搜索
[GigaCourse.Com] Udemy - The Ultimate Pandas Bootcamp Advanced Python Data Analysis
磁力链接/BT种子名称
[GigaCourse.Com] Udemy - The Ultimate Pandas Bootcamp Advanced Python Data Analysis
磁力链接/BT种子简介
种子哈希:
a4c382ce4d2f6a9021f234c9b4d72b71747a9f15
文件大小:
9.63G
已经下载:
1576
次
下载速度:
极快
收录时间:
2022-02-25
最近下载:
2025-02-15
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:A4C382CE4D2F6A9021F234C9B4D72B71747A9F15
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
少女初夜
萝莉岛
最近搜索
天天都想操你
苏晴 大秀
gumroad
華女学院公認竿
女友太喜欢了
高质量外围
七濑爱丽丝
小宝合集
html
punjabi
某社区实习男优推车哥+约炮个神似港姐钟嘉欣的气质少妇
旗袍黑丝
超火反差骚母狗【倌琪】瑜伽巨乳人妻与单男群p被肏怀孕不知谁的种全套完整版
妇科讲解
jk forever
麻豆同人
umbrella academy s04 720p
secret+film
绿拍摄
wanz+684
性感小美猫
日高中出
三叉戟2-06
38
うんぱい++
pdf password
断脚哥爱乱伦+
31
陈星
momsbangteens
文件列表
13. Data Formats And IO/3. Reading HTML.mp4
108.8 MB
11. Regex And Text Manipulation/19. Is This A Valid Email.mp4
84.0 MB
11. Regex And Text Manipulation/21. Pandas str contains(), split() And replace() With Regex.mp4
80.0 MB
11. Regex And Text Manipulation/16. Introduction To Regular Expressions.mp4
78.7 MB
13. Data Formats And IO/5. Creating Output The to_ Family Of Methods.mp4
77.6 MB
4. Working With DataFrames/4. BONUS - Four More Ways To Build DataFrames.mp4
76.8 MB
11. Regex And Text Manipulation/23. Solution.mp4
75.9 MB
15. Appendix B - Going Local Installation And Setup/1. Installing Anaconda And Python - Windows.mp4
74.8 MB
3. Series Methods And Handling/28. Transforming With update(), apply() And map().mp4
73.3 MB
5. DataFrames In Depth/33. Element-wise Operations With applymap().mp4
71.8 MB
5. DataFrames In Depth/4. More Approaches To Boolean Masking.mp4
71.7 MB
5. DataFrames In Depth/31. Same-shape Transforms.mp4
70.2 MB
4. Working With DataFrames/22. Part I Collecting The Units.mp4
70.1 MB
11. Regex And Text Manipulation/14. BONUS Parsing Indicators With get_dummies().mp4
69.5 MB
5. DataFrames In Depth/14. Sorting vs. Reordering.mp4
68.4 MB
11. Regex And Text Manipulation/17. More Regex Concepts.mp4
68.3 MB
12. Visualizing Data/9. Other Visualization Options.mp4
66.7 MB
11. Regex And Text Manipulation/18. How To Approach Regex.mp4
66.6 MB
12. Visualizing Data/8. Scatter Plots.mp4
66.5 MB
4. Working With DataFrames/31. BONUS - Min, Max and Idx[MinMax], And Good Foods.mp4
66.0 MB
12. Visualizing Data/3. The Preliminaries Of matplotlib.mp4
65.9 MB
1. Introduction/7. NumPy.mp4
65.2 MB
5. DataFrames In Depth/19. Identifying Dupes.mp4
63.8 MB
6. Working With Multiple DataFrames/11. Solution.mp4
62.4 MB
5. DataFrames In Depth/32. More Flexibility With apply().mp4
62.3 MB
7. Going MultiDimensional/7. Indexing Ranges And Slices.mp4
62.0 MB
7. Going MultiDimensional/20. BONUS Creating MultiLevel Columns Manually.mp4
61.6 MB
6. Working With Multiple DataFrames/5. Enforcing Unique Indices.mp4
61.2 MB
14. Appendix A - Rapid-Fire Python Fundamentals/25. Defining Functions.mp4
60.6 MB
5. DataFrames In Depth/27. BONUS - Methods And Axes With fillna().mp4
60.2 MB
4. Working With DataFrames/26. Part II Merging Units With Column Names.mp4
60.1 MB
6. Working With Multiple DataFrames/16. One-to-One and One-to-Many Joins.mp4
59.8 MB
13. Data Formats And IO/4. Reading Excel.mp4
58.4 MB
6. Working With Multiple DataFrames/17. Many-to-Many Joins.mp4
58.3 MB
3. Series Methods And Handling/27. Filtering filter(), where(), And mask().mp4
57.7 MB
12. Visualizing Data/6. Pie Plots.mp4
57.6 MB
12. Visualizing Data/12. Solution.mp4
56.9 MB
12. Visualizing Data/4. Line Graphs.mp4
56.8 MB
14. Appendix A - Rapid-Fire Python Fundamentals/13. Containers III Sets.mp4
55.5 MB
10. Handling Date And Time/3. Parsing Dates From Text.mp4
55.4 MB
3. Series Methods And Handling/2. Reading In Data With read_csv().mp4
55.4 MB
6. Working With Multiple DataFrames/4. The Duplicated Index Issue.mp4
53.8 MB
5. DataFrames In Depth/6. BONUS - XOR and Complement Binary Ops.mp4
52.9 MB
4. Working With DataFrames/12. Changing The Index.mp4
52.8 MB
12. Visualizing Data/5. Bar Charts.mp4
52.6 MB
5. DataFrames In Depth/40. Adding Rows To DataFrames.mp4
52.3 MB
4. Working With DataFrames/29. DataFrame Sorting.mp4
51.8 MB
10. Handling Date And Time/19. Upsampling And Interpolation.mp4
51.8 MB
5. DataFrames In Depth/38. View vs Copy.mp4
51.7 MB
7. Going MultiDimensional/24. Solution.mp4
51.6 MB
5. DataFrames In Depth/26. Dropping And Filling DataFrame NAs.mp4
51.4 MB
3. Series Methods And Handling/32. Solution III - Z-scores.mp4
50.5 MB
1. Introduction/4. Jupyter Notebooks.mp4
50.3 MB
4. Working With DataFrames/14. DataFrame Extraction by Position.mp4
49.0 MB
11. Regex And Text Manipulation/8. String Splitting And Concatenation.mp4
48.6 MB
5. DataFrames In Depth/12. Fancy Indexing With lookup().mp4
48.5 MB
6. Working With Multiple DataFrames/21. Solution.mp4
48.3 MB
7. Going MultiDimensional/19. The Flipside unstack().mp4
48.2 MB
4. Working With DataFrames/2. What Is A DataFrame.mp4
48.1 MB
13. Data Formats And IO/10. Solution.mp4
48.0 MB
12. Visualizing Data/7. Histograms.mp4
48.0 MB
5. DataFrames In Depth/7. Combining Conditions.mp4
47.8 MB
4. Working With DataFrames/18. Solution.mp4
47.4 MB
5. DataFrames In Depth/13. Sorting By Index Or Column.mp4
47.2 MB
7. Going MultiDimensional/11. Solution.mp4
47.0 MB
4. Working With DataFrames/21. DataFrame replace() + A Glimpse At Regex.mp4
46.4 MB
8. GroupBy And Aggregates/15. Fine-tuned Aggregates.mp4
46.3 MB
5. DataFrames In Depth/36. Setting DataFrame Values.mp4
45.7 MB
10. Handling Date And Time/21. BONUS Rolling Windows.mp4
45.6 MB
4. Working With DataFrames/10. BONUS - How Are Random Numbers Generated.mp4
45.0 MB
14. Appendix A - Rapid-Fire Python Fundamentals/5. Ints And Floats.mp4
44.9 MB
5. DataFrames In Depth/29. Solution.mp4
44.6 MB
4. Working With DataFrames/28. Filtering in 2D.mp4
44.4 MB
4. Working With DataFrames/34. Solution.mp4
44.3 MB
5. DataFrames In Depth/25. Null Values In DataFrames.mp4
44.2 MB
6. Working With Multiple DataFrames/3. Concatenating DataFrames.mp4
