
31.5 MB
25. Deep Learning/4. Perceptron.mp4
31.2 MB
19. Decision Tree/1. Introduction.mp4
31.2 MB
8. Exploratory Data Analysis/9. Data Cleaning part2.mp4
31.1 MB
6. Hypothesis Testing/12. t- distribution Part2.mp4
30.7 MB
19. Decision Tree/5. Information Gain Part1.mp4
30.7 MB
13. KNN/7. Distance Metrics Part2.mp4
30.2 MB
6. Hypothesis Testing/2. NULL And Alternate Hypothesis.mp4
30.2 MB
5. Inferential Statistics/6. Without Experiment.mp4
30.1 MB
22. Unsupervised Learning/2. Segmentation.mp4
30.0 MB
6. Hypothesis Testing/3. Examples.mp4
29.1 MB
4. Some Fun With Maths/4. Linear Algebra Going From 2D to nD Part1.mp4
29.1 MB
3. Pandas/12. Pivot Table.mp4
29.1 MB
24. Advanced Machine Learning Algorithms/2. Example Part1.mp4
28.8 MB
1. Python Fundamentals/12. String Part2.mp4
28.7 MB
19. Decision Tree/6. Information Gain Part2.mp4
28.7 MB
16. Naive Bayes/8. Bernoulli Naive Bayes.mp4
28.4 MB
18. Support Vector Machine (SVM)/2. Hyperplane Part1.mp4
28.4 MB
12. Gradient Descent/7. Closed Form Vs Gradient Descent.mp4
27.9 MB
17. Logistic Regression/1. Introduction.mp4
27.9 MB
6. Hypothesis Testing/7. Examples.mp4
27.7 MB
4. Some Fun With Maths/5. Linear Algebra 2D to nD Part2.mp4
27.0 MB
5. Inferential Statistics/13. Sampling Distribution.mp4
26.8 MB
16. Naive Bayes/11. Case Study 2 Part2.mp4
26.6 MB
2. Numpy/1. Introduction.mp4
25.9 MB
6. Hypothesis Testing/5. Critical Value Method.mp4
25.9 MB
8. Exploratory Data Analysis/12. Segmented Analysis.mp4
25.7 MB
5. Inferential Statistics/4. Expected Values Part1.mp4
25.4 MB
5. Inferential Statistics/3. Probability Distribution.mp4
25.4 MB
18. Support Vector Machine (SVM)/4. Maths Behind SVM.mp4
25.2 MB
14. Model Performance Metrics/3. Performance Metrics Part3.mp4
25.2 MB
5. Inferential Statistics/11. z Score.mp4
25.0 MB
20. Ensembling/12. XGBoost.mp4
24.2 MB
12. Gradient Descent/6. Optimisation.mp4
22.7 MB
6. Hypothesis Testing/11. t- distribution Part1.mp4
22.4 MB
5. Inferential Statistics/9. PDF.mp4
22.0 MB
19. Decision Tree/3. Homogenity.mp4
21.6 MB
24. Advanced Machine Learning Algorithms/10. Adjusted R Square.mp4
21.1 MB
5. Inferential Statistics/10. Normal Distribution.mp4
19.9 MB
22. Unsupervised Learning/11. More on Segmentation.mp4
18.9 MB
20. Ensembling/7. Weak Learners.mp4
18.8 MB
9. Simple Linear Regression/3. Introduction to Linear Regression (LR).mp4
18.8 MB
5. Inferential Statistics/7. Binomial Distribution.mp4
18.4 MB
1. Python Fundamentals/7. Logical Operations.mp4
18.2 MB
6. Hypothesis Testing/8. More Examples.mp4
17.3 MB
10. Multiple Linear Regression/1. Introduction.mp4
17.3 MB
20. Ensembling/4. Runtime.mp4
17.2 MB
8. Exploratory Data Analysis/3. Data Sourcing and Cleaning part2.mp4
16.4 MB
8. Exploratory Data Analysis/2. Data Sourcing and Cleaning part1.mp4
16.3 MB
19. Decision Tree/7. Advantages and Disadvantages of DT.mp4
16.2 MB
18. Support Vector Machine (SVM)/1.1 SVM.zip.zip
16.2 MB
6. Hypothesis Testing/10. Types of Error.mp4
16.0 MB
20. Ensembling/8. Shallow Decision Tree.mp4
