搜索
[GigaCourse.Com] Udemy - The Ultimate Pandas Bootcamp Advanced Python Data Analysis
磁力链接/BT种子名称
[GigaCourse.Com] Udemy - The Ultimate Pandas Bootcamp Advanced Python Data Analysis
磁力链接/BT种子简介
种子哈希:
a4c382ce4d2f6a9021f234c9b4d72b71747a9f15
文件大小:
9.63G
已经下载:
1520
次
下载速度:
极快
收录时间:
2022-02-25
最近下载:
2024-11-07
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:A4C382CE4D2F6A9021F234C9B4D72B71747A9F15
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
最近搜索
20210409
露脸福利姬
ktb-075
一本道突撃!隣
調教済み人妻olは上司に抱
外卖员打翻食物 惨遭客户捆绑揉搓
樱晚
拍
初理
【力武靖】
人蛇
新网球王子第二季
穿着婚纱
瑜伽
ftvgirls kylie
露点大全
中世纪
orca
张铮斯坦福
偷拍少妇
勇者大战魔物娘
sdde+243
一身
伪娘与女奴
儿女乱伦
再次十九歲
刺青妹子做爱视频流出
九儿调教
くノ一忍法帖
ai 裸
文件列表
13. Data Formats And IO/3. Reading HTML.mp4
108.8 MB
11. Regex And Text Manipulation/19. Is This A Valid Email.mp4
84.0 MB
11. Regex And Text Manipulation/21. Pandas str contains(), split() And replace() With Regex.mp4
80.0 MB
11. Regex And Text Manipulation/16. Introduction To Regular Expressions.mp4
78.7 MB
13. Data Formats And IO/5. Creating Output The to_ Family Of Methods.mp4
77.6 MB
4. Working With DataFrames/4. BONUS - Four More Ways To Build DataFrames.mp4
76.8 MB
11. Regex And Text Manipulation/23. Solution.mp4
75.9 MB
15. Appendix B - Going Local Installation And Setup/1. Installing Anaconda And Python - Windows.mp4
74.8 MB
3. Series Methods And Handling/28. Transforming With update(), apply() And map().mp4
73.3 MB
5. DataFrames In Depth/33. Element-wise Operations With applymap().mp4
71.8 MB
5. DataFrames In Depth/4. More Approaches To Boolean Masking.mp4
71.7 MB
5. DataFrames In Depth/31. Same-shape Transforms.mp4
70.2 MB
4. Working With DataFrames/22. Part I Collecting The Units.mp4
70.1 MB
11. Regex And Text Manipulation/14. BONUS Parsing Indicators With get_dummies().mp4
69.5 MB
5. DataFrames In Depth/14. Sorting vs. Reordering.mp4
68.4 MB
11. Regex And Text Manipulation/17. More Regex Concepts.mp4
68.3 MB
12. Visualizing Data/9. Other Visualization Options.mp4
66.7 MB
11. Regex And Text Manipulation/18. How To Approach Regex.mp4
66.6 MB
12. Visualizing Data/8. Scatter Plots.mp4
66.5 MB
4. Working With DataFrames/31. BONUS - Min, Max and Idx[MinMax], And Good Foods.mp4
66.0 MB
12. Visualizing Data/3. The Preliminaries Of matplotlib.mp4
65.9 MB
1. Introduction/7. NumPy.mp4
65.2 MB
5. DataFrames In Depth/19. Identifying Dupes.mp4
63.8 MB
6. Working With Multiple DataFrames/11. Solution.mp4
62.4 MB
5. DataFrames In Depth/32. More Flexibility With apply().mp4
62.3 MB
7. Going MultiDimensional/7. Indexing Ranges And Slices.mp4
62.0 MB
7. Going MultiDimensional/20. BONUS Creating MultiLevel Columns Manually.mp4
61.6 MB
6. Working With Multiple DataFrames/5. Enforcing Unique Indices.mp4
61.2 MB
14. Appendix A - Rapid-Fire Python Fundamentals/25. Defining Functions.mp4
60.6 MB
5. DataFrames In Depth/27. BONUS - Methods And Axes With fillna().mp4
60.2 MB
4. Working With DataFrames/26. Part II Merging Units With Column Names.mp4
60.1 MB
6. Working With Multiple DataFrames/16. One-to-One and One-to-Many Joins.mp4
59.8 MB
13. Data Formats And IO/4. Reading Excel.mp4
58.4 MB
6. Working With Multiple DataFrames/17. Many-to-Many Joins.mp4
58.3 MB
3. Series Methods And Handling/27. Filtering filter(), where(), And mask().mp4
57.7 MB
12. Visualizing Data/6. Pie Plots.mp4
57.6 MB
12. Visualizing Data/12. Solution.mp4
56.9 MB
12. Visualizing Data/4. Line Graphs.mp4
56.8 MB
14. Appendix A - Rapid-Fire Python Fundamentals/13. Containers III Sets.mp4
55.5 MB
10. Handling Date And Time/3. Parsing Dates From Text.mp4
55.4 MB
3. Series Methods And Handling/2. Reading In Data With read_csv().mp4
55.4 MB
6. Working With Multiple DataFrames/4. The Duplicated Index Issue.mp4
53.8 MB
5. DataFrames In Depth/6. BONUS - XOR and Complement Binary Ops.mp4
52.9 MB
4. Working With DataFrames/12. Changing The Index.mp4
52.8 MB
12. Visualizing Data/5. Bar Charts.mp4
52.6 MB
5. DataFrames In Depth/40. Adding Rows To DataFrames.mp4
52.3 MB
4. Working With DataFrames/29. DataFrame Sorting.mp4
51.8 MB
10. Handling Date And Time/19. Upsampling And Interpolation.mp4
51.8 MB
5. DataFrames In Depth/38. View vs Copy.mp4
51.7 MB
7. Going MultiDimensional/24. Solution.mp4
51.6 MB
5. DataFrames In Depth/26. Dropping And Filling DataFrame NAs.mp4
51.4 MB
3. Series Methods And Handling/32. Solution III - Z-scores.mp4
50.5 MB
1. Introduction/4. Jupyter Notebooks.mp4
50.3 MB
4. Working With DataFrames/14. DataFrame Extraction by Position.mp4
49.0 MB
11. Regex And Text Manipulation/8. String Splitting And Concatenation.mp4
48.6 MB
5. DataFrames In Depth/12. Fancy Indexing With lookup().mp4
48.5 MB
6. Working With Multiple DataFrames/21. Solution.mp4
48.3 MB
7. Going MultiDimensional/19. The Flipside unstack().mp4
48.2 MB
4. Working With DataFrames/2. What Is A DataFrame.mp4
48.1 MB
13. Data Formats And IO/10. Solution.mp4
48.0 MB
12. Visualizing Data/7. Histograms.mp4
48.0 MB
5. DataFrames In Depth/7. Combining Conditions.mp4
47.8 MB
4. Working With DataFrames/18. Solution.mp4
47.4 MB
5. DataFrames In Depth/13. Sorting By Index Or Column.mp4
47.2 MB
7. Going MultiDimensional/11. Solution.mp4
47.0 MB
4. Working With DataFrames/21. DataFrame replace() + A Glimpse At Regex.mp4
46.4 MB
8. GroupBy And Aggregates/15. Fine-tuned Aggregates.mp4
46.3 MB
5. DataFrames In Depth/36. Setting DataFrame Values.mp4
45.7 MB
10. Handling Date And Time/21. BONUS Rolling Windows.mp4
45.6 MB
4. Working With DataFrames/10. BONUS - How Are Random Numbers Generated.mp4
45.0 MB
14. Appendix A - Rapid-Fire Python Fundamentals/5. Ints And Floats.mp4
44.9 MB
5. DataFrames In Depth/29. Solution.mp4
44.6 MB
4. Working With DataFrames/28. Filtering in 2D.mp4
44.4 MB
4. Working With DataFrames/34. Solution.mp4
44.3 MB
5. DataFrames In Depth/25. Null Values In DataFrames.mp4
44.2 MB
6. Working With Multiple DataFrames/3. Concatenating DataFrames.mp4
44.2 MB
9. Reshaping With Pivots/3. Pivoting Data.mp4
43.9 MB