44.2 MB
9. Reshaping With Pivots/3. Pivoting Data.mp4
43.9 MB
11. Regex And Text Manipulation/15. Text Replacement.mp4
43.8 MB
14. Appendix A - Rapid-Fire Python Fundamentals/17. Controlling Flow if, else, And elif.mp4
43.7 MB
8. GroupBy And Aggregates/19. BONUS - There's Also apply().mp4
43.2 MB
6. Working With Multiple DataFrames/2. Introducing (Five) New Datasets.mp4
42.6 MB
4. Working With DataFrames/9. BONUS - Sampling With Replacement Or Weights.mp4
42.4 MB
10. Handling Date And Time/2. The Python datetime Module.mp4
42.2 MB
3. Series Methods And Handling/22. Series Arithmetics And fill_value().mp4
42.2 MB
11. Regex And Text Manipulation/9. More Split Parameters.mp4
42.0 MB
4. Working With DataFrames/24. DataFrame dropna().mp4
42.0 MB
5. DataFrames In Depth/10. Solution.mp4
42.0 MB
5. DataFrames In Depth/11. 2d Indexing.mp4
42.0 MB
5. DataFrames In Depth/37. The SettingWithCopy Warning.mp4
41.7 MB
7. Going MultiDimensional/6. Indexing Hierarchical DataFrames.mp4
41.3 MB
14. Appendix A - Rapid-Fire Python Fundamentals/3. Variables.mp4
41.0 MB
8. GroupBy And Aggregates/18. GroupBy Transformations.mp4
40.7 MB
10. Handling Date And Time/18. Resampling Timeseries.mp4
40.4 MB
6. Working With Multiple DataFrames/9. Concat On Different Columns.mp4
40.1 MB
10. Handling Date And Time/14. DateTimeIndex Attribute Accessors.mp4
40.0 MB
6. Working With Multiple DataFrames/18. Merging By Index.mp4
40.0 MB
5. DataFrames In Depth/5. Binary Operators With Booleans.mp4
39.8 MB
7. Going MultiDimensional/17. More MultiIndex Methods.mp4
39.8 MB
7. Going MultiDimensional/15. Removing MultiIndex Levels.mp4
39.5 MB
2. Series At A Glance/19. BONUS Using Callables With .loc And .iloc.mp4
38.9 MB
5. DataFrames In Depth/30. Calculating Aggregates With agg().mp4
38.9 MB
11. Regex And Text Manipulation/13. Masking With String Methods.mp4
38.7 MB
4. Working With DataFrames/36. Solution.mp4
38.6 MB
3. Series Methods And Handling/6. Accessing And Counting NAs.mp4
38.6 MB
9. Reshaping With Pivots/13. Solution.mp4
38.4 MB
10. Handling Date And Time/20. What About asfreq().mp4
38.4 MB
10. Handling Date And Time/15. Creating Date Ranges.mp4
38.3 MB
8. GroupBy And Aggregates/16. Named Aggregations.mp4
38.3 MB
5. DataFrames In Depth/39. Adding DataFrame Columns.mp4
38.2 MB
14. Appendix A - Rapid-Fire Python Fundamentals/15. Dictionary Keys And Values.mp4
38.1 MB
10. Handling Date And Time/16. Shifting Dates With pd.DateOffset.mp4
38.0 MB
9. Reshaping With Pivots/7. BONUS The Problem With Average Percentage.mp4
37.9 MB
4. Working With DataFrames/13. Extracting From DataFrames By Label.mp4
37.8 MB
4. Working With DataFrames/27. Part III Removing Units From Values.mp4
37.4 MB
4. Working With DataFrames/7. Some Cleanup Removing The Duplicated Index.mp4
37.4 MB
7. Going MultiDimensional/16. MultiIndex sort_index().mp4
37.3 MB
6. Working With Multiple DataFrames/12. The merge() Method.mp4
37.1 MB
4. Working With DataFrames/32. DataFrame nlargest() And nsmallest().mp4
37.1 MB
10. Handling Date And Time/6. Performant Datetimes With Numpy.mp4
37.0 MB
4. Working With DataFrames/30. Using Series between() With DataFrames.mp4
36.7 MB
7. Going MultiDimensional/12. The Anatomy Of A MultiIndex Object.mp4
36.5 MB
9. Reshaping With Pivots/5. What About Aggregates.mp4
35.9 MB
14. Appendix A - Rapid-Fire Python Fundamentals/28. Importing Modules.mp4
35.8 MB
3. Series Methods And Handling/13. Descriptive Statistics.mp4
35.3 MB
9. Reshaping With Pivots/6. The pivot_table().mp4
35.3 MB
7. Going MultiDimensional/13. Adding Another Level.mp4
35.2 MB
5. DataFrames In Depth/24. BONUS - A Sophisticated Alternative.mp4
34.8 MB
2. Series At A Glance/7. Index And RangeIndex.mp4
34.8 MB
7. Going MultiDimensional/9. Cross Sections With xs().mp4
34.8 MB
14. Appendix A - Rapid-Fire Python Fundamentals/11. List Methods And Functions.mp4
34.6 MB
1. Introduction/6. Hello, Python.mp4
34.4 MB
12. Visualizing Data/10. BONUS Data Ink And Chartjunk.mp4
33.9 MB
6. Working With Multiple DataFrames/13. The left_on And right_on Params.mp4
33.8 MB
14. Appendix A - Rapid-Fire Python Fundamentals/7. Strings.mp4
33.7 MB
5. DataFrames In Depth/43. Solution.mp4
33.5 MB
14. Appendix A - Rapid-Fire Python Fundamentals/24. List Comprehensions.mp4
33.3 MB
3. Series Methods And Handling/15. mode() And value_counts().mp4
33.3 MB
11. Regex And Text Manipulation/7. Strips And Whitespace.mp4
33.3 MB
13. Data Formats And IO/6. BONUS Introduction To Pickling.mp4
33.3 MB
15. Appendix B - Going Local Installation And Setup/3. Installing Anaconda And Python - Linux.mp4
32.5 MB
7. Going MultiDimensional/18. Reshaping With stack().mp4
32.1 MB
2. Series At A Glance/20. Selecting With .get().mp4
32.0 MB
14. Appendix A - Rapid-Fire Python Fundamentals/26. Function Arguments Positional vs Keyword.mp4
31.9 MB
5. DataFrames In Depth/20. Removing Duplicates.mp4
31.3 MB
14. Appendix A - Rapid-Fire Python Fundamentals/9. Containers I Lists.mp4
30.9 MB
2. Series At A Glance/17. Boolean Masks And The .loc Indexer.mp4
30.9 MB
10. Handling Date And Time/8. Our Dataset Brent Prices.mp4
30.9 MB
4. Working With DataFrames/25. BONUS - dropna() With Subset.mp4
30.7 MB
14. Appendix A - Rapid-Fire Python Fundamentals/21. While Loops.mp4
30.7 MB
2. Series At A Glance/13. Extracting By Index Position.mp4
30.5 MB
8. GroupBy And Aggregates/3. Simple Aggregations Review.mp4
30.4 MB
11. Regex And Text Manipulation/3. String Methods In Python.mp4
30.2 MB
6. Working With Multiple DataFrames/6. BONUS - Creating Multiple Indices With concat().mp4
29.8 MB
10. Handling Date And Time/17. BONUS Timedeltas And Absolute Time.mp4
29.7 MB
2. Series At A Glance/21. Selection Recap.mp4
29.6 MB
13. Data Formats And IO/8. The Many Other Formats.mp4
29.3 MB
9. Reshaping With Pivots/4. Undoing Pivots.mp4
29.2 MB
7. Going MultiDimensional/22. BONUS - What About Panels.mp4
29.2 MB
7. Going MultiDimensional/5. MultiIndex From read_csv().mp4
29.0 MB