15.7 MB
20. Ensembling/3. Advantages.mp4
15.6 MB
5. Inferential Statistics/5. Expected Values Part2.mp4
15.2 MB
20. Ensembling/13. Boosting Part1.mp4
14.4 MB
5. Inferential Statistics/16. Confidence Interval Part2.mp4
14.0 MB
12. Gradient Descent/3. Cost Functions.mp4
13.8 MB
5. Inferential Statistics/14. Central Limit Theorem.mp4
13.7 MB
8. Exploratory Data Analysis/6. Data Sourcing and Cleaning part5.mp4
13.0 MB
22. Unsupervised Learning/8. Hopkins test.mp4
12.9 MB
3. Pandas/4. Operations Part1.mp4
12.6 MB
9. Simple Linear Regression/1. Introduction to Machine Learning.mp4
11.7 MB
18. Support Vector Machine (SVM)/5. Support Vectors.mp4
11.6 MB
8. Exploratory Data Analysis/5. Data Sourcing and Cleaning part4.mp4
10.9 MB
5. Inferential Statistics/1. Inferential Statistics.mp4
10.8 MB
1. Python Fundamentals/4. Python Introduction.mp4
10.7 MB
1. Python Fundamentals/13. List Part1.mp4
10.5 MB
8. Exploratory Data Analysis/4. Data Sourcing and Cleaning part3.mp4
10.5 MB
22. Unsupervised Learning/5. More Maths.mp4
9.9 MB
25. Deep Learning/1. Expectations.mp4
9.8 MB
13. KNN/9. KNN on Regression.mp4
9.7 MB
23. Dimension Reduction/1.1 PCA code for udemy.zip.zip
9.5 MB
5. Inferential Statistics/8. Commulative Distribution.mp4
8.8 MB
10. Multiple Linear Regression/5. Adjusted R Square.mp4
8.5 MB
22. Unsupervised Learning/1.1 Unsupervised.zip.zip
7.7 MB
9. Simple Linear Regression/10. Residual Square Error (RSE).mp4
4.8 MB
19. Decision Tree/1.1 DT_forudemy.zip.zip
4.2 MB
8. Exploratory Data Analysis/1. Introduction.mp4
4.0 MB
1. Python Fundamentals/3.2 Installing-Python.Teclov.pdf.pdf
1.4 MB
13. KNN/1.1 KNN.zip.zip
1.4 MB
26. Project Kaggle/1.2 Teclov Project - Medical treatment.ipynb.zip.zip
1.3 MB
20. Ensembling/1.1 Boosting.zip.zip
1.3 MB
7. Data Visualisation/1.1 Datavisual.zip.zip
1.3 MB
24. Advanced Machine Learning Algorithms/1.1 AdvanceReg.zip.zip
1.2 MB
20. Ensembling/1.2 RF_forudemy.zip.zip
1.1 MB
17. Logistic Regression/1.1 LogisticReg.zip.zip
1.0 MB
10. Multiple Linear Regression/1.1 Multplr_LR_Code_for Udemy.zip.zip
533.5 kB
15. Model Selection Part1/1.1 CrossValidation_Linear Regression.zip.zip
350.4 kB
16. Naive Bayes/1.1 NaiveBayes.zip.zip
272.4 kB
11. HotstarNetflix Real world Case Study for Multiple Linear Regression/1.1 Hotstarcode-for-udemy.zip.zip
260.7 kB
12. Gradient Descent/1.1 Gradient+Descent+Updated.zip.zip
165.0 kB
6. Hypothesis Testing/1.2 t-table.pdf.pdf
150.8 kB
9. Simple Linear Regression/1.1 code-LR-Teclov.zip.zip
78.7 kB
6. Hypothesis Testing/1.1 z-table.pdf.pdf
60.4 kB
4. Some Fun With Maths/1. Linear Algebra Vectors.vtt
51.1 kB
23. Dimension Reduction/1. Introduction.vtt
32.9 kB
2. Numpy/3. Numpy Operations Part2.vtt
30.5 kB
14. Model Performance Metrics/1. Performance Metrics Part1.vtt
27.8 kB
23. Dimension Reduction/2. PCA.vtt
27.1 kB
7. Data Visualisation/1. Matplotlib.vtt
27.0 kB
7. Data Visualisation/2. Seaborn.vtt
26.6 kB
8. Exploratory Data Analysis/10. Univariate Analysis Part1.vtt
26.4 kB