11. Regex And Text Manipulation/15. Text Replacement.mp4
43.8 MB
14. Appendix A - Rapid-Fire Python Fundamentals/17. Controlling Flow if, else, And elif.mp4
43.7 MB
8. GroupBy And Aggregates/19. BONUS - There's Also apply().mp4
43.2 MB
6. Working With Multiple DataFrames/2. Introducing (Five) New Datasets.mp4
42.6 MB
4. Working With DataFrames/9. BONUS - Sampling With Replacement Or Weights.mp4
42.4 MB
10. Handling Date And Time/2. The Python datetime Module.mp4
42.2 MB
3. Series Methods And Handling/22. Series Arithmetics And fill_value().mp4
42.2 MB
11. Regex And Text Manipulation/9. More Split Parameters.mp4
42.0 MB
4. Working With DataFrames/24. DataFrame dropna().mp4
42.0 MB
5. DataFrames In Depth/10. Solution.mp4
42.0 MB
5. DataFrames In Depth/11. 2d Indexing.mp4
42.0 MB
5. DataFrames In Depth/37. The SettingWithCopy Warning.mp4
41.7 MB
7. Going MultiDimensional/6. Indexing Hierarchical DataFrames.mp4
41.3 MB
14. Appendix A - Rapid-Fire Python Fundamentals/3. Variables.mp4
41.0 MB
8. GroupBy And Aggregates/18. GroupBy Transformations.mp4
40.7 MB
10. Handling Date And Time/18. Resampling Timeseries.mp4
40.4 MB
6. Working With Multiple DataFrames/9. Concat On Different Columns.mp4
40.1 MB
10. Handling Date And Time/14. DateTimeIndex Attribute Accessors.mp4
40.0 MB
6. Working With Multiple DataFrames/18. Merging By Index.mp4
40.0 MB
5. DataFrames In Depth/5. Binary Operators With Booleans.mp4
39.8 MB
7. Going MultiDimensional/17. More MultiIndex Methods.mp4
39.8 MB
7. Going MultiDimensional/15. Removing MultiIndex Levels.mp4
39.5 MB
2. Series At A Glance/19. BONUS Using Callables With .loc And .iloc.mp4
38.9 MB
5. DataFrames In Depth/30. Calculating Aggregates With agg().mp4
38.9 MB
11. Regex And Text Manipulation/13. Masking With String Methods.mp4
38.7 MB
4. Working With DataFrames/36. Solution.mp4
38.6 MB
3. Series Methods And Handling/6. Accessing And Counting NAs.mp4
38.6 MB
9. Reshaping With Pivots/13. Solution.mp4
38.4 MB
10. Handling Date And Time/20. What About asfreq().mp4
38.4 MB
10. Handling Date And Time/15. Creating Date Ranges.mp4
38.3 MB
8. GroupBy And Aggregates/16. Named Aggregations.mp4
38.3 MB
5. DataFrames In Depth/39. Adding DataFrame Columns.mp4
38.2 MB
14. Appendix A - Rapid-Fire Python Fundamentals/15. Dictionary Keys And Values.mp4
38.1 MB
10. Handling Date And Time/16. Shifting Dates With pd.DateOffset.mp4
38.0 MB
9. Reshaping With Pivots/7. BONUS The Problem With Average Percentage.mp4
37.9 MB
4. Working With DataFrames/13. Extracting From DataFrames By Label.mp4
37.8 MB
4. Working With DataFrames/27. Part III Removing Units From Values.mp4
37.4 MB
4. Working With DataFrames/7. Some Cleanup Removing The Duplicated Index.mp4
37.4 MB
7. Going MultiDimensional/16. MultiIndex sort_index().mp4
37.3 MB
6. Working With Multiple DataFrames/12. The merge() Method.mp4
37.1 MB
4. Working With DataFrames/32. DataFrame nlargest() And nsmallest().mp4
37.1 MB
10. Handling Date And Time/6. Performant Datetimes With Numpy.mp4
37.0 MB
4. Working With DataFrames/30. Using Series between() With DataFrames.mp4
36.7 MB
7. Going MultiDimensional/12. The Anatomy Of A MultiIndex Object.mp4
36.5 MB
9. Reshaping With Pivots/5. What About Aggregates.mp4
35.9 MB
14. Appendix A - Rapid-Fire Python Fundamentals/28. Importing Modules.mp4
35.8 MB
3. Series Methods And Handling/13. Descriptive Statistics.mp4
35.3 MB
9. Reshaping With Pivots/6. The pivot_table().mp4
35.3 MB
7. Going MultiDimensional/13. Adding Another Level.mp4
35.2 MB
5. DataFrames In Depth/24. BONUS - A Sophisticated Alternative.mp4
34.8 MB
2. Series At A Glance/7. Index And RangeIndex.mp4
34.8 MB
7. Going MultiDimensional/9. Cross Sections With xs().mp4
34.8 MB
14. Appendix A - Rapid-Fire Python Fundamentals/11. List Methods And Functions.mp4
34.6 MB
1. Introduction/6. Hello, Python.mp4
34.4 MB
12. Visualizing Data/10. BONUS Data Ink And Chartjunk.mp4
33.9 MB
6. Working With Multiple DataFrames/13. The left_on And right_on Params.mp4
33.8 MB
14. Appendix A - Rapid-Fire Python Fundamentals/7. Strings.mp4
33.7 MB
5. DataFrames In Depth/43. Solution.mp4
33.5 MB
14. Appendix A - Rapid-Fire Python Fundamentals/24. List Comprehensions.mp4
33.3 MB
3. Series Methods And Handling/15. mode() And value_counts().mp4
33.3 MB
11. Regex And Text Manipulation/7. Strips And Whitespace.mp4
33.3 MB
13. Data Formats And IO/6. BONUS Introduction To Pickling.mp4
33.3 MB
15. Appendix B - Going Local Installation And Setup/3. Installing Anaconda And Python - Linux.mp4
32.5 MB
7. Going MultiDimensional/18. Reshaping With stack().mp4
32.1 MB
2. Series At A Glance/20. Selecting With .get().mp4
32.0 MB
14. Appendix A - Rapid-Fire Python Fundamentals/26. Function Arguments Positional vs Keyword.mp4
31.9 MB
5. DataFrames In Depth/20. Removing Duplicates.mp4
31.3 MB
14. Appendix A - Rapid-Fire Python Fundamentals/9. Containers I Lists.mp4
30.9 MB
2. Series At A Glance/17. Boolean Masks And The .loc Indexer.mp4
30.9 MB
10. Handling Date And Time/8. Our Dataset Brent Prices.mp4
30.9 MB
4. Working With DataFrames/25. BONUS - dropna() With Subset.mp4
30.7 MB
14. Appendix A - Rapid-Fire Python Fundamentals/21. While Loops.mp4
30.7 MB
2. Series At A Glance/13. Extracting By Index Position.mp4
30.5 MB
8. GroupBy And Aggregates/3. Simple Aggregations Review.mp4
30.4 MB
11. Regex And Text Manipulation/3. String Methods In Python.mp4
30.2 MB
6. Working With Multiple DataFrames/6. BONUS - Creating Multiple Indices With concat().mp4
29.8 MB
10. Handling Date And Time/17. BONUS Timedeltas And Absolute Time.mp4
29.7 MB
2. Series At A Glance/21. Selection Recap.mp4
29.6 MB
13. Data Formats And IO/8. The Many Other Formats.mp4
29.3 MB
9. Reshaping With Pivots/4. Undoing Pivots.mp4
29.2 MB
7. Going MultiDimensional/22. BONUS - What About Panels.mp4
29.2 MB
7. Going MultiDimensional/5. MultiIndex From read_csv().mp4
29.0 MB
8. GroupBy And Aggregates/11. Solution.mp4
28.9 MB