8. GroupBy And Aggregates/11. Solution.mp4
28.9 MB
4. Working With DataFrames/23. The rename() Method.mp4
28.9 MB
14. Appendix A - Rapid-Fire Python Fundamentals/10. Lists vs. Strings.mp4
28.9 MB
14. Appendix A - Rapid-Fire Python Fundamentals/4. Arithmetic And Augmented Assignment Operators.mp4
28.8 MB
4. Working With DataFrames/6. Reading In Nutrition Data.mp4
28.6 MB
6. Working With Multiple DataFrames/14. Inner vs Outer Joins.mp4
28.4 MB
6. Working With Multiple DataFrames/7. Column Axis Concatenation.mp4
28.4 MB
2. Series At A Glance/14. Accessing Elements By Label.mp4
28.4 MB
7. Going MultiDimensional/3. Index And RangeIndex.mp4
28.2 MB
9. Reshaping With Pivots/2. New Data New York City SAT Scores.mp4
28.1 MB
10. Handling Date And Time/11. Indexing Dates.mp4
27.9 MB
8. GroupBy And Aggregates/14. MultiIndex Grouping.mp4
27.8 MB
1. Introduction/5. Cloud vs Local.mp4
27.8 MB
5. DataFrames In Depth/35. Solution.mp4
27.8 MB
7. Going MultiDimensional/1. Section Intro.mp4
27.7 MB
4. Working With DataFrames/15. Single Value Access With .at And .iat.mp4
27.6 MB
8. GroupBy And Aggregates/17. The filter() Method.mp4
27.4 MB
5. DataFrames In Depth/18. Solution.mp4
27.0 MB
11. Regex And Text Manipulation/6. Finding Characters And Words.mp4
27.0 MB
14. Appendix A - Rapid-Fire Python Fundamentals/8. Methods.mp4
26.6 MB
4. Working With DataFrames/20. The astype() Method.mp4
26.4 MB
4. Working With DataFrames/16. BONUS - The get_loc() Method.mp4
26.3 MB
9. Reshaping With Pivots/9. Adding Margins.mp4
25.8 MB
10. Handling Date And Time/9. Date Parsing And DatetimeIndex.mp4
25.7 MB
8. GroupBy And Aggregates/21. Solution.mp4
25.7 MB
8. GroupBy And Aggregates/4. Conditional Aggregates.mp4
25.7 MB
7. Going MultiDimensional/14. Shuffling Levels.mp4
25.5 MB
11. Regex And Text Manipulation/12. Slicing Substrings.mp4
25.4 MB
10. Handling Date And Time/7. The Pandas Timestamp.mp4
25.2 MB
10. Handling Date And Time/4. Even Better dateutil.mp4
25.0 MB
9. Reshaping With Pivots/1. Section Intro.mp4
25.0 MB
14. Appendix A - Rapid-Fire Python Fundamentals/20. The range() Immutable Sequence.mp4
24.9 MB
8. GroupBy And Aggregates/13. Handpicking Subgroups.mp4
24.8 MB
11. Regex And Text Manipulation/2. Our Data Boston Marathon Runners.mp4
24.7 MB
2. Series At A Glance/23. Solution.mp4
24.5 MB
5. DataFrames In Depth/3. Quick Review Indexing With Boolean Masks.mp4
24.5 MB
4. Working With DataFrames/11. DataFrame Axes.mp4
24.4 MB
3. Series Methods And Handling/3. Series Sizing With .size, .shape, And len().mp4
24.4 MB
14. Appendix A - Rapid-Fire Python Fundamentals/27. Lambdas.mp4
24.3 MB
2. Series At A Glance/12. The head() And tail() Methods.mp4
24.1 MB
13. Data Formats And IO/7. Pickles In Pandas.mp4
24.0 MB
10. Handling Date And Time/23. Solution.mp4
24.0 MB
2. Series At A Glance/10. Solution.mp4
24.0 MB
6. Working With Multiple DataFrames/19. The join() Method.mp4
24.0 MB
14. Appendix A - Rapid-Fire Python Fundamentals/14. Containers IV Dictionaries.mp4
23.8 MB
4. Working With DataFrames/8. The sample() Method.mp4
23.7 MB
8. GroupBy And Aggregates/5. The Split-Apply-Combine Pattern.mp4
23.6 MB
4. Working With DataFrames/3. Creating A DataFrame.mp4
23.5 MB
10. Handling Date And Time/5. From Datetime To String.mp4
23.5 MB
10. Handling Date And Time/1. Section Intro.mp4
23.4 MB
7. Going MultiDimensional/2. Introducing New Data.mp4
23.2 MB
3. Series Methods And Handling/16. idxmax() And idxmin().mp4
23.1 MB
11. Regex And Text Manipulation/11. Solution.mp4
23.0 MB
14. Appendix A - Rapid-Fire Python Fundamentals/6. Booleans And Comparison Operators.mp4
22.9 MB
5. DataFrames In Depth/41. BONUS - How Are DataFrames Stored In Memory.mp4
22.8 MB
8. GroupBy And Aggregates/6. The groupby() Method.mp4
22.6 MB
3. Series Methods And Handling/12. Dropping And Filling NAs.mp4
22.6 MB
3. Series Methods And Handling/7. BONUS Another Approach.mp4
22.4 MB
5. DataFrames In Depth/1. Section Intro.mp4
22.2 MB
8. GroupBy And Aggregates/12. Iterating Through Groups.mp4
22.1 MB
8. GroupBy And Aggregates/9. BONUS - Series groupby().mp4
21.8 MB
1. Introduction/3. Anaconda.mp4
21.7 MB
14. Appendix A - Rapid-Fire Python Fundamentals/19. For Loops.mp4
21.6 MB
8. GroupBy And Aggregates/8. Customizing Index To Group Mappings.mp4
21.5 MB
3. Series Methods And Handling/31. Solution II - Mean, Median, And Standard Deviation.mp4
21.5 MB
2. Series At A Glance/4. What’s In The Data.mp4
21.4 MB
6. Working With Multiple DataFrames/15. Left vs Right Joins.mp4
21.3 MB
7. Going MultiDimensional/4. Creating A MultiIndex.mp4
21.1 MB
14. Appendix A - Rapid-Fire Python Fundamentals/12. Containers II Tuples.mp4
21.0 MB
5. DataFrames In Depth/8. Conditions As Variables.mp4
20.9 MB
8. GroupBy And Aggregates/7. The DataFrameGroupBy Object.mp4
20.8 MB
5. DataFrames In Depth/21. Removing DataFrame Rows.mp4
20.7 MB
13. Data Formats And IO/2. Reading JSON.mp4
20.7 MB
3. Series Methods And Handling/17. Sorting With sort_values().mp4
20.6 MB
14. Appendix A - Rapid-Fire Python Fundamentals/16. Membership Operators.mp4
20.2 MB
14. Appendix A - Rapid-Fire Python Fundamentals/22. Break And Continue.mp4
20.1 MB
2. Series At A Glance/8. Series And Index Names.mp4
20.1 MB
5. DataFrames In Depth/23. BONUS - Another Way pop().mp4
20.0 MB
9. Reshaping With Pivots/10. MultiIndex Pivot Tables.mp4
20.0 MB
4. Working With DataFrames/5. The info() Method.mp4
20.0 MB
4. Working With DataFrames/19. More Cleanup Going Numeric.mp4
19.5 MB
7. Going MultiDimensional/21. An Easier Way transpose().mp4
19.5 MB
11. Regex And Text Manipulation/4. Vectorized String Operations In Pandas.mp4
19.3 MB
9. Reshaping With Pivots/11. Applying Multiple Functions.mp4
19.2 MB
11. Regex And Text Manipulation/20. BONUS What's The Point Of re.compile().mp4
19.2 MB
5. DataFrames In Depth/2. Introducing A New Dataset.mp4
19.2 MB
3. Series Methods And Handling/24. Cumulative Operations.mp4
18.8 MB
1. Introduction/2. Pandas Is Not Single.mp4
18.7 MB
