搜索
[GigaCourse.com] Udemy - Deep Learning with Keras and Tensorflow in Python and R
磁力链接/BT种子名称
[GigaCourse.com] Udemy - Deep Learning with Keras and Tensorflow in Python and R
磁力链接/BT种子简介
种子哈希:
a24dc0ed8c01e123276ab97f1f6716e974dd2995
文件大小:
4.01G
已经下载:
1132
次
下载速度:
极快
收录时间:
2021-04-29
最近下载:
2024-12-20
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:A24DC0ED8C01E123276AB97F1F6716E974DD2995
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
少女初夜
萝莉岛
最近搜索
模特高跟
the boys pl
21点
fc3193510
现今
破解女生自慰
女主 sm
一代女探花
001
shogun 720p
麻豆传媒性视界 我的反差古风女友
李雅
【蒋云杰】
腰 女孩
geisha kyd
瓜妹
交游
瀬奈
完美自慰露脸
【初中】
竖起
2023-09-19
부들
two lovers 2008 fr
公厕自
md0044
僕母
清纯大学生妹子
www.gigacos.com+
一梦千宵音乐
文件列表
15. R - Saving and Restoring Models/1. Saving - Restoring Models and Using Callbacks.mp4
226.6 MB
12. Python - Regression problems and Functional API/1. Building Neural Network for Regression Problem.mp4
163.4 MB
14. Python - Saving and Restoring Models/1. Saving - Restoring Models and Using Callbacks.mp4
159.0 MB
13. R - Regression Problem and Functional API/1. Building Regression Model with Functional AP.mp4
137.5 MB
11. R - Building and training the Model/1. Building,Compiling and Training.mp4
137.1 MB
5. Neural Networks - Stacking cells to create network/3. Back Propagation.mp4
128.1 MB
9. Dataset for classification problem/3. R - Dataset, Normalization and Test-Train set.mp4
117.2 MB
18. Add on Data Preprocessing/16. Bi-variate Analysis and Variable Transformation.mp4
105.4 MB
11. R - Building and training the Model/2. Evaluating and Predicting.mp4
104.1 MB
18. Add on Data Preprocessing/8. EDD in R.mp4
101.7 MB
3. Setting up R Studio and R Crash Course/7. Creating Barplots in R.mp4
101.5 MB
12. Python - Regression problems and Functional API/2. Using Functional API for complex architectures.mp4
96.6 MB
4. Single Cells - Perceptron and Sigmoid Neuron/3. Python - Creating Perceptron model.mp4
90.8 MB
3. Setting up R Studio and R Crash Course/3. Packages in R.mp4
87.0 MB
10. Python - Building and training the Model/3. Compiling and Training the Neural Network model.mp4
85.6 MB
13. R - Regression Problem and Functional API/2. Complex Architectures using Functional API.mp4
83.4 MB
10. Python - Building and training the Model/2. Building the Neural Network using Keras.mp4
83.0 MB
19. Test Train Split/4. Test train split in R.mp4
79.3 MB
18. Add on Data Preprocessing/10. Outlier Treatment in Python.mp4
73.7 MB
10. Python - Building and training the Model/4. Evaluating performance and Predicting using Keras.mp4
73.3 MB
18. Add on Data Preprocessing/3. The Data and the Data Dictionary.mp4
72.7 MB
2. Setting up Python and Jupyter Notebook/2. Opening Jupyter Notebook.mp4
68.4 MB
2. Setting up Python and Jupyter Notebook/5. Strings in Python Python Basics.mp4
67.6 MB
6. Important concepts Common Interview questions/1. Some Important Concepts.mp4
65.2 MB
18. Add on Data Preprocessing/7. EDD in Python.mp4
64.8 MB
16. Python - Hyperparameter Tuning/1. Hyperparameter Tuning.mp4
63.6 MB
17. R - Hyperparameter Tuning/1. Hyperparameter Tuning.mp4
63.6 MB
5. Neural Networks - Stacking cells to create network/2. Gradient Descent.mp4
63.3 MB
2. Setting up Python and Jupyter Notebook/6. Lists, Tuples and Directories Python Basics.mp4