4. Working With DataFrames/23. The rename() Method.mp4
28.9 MB
14. Appendix A - Rapid-Fire Python Fundamentals/10. Lists vs. Strings.mp4
28.9 MB
14. Appendix A - Rapid-Fire Python Fundamentals/4. Arithmetic And Augmented Assignment Operators.mp4
28.8 MB
4. Working With DataFrames/6. Reading In Nutrition Data.mp4
28.6 MB
6. Working With Multiple DataFrames/14. Inner vs Outer Joins.mp4
28.4 MB
6. Working With Multiple DataFrames/7. Column Axis Concatenation.mp4
28.4 MB
2. Series At A Glance/14. Accessing Elements By Label.mp4
28.4 MB
7. Going MultiDimensional/3. Index And RangeIndex.mp4
28.2 MB
9. Reshaping With Pivots/2. New Data New York City SAT Scores.mp4
28.1 MB
10. Handling Date And Time/11. Indexing Dates.mp4
27.9 MB
8. GroupBy And Aggregates/14. MultiIndex Grouping.mp4
27.8 MB
1. Introduction/5. Cloud vs Local.mp4
27.8 MB
5. DataFrames In Depth/35. Solution.mp4
27.8 MB
7. Going MultiDimensional/1. Section Intro.mp4
27.7 MB
4. Working With DataFrames/15. Single Value Access With .at And .iat.mp4
27.6 MB
8. GroupBy And Aggregates/17. The filter() Method.mp4
27.4 MB
5. DataFrames In Depth/18. Solution.mp4
27.0 MB
11. Regex And Text Manipulation/6. Finding Characters And Words.mp4
27.0 MB
14. Appendix A - Rapid-Fire Python Fundamentals/8. Methods.mp4
26.6 MB
4. Working With DataFrames/20. The astype() Method.mp4
26.4 MB
4. Working With DataFrames/16. BONUS - The get_loc() Method.mp4
26.3 MB
9. Reshaping With Pivots/9. Adding Margins.mp4
25.8 MB
10. Handling Date And Time/9. Date Parsing And DatetimeIndex.mp4
25.7 MB
8. GroupBy And Aggregates/21. Solution.mp4
25.7 MB
8. GroupBy And Aggregates/4. Conditional Aggregates.mp4
25.7 MB
7. Going MultiDimensional/14. Shuffling Levels.mp4
25.5 MB
11. Regex And Text Manipulation/12. Slicing Substrings.mp4
25.4 MB
10. Handling Date And Time/7. The Pandas Timestamp.mp4
25.2 MB
10. Handling Date And Time/4. Even Better dateutil.mp4
25.0 MB
9. Reshaping With Pivots/1. Section Intro.mp4
25.0 MB
14. Appendix A - Rapid-Fire Python Fundamentals/20. The range() Immutable Sequence.mp4
24.9 MB
8. GroupBy And Aggregates/13. Handpicking Subgroups.mp4
24.8 MB
11. Regex And Text Manipulation/2. Our Data Boston Marathon Runners.mp4
24.7 MB
2. Series At A Glance/23. Solution.mp4
24.5 MB
5. DataFrames In Depth/3. Quick Review Indexing With Boolean Masks.mp4
24.5 MB
4. Working With DataFrames/11. DataFrame Axes.mp4
24.4 MB
3. Series Methods And Handling/3. Series Sizing With .size, .shape, And len().mp4
24.4 MB
14. Appendix A - Rapid-Fire Python Fundamentals/27. Lambdas.mp4
24.3 MB
2. Series At A Glance/12. The head() And tail() Methods.mp4
24.1 MB
13. Data Formats And IO/7. Pickles In Pandas.mp4
24.0 MB
10. Handling Date And Time/23. Solution.mp4
24.0 MB
2. Series At A Glance/10. Solution.mp4
24.0 MB
6. Working With Multiple DataFrames/19. The join() Method.mp4
24.0 MB
14. Appendix A - Rapid-Fire Python Fundamentals/14. Containers IV Dictionaries.mp4
23.8 MB
4. Working With DataFrames/8. The sample() Method.mp4
23.7 MB
8. GroupBy And Aggregates/5. The Split-Apply-Combine Pattern.mp4
23.6 MB
4. Working With DataFrames/3. Creating A DataFrame.mp4
23.5 MB
10. Handling Date And Time/5. From Datetime To String.mp4
23.5 MB
10. Handling Date And Time/1. Section Intro.mp4
23.4 MB
7. Going MultiDimensional/2. Introducing New Data.mp4
23.2 MB
3. Series Methods And Handling/16. idxmax() And idxmin().mp4
23.1 MB
11. Regex And Text Manipulation/11. Solution.mp4
23.0 MB
14. Appendix A - Rapid-Fire Python Fundamentals/6. Booleans And Comparison Operators.mp4
22.9 MB
5. DataFrames In Depth/41. BONUS - How Are DataFrames Stored In Memory.mp4
22.8 MB
8. GroupBy And Aggregates/6. The groupby() Method.mp4
22.6 MB
3. Series Methods And Handling/12. Dropping And Filling NAs.mp4
22.6 MB
3. Series Methods And Handling/7. BONUS Another Approach.mp4
22.4 MB
5. DataFrames In Depth/1. Section Intro.mp4
22.2 MB
8. GroupBy And Aggregates/12. Iterating Through Groups.mp4
22.1 MB
8. GroupBy And Aggregates/9. BONUS - Series groupby().mp4
21.8 MB
1. Introduction/3. Anaconda.mp4
21.7 MB
14. Appendix A - Rapid-Fire Python Fundamentals/19. For Loops.mp4
21.6 MB
8. GroupBy And Aggregates/8. Customizing Index To Group Mappings.mp4
21.5 MB
3. Series Methods And Handling/31. Solution II - Mean, Median, And Standard Deviation.mp4
21.5 MB
2. Series At A Glance/4. What’s In The Data.mp4
21.4 MB
6. Working With Multiple DataFrames/15. Left vs Right Joins.mp4
21.3 MB
7. Going MultiDimensional/4. Creating A MultiIndex.mp4
21.1 MB
14. Appendix A - Rapid-Fire Python Fundamentals/12. Containers II Tuples.mp4
21.0 MB
5. DataFrames In Depth/8. Conditions As Variables.mp4
20.9 MB
8. GroupBy And Aggregates/7. The DataFrameGroupBy Object.mp4
20.8 MB
5. DataFrames In Depth/21. Removing DataFrame Rows.mp4
20.7 MB
13. Data Formats And IO/2. Reading JSON.mp4
20.7 MB
3. Series Methods And Handling/17. Sorting With sort_values().mp4
20.6 MB
14. Appendix A - Rapid-Fire Python Fundamentals/16. Membership Operators.mp4
20.2 MB
14. Appendix A - Rapid-Fire Python Fundamentals/22. Break And Continue.mp4
20.1 MB
2. Series At A Glance/8. Series And Index Names.mp4
20.1 MB
5. DataFrames In Depth/23. BONUS - Another Way pop().mp4
20.0 MB
9. Reshaping With Pivots/10. MultiIndex Pivot Tables.mp4
20.0 MB
4. Working With DataFrames/5. The info() Method.mp4
20.0 MB
4. Working With DataFrames/19. More Cleanup Going Numeric.mp4
19.5 MB
7. Going MultiDimensional/21. An Easier Way transpose().mp4
19.5 MB
11. Regex And Text Manipulation/4. Vectorized String Operations In Pandas.mp4
19.3 MB
9. Reshaping With Pivots/11. Applying Multiple Functions.mp4
19.2 MB
11. Regex And Text Manipulation/20. BONUS What's The Point Of re.compile().mp4
19.2 MB
5. DataFrames In Depth/2. Introducing A New Dataset.mp4
19.2 MB
3. Series Methods And Handling/24. Cumulative Operations.mp4
18.8 MB
1. Introduction/2. Pandas Is Not Single.mp4
18.7 MB
3. Series Methods And Handling/4. Unique Values And Series Monotonicity.mp4