3. Series Methods And Handling/4. Unique Values And Series Monotonicity.mp4
18.7 MB
10. Handling Date And Time/10. A Cool Shorcut read_csv() With parse_dates.mp4
18.5 MB
3. Series Methods And Handling/23. BONUS Calculating Variance And Standard Deviation.mp4
18.2 MB
14. Appendix A - Rapid-Fire Python Fundamentals/23. Zipping Iterables.mp4
18.0 MB
15. Appendix B - Going Local Installation And Setup/2. Installing Anaconda And Python - Mac.mp4
18.0 MB
10. Handling Date And Time/13. Solution.mp4
17.9 MB
8. GroupBy And Aggregates/1. Section Intro.mp4
17.9 MB
5. DataFrames In Depth/16. 15. BONUS - Please Avoid Sorting Like This.mp4
17.9 MB
7. Going MultiDimensional/8. BONUS - Use With pd.IndexSlice!.mp4
17.8 MB
11. Regex And Text Manipulation/1. Section Intro.mp4
17.5 MB
2. Series At A Glance/15. BONUS The add_prefix() And add_suffix() Methods.mp4
17.3 MB
5. DataFrames In Depth/22. BONUS - Removing Columns.mp4
17.0 MB
3. Series Methods And Handling/26. Series Iteration.mp4
16.9 MB
14. Appendix A - Rapid-Fire Python Fundamentals/18. Truth Value Of Non-booleans.mp4
16.7 MB
3. Series Methods And Handling/19. Sorting With sort_index().mp4
16.0 MB
8. GroupBy And Aggregates/2. New Data Game Sales.mp4
15.6 MB
3. Series Methods And Handling/30. Solution I - Reading Data.mp4
15.3 MB
6. Working With Multiple DataFrames/8. The append() Method A Special Case Of concat().mp4
15.2 MB
1. Introduction/1. Course Structure.mp4
14.7 MB
11. Regex And Text Manipulation/5. Case Operations.mp4
14.7 MB
3. Series Methods And Handling/11. Solution.mp4
14.1 MB
2. Series At A Glance/16. Using Dot Notation.mp4
13.9 MB
12. Visualizing Data/2. The Art Of Data Visualization.mp4
13.6 MB
5. DataFrames In Depth/15. BONUS - Another Way.mp4
13.6 MB
3. Series Methods And Handling/1. Section Intro.mp4
13.6 MB
3. Series Methods And Handling/25. Pairwise Differences With diff().mp4
13.4 MB
2. Series At A Glance/2. What Is A Series.mp4
13.1 MB
9. Reshaping With Pivots/8. Replicating Pivot Tables With GroupBy.mp4
13.1 MB
3. Series Methods And Handling/18. nlargest() And nsmallest().mp4
12.8 MB
13. Data Formats And IO/9. Skill Challenge.mp4
12.3 MB
3. Series Methods And Handling/9. BONUS Booleans Are Literally Numbers In Python.mp4
12.2 MB
2. Series At A Glance/18. Extracting By Position With .iloc.mp4
12.2 MB
2. Series At A Glance/11. Another Solution.mp4
11.8 MB
3. Series Methods And Handling/8. The Other Side notnull() And notna().mp4
11.6 MB
4. Working With DataFrames/1. Section Intro.mp4
11.3 MB
12. Visualizing Data/1. Section Intro.mp4
10.8 MB
3. Series Methods And Handling/29. Skill Challenge.mp4
10.7 MB
14. Appendix A - Rapid-Fire Python Fundamentals/2. Data Types.mp4
10.7 MB
2. Series At A Glance/6. BONUS What Is dtype('o'), Really.mp4
10.6 MB
3. Series Methods And Handling/21. Solution.mp4
10.4 MB
3. Series Methods And Handling/14. The describe() Method.mp4
10.2 MB
14. Appendix A - Rapid-Fire Python Fundamentals/1. Section Intro.mp4
9.3 MB
5. DataFrames In Depth/34. Skill Challenge.mp4
9.2 MB
2. Series At A Glance/3. Parameters vs Arguments.mp4
8.5 MB
7. Going MultiDimensional/23. Skill Challenge.mp4
8.4 MB
6. Working With Multiple DataFrames/1. Section Intro.mp4
8.3 MB
2. Series At A Glance/9. Skill Challenge.mp4
8.1 MB
12. Visualizing Data/11. Skill Challenge.mp4
7.9 MB
2. Series At A Glance/1. Section Intro.mp4
7.3 MB
4. Working With DataFrames/35. Another Skill Challenge.mp4
7.1 MB
2. Series At A Glance/22. Skill Challenge.mp4
6.7 MB
2. Series At A Glance/5. The .dtype Attribute.mp4
6.7 MB
3. Series Methods And Handling/5. The count() Method.mp4
6.3 MB
6. Working With Multiple DataFrames/10. Skill Challenge.mp4
6.3 MB
9. Reshaping With Pivots/12. Skill Challenge.mp4
5.7 MB
11. Regex And Text Manipulation/22. Skill Challenge.mp4
5.7 MB
5. DataFrames In Depth/28. Skill Challenge.mp4
5.6 MB
13. Data Formats And IO/1. Section Intro.mp4
5.5 MB
5. DataFrames In Depth/42. Skill Challenge.mp4
5.3 MB
10. Handling Date And Time/22. Skill Challenge.mp4
4.9 MB
5. DataFrames In Depth/17. Skill Challenge.mp4
4.7 MB
Sources/nutrition.csv
4.6 MB
4. Working With DataFrames/33. Skill Challenge.mp4
4.5 MB
4. Working With DataFrames/17. Skill Challenge.mp4
4.3 MB
8. GroupBy And Aggregates/20. Skill Challenge.mp4
4.3 MB
3. Series Methods And Handling/10. Skill Challenge.mp4
4.2 MB
5. DataFrames In Depth/9. Skill Challenge.mp4
4.2 MB
6. Working With Multiple DataFrames/20. Skill Challenge.mp4
4.0 MB
10. Handling Date And Time/12. Skill Challenge.mp4
4.0 MB
7. Going MultiDimensional/10. Skill Challenge.mp4
4.0 MB
11. Regex And Text Manipulation/10. Skill Challenge.mp4
3.4 MB
8. GroupBy And Aggregates/10. Skill Challenge.mp4
3.4 MB
3. Series Methods And Handling/20. Skill Challenge.mp4
3.3 MB
Sources/Visualizing_Data.ipynb.zip
512.8 kB
Sources/tech_giants (1).csv
478.4 kB
Sources/tech_giants.csv
478.4 kB
Sources/MemoryLayout.pdf
252.2 kB
Sources/games_sales (1).csv
242.6 kB
Sources/games_sales (2).csv
242.6 kB
Sources/games_sales.csv
242.6 kB
Sources/Vectorization.pdf
118.1 kB
Sources/SplitApplyCombine.pdf
117.5 kB
Sources/SelectionRecap.pdf
114.0 kB
Sources/WhatIsDtype.pdf
113.6 kB
Sources/MultiIndexInternals.pdf
113.4 kB
Sources/Working_With_DataFrames.zip
108.0 kB
Sources/Handling_Time_And_Date.ipynb.zip
107.2 kB
Sources/BrentOilPrices (1).csv
80.7 kB
Sources/BrentOilPrices.csv
80.7 kB
Sources/WhatIsASeries.pdf
76.6 kB
Sources/scores (1).csv
76.5 kB
Sources/scores.csv
76.5 kB
Sources/SelectionTerminology.pdf
68.3 kB
Sources/3KeyConcepts.pdf
64.5 kB
Sources/ConcatVsMerge.pdf
64.2 kB
Sources/WhatIsCSV.pdf
64.1 kB
Sources/TwosComplement.pdf
61.9 kB
Sources/DataFrames_In_Depth.zip
60.9 kB
Sources/DropnaWithSubset.pdf
60.2 kB
Sources/2017BostonMarathonTop1000 (1).csv
58.9 kB
Sources/2017BostonMarathonTop1000.csv
58.9 kB
Sources/DroppingAndFillingNA.pdf
57.9 kB
Sources/ViewVsCopy.pdf
54.6 kB
Sources/Lookup.pdf
50.9 kB
Sources/AppendVsConcat.pdf
50.6 kB
Sources/Transforms.pdf