63.2 MB
3. Setting up R Studio and R Crash Course/6. Inputting data part 3 Importing from CSV or Text files.mp4
63.0 MB
9. Dataset for classification problem/1. Python - Dataset for classification problem.mp4
58.9 MB
18. Add on Data Preprocessing/18. Variable transformation in R.mp4
58.1 MB
2. Setting up Python and Jupyter Notebook/8. Working with Pandas Library of Python.mp4
49.2 MB
7. Standard Model Parameters/1. Hyperparameters.mp4
47.6 MB
19. Test Train Split/3. Test train split in Python.mp4
47.1 MB
4. Single Cells - Perceptron and Sigmoid Neuron/1. Perceptron.mp4
46.9 MB
9. Dataset for classification problem/2. Python - Normalization and Test-Train split.mp4
46.4 MB
18. Add on Data Preprocessing/17. Variable transformation and deletion in Python.mp4
46.3 MB
18. Add on Data Preprocessing/22. Dummy variable creation in R.mp4
46.1 MB
2. Setting up Python and Jupyter Notebook/7. Working with Numpy Library of Python.mp4
46.0 MB
3. Setting up R Studio and R Crash Course/8. Creating Histograms in R.mp4
44.1 MB
19. Test Train Split/1. Test-train split.mp4
43.9 MB
2. Setting up Python and Jupyter Notebook/3. Introduction to Jupyter.mp4
42.9 MB
3. Setting up R Studio and R Crash Course/4. Inputting data part 1 Inbuilt datasets of R.mp4
42.7 MB
5. Neural Networks - Stacking cells to create network/1. Basic Terminologies.mp4
42.4 MB
2. Setting up Python and Jupyter Notebook/9. Working with Seaborn Library of Python.mp4
42.3 MB
3. Setting up R Studio and R Crash Course/2. Basics of R and R studio.mp4
40.7 MB
18. Add on Data Preprocessing/20. Dummy variable creation Handling qualitative data.mp4
38.6 MB
3. Setting up R Studio and R Crash Course/1. Installing R and R studio.mp4
37.4 MB
4. Single Cells - Perceptron and Sigmoid Neuron/2. Activation Functions.mp4
36.3 MB
18. Add on Data Preprocessing/11. Outlier Treatment in R.mp4
32.2 MB
1. Introduction/1. Introduction.mp4
30.5 MB
18. Add on Data Preprocessing/4. Importing Data in Python.mp4
29.2 MB
18. Add on Data Preprocessing/21. Dummy variable creation in Python.mp4
27.8 MB
18. Add on Data Preprocessing/14. Missing Value imputation in R.mp4
27.3 MB
3. Setting up R Studio and R Crash Course/5. Inputting data part 2 Manual data entry.mp4
26.8 MB
19. Test Train Split/2. Bias Variance trade-off.mp4
26.3 MB
18. Add on Data Preprocessing/12. Missing Value imputation.mp4
26.2 MB
18. Add on Data Preprocessing/9. Outlier Treatment.mp4
25.7 MB
18. Add on Data Preprocessing/6. Univariate Analysis and EDD.mp4
25.4 MB
18. Add on Data Preprocessing/13. Missing Value Imputation in Python.mp4
24.6 MB
8. Tensorflow and Keras/3. Installing TensorFlow and Keras in R.mp4
23.9 MB
18. Add on Data Preprocessing/1. Gathering Business Knowledge.mp4
23.4 MB
18. Add on Data Preprocessing/2. Data Exploration.mp4
21.5 MB
18. Add on Data Preprocessing/19. Non Usable Variables.mp4
21.2 MB
8. Tensorflow and Keras/2. Installing Tensorflow and Keras in Python.mp4
21.0 MB
18. Add on Data Preprocessing/15. Seasonality in Data.mp4
17.9 MB
2. Setting up Python and Jupyter Notebook/1. Installing Python and Anaconda.mp4
17.1 MB
8. Tensorflow and Keras/1. Keras and Tensorflow.mp4
15.6 MB
18. Add on Data Preprocessing/5. Importing the dataset into R.mp4
13.7 MB
