搜索
[FreeCourseSite.com] Udemy - Unsupervised Deep Learning in Python
磁力链接/BT种子名称
[FreeCourseSite.com] Udemy - Unsupervised Deep Learning in Python
磁力链接/BT种子简介
种子哈希:
a1e9bb2a9609541ddd02a08e523362c7b41b510f
文件大小:
2.85G
已经下载:
1095
次
下载速度:
极快
收录时间:
2021-03-21
最近下载:
2024-11-07
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:A1E9BB2A9609541DDD02A08E523362C7B41B510F
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
最近搜索
无良医生
akid
李卍卍
泡咕咕
[オジィ]
良家故事气质
vrp
上9
girls season
the+battle+for+earth
kidm+
[4k60fps]
ria sakurai
黎菲
惊艳气质
2024日本
约操极品高颜值白虎萝莉
东京嫐
gretel hansel
开放式
小鲸鱼
where the echo lives
嫩妹
+蝴蝶
caught+by
36d身材
gold rush mine rescue
电影
猫猫女神
寂寞
文件列表
12. Appendix/3. Windows-Focused Environment Setup 2018.mp4
195.4 MB
9. Applications to Recommender Systems/9. Recommender RBM Code pt 3.mp4
134.8 MB
9. Applications to Recommender Systems/5. AutoRec in Code.mp4
107.3 MB
10. Basics Review/4. (Review) Tensorflow Neural Network in Code.mp4
102.1 MB
10. Basics Review/1. (Review) Theano Basics.mp4
98.0 MB
10. Basics Review/2. (Review) Theano Neural Network in Code.mp4
91.3 MB
9. Applications to Recommender Systems/10. Recommender RBM Code Speedup.vtt
87.0 MB
9. Applications to Recommender Systems/10. Recommender RBM Code Speedup.mp4
87.0 MB
10. Basics Review/3. (Review) Tensorflow Basics.mp4
85.4 MB
12. Appendix/9. Proof that using Jupyter Notebook is the same as not using it.vtt
82.1 MB
12. Appendix/9. Proof that using Jupyter Notebook is the same as not using it.mp4
82.1 MB
9. Applications to Recommender Systems/7. Recommender RBM Code pt 1.mp4
73.8 MB
9. Applications to Recommender Systems/1. Recommender Systems Section Introduction.mp4
71.5 MB
10. Basics Review/6. (Review) Keras in Code pt 1.mp4
69.4 MB
2. Principal Components Analysis/9. PCA Application Naive Bayes.mp4
56.3 MB
2. Principal Components Analysis/3. Why does PCA work (PCA derivation).mp4
53.8 MB
2. Principal Components Analysis/2. How does PCA work.mp4
53.4 MB
5. Restricted Boltzmann Machines/6. Training an RBM (part 1).mp4
51.5 MB
9. Applications to Recommender Systems/4. AutoRec.mp4
51.3 MB
5. Restricted Boltzmann Machines/10. RBM in Code (Theano) with Greedy Layer-Wise Training on MNIST.mp4
50.1 MB
9. Applications to Recommender Systems/6. Categorical RBM for Recommender System Ratings.mp4
49.9 MB
12. Appendix/4. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4
46.0 MB
2. Principal Components Analysis/10. SVD (Singular Value Decomposition).mp4
44.5 MB
4. Autoencoders/6. Writing the deep neural network class in code (Theano).mp4
44.0 MB
9. Applications to Recommender Systems/8. Recommender RBM Code pt 2.mp4
41.5 MB
5. Restricted Boltzmann Machines/2. Introduction to RBMs.mp4
41.4 MB
12. Appendix/8. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4
40.8 MB
10. Basics Review/7. (Review) Keras in Code pt 2.mp4
40.5 MB
4. Autoencoders/4. Writing the autoencoder class in code (Theano).mp4
40.4 MB
9. Applications to Recommender Systems/2. Why Autoencoders and RBMs work.mp4
40.0 MB
12. Appendix/13. What order should I take your courses in (part 2).mp4
39.4 MB
5. Restricted Boltzmann Machines/3. Motivation Behind RBMs.mp4
35.6 MB
5. Restricted Boltzmann Machines/1. Basic Outline for RBMs.mp4
34.6 MB
2. Principal Components Analysis/6. PCA implementation.mp4
33.6 MB
5. Restricted Boltzmann Machines/5. Neural Network Equations.mp4
33.2 MB
6. The Vanishing Gradient Problem/2. The Vanishing Gradient Problem Demo in Code.mp4
32.8 MB
12. Appendix/12. What order should I take your courses in (part 1).mp4