48.5 kB
Sources/SortValueOrIndex.pdf
45.3 kB
Sources/BooleanMasks.pdf
45.0 kB
Sources/InnerVsOuter.pdf
44.8 kB
Sources/SeriesAtGlance.pdf
44.0 kB
Sources/Diff.pdf
43.5 kB
Sources/SizeAndShape.pdf
43.3 kB
Sources/SeriesAccounting.pdf
43.0 kB
Sources/Going_MultiDimensional.zip
42.9 kB
Sources/SeqVsVectorizedOperations.pdf
42.5 kB
Sources/LeftVsRight.pdf
41.8 kB
Sources/IdxminIdxmax.pdf
41.1 kB
Sources/Variance.pdf
38.9 kB
Sources/RangeVSInt64Index.pdf
38.7 kB
Sources/BoolsAsInts.pdf
38.4 kB
Sources/ValueCounts.pdf
36.8 kB
Sources/JoinCardinalities.pdf
36.2 kB
Sources/soccer.csv
34.5 kB
Sources/OurProcess.pdf
33.4 kB
Sources/Median.pdf
33.3 kB
Sources/MethodsVAttribtues.pdf
33.2 kB
Sources/Series_Methods_And_Handling.zip
32.6 kB
Sources/AtAndIat.pdf
31.3 kB
Sources/Regex_And_Text_Manipulation.ipynb.zip
30.5 kB
Sources/IndexingWithCallables.pdf
29.8 kB
Sources/MoreWaysToBuildDataframes.pdf
29.8 kB
Sources/Comparators.pdf
29.4 kB
Sources/Working_With_Multiple_DataFrames.zip
28.0 kB
Sources/ViewVsCopyHowDoWeTell.pdf
27.8 kB
Sources/Appendix_A_Rapid_Fire_Python_Fundamentals.ipynb.zip
26.2 kB
Sources/BinaryOperators.pdf
25.0 kB
Sources/Duplicates.pdf
24.9 kB
Sources/Data_Formats_And_I_O.ipynb.zip
24.2 kB
Sources/mid_career_salaries.csv
23.2 kB
Sources/GroupBy_And_Aggregates.ipynb.zip
23.0 kB
Sources/WhatsInTheData.pdf
19.7 kB
11. Regex And Text Manipulation/19. Is This A Valid Email.srt
19.1 kB
13. Data Formats And IO/5. Creating Output The to_ Family Of Methods.srt
18.9 kB
Sources/ArgsVParams.pdf
18.9 kB
5. DataFrames In Depth/31. Same-shape Transforms.srt
18.6 kB
11. Regex And Text Manipulation/21. Pandas str contains(), split() And replace() With Regex.srt
17.9 kB
4. Working With DataFrames/4. BONUS - Four More Ways To Build DataFrames.srt
17.8 kB
Sources/Reshaping_With_Pivots.ipynb.zip
17.6 kB
13. Data Formats And IO/3. Reading HTML.srt
16.8 kB
5. DataFrames In Depth/32. More Flexibility With apply().srt
16.8 kB
11. Regex And Text Manipulation/16. Introduction To Regular Expressions.srt
16.7 kB
5. DataFrames In Depth/33. Element-wise Operations With applymap().srt
16.3 kB
4. Working With DataFrames/22. Part I Collecting The Units.srt
15.8 kB
7. Going MultiDimensional/7. Indexing Ranges And Slices.srt
15.2 kB
11. Regex And Text Manipulation/23. Solution.srt
15.2 kB
3. Series Methods And Handling/28. Transforming With update(), apply() And map().srt
14.9 kB
5. DataFrames In Depth/14. Sorting vs. Reordering.srt
14.8 kB
12. Visualizing Data/3. The Preliminaries Of matplotlib.srt
14.7 kB
1. Introduction/7. NumPy.srt
14.7 kB
5. DataFrames In Depth/6. BONUS - XOR and Complement Binary Ops.srt
14.7 kB
1. Introduction/4. Jupyter Notebooks.srt
14.3 kB
14. Appendix A - Rapid-Fire Python Fundamentals/25. Defining Functions.srt
14.0 kB
Sources/Series_At_Glance.zip
13.9 kB
12. Visualizing Data/4. Line Graphs.srt
13.9 kB
3. Series Methods And Handling/27. Filtering filter(), where(), And mask().srt
13.6 kB
11. Regex And Text Manipulation/18. How To Approach Regex.srt
13.6 kB
10. Handling Date And Time/21. BONUS Rolling Windows.srt
13.5 kB
6. Working With Multiple DataFrames/11. Solution.srt
13.4 kB
4. Working With DataFrames/26. Part II Merging Units With Column Names.srt
13.3 kB
5. DataFrames In Depth/19. Identifying Dupes.srt
13.2 kB
4. Working With DataFrames/21. DataFrame replace() + A Glimpse At Regex.srt
13.2 kB
7. Going MultiDimensional/20. BONUS Creating MultiLevel Columns Manually.srt
13.0 kB
11. Regex And Text Manipulation/14. BONUS Parsing Indicators With get_dummies().srt
12.9 kB
10. Handling Date And Time/2. The Python datetime Module.srt
12.8 kB
11. Regex And Text Manipulation/17. More Regex Concepts.srt
12.7 kB
12. Visualizing Data/8. Scatter Plots.srt
12.5 kB
14. Appendix A - Rapid-Fire Python Fundamentals/13. Containers III Sets.srt
12.5 kB
5. DataFrames In Depth/5. Binary Operators With Booleans.srt
12.5 kB
4. Working With DataFrames/2. What Is A DataFrame.srt
12.3 kB
12. Visualizing Data/6. Pie Plots.srt
12.3 kB
4. Working With DataFrames/24. DataFrame dropna().srt
12.2 kB
12. Visualizing Data/5. Bar Charts.srt
12.2 kB
Sources/state.csv
11.9 kB
10. Handling Date And Time/3. Parsing Dates From Text.srt
11.9 kB
5. DataFrames In Depth/4. More Approaches To Boolean Masking.srt
11.8 kB
12. Visualizing Data/7. Histograms.srt
11.7 kB
14. Appendix A - Rapid-Fire Python Fundamentals/5. Ints And Floats.srt
11.7 kB
5. DataFrames In Depth/11. 2d Indexing.srt
11.6 kB
5. DataFrames In Depth/30. Calculating Aggregates With agg().srt
11.6 kB
5. DataFrames In Depth/40. Adding Rows To DataFrames.srt
11.6 kB
14. Appendix A - Rapid-Fire Python Fundamentals/3. Variables.srt
11.4 kB
10. Handling Date And Time/19. Upsampling And Interpolation.srt
11.4 kB
Sources/regions.csv
11.2 kB
10. Handling Date And Time/20. What About asfreq().srt
11.2 kB
5. DataFrames In Depth/27. BONUS - Methods And Axes With fillna().srt
11.1 kB
11. Regex And Text Manipulation/8. String Splitting And Concatenation.srt
11.1 kB
14. Appendix A - Rapid-Fire Python Fundamentals/17. Controlling Flow if, else, And elif.srt
11.1 kB
3. Series Methods And Handling/6. Accessing And Counting NAs.srt
11.0 kB
5. DataFrames In Depth/38. View vs Copy.srt
11.0 kB
2. Series At A Glance/19. BONUS Using Callables With .loc And .iloc.srt
10.9 kB
14. Appendix A - Rapid-Fire Python Fundamentals/15. Dictionary Keys And Values.srt
10.8 kB
4. Working With DataFrames/31. BONUS - Min, Max and Idx[MinMax], And Good Foods.srt
10.7 kB
14. Appendix A - Rapid-Fire Python Fundamentals/11. List Methods And Functions.srt
10.7 kB
4. Working With DataFrames/28. Filtering in 2D.srt
10.7 kB
7. Going MultiDimensional/12. The Anatomy Of A MultiIndex Object.srt
10.7 kB
8. GroupBy And Aggregates/15. Fine-tuned Aggregates.srt
10.7 kB
6. Working With Multiple DataFrames/16. One-to-One and One-to-Many Joins.srt
10.6 kB
10. Handling Date And Time/6. Performant Datetimes With Numpy.srt
10.5 kB