18.7 MB
10. Handling Date And Time/10. A Cool Shorcut read_csv() With parse_dates.mp4
18.5 MB
3. Series Methods And Handling/23. BONUS Calculating Variance And Standard Deviation.mp4
18.2 MB
14. Appendix A - Rapid-Fire Python Fundamentals/23. Zipping Iterables.mp4
18.0 MB
15. Appendix B - Going Local Installation And Setup/2. Installing Anaconda And Python - Mac.mp4
18.0 MB
10. Handling Date And Time/13. Solution.mp4
17.9 MB
8. GroupBy And Aggregates/1. Section Intro.mp4
17.9 MB
5. DataFrames In Depth/16. 15. BONUS - Please Avoid Sorting Like This.mp4
17.9 MB
7. Going MultiDimensional/8. BONUS - Use With pd.IndexSlice!.mp4
17.8 MB
11. Regex And Text Manipulation/1. Section Intro.mp4
17.5 MB
2. Series At A Glance/15. BONUS The add_prefix() And add_suffix() Methods.mp4
17.3 MB
5. DataFrames In Depth/22. BONUS - Removing Columns.mp4
17.0 MB
3. Series Methods And Handling/26. Series Iteration.mp4
16.9 MB
14. Appendix A - Rapid-Fire Python Fundamentals/18. Truth Value Of Non-booleans.mp4
16.7 MB
3. Series Methods And Handling/19. Sorting With sort_index().mp4
16.0 MB
8. GroupBy And Aggregates/2. New Data Game Sales.mp4
15.6 MB
3. Series Methods And Handling/30. Solution I - Reading Data.mp4
15.3 MB
6. Working With Multiple DataFrames/8. The append() Method A Special Case Of concat().mp4
15.2 MB
1. Introduction/1. Course Structure.mp4
14.7 MB
11. Regex And Text Manipulation/5. Case Operations.mp4
14.7 MB
3. Series Methods And Handling/11. Solution.mp4
14.1 MB
2. Series At A Glance/16. Using Dot Notation.mp4
13.9 MB
12. Visualizing Data/2. The Art Of Data Visualization.mp4
13.6 MB
5. DataFrames In Depth/15. BONUS - Another Way.mp4
13.6 MB
3. Series Methods And Handling/1. Section Intro.mp4
13.6 MB
3. Series Methods And Handling/25. Pairwise Differences With diff().mp4
13.4 MB
2. Series At A Glance/2. What Is A Series.mp4
13.1 MB
9. Reshaping With Pivots/8. Replicating Pivot Tables With GroupBy.mp4
13.1 MB
3. Series Methods And Handling/18. nlargest() And nsmallest().mp4
12.8 MB
13. Data Formats And IO/9. Skill Challenge.mp4
12.3 MB
3. Series Methods And Handling/9. BONUS Booleans Are Literally Numbers In Python.mp4
12.2 MB
2. Series At A Glance/18. Extracting By Position With .iloc.mp4
12.2 MB
2. Series At A Glance/11. Another Solution.mp4
11.8 MB
3. Series Methods And Handling/8. The Other Side notnull() And notna().mp4
11.6 MB
4. Working With DataFrames/1. Section Intro.mp4
11.3 MB
12. Visualizing Data/1. Section Intro.mp4
10.8 MB
3. Series Methods And Handling/29. Skill Challenge.mp4
10.7 MB
14. Appendix A - Rapid-Fire Python Fundamentals/2. Data Types.mp4
10.7 MB
2. Series At A Glance/6. BONUS What Is dtype('o'), Really.mp4
10.6 MB
3. Series Methods And Handling/21. Solution.mp4
10.4 MB
3. Series Methods And Handling/14. The describe() Method.mp4
10.2 MB
14. Appendix A - Rapid-Fire Python Fundamentals/1. Section Intro.mp4
9.3 MB
5. DataFrames In Depth/34. Skill Challenge.mp4
9.2 MB
2. Series At A Glance/3. Parameters vs Arguments.mp4
8.5 MB
7. Going MultiDimensional/23. Skill Challenge.mp4
8.4 MB
6. Working With Multiple DataFrames/1. Section Intro.mp4
8.3 MB
2. Series At A Glance/9. Skill Challenge.mp4
8.1 MB
12. Visualizing Data/11. Skill Challenge.mp4
7.9 MB
2. Series At A Glance/1. Section Intro.mp4
7.3 MB
4. Working With DataFrames/35. Another Skill Challenge.mp4
7.1 MB
2. Series At A Glance/22. Skill Challenge.mp4
6.7 MB
2. Series At A Glance/5. The .dtype Attribute.mp4
6.7 MB
3. Series Methods And Handling/5. The count() Method.mp4
6.3 MB
6. Working With Multiple DataFrames/10. Skill Challenge.mp4
6.3 MB
9. Reshaping With Pivots/12. Skill Challenge.mp4
5.7 MB
11. Regex And Text Manipulation/22. Skill Challenge.mp4
5.7 MB
5. DataFrames In Depth/28. Skill Challenge.mp4
5.6 MB
13. Data Formats And IO/1. Section Intro.mp4
5.5 MB
5. DataFrames In Depth/42. Skill Challenge.mp4
5.3 MB
10. Handling Date And Time/22. Skill Challenge.mp4
4.9 MB
5. DataFrames In Depth/17. Skill Challenge.mp4
4.7 MB
Sources/nutrition.csv
4.6 MB
4. Working With DataFrames/33. Skill Challenge.mp4
4.5 MB
4. Working With DataFrames/17. Skill Challenge.mp4
4.3 MB
8. GroupBy And Aggregates/20. Skill Challenge.mp4
4.3 MB
3. Series Methods And Handling/10. Skill Challenge.mp4
4.2 MB
5. DataFrames In Depth/9. Skill Challenge.mp4
4.2 MB
6. Working With Multiple DataFrames/20. Skill Challenge.mp4
4.0 MB
10. Handling Date And Time/12. Skill Challenge.mp4
4.0 MB
7. Going MultiDimensional/10. Skill Challenge.mp4
4.0 MB
11. Regex And Text Manipulation/10. Skill Challenge.mp4
3.4 MB
8. GroupBy And Aggregates/10. Skill Challenge.mp4
3.4 MB
3. Series Methods And Handling/20. Skill Challenge.mp4
3.3 MB
Sources/Visualizing_Data.ipynb.zip
512.8 kB
Sources/tech_giants (1).csv
478.4 kB
Sources/tech_giants.csv
478.4 kB
Sources/MemoryLayout.pdf
252.2 kB
Sources/games_sales (1).csv
242.6 kB
Sources/games_sales (2).csv
242.6 kB
Sources/games_sales.csv
242.6 kB
Sources/Vectorization.pdf
118.1 kB
Sources/SplitApplyCombine.pdf
117.5 kB
Sources/SelectionRecap.pdf
114.0 kB
Sources/WhatIsDtype.pdf
113.6 kB
Sources/MultiIndexInternals.pdf
113.4 kB
Sources/Working_With_DataFrames.zip
108.0 kB
Sources/Handling_Time_And_Date.ipynb.zip
107.2 kB
Sources/BrentOilPrices (1).csv
80.7 kB
Sources/BrentOilPrices.csv
80.7 kB
Sources/WhatIsASeries.pdf
76.6 kB
Sources/scores (1).csv
76.5 kB
Sources/scores.csv
76.5 kB
Sources/SelectionTerminology.pdf
68.3 kB
Sources/3KeyConcepts.pdf
64.5 kB
Sources/ConcatVsMerge.pdf
64.2 kB
Sources/WhatIsCSV.pdf
64.1 kB
Sources/TwosComplement.pdf
61.9 kB
Sources/DataFrames_In_Depth.zip
60.9 kB
Sources/DropnaWithSubset.pdf
60.2 kB
Sources/2017BostonMarathonTop1000 (1).csv
58.9 kB
Sources/2017BostonMarathonTop1000.csv
58.9 kB
Sources/DroppingAndFillingNA.pdf
57.9 kB
Sources/ViewVsCopy.pdf
54.6 kB
Sources/Lookup.pdf
50.9 kB
Sources/AppendVsConcat.pdf
50.6 kB
Sources/Transforms.pdf
48.5 kB
Sources/SortValueOrIndex.pdf