23. Dimension Reduction/3. Maths Behind PCA.vtt
26.1 kB
13. KNN/11. Classification Case1.vtt
25.6 kB
2. Numpy/2. Numpy Operations Part1.vtt
24.4 kB
21. Model Selection Part2/1. Model Selection Part1.vtt
23.8 kB
1. Python Fundamentals/5. Variables in Python.vtt
21.2 kB
17. Logistic Regression/4. Case Study.vtt
20.9 kB
18. Support Vector Machine (SVM)/14. Case Study 4.vtt
20.9 kB
26. Project Kaggle/6. Understanding Evaluation Matrix Log Loss.vtt
20.5 kB
8. Exploratory Data Analysis/11. Univariate Analysis Part2.vtt
20.0 kB
4. Some Fun With Maths/3. Linear Algebra Matrix Part2.vtt
19.9 kB
14. Model Performance Metrics/2. Performance Metrics Part2.vtt
19.6 kB
23. Dimension Reduction/5. Case Study Part2.vtt
19.4 kB
15. Model Selection Part1/4. Gridsearch Case study Part2.vtt
18.9 kB
25. Deep Learning/3. History.vtt
18.4 kB
26. Project Kaggle/2. Playing With The Data.vtt
18.3 kB
10. Multiple Linear Regression/9. Case Study Part4.vtt
18.2 kB
16. Naive Bayes/1. Introduction to Naive Bayes.vtt
18.2 kB
12. Gradient Descent/1. Pre-Req For Gradient Descent Part1.vtt
18.0 kB
9. Simple Linear Regression/7. LR Case Study Part1.vtt
17.9 kB
26. Project Kaggle/16. Building Machine Learning model part1.vtt
17.7 kB
13. KNN/12. Classification Case2.vtt
17.3 kB
4. Some Fun With Maths/2. Linear Algebra Matrix Part1.vtt
17.3 kB
18. Support Vector Machine (SVM)/3. Hyperplane Part2.vtt
17.2 kB
24. Advanced Machine Learning Algorithms/4. Optimal Solution.vtt
17.1 kB
8. Exploratory Data Analysis/8. Data Cleaning part1.vtt
17.1 kB
8. Exploratory Data Analysis/13. Bivariate Analysis.vtt
16.8 kB
1. Python Fundamentals/3.1 Python-code-udemy.zip.zip
16.8 kB
1. Python Fundamentals/4.1 Python-code-udemy.zip.zip
16.8 kB
1. Python Fundamentals/1. Introduction to the course.vtt
16.7 kB
13. KNN/5. Effectiveness of KNN.vtt
16.2 kB
1. Python Fundamentals/11. String Part1.vtt
15.9 kB
13. KNN/1. Introduction to Classification.vtt
15.9 kB
3. Pandas/1.1 Pandas.zip.zip
15.8 kB
20. Ensembling/2. Bagging.vtt
15.8 kB
26. Project Kaggle/17. Building Machine Learning model part2.vtt
15.7 kB
13. KNN/13. Classification Case3.vtt
15.6 kB
13. KNN/4. Accuracy of KNN.vtt
15.2 kB
26. Project Kaggle/9. First Categorical column analysis.vtt
15.0 kB
13. KNN/6. Distance Metrics.vtt
15.0 kB
21. Model Selection Part2/2. Model Selection Part2.vtt
14.9 kB
1. Python Fundamentals/10. Functions.vtt
14.8 kB
25. Deep Learning/5. Multi Layered Perceptron.vtt
14.8 kB
26. Project Kaggle/11. Laplace Smoothing and Calibrated classifier.vtt
14.8 kB
8. Exploratory Data Analysis/14. Derived Columns.vtt
14.8 kB
5. Inferential Statistics/2. Probability Theory.vtt
14.2 kB
13. KNN/14. Classification Case4.vtt
14.1 kB
18. Support Vector Machine (SVM)/1. Introduction.vtt
14.0 kB
13. KNN/3. Introduction to KNN.vtt
14.0 kB
25. Deep Learning/6. Neural Network Playground.vtt
13.9 kB
15. Model Selection Part1/3. Gridsearch Case study Part1.vtt
13.8 kB
20. Ensembling/17. Case Study Part2.vtt
13.7 kB