3. Series Methods And Handling/2. Reading In Data With read_csv().srt
10.5 kB
14. Appendix A - Rapid-Fire Python Fundamentals/7. Strings.srt
10.5 kB
7. Going MultiDimensional/6. Indexing Hierarchical DataFrames.srt
10.5 kB
2. Series At A Glance/17. Boolean Masks And The .loc Indexer.srt
10.5 kB
7. Going MultiDimensional/11. Solution.srt
10.4 kB
12. Visualizing Data/9. Other Visualization Options.srt
10.4 kB
7. Going MultiDimensional/17. More MultiIndex Methods.srt
10.4 kB
7. Going MultiDimensional/24. Solution.srt
10.3 kB
5. DataFrames In Depth/39. Adding DataFrame Columns.srt
10.1 kB
13. Data Formats And IO/4. Reading Excel.srt
10.0 kB
14. Appendix A - Rapid-Fire Python Fundamentals/24. List Comprehensions.srt
10.0 kB
11. Regex And Text Manipulation/9. More Split Parameters.srt
10.0 kB
12. Visualizing Data/12. Solution.srt
10.0 kB
5. DataFrames In Depth/12. Fancy Indexing With lookup().srt
9.9 kB
4. Working With DataFrames/18. Solution.srt
9.9 kB
4. Working With DataFrames/14. DataFrame Extraction by Position.srt
9.9 kB
3. Series Methods And Handling/32. Solution III - Z-scores.srt
9.9 kB
Sources/folks.xlsx
9.7 kB
10. Handling Date And Time/18. Resampling Timeseries.srt
9.6 kB
8. GroupBy And Aggregates/18. GroupBy Transformations.srt
9.6 kB
6. Working With Multiple DataFrames/17. Many-to-Many Joins.srt
9.5 kB
3. Series Methods And Handling/13. Descriptive Statistics.srt
9.4 kB
10. Handling Date And Time/14. DateTimeIndex Attribute Accessors.srt
9.4 kB
3. Series Methods And Handling/22. Series Arithmetics And fill_value().srt
9.3 kB
11. Regex And Text Manipulation/15. Text Replacement.srt
9.3 kB
6. Working With Multiple DataFrames/5. Enforcing Unique Indices.srt
9.3 kB
4. Working With DataFrames/25. BONUS - dropna() With Subset.srt
9.3 kB
4. Working With DataFrames/9. BONUS - Sampling With Replacement Or Weights.srt
9.1 kB
14. Appendix A - Rapid-Fire Python Fundamentals/26. Function Arguments Positional vs Keyword.srt
9.1 kB
5. DataFrames In Depth/37. The SettingWithCopy Warning.srt
9.1 kB
4. Working With DataFrames/23. The rename() Method.srt
9.1 kB
6. Working With Multiple DataFrames/3. Concatenating DataFrames.srt
9.0 kB
13. Data Formats And IO/10. Solution.srt
9.0 kB
4. Working With DataFrames/29. DataFrame Sorting.srt
8.9 kB
6. Working With Multiple DataFrames/4. The Duplicated Index Issue.srt
8.9 kB
4. Working With DataFrames/12. Changing The Index.srt
8.9 kB
11. Regex And Text Manipulation/3. String Methods In Python.srt
8.9 kB
2. Series At A Glance/13. Extracting By Index Position.srt
8.8 kB
14. Appendix A - Rapid-Fire Python Fundamentals/10. Lists vs. Strings.srt
8.8 kB
9. Reshaping With Pivots/7. BONUS The Problem With Average Percentage.srt
8.8 kB
14. Appendix A - Rapid-Fire Python Fundamentals/4. Arithmetic And Augmented Assignment Operators.srt
8.7 kB
5. DataFrames In Depth/26. Dropping And Filling DataFrame NAs.srt
8.7 kB
8. GroupBy And Aggregates/19. BONUS - There's Also apply().srt
8.7 kB
2. Series At A Glance/7. Index And RangeIndex.srt
8.7 kB
9. Reshaping With Pivots/3. Pivoting Data.srt
8.7 kB
14. Appendix A - Rapid-Fire Python Fundamentals/8. Methods.srt
8.6 kB
5. DataFrames In Depth/7. Combining Conditions.srt
8.6 kB
6. Working With Multiple DataFrames/21. Solution.srt
8.5 kB
10. Handling Date And Time/16. Shifting Dates With pd.DateOffset.srt
8.5 kB
11. Regex And Text Manipulation/7. Strips And Whitespace.srt
8.5 kB
11. Regex And Text Manipulation/13. Masking With String Methods.srt
8.4 kB
5. DataFrames In Depth/25. Null Values In DataFrames.srt
8.4 kB
3. Series Methods And Handling/15. mode() And value_counts().srt
8.3 kB
4. Working With DataFrames/13. Extracting From DataFrames By Label.srt
8.3 kB
13. Data Formats And IO/6. BONUS Introduction To Pickling.srt
8.2 kB
5. DataFrames In Depth/29. Solution.srt
8.2 kB
2. Series At A Glance/14. Accessing Elements By Label.srt
8.1 kB
8. GroupBy And Aggregates/16. Named Aggregations.srt
8.1 kB
14. Appendix A - Rapid-Fire Python Fundamentals/21. While Loops.srt
8.1 kB
14. Appendix A - Rapid-Fire Python Fundamentals/9. Containers I Lists.srt
8.0 kB
5. DataFrames In Depth/36. Setting DataFrame Values.srt
8.0 kB
7. Going MultiDimensional/19. The Flipside unstack().srt
7.9 kB
11. Regex And Text Manipulation/6. Finding Characters And Words.srt
7.8 kB
15. Appendix B - Going Local Installation And Setup/1. Installing Anaconda And Python - Windows.srt
7.8 kB
5. DataFrames In Depth/13. Sorting By Index Or Column.srt
7.8 kB
7. Going MultiDimensional/15. Removing MultiIndex Levels.srt
7.8 kB
7. Going MultiDimensional/16. MultiIndex sort_index().srt
7.7 kB
5. DataFrames In Depth/10. Solution.srt
7.7 kB
4. Working With DataFrames/16. BONUS - The get_loc() Method.srt
7.5 kB
4. Working With DataFrames/36. Solution.srt
7.5 kB
4. Working With DataFrames/27. Part III Removing Units From Values.srt
7.5 kB
4. Working With DataFrames/20. The astype() Method.srt
7.4 kB
10. Handling Date And Time/17. BONUS Timedeltas And Absolute Time.srt
7.4 kB
14. Appendix A - Rapid-Fire Python Fundamentals/28. Importing Modules.srt
7.3 kB
4. Working With DataFrames/32. DataFrame nlargest() And nsmallest().srt
7.3 kB
5. DataFrames In Depth/43. Solution.srt
7.3 kB
7. Going MultiDimensional/18. Reshaping With stack().srt
7.2 kB
1. Introduction/5. Cloud vs Local.srt
7.2 kB
11. Regex And Text Manipulation/12. Slicing Substrings.srt
7.2 kB
9. Reshaping With Pivots/6. The pivot_table().srt
7.1 kB
4. Working With DataFrames/30. Using Series between() With DataFrames.srt
7.1 kB
14. Appendix A - Rapid-Fire Python Fundamentals/27. Lambdas.srt
7.1 kB
7. Going MultiDimensional/9. Cross Sections With xs().srt
7.0 kB
10. Handling Date And Time/15. Creating Date Ranges.srt
7.0 kB
7. Going MultiDimensional/13. Adding Another Level.srt
7.0 kB
2. Series At A Glance/4. What’s In The Data.srt
6.9 kB
6. Working With Multiple DataFrames/12. The merge() Method.srt
6.9 kB
14. Appendix A - Rapid-Fire Python Fundamentals/19. For Loops.srt