45.3 kB
Sources/BooleanMasks.pdf
45.0 kB
Sources/InnerVsOuter.pdf
44.8 kB
Sources/SeriesAtGlance.pdf
44.0 kB
Sources/Diff.pdf
43.5 kB
Sources/SizeAndShape.pdf
43.3 kB
Sources/SeriesAccounting.pdf
43.0 kB
Sources/Going_MultiDimensional.zip
42.9 kB
Sources/SeqVsVectorizedOperations.pdf
42.5 kB
Sources/LeftVsRight.pdf
41.8 kB
Sources/IdxminIdxmax.pdf
41.1 kB
Sources/Variance.pdf
38.9 kB
Sources/RangeVSInt64Index.pdf
38.7 kB
Sources/BoolsAsInts.pdf
38.4 kB
Sources/ValueCounts.pdf
36.8 kB
Sources/JoinCardinalities.pdf
36.2 kB
Sources/soccer.csv
34.5 kB
Sources/OurProcess.pdf
33.4 kB
Sources/Median.pdf
33.3 kB
Sources/MethodsVAttribtues.pdf
33.2 kB
Sources/Series_Methods_And_Handling.zip
32.6 kB
Sources/AtAndIat.pdf
31.3 kB
Sources/Regex_And_Text_Manipulation.ipynb.zip
30.5 kB
Sources/IndexingWithCallables.pdf
29.8 kB
Sources/MoreWaysToBuildDataframes.pdf
29.8 kB
Sources/Comparators.pdf
29.4 kB
Sources/Working_With_Multiple_DataFrames.zip
28.0 kB
Sources/ViewVsCopyHowDoWeTell.pdf
27.8 kB
Sources/Appendix_A_Rapid_Fire_Python_Fundamentals.ipynb.zip
26.2 kB
Sources/BinaryOperators.pdf
25.0 kB
Sources/Duplicates.pdf
24.9 kB
Sources/Data_Formats_And_I_O.ipynb.zip
24.2 kB
Sources/mid_career_salaries.csv
23.2 kB
Sources/GroupBy_And_Aggregates.ipynb.zip
23.0 kB
Sources/WhatsInTheData.pdf
19.7 kB
11. Regex And Text Manipulation/19. Is This A Valid Email.srt
19.1 kB
13. Data Formats And IO/5. Creating Output The to_ Family Of Methods.srt
18.9 kB
Sources/ArgsVParams.pdf
18.9 kB
5. DataFrames In Depth/31. Same-shape Transforms.srt
18.6 kB
11. Regex And Text Manipulation/21. Pandas str contains(), split() And replace() With Regex.srt
17.9 kB
4. Working With DataFrames/4. BONUS - Four More Ways To Build DataFrames.srt
17.8 kB
Sources/Reshaping_With_Pivots.ipynb.zip
17.6 kB
13. Data Formats And IO/3. Reading HTML.srt
16.8 kB
5. DataFrames In Depth/32. More Flexibility With apply().srt
16.8 kB
11. Regex And Text Manipulation/16. Introduction To Regular Expressions.srt
16.7 kB
5. DataFrames In Depth/33. Element-wise Operations With applymap().srt
16.3 kB
4. Working With DataFrames/22. Part I Collecting The Units.srt
15.8 kB
7. Going MultiDimensional/7. Indexing Ranges And Slices.srt
15.2 kB
11. Regex And Text Manipulation/23. Solution.srt
15.2 kB
3. Series Methods And Handling/28. Transforming With update(), apply() And map().srt
14.9 kB
5. DataFrames In Depth/14. Sorting vs. Reordering.srt
14.8 kB
12. Visualizing Data/3. The Preliminaries Of matplotlib.srt
14.7 kB
1. Introduction/7. NumPy.srt
14.7 kB
5. DataFrames In Depth/6. BONUS - XOR and Complement Binary Ops.srt
14.7 kB
1. Introduction/4. Jupyter Notebooks.srt
14.3 kB
14. Appendix A - Rapid-Fire Python Fundamentals/25. Defining Functions.srt
14.0 kB
Sources/Series_At_Glance.zip
13.9 kB
12. Visualizing Data/4. Line Graphs.srt
13.9 kB
3. Series Methods And Handling/27. Filtering filter(), where(), And mask().srt
13.6 kB
11. Regex And Text Manipulation/18. How To Approach Regex.srt
13.6 kB
10. Handling Date And Time/21. BONUS Rolling Windows.srt
13.5 kB
6. Working With Multiple DataFrames/11. Solution.srt
13.4 kB
4. Working With DataFrames/26. Part II Merging Units With Column Names.srt
13.3 kB
5. DataFrames In Depth/19. Identifying Dupes.srt
13.2 kB
4. Working With DataFrames/21. DataFrame replace() + A Glimpse At Regex.srt
13.2 kB
7. Going MultiDimensional/20. BONUS Creating MultiLevel Columns Manually.srt
13.0 kB
11. Regex And Text Manipulation/14. BONUS Parsing Indicators With get_dummies().srt
12.9 kB
10. Handling Date And Time/2. The Python datetime Module.srt
12.8 kB
11. Regex And Text Manipulation/17. More Regex Concepts.srt
12.7 kB
12. Visualizing Data/8. Scatter Plots.srt
12.5 kB
14. Appendix A - Rapid-Fire Python Fundamentals/13. Containers III Sets.srt
12.5 kB
5. DataFrames In Depth/5. Binary Operators With Booleans.srt
12.5 kB
4. Working With DataFrames/2. What Is A DataFrame.srt
12.3 kB
12. Visualizing Data/6. Pie Plots.srt
12.3 kB
4. Working With DataFrames/24. DataFrame dropna().srt
12.2 kB
12. Visualizing Data/5. Bar Charts.srt
12.2 kB
Sources/state.csv
11.9 kB
10. Handling Date And Time/3. Parsing Dates From Text.srt
11.9 kB
5. DataFrames In Depth/4. More Approaches To Boolean Masking.srt
11.8 kB
12. Visualizing Data/7. Histograms.srt
11.7 kB
14. Appendix A - Rapid-Fire Python Fundamentals/5. Ints And Floats.srt
11.7 kB
5. DataFrames In Depth/11. 2d Indexing.srt
11.6 kB
5. DataFrames In Depth/30. Calculating Aggregates With agg().srt
11.6 kB
5. DataFrames In Depth/40. Adding Rows To DataFrames.srt
11.6 kB
14. Appendix A - Rapid-Fire Python Fundamentals/3. Variables.srt
11.4 kB
10. Handling Date And Time/19. Upsampling And Interpolation.srt
11.4 kB
Sources/regions.csv
11.2 kB
10. Handling Date And Time/20. What About asfreq().srt
11.2 kB
5. DataFrames In Depth/27. BONUS - Methods And Axes With fillna().srt
11.1 kB
11. Regex And Text Manipulation/8. String Splitting And Concatenation.srt
11.1 kB
14. Appendix A - Rapid-Fire Python Fundamentals/17. Controlling Flow if, else, And elif.srt
11.1 kB
3. Series Methods And Handling/6. Accessing And Counting NAs.srt
11.0 kB
5. DataFrames In Depth/38. View vs Copy.srt
11.0 kB
2. Series At A Glance/19. BONUS Using Callables With .loc And .iloc.srt
10.9 kB
14. Appendix A - Rapid-Fire Python Fundamentals/15. Dictionary Keys And Values.srt
10.8 kB
4. Working With DataFrames/31. BONUS - Min, Max and Idx[MinMax], And Good Foods.srt
10.7 kB
14. Appendix A - Rapid-Fire Python Fundamentals/11. List Methods And Functions.srt
10.7 kB
4. Working With DataFrames/28. Filtering in 2D.srt
10.7 kB
7. Going MultiDimensional/12. The Anatomy Of A MultiIndex Object.srt
10.7 kB
8. GroupBy And Aggregates/15. Fine-tuned Aggregates.srt
10.7 kB
6. Working With Multiple DataFrames/16. One-to-One and One-to-Many Joins.srt
10.6 kB
10. Handling Date And Time/6. Performant Datetimes With Numpy.srt
10.5 kB
3. Series Methods And Handling/2. Reading In Data With read_csv().srt