22. Unsupervised Learning/4. Maths Behind Kmeans.vtt
13.5 kB
22. Unsupervised Learning/9. Case Study Part1.vtt
13.5 kB
1. Python Fundamentals/14. List Part2.vtt
13.5 kB
16. Naive Bayes/4. Practical Example from NB with Multiple Columns.vtt
13.5 kB
1. Python Fundamentals/9. for while Loop.vtt
13.3 kB
19. Decision Tree/9. DT Case Study Part1.vtt
13.2 kB
7. Data Visualisation/3. Case Study.vtt
13.2 kB
16. Naive Bayes/2. Bayes Theorem.vtt
13.0 kB
22. Unsupervised Learning/1. Introduction to Clustering.vtt
13.0 kB
18. Support Vector Machine (SVM)/10. Kernel Part2.vtt
13.0 kB
12. Gradient Descent/5. Gradient Descent.vtt
12.8 kB
15. Model Selection Part1/1. Model Creation Case1.vtt
12.7 kB
9. Simple Linear Regression/6. R Square.vtt
12.6 kB
10. Multiple Linear Regression/7. Case Study Part2.vtt
12.6 kB
26. Project Kaggle/5. Train, Test And Cross Validation Split.vtt
12.6 kB
10. Multiple Linear Regression/3. Case Study part2.vtt
12.5 kB
11. HotstarNetflix Real world Case Study for Multiple Linear Regression/2. Playing With Data.vtt
12.2 kB
26. Project Kaggle/3. Translating the Problem In Machine Learning World.vtt
12.2 kB
19. Decision Tree/8. Preventing Overfitting Issues in DT.vtt
12.1 kB
20. Ensembling/16. Case Study Part1.vtt
12.1 kB
17. Logistic Regression/2. Sigmoid Function.vtt
11.9 kB
13. KNN/8. Finding k.vtt
11.8 kB
22. Unsupervised Learning/6. Kmeans plus.vtt
11.7 kB
1. Python Fundamentals/2. Introduction to Kaggle.vtt
11.4 kB
1. Python Fundamentals/3. Installation of Python and Anaconda.vtt
11.4 kB
20. Ensembling/1. Introduction to Ensembles.vtt
11.3 kB
8. Exploratory Data Analysis/9. Data Cleaning part2.vtt
11.3 kB
9. Simple Linear Regression/5. Some Fun With Maths Behind LR.vtt
11.2 kB
17. Logistic Regression/3. Log Odds.vtt
11.2 kB
19. Decision Tree/10. DT Case Study Part2.vtt
11.2 kB
16. Naive Bayes/9. Case Study 1.vtt
11.1 kB
13. KNN/10. Case Study.vtt
11.1 kB
24. Advanced Machine Learning Algorithms/3. Example Part2.vtt
11.0 kB
24. Advanced Machine Learning Algorithms/8. Case Study.vtt
10.9 kB
16. Naive Bayes/3. Practical Example from NB with One Column.vtt
10.9 kB
26. Project Kaggle/7. Building A Worst Model.vtt
10.9 kB
25. Deep Learning/2. Introduction.vtt
10.8 kB
1. Python Fundamentals/15. List Part3.vtt
10.7 kB
1. Python Fundamentals/16. List Part4.vtt
10.7 kB
24. Advanced Machine Learning Algorithms/6. Regularization.vtt
10.6 kB
18. Support Vector Machine (SVM)/6. Slack Variable.vtt
10.5 kB
1. Python Fundamentals/17. Tuples.vtt
10.4 kB
6. Hypothesis Testing/4. OneTwo Tailed Tests.vtt
10.4 kB
22. Unsupervised Learning/3. Kmeans.vtt
10.4 kB
1. Python Fundamentals/8. If else Loop.vtt
10.3 kB
16. Naive Bayes/5. Naive Bayes On Text Data Part1.vtt
10.2 kB
4. Some Fun With Maths/4. Linear Algebra Going From 2D to nD Part1.vtt
10.2 kB
9. Simple Linear Regression/4. How LR Works.vtt
10.2 kB
18. Support Vector Machine (SVM)/12. Case Study 3 Part1.vtt
10.2 kB
26. Project Kaggle/4. Dealing with Text Data.vtt
10.1 kB
5. Inferential Statistics/12. Sampling.vtt