6.9 kB
10. Handling Date And Time/23. Solution.srt
6.9 kB
4. Working With DataFrames/10. BONUS - How Are Random Numbers Generated.srt
6.8 kB
14. Appendix A - Rapid-Fire Python Fundamentals/14. Containers IV Dictionaries.srt
6.8 kB
9. Reshaping With Pivots/5. What About Aggregates.srt
6.8 kB
8. GroupBy And Aggregates/14. MultiIndex Grouping.srt
6.8 kB
5. DataFrames In Depth/20. Removing Duplicates.srt
6.8 kB
8. GroupBy And Aggregates/17. The filter() Method.srt
6.8 kB
6. Working With Multiple DataFrames/2. Introducing (Five) New Datasets.srt
6.7 kB
9. Reshaping With Pivots/4. Undoing Pivots.srt
6.7 kB
2. Series At A Glance/21. Selection Recap.srt
6.7 kB
4. Working With DataFrames/34. Solution.srt
6.7 kB
4. Working With DataFrames/7. Some Cleanup Removing The Duplicated Index.srt
6.7 kB
2. Series At A Glance/23. Solution.srt
6.7 kB
3. Series Methods And Handling/16. idxmax() And idxmin().srt
6.6 kB
9. Reshaping With Pivots/13. Solution.srt
6.6 kB
14. Appendix A - Rapid-Fire Python Fundamentals/20. The range() Immutable Sequence.srt
6.6 kB
8. GroupBy And Aggregates/4. Conditional Aggregates.srt
6.6 kB
10. Handling Date And Time/9. Date Parsing And DatetimeIndex.srt
6.5 kB
6. Working With Multiple DataFrames/14. Inner vs Outer Joins.srt
6.5 kB
14. Appendix A - Rapid-Fire Python Fundamentals/6. Booleans And Comparison Operators.srt
6.5 kB
8. GroupBy And Aggregates/11. Solution.srt
6.4 kB
8. GroupBy And Aggregates/3. Simple Aggregations Review.srt
6.4 kB
2. Series At A Glance/8. Series And Index Names.srt
6.4 kB
6. Working With Multiple DataFrames/18. Merging By Index.srt
6.3 kB
8. GroupBy And Aggregates/21. Solution.srt
6.3 kB
2. Series At A Glance/12. The head() And tail() Methods.srt
6.3 kB
3. Series Methods And Handling/4. Unique Values And Series Monotonicity.srt
6.3 kB
10. Handling Date And Time/7. The Pandas Timestamp.srt
6.3 kB
5. DataFrames In Depth/35. Solution.srt
6.2 kB
7. Going MultiDimensional/2. Introducing New Data.srt
6.2 kB
13. Data Formats And IO/7. Pickles In Pandas.srt
6.1 kB
7. Going MultiDimensional/14. Shuffling Levels.srt
6.1 kB
10. Handling Date And Time/5. From Datetime To String.srt
6.1 kB
5. DataFrames In Depth/24. BONUS - A Sophisticated Alternative.srt
6.1 kB
6. Working With Multiple DataFrames/9. Concat On Different Columns.srt
6.0 kB
4. Working With DataFrames/15. Single Value Access With .at And .iat.srt
6.0 kB
14. Appendix A - Rapid-Fire Python Fundamentals/22. Break And Continue.srt
5.9 kB
3. Series Methods And Handling/24. Cumulative Operations.srt
5.9 kB
8. GroupBy And Aggregates/9. BONUS - Series groupby().srt
5.8 kB
3. Series Methods And Handling/7. BONUS Another Approach.srt
5.8 kB
2. Series At A Glance/20. Selecting With .get().srt
5.8 kB
14. Appendix A - Rapid-Fire Python Fundamentals/12. Containers II Tuples.srt
5.8 kB
10. Handling Date And Time/8. Our Dataset Brent Prices.srt
5.8 kB
3. Series Methods And Handling/17. Sorting With sort_values().srt
5.8 kB
10. Handling Date And Time/11. Indexing Dates.srt
5.7 kB
13. Data Formats And IO/2. Reading JSON.srt
5.7 kB
9. Reshaping With Pivots/9. Adding Margins.srt
5.7 kB
8. GroupBy And Aggregates/6. The groupby() Method.srt
5.7 kB
4. Working With DataFrames/3. Creating A DataFrame.srt
5.6 kB
3. Series Methods And Handling/3. Series Sizing With .size, .shape, And len().srt
5.6 kB
9. Reshaping With Pivots/2. New Data New York City SAT Scores.srt
5.5 kB
8. GroupBy And Aggregates/13. Handpicking Subgroups.srt
5.5 kB
6. Working With Multiple DataFrames/6. BONUS - Creating Multiple Indices With concat().srt
5.4 kB
5. DataFrames In Depth/8. Conditions As Variables.srt
5.4 kB
4. Working With DataFrames/5. The info() Method.srt
5.4 kB
6. Working With Multiple DataFrames/7. Column Axis Concatenation.srt
5.4 kB
5. DataFrames In Depth/23. BONUS - Another Way pop().srt
5.4 kB
1. Introduction/6. Hello, Python.srt
5.4 kB
10. Handling Date And Time/4. Even Better dateutil.srt
5.3 kB
3. Series Methods And Handling/23. BONUS Calculating Variance And Standard Deviation.srt
5.3 kB
6. Working With Multiple DataFrames/13. The left_on And right_on Params.srt
5.3 kB
3. Series Methods And Handling/12. Dropping And Filling NAs.srt
5.3 kB
7. Going MultiDimensional/3. Index And RangeIndex.srt
5.2 kB
8. GroupBy And Aggregates/5. The Split-Apply-Combine Pattern.srt
5.2 kB
5. DataFrames In Depth/41. BONUS - How Are DataFrames Stored In Memory.srt
5.2 kB
14. Appendix A - Rapid-Fire Python Fundamentals/16. Membership Operators.srt
5.2 kB
4. Working With DataFrames/11. DataFrame Axes.srt
5.1 kB
11. Regex And Text Manipulation/11. Solution.srt
5.0 kB
7. Going MultiDimensional/8. BONUS - Use With pd.IndexSlice!.srt
5.0 kB
7. Going MultiDimensional/5. MultiIndex From read_csv().srt
4.9 kB
4. Working With DataFrames/8. The sample() Method.srt
4.9 kB
13. Data Formats And IO/8. The Many Other Formats.srt
4.9 kB
2. Series At A Glance/2. What Is A Series.srt
4.9 kB
9. Reshaping With Pivots/11. Applying Multiple Functions.srt
4.9 kB
2. Series At A Glance/10. Solution.srt
4.9 kB
3. Series Methods And Handling/26. Series Iteration.srt
4.8 kB
10. Handling Date And Time/10. A Cool Shorcut read_csv() With parse_dates.srt
4.8 kB
8. GroupBy And Aggregates/8. Customizing Index To Group Mappings.srt
4.7 kB
7. Going MultiDimensional/4. Creating A MultiIndex.srt
4.7 kB
4. Working With DataFrames/6. Reading In Nutrition Data.srt
4.7 kB
5. DataFrames In Depth/2. Introducing A New Dataset.srt
4.6 kB
2. Series At A Glance/16. Using Dot Notation.srt
4.6 kB
15. Appendix B - Going Local Installation And Setup/3. Installing Anaconda And Python - Linux.srt
4.6 kB
8. GroupBy And Aggregates/7. The DataFrameGroupBy Object.srt
4.5 kB
14. Appendix A - Rapid-Fire Python Fundamentals/18. Truth Value Of Non-booleans.srt
4.5 kB
6. Working With Multiple DataFrames/15. Left vs Right Joins.srt
4.5 kB
5. DataFrames In Depth/18. Solution.srt
4.5 kB
2. Series At A Glance/18. Extracting By Position With .iloc.srt