10.5 kB
14. Appendix A - Rapid-Fire Python Fundamentals/7. Strings.srt
10.5 kB
7. Going MultiDimensional/6. Indexing Hierarchical DataFrames.srt
10.5 kB
2. Series At A Glance/17. Boolean Masks And The .loc Indexer.srt
10.5 kB
7. Going MultiDimensional/11. Solution.srt
10.4 kB
12. Visualizing Data/9. Other Visualization Options.srt
10.4 kB
7. Going MultiDimensional/17. More MultiIndex Methods.srt
10.4 kB
7. Going MultiDimensional/24. Solution.srt
10.3 kB
5. DataFrames In Depth/39. Adding DataFrame Columns.srt
10.1 kB
13. Data Formats And IO/4. Reading Excel.srt
10.0 kB
14. Appendix A - Rapid-Fire Python Fundamentals/24. List Comprehensions.srt
10.0 kB
11. Regex And Text Manipulation/9. More Split Parameters.srt
10.0 kB
12. Visualizing Data/12. Solution.srt
10.0 kB
5. DataFrames In Depth/12. Fancy Indexing With lookup().srt
9.9 kB
4. Working With DataFrames/18. Solution.srt
9.9 kB
4. Working With DataFrames/14. DataFrame Extraction by Position.srt
9.9 kB
3. Series Methods And Handling/32. Solution III - Z-scores.srt
9.9 kB
Sources/folks.xlsx
9.7 kB
10. Handling Date And Time/18. Resampling Timeseries.srt
9.6 kB
8. GroupBy And Aggregates/18. GroupBy Transformations.srt
9.6 kB
6. Working With Multiple DataFrames/17. Many-to-Many Joins.srt
9.5 kB
3. Series Methods And Handling/13. Descriptive Statistics.srt
9.4 kB
10. Handling Date And Time/14. DateTimeIndex Attribute Accessors.srt
9.4 kB
3. Series Methods And Handling/22. Series Arithmetics And fill_value().srt
9.3 kB
11. Regex And Text Manipulation/15. Text Replacement.srt
9.3 kB
6. Working With Multiple DataFrames/5. Enforcing Unique Indices.srt
9.3 kB
4. Working With DataFrames/25. BONUS - dropna() With Subset.srt
9.3 kB
4. Working With DataFrames/9. BONUS - Sampling With Replacement Or Weights.srt
9.1 kB
14. Appendix A - Rapid-Fire Python Fundamentals/26. Function Arguments Positional vs Keyword.srt
9.1 kB
5. DataFrames In Depth/37. The SettingWithCopy Warning.srt
9.1 kB
4. Working With DataFrames/23. The rename() Method.srt
9.1 kB
6. Working With Multiple DataFrames/3. Concatenating DataFrames.srt
9.0 kB
13. Data Formats And IO/10. Solution.srt
9.0 kB
4. Working With DataFrames/29. DataFrame Sorting.srt
8.9 kB
6. Working With Multiple DataFrames/4. The Duplicated Index Issue.srt
8.9 kB
4. Working With DataFrames/12. Changing The Index.srt
8.9 kB
11. Regex And Text Manipulation/3. String Methods In Python.srt
8.9 kB
2. Series At A Glance/13. Extracting By Index Position.srt
8.8 kB
14. Appendix A - Rapid-Fire Python Fundamentals/10. Lists vs. Strings.srt
8.8 kB
9. Reshaping With Pivots/7. BONUS The Problem With Average Percentage.srt
8.8 kB
14. Appendix A - Rapid-Fire Python Fundamentals/4. Arithmetic And Augmented Assignment Operators.srt
8.7 kB
5. DataFrames In Depth/26. Dropping And Filling DataFrame NAs.srt
8.7 kB
8. GroupBy And Aggregates/19. BONUS - There's Also apply().srt
8.7 kB
2. Series At A Glance/7. Index And RangeIndex.srt
8.7 kB
9. Reshaping With Pivots/3. Pivoting Data.srt
8.7 kB
14. Appendix A - Rapid-Fire Python Fundamentals/8. Methods.srt
8.6 kB
5. DataFrames In Depth/7. Combining Conditions.srt
8.6 kB
6. Working With Multiple DataFrames/21. Solution.srt
8.5 kB
10. Handling Date And Time/16. Shifting Dates With pd.DateOffset.srt
8.5 kB
11. Regex And Text Manipulation/7. Strips And Whitespace.srt
8.5 kB
11. Regex And Text Manipulation/13. Masking With String Methods.srt
8.4 kB
5. DataFrames In Depth/25. Null Values In DataFrames.srt
8.4 kB
3. Series Methods And Handling/15. mode() And value_counts().srt
8.3 kB
4. Working With DataFrames/13. Extracting From DataFrames By Label.srt
8.3 kB
13. Data Formats And IO/6. BONUS Introduction To Pickling.srt
8.2 kB
5. DataFrames In Depth/29. Solution.srt
8.2 kB
2. Series At A Glance/14. Accessing Elements By Label.srt
8.1 kB
8. GroupBy And Aggregates/16. Named Aggregations.srt
8.1 kB
14. Appendix A - Rapid-Fire Python Fundamentals/21. While Loops.srt
8.1 kB
14. Appendix A - Rapid-Fire Python Fundamentals/9. Containers I Lists.srt
8.0 kB
5. DataFrames In Depth/36. Setting DataFrame Values.srt
8.0 kB
7. Going MultiDimensional/19. The Flipside unstack().srt
7.9 kB
11. Regex And Text Manipulation/6. Finding Characters And Words.srt
7.8 kB
15. Appendix B - Going Local Installation And Setup/1. Installing Anaconda And Python - Windows.srt
7.8 kB
5. DataFrames In Depth/13. Sorting By Index Or Column.srt
7.8 kB
7. Going MultiDimensional/15. Removing MultiIndex Levels.srt
7.8 kB
7. Going MultiDimensional/16. MultiIndex sort_index().srt
7.7 kB
5. DataFrames In Depth/10. Solution.srt
7.7 kB
4. Working With DataFrames/16. BONUS - The get_loc() Method.srt
7.5 kB
4. Working With DataFrames/36. Solution.srt
7.5 kB
4. Working With DataFrames/27. Part III Removing Units From Values.srt
7.5 kB
4. Working With DataFrames/20. The astype() Method.srt
7.4 kB
10. Handling Date And Time/17. BONUS Timedeltas And Absolute Time.srt
7.4 kB
14. Appendix A - Rapid-Fire Python Fundamentals/28. Importing Modules.srt
7.3 kB
4. Working With DataFrames/32. DataFrame nlargest() And nsmallest().srt
7.3 kB
5. DataFrames In Depth/43. Solution.srt
7.3 kB
7. Going MultiDimensional/18. Reshaping With stack().srt
7.2 kB
1. Introduction/5. Cloud vs Local.srt
7.2 kB
11. Regex And Text Manipulation/12. Slicing Substrings.srt
7.2 kB
9. Reshaping With Pivots/6. The pivot_table().srt
7.1 kB
4. Working With DataFrames/30. Using Series between() With DataFrames.srt
7.1 kB
14. Appendix A - Rapid-Fire Python Fundamentals/27. Lambdas.srt
7.1 kB
7. Going MultiDimensional/9. Cross Sections With xs().srt
7.0 kB
10. Handling Date And Time/15. Creating Date Ranges.srt
7.0 kB
7. Going MultiDimensional/13. Adding Another Level.srt
7.0 kB
2. Series At A Glance/4. What’s In The Data.srt
6.9 kB
6. Working With Multiple DataFrames/12. The merge() Method.srt
6.9 kB
14. Appendix A - Rapid-Fire Python Fundamentals/19. For Loops.srt