30.8 MB
4. Autoencoders/11. Deep Autoencoder Visualization in Code.mp4
29.2 MB
2. Principal Components Analysis/1. What does PCA do.mp4
29.1 MB
10. Basics Review/5. (Review) Keras Basics.mp4
29.0 MB
5. Restricted Boltzmann Machines/8. Training an RBM (part 3) - Free Energy.mp4
28.9 MB
5. Restricted Boltzmann Machines/7. Training an RBM (part 2).mp4
28.7 MB
1. Introduction and Outline/4. Where to get the code and data.mp4
27.7 MB
8. Applications to NLP (Natural Language Processing)/3. Application of t-SNE + K-Means Finding Clusters of Related Words.mp4
27.2 MB
8. Applications to NLP (Natural Language Processing)/2. Latent Semantic Analysis in Code.mp4
26.9 MB
4. Autoencoders/12. An Autoencoder in 1 Line of Code.mp4
26.1 MB
12. Appendix/5. How to Code by Yourself (part 1).mp4
25.7 MB
4. Autoencoders/7. Autoencoder in Code (Tensorflow).mp4
25.6 MB
5. Restricted Boltzmann Machines/9. RBM Greedy Layer-Wise Pretraining.mp4
24.8 MB
9. Applications to Recommender Systems/3. Data Preparation and Logistics.mp4
22.2 MB
1. Introduction and Outline/5. Tensorflow or Theano - Your Choice!.mp4
19.9 MB
4. Autoencoders/8. Testing greedy layer-wise autoencoder training vs. pure backpropagation.mp4
19.4 MB
12. Appendix/7. How to Succeed in this Course (Long Version).mp4
19.2 MB
12. Appendix/11. Is Theano Dead.mp4
18.7 MB
2. Principal Components Analysis/7. PCA for NLP.mp4
17.4 MB
2. Principal Components Analysis/4. PCA only rotates.mp4
17.2 MB
3. t-SNE (t-distributed Stochastic Neighbor Embedding)/3. t-SNE on the Donut.mp4
15.8 MB
12. Appendix/6. How to Code by Yourself (part 2).mp4
15.5 MB
11. Optional - Legacy RBM Lectures/1. (Legacy) Restricted Boltzmann Machine Theory.mp4
15.1 MB
5. Restricted Boltzmann Machines/11. RBM in Code (Tensorflow).mp4
14.4 MB
3. t-SNE (t-distributed Stochastic Neighbor Embedding)/2. t-SNE Visualization.mp4
13.7 MB
5. Restricted Boltzmann Machines/4. Intractability.mp4
13.5 MB
1. Introduction and Outline/6. What are the practical applications of unsupervised deep learning.mp4
12.2 MB
4. Autoencoders/5. Testing our Autoencoder (Theano).mp4
11.9 MB
11. Optional - Legacy RBM Lectures/4. (Legacy) How to derive the free energy formula.mp4
11.4 MB
2. Principal Components Analysis/5. MNIST visualization, finding the optimal number of principal components.mp4
9.8 MB
11. Optional - Legacy RBM Lectures/2. (Legacy) Deriving Conditional Probabilities from Joint Probability.mp4
9.8 MB
3. t-SNE (t-distributed Stochastic Neighbor Embedding)/4. t-SNE on XOR.mp4
9.8 MB
3. t-SNE (t-distributed Stochastic Neighbor Embedding)/1. t-SNE Theory.mp4
8.3 MB
12. Appendix/10. Python 2 vs Python 3.mp4
8.2 MB
4. Autoencoders/9. Cross Entropy vs. KL Divergence.mp4
7.8 MB
4. Autoencoders/3. Stacked Autoencoders.mp4
6.9 MB
1. Introduction and Outline/3. How to Succeed in this Course.mp4
6.7 MB
4. Autoencoders/1. Autoencoders.mp4
6.1 MB
12. Appendix/1. What is the Appendix.mp4
5.7 MB
6. The Vanishing Gradient Problem/1. The Vanishing Gradient Problem Description.mp4
5.5 MB
1. Introduction and Outline/2. Where does this course fit into your deep learning studies.mp4
5.4 MB
11. Optional - Legacy RBM Lectures/3. (Legacy) Contrastive Divergence for RBM Training.mp4
5.1 MB
3. t-SNE (t-distributed Stochastic Neighbor Embedding)/5. t-SNE on MNIST.mp4
4.6 MB
12. Appendix/2. BONUS Where to get Udemy coupons and FREE deep learning material.mp4
4.2 MB
8. Applications to NLP (Natural Language Processing)/1. Application of PCA and SVD to NLP (Natural Language Processing).mp4