10.1 kB
26. Project Kaggle/1. Introduction to the Problem Statement.vtt
9.9 kB
3. Pandas/2. Series.vtt
9.8 kB
18. Support Vector Machine (SVM)/9. Kernel Part1.vtt
9.6 kB
3. Pandas/7. loc and iloc.vtt
9.6 kB
3. Pandas/3. DataFrame.vtt
9.5 kB
11. HotstarNetflix Real world Case Study for Multiple Linear Regression/4. Building Model Part2.vtt
9.5 kB
13. KNN/7. Distance Metrics Part2.vtt
9.5 kB
6. Hypothesis Testing/1. Introduction.vtt
9.4 kB
19. Decision Tree/2. Example of DT.vtt
9.4 kB
26. Project Kaggle/21. Building Machine Learning model part6.vtt
9.3 kB
22. Unsupervised Learning/10. Case Study Part2.vtt
9.3 kB
22. Unsupervised Learning/12. Hierarchial Clustering.vtt
9.2 kB
13. KNN/2. Defining Classification Mathematically.vtt
9.2 kB
9. Simple Linear Regression/2. Types of Machine Learning.vtt
9.2 kB
19. Decision Tree/1. Introduction.vtt
9.2 kB
12. Gradient Descent/2. Pre-Req For Gradient Descent Part2.vtt
9.2 kB
26. Project Kaggle/12. Significance of first categorical column.vtt
9.1 kB
16. Naive Bayes/10. Case Study 2 Part1.vtt
9.1 kB
19. Decision Tree/4. Gini Index.vtt
9.1 kB
10. Multiple Linear Regression/6. Case Study Part1.vtt
9.0 kB
6. Hypothesis Testing/6. z Table.vtt
9.0 kB
20. Ensembling/15. XGboost Algorithm.vtt
9.0 kB
15. Model Selection Part1/2. Model Creation Case2.vtt
9.0 kB
22. Unsupervised Learning/2. Segmentation.vtt
8.9 kB
12. Gradient Descent/4. Defining Cost Functions More Formally.vtt
8.8 kB
26. Project Kaggle/14. Third Categorical column.vtt
8.8 kB
10. Multiple Linear Regression/2. Case Study part1.vtt
8.7 kB
18. Support Vector Machine (SVM)/8. SVM Case Study Part2.vtt
8.6 kB
18. Support Vector Machine (SVM)/11. Case Study 2.vtt
8.6 kB
1. Python Fundamentals/19. Dictionaries.vtt
8.5 kB
20. Ensembling/9. Adaboost Part1.vtt
8.5 kB
25. Deep Learning/4. Perceptron.vtt
8.4 kB
10. Multiple Linear Regression/11. Case Study Part6 (RFE).vtt
8.4 kB
17. Logistic Regression/1. Introduction.vtt
8.4 kB
4. Some Fun With Maths/5. Linear Algebra 2D to nD Part2.vtt
8.4 kB
18. Support Vector Machine (SVM)/4. Maths Behind SVM.vtt
8.3 kB
1. Python Fundamentals/20. Comprehentions.vtt
8.3 kB
20. Ensembling/10. Adaboost Part2.vtt
8.1 kB
3. Pandas/1. Introduction.vtt
8.1 kB
20. Ensembling/14. Boosting Part2.vtt
8.0 kB
1. Python Fundamentals/18. Sets.vtt
8.0 kB
8. Exploratory Data Analysis/12. Segmented Analysis.vtt
8.0 kB
10. Multiple Linear Regression/4. Case Study part3.vtt
7.9 kB
24. Advanced Machine Learning Algorithms/7. Ridge and Lasso.vtt
7.9 kB
10. Multiple Linear Regression/8. Case Study Part3.vtt
7.8 kB
22. Unsupervised Learning/7. Value of K.vtt
7.8 kB
6. Hypothesis Testing/2. NULL And Alternate Hypothesis.vtt
7.7 kB
3. Pandas/6. Indexes.vtt
7.6 kB
5. Inferential Statistics/15. Confidence Interval Part1.vtt
7.4 kB
5. Inferential Statistics/6. Without Experiment.vtt
7.4 kB
24. Advanced Machine Learning Algorithms/1. Introduction.vtt
7.3 kB
1. Python Fundamentals/6. Numeric Operations in Python.vtt
7.3 kB