6.9 kB
10. Handling Date And Time/23. Solution.srt
6.9 kB
4. Working With DataFrames/10. BONUS - How Are Random Numbers Generated.srt
6.8 kB
14. Appendix A - Rapid-Fire Python Fundamentals/14. Containers IV Dictionaries.srt
6.8 kB
9. Reshaping With Pivots/5. What About Aggregates.srt
6.8 kB
8. GroupBy And Aggregates/14. MultiIndex Grouping.srt
6.8 kB
5. DataFrames In Depth/20. Removing Duplicates.srt
6.8 kB
8. GroupBy And Aggregates/17. The filter() Method.srt
6.8 kB
6. Working With Multiple DataFrames/2. Introducing (Five) New Datasets.srt
6.7 kB
9. Reshaping With Pivots/4. Undoing Pivots.srt
6.7 kB
2. Series At A Glance/21. Selection Recap.srt
6.7 kB
4. Working With DataFrames/34. Solution.srt
6.7 kB
4. Working With DataFrames/7. Some Cleanup Removing The Duplicated Index.srt
6.7 kB
2. Series At A Glance/23. Solution.srt
6.7 kB
3. Series Methods And Handling/16. idxmax() And idxmin().srt
6.6 kB
9. Reshaping With Pivots/13. Solution.srt
6.6 kB
14. Appendix A - Rapid-Fire Python Fundamentals/20. The range() Immutable Sequence.srt
6.6 kB
8. GroupBy And Aggregates/4. Conditional Aggregates.srt
6.6 kB
10. Handling Date And Time/9. Date Parsing And DatetimeIndex.srt
6.5 kB
6. Working With Multiple DataFrames/14. Inner vs Outer Joins.srt
6.5 kB
14. Appendix A - Rapid-Fire Python Fundamentals/6. Booleans And Comparison Operators.srt
6.5 kB
8. GroupBy And Aggregates/11. Solution.srt
6.4 kB
8. GroupBy And Aggregates/3. Simple Aggregations Review.srt
6.4 kB
2. Series At A Glance/8. Series And Index Names.srt
6.4 kB
6. Working With Multiple DataFrames/18. Merging By Index.srt
6.3 kB
8. GroupBy And Aggregates/21. Solution.srt
6.3 kB
2. Series At A Glance/12. The head() And tail() Methods.srt
6.3 kB
3. Series Methods And Handling/4. Unique Values And Series Monotonicity.srt
6.3 kB
10. Handling Date And Time/7. The Pandas Timestamp.srt
6.3 kB
5. DataFrames In Depth/35. Solution.srt
6.2 kB
7. Going MultiDimensional/2. Introducing New Data.srt
6.2 kB
13. Data Formats And IO/7. Pickles In Pandas.srt
6.1 kB
7. Going MultiDimensional/14. Shuffling Levels.srt
6.1 kB
10. Handling Date And Time/5. From Datetime To String.srt
6.1 kB
5. DataFrames In Depth/24. BONUS - A Sophisticated Alternative.srt
6.1 kB
6. Working With Multiple DataFrames/9. Concat On Different Columns.srt
6.0 kB
4. Working With DataFrames/15. Single Value Access With .at And .iat.srt
6.0 kB
14. Appendix A - Rapid-Fire Python Fundamentals/22. Break And Continue.srt
5.9 kB
3. Series Methods And Handling/24. Cumulative Operations.srt
5.9 kB
8. GroupBy And Aggregates/9. BONUS - Series groupby().srt
5.8 kB
3. Series Methods And Handling/7. BONUS Another Approach.srt
5.8 kB
2. Series At A Glance/20. Selecting With .get().srt
5.8 kB
14. Appendix A - Rapid-Fire Python Fundamentals/12. Containers II Tuples.srt
5.8 kB
10. Handling Date And Time/8. Our Dataset Brent Prices.srt
5.8 kB
3. Series Methods And Handling/17. Sorting With sort_values().srt
5.8 kB
10. Handling Date And Time/11. Indexing Dates.srt
5.7 kB
13. Data Formats And IO/2. Reading JSON.srt
5.7 kB
9. Reshaping With Pivots/9. Adding Margins.srt
5.7 kB
8. GroupBy And Aggregates/6. The groupby() Method.srt
5.7 kB
4. Working With DataFrames/3. Creating A DataFrame.srt
5.6 kB
3. Series Methods And Handling/3. Series Sizing With .size, .shape, And len().srt
5.6 kB
9. Reshaping With Pivots/2. New Data New York City SAT Scores.srt
5.5 kB
8. GroupBy And Aggregates/13. Handpicking Subgroups.srt
5.5 kB
6. Working With Multiple DataFrames/6. BONUS - Creating Multiple Indices With concat().srt
5.4 kB
5. DataFrames In Depth/8. Conditions As Variables.srt
5.4 kB
4. Working With DataFrames/5. The info() Method.srt
5.4 kB
6. Working With Multiple DataFrames/7. Column Axis Concatenation.srt
5.4 kB
5. DataFrames In Depth/23. BONUS - Another Way pop().srt
5.4 kB
1. Introduction/6. Hello, Python.srt
5.4 kB
10. Handling Date And Time/4. Even Better dateutil.srt
5.3 kB
3. Series Methods And Handling/23. BONUS Calculating Variance And Standard Deviation.srt
5.3 kB
6. Working With Multiple DataFrames/13. The left_on And right_on Params.srt
5.3 kB
3. Series Methods And Handling/12. Dropping And Filling NAs.srt
5.3 kB
7. Going MultiDimensional/3. Index And RangeIndex.srt
5.2 kB
8. GroupBy And Aggregates/5. The Split-Apply-Combine Pattern.srt
5.2 kB
5. DataFrames In Depth/41. BONUS - How Are DataFrames Stored In Memory.srt
5.2 kB
14. Appendix A - Rapid-Fire Python Fundamentals/16. Membership Operators.srt
5.2 kB
4. Working With DataFrames/11. DataFrame Axes.srt
5.1 kB
11. Regex And Text Manipulation/11. Solution.srt
5.0 kB
7. Going MultiDimensional/8. BONUS - Use With pd.IndexSlice!.srt
5.0 kB
7. Going MultiDimensional/5. MultiIndex From read_csv().srt
4.9 kB
4. Working With DataFrames/8. The sample() Method.srt
4.9 kB
13. Data Formats And IO/8. The Many Other Formats.srt
4.9 kB
2. Series At A Glance/2. What Is A Series.srt
4.9 kB
9. Reshaping With Pivots/11. Applying Multiple Functions.srt
4.9 kB
2. Series At A Glance/10. Solution.srt
4.9 kB
3. Series Methods And Handling/26. Series Iteration.srt
4.8 kB
10. Handling Date And Time/10. A Cool Shorcut read_csv() With parse_dates.srt
4.8 kB
8. GroupBy And Aggregates/8. Customizing Index To Group Mappings.srt
4.7 kB
7. Going MultiDimensional/4. Creating A MultiIndex.srt
4.7 kB
4. Working With DataFrames/6. Reading In Nutrition Data.srt
4.7 kB
5. DataFrames In Depth/2. Introducing A New Dataset.srt
4.6 kB
2. Series At A Glance/16. Using Dot Notation.srt
4.6 kB
15. Appendix B - Going Local Installation And Setup/3. Installing Anaconda And Python - Linux.srt
4.6 kB
8. GroupBy And Aggregates/7. The DataFrameGroupBy Object.srt
4.5 kB
14. Appendix A - Rapid-Fire Python Fundamentals/18. Truth Value Of Non-booleans.srt
4.5 kB
6. Working With Multiple DataFrames/15. Left vs Right Joins.srt
4.5 kB
5. DataFrames In Depth/18. Solution.srt
4.5 kB
2. Series At A Glance/18. Extracting By Position With .iloc.srt