2. Setting up Python and Jupyter Notebook/4. Arithmetic operators in Python Python Basics.mp4
13.4 MB
10. Python - Building and training the Model/1. Different ways to create ANN using Keras.mp4
11.3 MB
1. Introduction/2.1 keras.zip
5.8 MB
2. Setting up Python and Jupyter Notebook/8.1 Product.txt
142.8 kB
2. Setting up Python and Jupyter Notebook/8.2 Customer.csv
65.6 kB
5. Neural Networks - Stacking cells to create network/3. Back Propagation.srt
23.3 kB
12. Python - Regression problems and Functional API/1. Building Neural Network for Regression Problem.srt
22.2 kB
15. R - Saving and Restoring Models/1. Saving - Restoring Models and Using Callbacks.srt
20.9 kB
14. Python - Saving and Restoring Models/1. Saving - Restoring Models and Using Callbacks.srt
19.2 kB
18. Add on Data Preprocessing/16. Bi-variate Analysis and Variable Transformation.srt
18.7 kB
2. Setting up Python and Jupyter Notebook/6. Lists, Tuples and Directories Python Basics.srt
17.4 kB
2. Setting up Python and Jupyter Notebook/5. Strings in Python Python Basics.srt
16.8 kB
11. R - Building and training the Model/1. Building,Compiling and Training.srt
15.8 kB
4. Single Cells - Perceptron and Sigmoid Neuron/3. Python - Creating Perceptron model.srt
14.9 kB
3. Setting up R Studio and R Crash Course/7. Creating Barplots in R.srt
13.7 kB
6. Important concepts Common Interview questions/1. Some Important Concepts.srt
13.4 kB
13. R - Regression Problem and Functional API/1. Building Regression Model with Functional AP.srt
13.4 kB
18. Add on Data Preprocessing/10. Outlier Treatment in Python.srt
13.3 kB
2. Setting up Python and Jupyter Notebook/3. Introduction to Jupyter.srt
12.6 kB
9. Dataset for classification problem/3. R - Dataset, Normalization and Test-Train set.srt
12.4 kB
10. Python - Building and training the Model/2. Building the Neural Network using Keras.srt
12.2 kB
5. Neural Networks - Stacking cells to create network/2. Gradient Descent.srt
12.2 kB
18. Add on Data Preprocessing/8. EDD in R.srt
11.8 kB
12. Python - Regression problems and Functional API/2. Using Functional API for complex architectures.srt
11.8 kB
3. Setting up R Studio and R Crash Course/3. Packages in R.srt
11.7 kB
3. Setting up R Studio and R Crash Course/2. Basics of R and R studio.srt
11.1 kB
2. Setting up Python and Jupyter Notebook/7. Working with Numpy Library of Python.srt
10.7 kB
18. Add on Data Preprocessing/7. EDD in Python.srt
10.6 kB
19. Test Train Split/1. Test-train split.srt
10.3 kB
4. Single Cells - Perceptron and Sigmoid Neuron/1. Perceptron.srt
9.9 kB
10. Python - Building and training the Model/3. Compiling and Training the Neural Network model.srt
9.8 kB
5. Neural Networks - Stacking cells to create network/1. Basic Terminologies.srt
9.7 kB
16. Python - Hyperparameter Tuning/1. Hyperparameter Tuning.srt
9.7 kB
17. R - Hyperparameter Tuning/1. Hyperparameter Tuning.srt
9.7 kB
11. R - Building and training the Model/2. Evaluating and Predicting.srt
9.7 kB
2. Setting up Python and Jupyter Notebook/2. Opening Jupyter Notebook.srt
9.4 kB
18. Add on Data Preprocessing/18. Variable transformation in R.srt
9.3 kB
10. Python - Building and training the Model/4. Evaluating performance and Predicting using Keras.srt
9.2 kB
7. Standard Model Parameters/1. Hyperparameters.srt