26. Project Kaggle/8. Evaluating Worst ML Model.vtt
7.2 kB
3. Pandas/10. groupby.vtt
7.2 kB
3. Pandas/8. Reading CSV.vtt
7.1 kB
20. Ensembling/5. Case study.vtt
7.1 kB
20. Ensembling/18. Case Study Part3.vtt
7.0 kB
5. Inferential Statistics/13. Sampling Distribution.vtt
7.0 kB
12. Gradient Descent/8. Gradient Descent case study.vtt
7.0 kB
19. Decision Tree/5. Information Gain Part1.vtt
6.8 kB
6. Hypothesis Testing/3. Examples.vtt
6.8 kB
16. Naive Bayes/6. Naive Bayes On Text Data Part2.vtt
6.7 kB
26. Project Kaggle/10. Response encoding and one hot encoder.vtt
6.7 kB
22. Unsupervised Learning/13. Case Study.vtt
6.7 kB
24. Advanced Machine Learning Algorithms/9. Model Selection.vtt
6.7 kB
18. Support Vector Machine (SVM)/7. SVM Case Study Part1.vtt
6.6 kB
20. Ensembling/6. Introduction to Boosting.vtt
6.6 kB
6. Hypothesis Testing/9. p Value.vtt
6.6 kB
2. Numpy/1. Introduction.vtt
6.4 kB
11. HotstarNetflix Real world Case Study for Multiple Linear Regression/1. Introduction to the Problem Statement.vtt
6.4 kB
14. Model Performance Metrics/3. Performance Metrics Part3.vtt
6.4 kB
18. Support Vector Machine (SVM)/13. Case Study 3 Part2.vtt
6.4 kB
18. Support Vector Machine (SVM)/2. Hyperplane Part1.vtt
6.3 kB
10. Multiple Linear Regression/10. Case Study Part5.vtt
6.2 kB
3. Pandas/5. Operations Part2.vtt
6.2 kB
23. Dimension Reduction/4. Case Study Part1.vtt
6.2 kB
24. Advanced Machine Learning Algorithms/2. Example Part1.vtt
6.2 kB
20. Ensembling/11. Adaboost Case Study.vtt
6.2 kB
11. HotstarNetflix Real world Case Study for Multiple Linear Regression/3. Building Model Part1.vtt
6.0 kB
19. Decision Tree/3. Homogenity.vtt
6.0 kB
12. Gradient Descent/7. Closed Form Vs Gradient Descent.vtt
5.9 kB
3. Pandas/11. Merging Part2.vtt
5.9 kB
19. Decision Tree/6. Information Gain Part2.vtt
5.8 kB
26. Project Kaggle/15. Data pre-processing before building machine learning model.vtt
5.8 kB
7. Data Visualisation/4. Seaborn On Time Series Data.vtt
5.7 kB
9. Simple Linear Regression/9. LR Case Study Part3.vtt
5.7 kB
5. Inferential Statistics/4. Expected Values Part1.vtt
5.6 kB
22. Unsupervised Learning/11. More on Segmentation.vtt
5.6 kB
5. Inferential Statistics/3. Probability Distribution.vtt
5.6 kB
9. Simple Linear Regression/8. LR Case Study Part2.vtt
5.6 kB
5. Inferential Statistics/9. PDF.vtt
5.6 kB
5. Inferential Statistics/11. z Score.vtt
5.5 kB
5. Inferential Statistics/10. Normal Distribution.vtt
5.4 kB
26. Project Kaggle/13. Second Categorical column.vtt
5.4 kB
2. Numpy/1.1 Teclov-numpy.ipynb.zip.zip
5.3 kB
26. Project Kaggle/20. Building Machine Learning model part5.vtt
5.2 kB
20. Ensembling/3. Advantages.vtt
5.2 kB
12. Gradient Descent/6. Optimisation.vtt
5.2 kB
16. Naive Bayes/7. Laplace Smoothing.vtt
5.1 kB
11. HotstarNetflix Real world Case Study for Multiple Linear Regression/6. Verification of Model.vtt
4.9 kB
20. Ensembling/12. XGBoost.vtt
4.9 kB
20. Ensembling/4. Runtime.vtt
4.8 kB
11. HotstarNetflix Real world Case Study for Multiple Linear Regression/5. Building Model Part3.vtt