4.5 kB
5. DataFrames In Depth/16. 15. BONUS - Please Avoid Sorting Like This.srt
4.4 kB
14. Appendix A - Rapid-Fire Python Fundamentals/23. Zipping Iterables.srt
4.4 kB
3. Series Methods And Handling/25. Pairwise Differences With diff().srt
4.4 kB
11. Regex And Text Manipulation/4. Vectorized String Operations In Pandas.srt
4.4 kB
5. DataFrames In Depth/3. Quick Review Indexing With Boolean Masks.srt
4.4 kB
11. Regex And Text Manipulation/20. BONUS What's The Point Of re.compile().srt
4.3 kB
3. Series Methods And Handling/31. Solution II - Mean, Median, And Standard Deviation.srt
4.2 kB
8. GroupBy And Aggregates/12. Iterating Through Groups.srt
4.2 kB
Sources/drinks (1).csv
4.2 kB
Sources/drinks (2).csv
4.2 kB
Sources/drinks.csv
4.2 kB
3. Series Methods And Handling/19. Sorting With sort_index().srt
4.1 kB
2. Series At A Glance/15. BONUS The add_prefix() And add_suffix() Methods.srt
4.1 kB
7. Going MultiDimensional/22. BONUS - What About Panels.srt
4.1 kB
2. Series At A Glance/6. BONUS What Is dtype('o'), Really.srt
4.1 kB
10. Handling Date And Time/13. Solution.srt
4.0 kB
12. Visualizing Data/10. BONUS Data Ink And Chartjunk.srt
4.0 kB
4. Working With DataFrames/19. More Cleanup Going Numeric.srt
4.0 kB
3. Series Methods And Handling/9. BONUS Booleans Are Literally Numbers In Python.srt
3.9 kB
8. GroupBy And Aggregates/2. New Data Game Sales.srt
3.9 kB
1. Introduction/3. Anaconda.srt
3.9 kB
11. Regex And Text Manipulation/2. Our Data Boston Marathon Runners.srt
3.8 kB
3. Series Methods And Handling/11. Solution.srt
3.8 kB
11. Regex And Text Manipulation/5. Case Operations.srt
3.7 kB
9. Reshaping With Pivots/10. MultiIndex Pivot Tables.srt
3.7 kB
2. Series At A Glance/11. Another Solution.srt
3.7 kB
12. Visualizing Data/2. The Art Of Data Visualization.srt
3.7 kB
5. DataFrames In Depth/22. BONUS - Removing Columns.srt
3.6 kB
13. Data Formats And IO/9. Skill Challenge.srt
3.6 kB
5. DataFrames In Depth/21. Removing DataFrame Rows.srt
3.5 kB
2. Series At A Glance/3. Parameters vs Arguments.srt
3.4 kB
3. Series Methods And Handling/18. nlargest() And nsmallest().srt
3.3 kB
3. Series Methods And Handling/8. The Other Side notnull() And notna().srt
3.3 kB
7. Going MultiDimensional/21. An Easier Way transpose().srt
3.3 kB
3. Series Methods And Handling/29. Skill Challenge.srt
3.3 kB
6. Working With Multiple DataFrames/19. The join() Method.srt
3.3 kB
6. Working With Multiple DataFrames/8. The append() Method A Special Case Of concat().srt
3.2 kB
5. DataFrames In Depth/1. Section Intro.srt
3.1 kB
14. Appendix A - Rapid-Fire Python Fundamentals/2. Data Types.srt
3.0 kB
9. Reshaping With Pivots/8. Replicating Pivot Tables With GroupBy.srt
3.0 kB
Sources/liberal_arts.csv
2.9 kB
3. Series Methods And Handling/5. The count() Method.srt
2.9 kB
2. Series At A Glance/9. Skill Challenge.srt
2.9 kB
5. DataFrames In Depth/15. BONUS - Another Way.srt
2.7 kB
5. DataFrames In Depth/34. Skill Challenge.srt
2.7 kB
3. Series Methods And Handling/30. Solution I - Reading Data.srt
2.6 kB
15. Appendix B - Going Local Installation And Setup/2. Installing Anaconda And Python - Mac.srt
2.6 kB
2. Series At A Glance/5. The .dtype Attribute.srt
2.6 kB
3. Series Methods And Handling/14. The describe() Method.srt
2.6 kB
3. Series Methods And Handling/21. Solution.srt
2.5 kB
1. Introduction/2. Pandas Is Not Single.srt
2.5 kB
3. Series Methods And Handling/1. Section Intro.srt
2.4 kB
4. Working With DataFrames/35. Another Skill Challenge.srt
2.4 kB
2. Series At A Glance/22. Skill Challenge.srt
2.4 kB
7. Going MultiDimensional/1. Section Intro.srt
2.4 kB
14. Appendix A - Rapid-Fire Python Fundamentals/1. Section Intro.srt
2.4 kB
4. Working With DataFrames/1. Section Intro.srt
2.3 kB
11. Regex And Text Manipulation/1. Section Intro.srt
2.3 kB
6. Working With Multiple DataFrames/10. Skill Challenge.srt
2.1 kB
12. Visualizing Data/11. Skill Challenge.srt
2.1 kB
5. DataFrames In Depth/42. Skill Challenge.srt
2.0 kB
7. Going MultiDimensional/23. Skill Challenge.srt
1.9 kB
11. Regex And Text Manipulation/22. Skill Challenge.srt
1.9 kB
5. DataFrames In Depth/28. Skill Challenge.srt
1.8 kB
1. Introduction/1. Course Structure.srt
1.8 kB
10. Handling Date And Time/22. Skill Challenge.srt
1.8 kB
4. Working With DataFrames/17. Skill Challenge.srt
1.8 kB
4. Working With DataFrames/33. Skill Challenge.srt
1.7 kB
12. Visualizing Data/1. Section Intro.srt
1.7 kB
7. Going MultiDimensional/10. Skill Challenge.srt
1.7 kB
9. Reshaping With Pivots/12. Skill Challenge.srt
1.6 kB
10. Handling Date And Time/1. Section Intro.srt
1.6 kB
9. Reshaping With Pivots/1. Section Intro.srt
1.6 kB
Sources/eng.csv
1.6 kB
8. GroupBy And Aggregates/20. Skill Challenge.srt
1.6 kB
6. Working With Multiple DataFrames/1. Section Intro.srt
1.6 kB
5. DataFrames In Depth/9. Skill Challenge.srt
1.5 kB
3. Series Methods And Handling/10. Skill Challenge.srt
1.5 kB
8. GroupBy And Aggregates/1. Section Intro.srt
1.5 kB
5. DataFrames In Depth/17. Skill Challenge.srt
1.5 kB
Sources/portfolio.zip
1.4 kB
6. Working With Multiple DataFrames/20. Skill Challenge.srt
1.4 kB
11. Regex And Text Manipulation/10. Skill Challenge.srt
1.4 kB
2. Series At A Glance/1. Section Intro.srt
1.4 kB
10. Handling Date And Time/12. Skill Challenge.srt
1.3 kB
3. Series Methods And Handling/20. Skill Challenge.srt
1.2 kB
8. GroupBy And Aggregates/10. Skill Challenge.srt
1.2 kB
13. Data Formats And IO/1. Section Intro.srt
1.1 kB
Sources/ivies.csv
548 Bytes
Sources/folks.json
244 Bytes
0. Websites you may like/[CourseClub.Me].url
122 Bytes
12. Visualizing Data/[CourseClub.Me].url
122 Bytes
5. DataFrames In Depth/[CourseClub.Me].url
122 Bytes
[CourseClub.Me].url
122 Bytes
0. Websites you may like/[GigaCourse.Com].url
49 Bytes
12. Visualizing Data/[GigaCourse.Com].url
49 Bytes
5. DataFrames In Depth/[GigaCourse.Com].url
49 Bytes
[GigaCourse.Com].url
49 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>