4.1 MB
7. Extras + Visualizing what features a neural network has learned/1. Exercises on feature visualization and interpretation.mp4
3.9 MB
2. Principal Components Analysis/8. PCA objective function.mp4
3.9 MB
4. Autoencoders/2. Denoising Autoencoders.mp4
3.6 MB
1. Introduction and Outline/1. Introduction and Outline.mp4
3.4 MB
4. Autoencoders/10. Deep Autoencoder Visualization Description.mp4
2.6 MB
12. Appendix/8. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.vtt
28.4 kB
12. Appendix/13. What order should I take your courses in (part 2).vtt
20.7 kB
12. Appendix/5. How to Code by Yourself (part 1).vtt
20.3 kB
12. Appendix/3. Windows-Focused Environment Setup 2018.vtt
17.8 kB
12. Appendix/12. What order should I take your courses in (part 1).vtt
14.4 kB
12. Appendix/7. How to Succeed in this Course (Long Version).vtt
13.1 kB
9. Applications to Recommender Systems/5. AutoRec in Code.vtt
12.9 kB
12. Appendix/4. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.vtt
12.7 kB
2. Principal Components Analysis/2. How does PCA work.vtt
12.7 kB
9. Applications to Recommender Systems/6. Categorical RBM for Recommender System Ratings.vtt
12.3 kB
9. Applications to Recommender Systems/9. Recommender RBM Code pt 3.vtt
12.3 kB
5. Restricted Boltzmann Machines/6. Training an RBM (part 1).vtt
12.0 kB
12. Appendix/6. How to Code by Yourself (part 2).vtt
11.9 kB
12. Appendix/11. Is Theano Dead.vtt
11.6 kB
2. Principal Components Analysis/9. PCA Application Naive Bayes.vtt
11.0 kB
11. Optional - Legacy RBM Lectures/1. (Legacy) Restricted Boltzmann Machine Theory.vtt
10.6 kB
2. Principal Components Analysis/10. SVD (Singular Value Decomposition).vtt
10.6 kB
9. Applications to Recommender Systems/7. Recommender RBM Code pt 1.vtt
8.9 kB
4. Autoencoders/7. Autoencoder in Code (Tensorflow).vtt
8.4 kB
10. Basics Review/5. (Review) Keras Basics.vtt
8.2 kB
5. Restricted Boltzmann Machines/5. Neural Network Equations.vtt
7.6 kB
5. Restricted Boltzmann Machines/8. Training an RBM (part 3) - Free Energy.vtt
7.2 kB
5. Restricted Boltzmann Machines/10. RBM in Code (Theano) with Greedy Layer-Wise Training on MNIST.vtt
6.9 kB
4. Autoencoders/11. Deep Autoencoder Visualization in Code.vtt
6.8 kB
10. Basics Review/6. (Review) Keras in Code pt 1.vtt
6.6 kB
5. Restricted Boltzmann Machines/7. Training an RBM (part 2).vtt
6.6 kB
4. Autoencoders/6. Writing the deep neural network class in code (Theano).vtt
6.5 kB
10. Basics Review/1. (Review) Theano Basics.vtt
6.5 kB
4. Autoencoders/4. Writing the autoencoder class in code (Theano).vtt
6.2 kB
11. Optional - Legacy RBM Lectures/2. (Legacy) Deriving Conditional Probabilities from Joint Probability.vtt
5.9 kB
5. Restricted Boltzmann Machines/1. Basic Outline for RBMs.vtt
5.8 kB
11. Optional - Legacy RBM Lectures/4. (Legacy) How to derive the free energy formula.vtt
5.7 kB
4. Autoencoders/9. Cross Entropy vs. KL Divergence.vtt
5.6 kB
12. Appendix/10. Python 2 vs Python 3.vtt
5.5 kB
5. Restricted Boltzmann Machines/9. RBM Greedy Layer-Wise Pretraining.vtt
5.3 kB
4. Autoencoders/12. An Autoencoder in 1 Line of Code.vtt
5.2 kB
10. Basics Review/3. (Review) Tensorflow Basics.vtt
5.2 kB
2. Principal Components Analysis/1. What does PCA do.vtt
5.1 kB
3. t-SNE (t-distributed Stochastic Neighbor Embedding)/2. t-SNE Visualization.vtt
4.9 kB
10. Basics Review/4. (Review) Tensorflow Neural Network in Code.vtt
4.9 kB
3. t-SNE (t-distributed Stochastic Neighbor Embedding)/1. t-SNE Theory.vtt
4.9 kB