4.8 kB
6. Hypothesis Testing/5. Critical Value Method.vtt
4.7 kB
3. Pandas/12. Pivot Table.vtt
4.6 kB
19. Decision Tree/7. Advantages and Disadvantages of DT.vtt
4.5 kB
8. Exploratory Data Analysis/7. Data Sourcing and Cleaning part6.vtt
4.5 kB
3. Pandas/9. Merging Part1.vtt
4.4 kB
24. Advanced Machine Learning Algorithms/5. Case study.vtt
4.3 kB
5. Inferential Statistics/7. Binomial Distribution.vtt
4.3 kB
26. Project Kaggle/18. Building Machine Learning model part3.vtt
4.3 kB
6. Hypothesis Testing/11. t- distribution Part1.vtt
4.2 kB
24. Advanced Machine Learning Algorithms/10. Adjusted R Square.vtt
4.2 kB
8. Exploratory Data Analysis/2. Data Sourcing and Cleaning part1.vtt
4.1 kB
18. Support Vector Machine (SVM)/5. Support Vectors.vtt
4.0 kB
26. Project Kaggle/19. Building Machine Learning model part4.vtt
4.0 kB
5. Inferential Statistics/5. Expected Values Part2.vtt
4.0 kB
8. Exploratory Data Analysis/5. Data Sourcing and Cleaning part4.vtt
3.9 kB
8. Exploratory Data Analysis/6. Data Sourcing and Cleaning part5.vtt
3.8 kB
20. Ensembling/13. Boosting Part1.vtt
3.8 kB
10. Multiple Linear Regression/1. Introduction.vtt
3.7 kB
6. Hypothesis Testing/7. Examples.vtt
3.6 kB
1. Python Fundamentals/4. Python Introduction.vtt
3.6 kB
1. Python Fundamentals/12. String Part2.vtt
3.5 kB
6. Hypothesis Testing/10. Types of Error.vtt
3.5 kB
6. Hypothesis Testing/8. More Examples.vtt
3.5 kB
8. Exploratory Data Analysis/4. Data Sourcing and Cleaning part3.vtt
3.4 kB
1. Python Fundamentals/7. Logical Operations.vtt
3.3 kB
5. Inferential Statistics/16. Confidence Interval Part2.vtt
3.3 kB
20. Ensembling/7. Weak Learners.vtt
3.2 kB
6. Hypothesis Testing/12. t- distribution Part2.vtt
3.1 kB
5. Inferential Statistics/1. Inferential Statistics.vtt
3.1 kB
22. Unsupervised Learning/8. Hopkins test.vtt
3.1 kB
5. Inferential Statistics/14. Central Limit Theorem.vtt
3.0 kB
9. Simple Linear Regression/3. Introduction to Linear Regression (LR).vtt
3.0 kB
16. Naive Bayes/11. Case Study 2 Part2.vtt
3.0 kB
13. KNN/9. KNN on Regression.vtt
3.0 kB
1. Python Fundamentals/13. List Part1.vtt
3.0 kB
22. Unsupervised Learning/5. More Maths.vtt
3.0 kB
12. Gradient Descent/3. Cost Functions.vtt
2.9 kB
25. Deep Learning/1. Expectations.vtt
2.9 kB
20. Ensembling/8. Shallow Decision Tree.vtt
2.8 kB
5. Inferential Statistics/8. Commulative Distribution.vtt
2.8 kB
8. Exploratory Data Analysis/3. Data Sourcing and Cleaning part2.vtt
2.6 kB
9. Simple Linear Regression/1. Introduction to Machine Learning.vtt
2.2 kB
16. Naive Bayes/8. Bernoulli Naive Bayes.vtt
2.1 kB
3. Pandas/4. Operations Part1.vtt
1.5 kB
9. Simple Linear Regression/10. Residual Square Error (RSE).vtt
1.0 kB
8. Exploratory Data Analysis/1. Introduction.vtt
897 Bytes
10. Multiple Linear Regression/5. Adjusted R Square.vtt
855 Bytes
[FCS Forum].url
133 Bytes
[FreeCourseSite.com].url
127 Bytes
[CourseClub.NET].url
123 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>