4.5 kB
5. DataFrames In Depth/16. 15. BONUS - Please Avoid Sorting Like This.srt
4.4 kB
14. Appendix A - Rapid-Fire Python Fundamentals/23. Zipping Iterables.srt
4.4 kB
3. Series Methods And Handling/25. Pairwise Differences With diff().srt
4.4 kB
11. Regex And Text Manipulation/4. Vectorized String Operations In Pandas.srt
4.4 kB
5. DataFrames In Depth/3. Quick Review Indexing With Boolean Masks.srt
4.4 kB
11. Regex And Text Manipulation/20. BONUS What's The Point Of re.compile().srt
4.3 kB
3. Series Methods And Handling/31. Solution II - Mean, Median, And Standard Deviation.srt
4.2 kB
8. GroupBy And Aggregates/12. Iterating Through Groups.srt
4.2 kB
Sources/drinks (1).csv
4.2 kB
Sources/drinks (2).csv
4.2 kB
Sources/drinks.csv
4.2 kB
3. Series Methods And Handling/19. Sorting With sort_index().srt
4.1 kB
2. Series At A Glance/15. BONUS The add_prefix() And add_suffix() Methods.srt
4.1 kB
7. Going MultiDimensional/22. BONUS - What About Panels.srt
4.1 kB
2. Series At A Glance/6. BONUS What Is dtype('o'), Really.srt
4.1 kB
10. Handling Date And Time/13. Solution.srt
4.0 kB
12. Visualizing Data/10. BONUS Data Ink And Chartjunk.srt
4.0 kB
4. Working With DataFrames/19. More Cleanup Going Numeric.srt
4.0 kB
3. Series Methods And Handling/9. BONUS Booleans Are Literally Numbers In Python.srt
3.9 kB
8. GroupBy And Aggregates/2. New Data Game Sales.srt
3.9 kB
1. Introduction/3. Anaconda.srt
3.9 kB
11. Regex And Text Manipulation/2. Our Data Boston Marathon Runners.srt
3.8 kB
3. Series Methods And Handling/11. Solution.srt
3.8 kB
11. Regex And Text Manipulation/5. Case Operations.srt
3.7 kB
9. Reshaping With Pivots/10. MultiIndex Pivot Tables.srt
3.7 kB
2. Series At A Glance/11. Another Solution.srt
3.7 kB
12. Visualizing Data/2. The Art Of Data Visualization.srt
3.7 kB
5. DataFrames In Depth/22. BONUS - Removing Columns.srt
3.6 kB
13. Data Formats And IO/9. Skill Challenge.srt
3.6 kB
5. DataFrames In Depth/21. Removing DataFrame Rows.srt
3.5 kB
2. Series At A Glance/3. Parameters vs Arguments.srt
3.4 kB
3. Series Methods And Handling/18. nlargest() And nsmallest().srt
3.3 kB
3. Series Methods And Handling/8. The Other Side notnull() And notna().srt
3.3 kB
7. Going MultiDimensional/21. An Easier Way transpose().srt
3.3 kB
3. Series Methods And Handling/29. Skill Challenge.srt
3.3 kB
6. Working With Multiple DataFrames/19. The join() Method.srt
3.3 kB
6. Working With Multiple DataFrames/8. The append() Method A Special Case Of concat().srt
3.2 kB
5. DataFrames In Depth/1. Section Intro.srt
3.1 kB
14. Appendix A - Rapid-Fire Python Fundamentals/2. Data Types.srt
3.0 kB
9. Reshaping With Pivots/8. Replicating Pivot Tables With GroupBy.srt
3.0 kB
Sources/liberal_arts.csv
2.9 kB
3. Series Methods And Handling/5. The count() Method.srt
2.9 kB
2. Series At A Glance/9. Skill Challenge.srt
2.9 kB
5. DataFrames In Depth/15. BONUS - Another Way.srt
2.7 kB
5. DataFrames In Depth/34. Skill Challenge.srt
2.7 kB
3. Series Methods And Handling/30. Solution I - Reading Data.srt
2.6 kB
15. Appendix B - Going Local Installation And Setup/2. Installing Anaconda And Python - Mac.srt
2.6 kB
2. Series At A Glance/5. The .dtype Attribute.srt
2.6 kB
3. Series Methods And Handling/14. The describe() Method.srt
2.6 kB
3. Series Methods And Handling/21. Solution.srt
2.5 kB
1. Introduction/2. Pandas Is Not Single.srt
2.5 kB
3. Series Methods And Handling/1. Section Intro.srt
2.4 kB
4. Working With DataFrames/35. Another Skill Challenge.srt
2.4 kB
2. Series At A Glance/22. Skill Challenge.srt
2.4 kB
7. Going MultiDimensional/1. Section Intro.srt
2.4 kB
14. Appendix A - Rapid-Fire Python Fundamentals/1. Section Intro.srt
2.4 kB
4. Working With DataFrames/1. Section Intro.srt
2.3 kB
11. Regex And Text Manipulation/1. Section Intro.srt
2.3 kB
6. Working With Multiple DataFrames/10. Skill Challenge.srt
2.1 kB
12. Visualizing Data/11. Skill Challenge.srt
2.1 kB
5. DataFrames In Depth/42. Skill Challenge.srt
2.0 kB
7. Going MultiDimensional/23. Skill Challenge.srt
1.9 kB
11. Regex And Text Manipulation/22. Skill Challenge.srt
1.9 kB
5. DataFrames In Depth/28. Skill Challenge.srt
1.8 kB
1. Introduction/1. Course Structure.srt
1.8 kB
10. Handling Date And Time/22. Skill Challenge.srt
1.8 kB
4. Working With DataFrames/17. Skill Challenge.srt
1.8 kB
4. Working With DataFrames/33. Skill Challenge.srt
1.7 kB
12. Visualizing Data/1. Section Intro.srt
1.7 kB
7. Going MultiDimensional/10. Skill Challenge.srt
1.7 kB
9. Reshaping With Pivots/12. Skill Challenge.srt
1.6 kB
10. Handling Date And Time/1. Section Intro.srt
1.6 kB
9. Reshaping With Pivots/1. Section Intro.srt
1.6 kB
Sources/eng.csv
1.6 kB
8. GroupBy And Aggregates/20. Skill Challenge.srt
1.6 kB
6. Working With Multiple DataFrames/1. Section Intro.srt
1.6 kB
5. DataFrames In Depth/9. Skill Challenge.srt
1.5 kB
3. Series Methods And Handling/10. Skill Challenge.srt
1.5 kB
8. GroupBy And Aggregates/1. Section Intro.srt
1.5 kB
5. DataFrames In Depth/17. Skill Challenge.srt
1.5 kB
Sources/portfolio.zip
1.4 kB
6. Working With Multiple DataFrames/20. Skill Challenge.srt
1.4 kB
11. Regex And Text Manipulation/10. Skill Challenge.srt
1.4 kB
2. Series At A Glance/1. Section Intro.srt
1.4 kB
10. Handling Date And Time/12. Skill Challenge.srt
1.3 kB
3. Series Methods And Handling/20. Skill Challenge.srt
1.2 kB
8. GroupBy And Aggregates/10. Skill Challenge.srt
1.2 kB
13. Data Formats And IO/1. Section Intro.srt
1.1 kB
Sources/ivies.csv
548 Bytes
Sources/folks.json
244 Bytes
0. Websites you may like/[CourseClub.Me].url
122 Bytes
12. Visualizing Data/[CourseClub.Me].url
122 Bytes
5. DataFrames In Depth/[CourseClub.Me].url
122 Bytes
[CourseClub.Me].url
122 Bytes
0. Websites you may like/[GigaCourse.Com].url
49 Bytes
12. Visualizing Data/[GigaCourse.Com].url
49 Bytes
5. DataFrames In Depth/[GigaCourse.Com].url
49 Bytes
[GigaCourse.Com].url
49 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>