10. Basics Review/7. (Review) Keras in Code pt 2.vtt
4.8 kB
9. Applications to Recommender Systems/8. Recommender RBM Code pt 2.vtt
4.7 kB
4. Autoencoders/3. Stacked Autoencoders.vtt
4.3 kB
4. Autoencoders/1. Autoencoders.vtt
4.0 kB
2. Principal Components Analysis/7. PCA for NLP.vtt
4.0 kB
3. t-SNE (t-distributed Stochastic Neighbor Embedding)/4. t-SNE on XOR.vtt
3.7 kB
2. Principal Components Analysis/5. MNIST visualization, finding the optimal number of principal components.vtt
3.4 kB
10. Basics Review/2. (Review) Theano Neural Network in Code.vtt
3.4 kB
12. Appendix/1. What is the Appendix.vtt
3.4 kB
11. Optional - Legacy RBM Lectures/3. (Legacy) Contrastive Divergence for RBM Training.vtt
3.1 kB
12. Appendix/2. BONUS Where to get Udemy coupons and FREE deep learning material.vtt
3.1 kB
4. Autoencoders/5. Testing our Autoencoder (Theano).vtt
2.7 kB
2. Principal Components Analysis/8. PCA objective function.vtt
2.3 kB
4. Autoencoders/2. Denoising Autoencoders.vtt
2.3 kB
3. t-SNE (t-distributed Stochastic Neighbor Embedding)/3. t-SNE on the Donut.vtt
2.3 kB
4. Autoencoders/10. Deep Autoencoder Visualization Description.vtt
2.0 kB
4. Autoencoders/8. Testing greedy layer-wise autoencoder training vs. pure backpropagation.vtt
1.9 kB
3. t-SNE (t-distributed Stochastic Neighbor Embedding)/5. t-SNE on MNIST.vtt
1.6 kB
1. Introduction and Outline/1. Introduction and Outline.vtt
351 Bytes
1. Introduction and Outline/2. Where does this course fit into your deep learning studies.vtt
351 Bytes
1. Introduction and Outline/3. How to Succeed in this Course.vtt
351 Bytes
1. Introduction and Outline/4. Where to get the code and data.vtt
351 Bytes
1. Introduction and Outline/5. Tensorflow or Theano - Your Choice!.vtt
351 Bytes
1. Introduction and Outline/6. What are the practical applications of unsupervised deep learning.vtt
351 Bytes
2. Principal Components Analysis/3. Why does PCA work (PCA derivation).vtt
351 Bytes
2. Principal Components Analysis/4. PCA only rotates.vtt
351 Bytes
2. Principal Components Analysis/6. PCA implementation.vtt
351 Bytes
5. Restricted Boltzmann Machines/11. RBM in Code (Tensorflow).vtt
351 Bytes
5. Restricted Boltzmann Machines/2. Introduction to RBMs.vtt
351 Bytes
5. Restricted Boltzmann Machines/3. Motivation Behind RBMs.vtt
351 Bytes
5. Restricted Boltzmann Machines/4. Intractability.vtt
351 Bytes
6. The Vanishing Gradient Problem/1. The Vanishing Gradient Problem Description.vtt
351 Bytes
6. The Vanishing Gradient Problem/2. The Vanishing Gradient Problem Demo in Code.vtt
351 Bytes
7. Extras + Visualizing what features a neural network has learned/1. Exercises on feature visualization and interpretation.vtt
351 Bytes
8. Applications to NLP (Natural Language Processing)/1. Application of PCA and SVD to NLP (Natural Language Processing).vtt
351 Bytes
8. Applications to NLP (Natural Language Processing)/2. Latent Semantic Analysis in Code.vtt
351 Bytes
8. Applications to NLP (Natural Language Processing)/3. Application of t-SNE + K-Means Finding Clusters of Related Words.vtt
351 Bytes
9. Applications to Recommender Systems/1. Recommender Systems Section Introduction.vtt
351 Bytes
9. Applications to Recommender Systems/2. Why Autoencoders and RBMs work.vtt
351 Bytes
9. Applications to Recommender Systems/3. Data Preparation and Logistics.vtt
351 Bytes
9. Applications to Recommender Systems/4. AutoRec.vtt
351 Bytes
[FCS Forum].url
133 Bytes
[FreeCourseSite.com].url
127 Bytes
[CourseClub.NET].url
123 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>