9.2 kB
19. Test Train Split/4. Test train split in R.srt
8.6 kB
13. R - Regression Problem and Functional API/2. Complex Architectures using Functional API.srt
8.5 kB
2. Setting up Python and Jupyter Notebook/8. Working with Pandas Library of Python.srt
8.3 kB
19. Test Train Split/3. Test train split in Python.srt
8.2 kB
4. Single Cells - Perceptron and Sigmoid Neuron/2. Activation Functions.srt
8.0 kB
18. Add on Data Preprocessing/3. The Data and the Data Dictionary.srt
8.0 kB
18. Add on Data Preprocessing/17. Variable transformation and deletion in Python.srt
7.7 kB
2. Setting up Python and Jupyter Notebook/9. Working with Seaborn Library of Python.srt
7.7 kB
9. Dataset for classification problem/1. Python - Dataset for classification problem.srt
7.3 kB
3. Setting up R Studio and R Crash Course/6. Inputting data part 3 Importing from CSV or Text files.srt
6.5 kB
19. Test Train Split/2. Bias Variance trade-off.srt
6.5 kB
3. Setting up R Studio and R Crash Course/8. Creating Histograms in R.srt
6.0 kB
9. Dataset for classification problem/2. Python - Normalization and Test-Train split.srt
5.9 kB
3. Setting up R Studio and R Crash Course/1. Installing R and R studio.srt
5.8 kB
18. Add on Data Preprocessing/4. Importing Data in Python.srt
5.7 kB
18. Add on Data Preprocessing/21. Dummy variable creation in Python.srt
5.6 kB
18. Add on Data Preprocessing/19. Non Usable Variables.srt
5.5 kB
18. Add on Data Preprocessing/22. Dummy variable creation in R.srt
5.3 kB
18. Add on Data Preprocessing/20. Dummy variable creation Handling qualitative data.srt
5.0 kB
1. Introduction/1. Introduction.srt
4.7 kB
18. Add on Data Preprocessing/9. Outlier Treatment.srt
4.6 kB
18. Add on Data Preprocessing/11. Outlier Treatment in R.srt
4.4 kB
18. Add on Data Preprocessing/12. Missing Value imputation.srt
4.2 kB
18. Add on Data Preprocessing/13. Missing Value Imputation in Python.srt
4.2 kB
3. Setting up R Studio and R Crash Course/4. Inputting data part 1 Inbuilt datasets of R.srt
4.1 kB
2. Setting up Python and Jupyter Notebook/4. Arithmetic operators in Python Python Basics.srt
4.1 kB
18. Add on Data Preprocessing/1. Gathering Business Knowledge.srt
4.0 kB
8. Tensorflow and Keras/2. Installing Tensorflow and Keras in Python.srt
3.9 kB
18. Add on Data Preprocessing/15. Seasonality in Data.srt
3.9 kB
18. Add on Data Preprocessing/2. Data Exploration.srt
3.7 kB
8. Tensorflow and Keras/1. Keras and Tensorflow.srt
3.6 kB
18. Add on Data Preprocessing/14. Missing Value imputation in R.srt
3.5 kB
18. Add on Data Preprocessing/6. Univariate Analysis and EDD.srt
3.5 kB
8. Tensorflow and Keras/3. Installing TensorFlow and Keras in R.srt
3.0 kB
3. Setting up R Studio and R Crash Course/5. Inputting data part 2 Manual data entry.srt
3.0 kB
18. Add on Data Preprocessing/5. Importing the dataset into R.srt
2.7 kB
2. Setting up Python and Jupyter Notebook/1. Installing Python and Anaconda.srt
2.6 kB
10. Python - Building and training the Model/1. Different ways to create ANN using Keras.srt
1.9 kB
Readme.txt
962 Bytes
5. Neural Networks - Stacking cells to create network/4. Quiz.html
166 Bytes
1. Introduction/2. Course Resources.html
117 Bytes
[GigaCourse.com].url
49 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>