搜索
[FreeCourseWorld.Com] Udemy - Credit Risk Modeling in Python 2020
磁力链接/BT种子名称
[FreeCourseWorld.Com] Udemy - Credit Risk Modeling in Python 2020
磁力链接/BT种子简介
种子哈希:
a4e98fe3724835dd9fed724fc216594cc42b2507
文件大小:
3.16G
已经下载:
502
次
下载速度:
极快
收录时间:
2021-04-19
最近下载:
2024-12-07
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:A4E98FE3724835DD9FED724FC216594CC42B2507
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
最近搜索
dragon ball daima season1
瀚蓝
大明王朝1566
露点影片合集
捷克街头搭讪
四級
书房
极品 流出 良家
妞妞妞妞妞
夕陽リリ
合集探花合集
[榨汁姬
母子 番
童颜巨乳 史上最漂亮巨乳之一 被大叔狠操 眼神迷离
老师直播
探花军
小花
真实夫妻
小学上课
p站中文版
hatsune miku
强奸魔下药迷翻刚出道不久的小嫩模
万人求购onlyfans网红淫妻调教【琉美】
9-1-1 s01
ryan-conner
leaked camera
coralie
七沢みあ黑丝
天然木瓜奶 酒店镜子前啪啪
現る―
文件列表
13. Calculating expected loss/1. Calculating expected loss.mp4
132.9 MB
5. PD Model Data Preparation/25. Data preparation. Preprocessing continuous variables creating dummies (Part 2).mp4
117.2 MB
9. PD model monitoring/3. Population stability index preprocessing.mp4
110.4 MB
1. Introduction/10. Different facility types (asset classes) and credit risk modeling approaches.mp4
109.5 MB
6. PD model estimation/5. Build a logistic regression model with p-values.mp4
107.4 MB
1. Introduction/8. Basel II approaches SA, F-IRB, and A-IRB.mp4
107.4 MB
5. PD Model Data Preparation/28. Data preparation. Preprocessing continuous variables creating dummies (Part 3).mp4
105.9 MB
8. Applying the PD Model for decision making/2. Creating a scorecard.mp4
102.2 MB
5. PD Model Data Preparation/18. Data preparation. Preprocessing discrete variables creating dummies (Part 2).mp4
97.8 MB
9. PD model monitoring/4. Population stability index calculation and interpretation.mp4
96.1 MB
4. General preprocessing/3. Preprocessing few continuous variables.mp4
87.8 MB
8. Applying the PD Model for decision making/8. Setting cut-offs.mp4
79.7 MB
7. PD model validation/3. Evaluation of model performance accuracy and area under the curve (AUC).mp4
79.6 MB
1. Introduction/1. What does the course cover.mp4
76.5 MB
7. PD model validation/5. Evaluation of model performance Gini and Kolmogorov-Smirnov.mp4
73.3 MB
5. PD Model Data Preparation/15. Data preparation. Preprocessing discrete variables visualizing results.mp4
69.6 MB
3. Dataset description/3. Dependent variables and independent variables.mp4
69.1 MB
6. PD model estimation/1. The PD model. Logistic regression with dummy variables.mp4
63.5 MB
5. PD Model Data Preparation/9. Data preparation. Splitting data.mp4
62.3 MB
1. Introduction/2. What is credit risk and why is it important.mp4
61.0 MB
5. PD Model Data Preparation/5. Fine classing, weight of evidence, and coarse classing.mp4
58.0 MB
7. PD model validation/1. Out-of-sample validation (test).mp4
55.0 MB
1. Introduction/6. Capital adequacy, regulations, and the Basel II accord.mp4
53.5 MB
10. LGD and EAD Models Preparing the data/1. LGD and EAD models independent variables..mp4
52.5 MB
5. PD Model Data Preparation/11. Data preparation. An example.mp4
52.3 MB
5. PD Model Data Preparation/16. Data preparation. Preprocessing discrete variables creating dummies (Part 1).mp4
52.1 MB
12. EAD model/1. EAD model estimation and interpretation.mp4
50.4 MB
1. Introduction/4. Expected loss (EL) and its components PD, LGD and EAD.mp4
50.3 MB
4. General preprocessing/6. Preprocessing few discrete variables.mp4
48.5 MB
5. PD Model Data Preparation/21. Data preparation. Preprocessing continuous variables Automating calculations.mp4
47.3 MB
5. PD Model Data Preparation/7. Information value.mp4
46.9 MB
5. PD Model Data Preparation/23. Data preparation. Preprocessing continuous variables creating dummies (Part 1).mp4
46.2 MB
5. PD Model Data Preparation/13. Data preparation. Preprocessing discrete variables automating calculations.mp4
45.9 MB
6. PD model estimation/3. Loading the data and selecting the features.mp4
45.4 MB
11. LGD model/2. LGD model testing the model.mp4
44.7 MB
8. Applying the PD Model for decision making/4. Calculating credit score.mp4
43.2 MB
10. LGD and EAD Models Preparing the data/3. LGD and EAD models dependent variables.mp4
42.3 MB
10. LGD and EAD Models Preparing the data/5. LGD and EAD models distribution of recovery rates and credit conversion factors.mp4
42.0 MB
8. Applying the PD Model for decision making/1. Calculating probability of default for a single customer.mp4
41.7 MB
9. PD model monitoring/1. PD model monitoring via assessing population stability.mp4
40.9 MB
5. PD Model Data Preparation/3. Dependent variable Good Bad (default) definition.mp4
40.9 MB
5. PD Model Data Preparation/1. How is the PD model going to look like.mp4
39.4 MB
3. Dataset description/1. Our example consumer loans. A first look at the dataset.mp4
38.5 MB
11. LGD model/6. LGD model stage 2 – linear regression.mp4
37.8 MB
6. PD model estimation/7. Interpreting the coefficients in the PD model.mp4
37.0 MB
11. LGD model/4. LGD model estimating the accuracy of the model.mp4
36.5 MB
4. General preprocessing/1. Importing the data into Python.mp4
34.5 MB
5. PD Model Data Preparation/31. Data preparation. Preprocessing the test dataset.mp4
31.4 MB
12. EAD model/3. EAD model validation.mp4
31.4 MB
2. Setting up the working environment/3. Installing Anaconda.mp4
30.7 MB
2. Setting up the working environment/2. Why Python and why Jupyter.mp4
30.7 MB
11. LGD model/8. LGD model stage 2 – linear regression evaluation.mp4
28.1 MB
4. General preprocessing/8. Check for missing values and clean.mp4
26.3 MB
6. PD model estimation/4. PD model estimation.mp4
26.1 MB
11. LGD model/1. LGD model preparing the inputs.mp4
25.4 MB
11. LGD model/10. LGD model combining stage 1 and stage 2.mp4
25.1 MB
2. Setting up the working environment/5. Jupyter Dashboard - Part 2.mp4
25.1 MB
11. LGD model/5. LGD model saving the model.mp4
25.0 MB
8. Applying the PD Model for decision making/6. From credit score to PD.mp4
24.3 MB
2. Setting up the working environment/4. Jupyter Dashboard - Part 1.mp4
12.1 MB
2. Setting up the working environment/6. Installing the sklearn package.mp4
10.1 MB
2. Setting up the working environment/1. Setting up the environment - Do not skip, please!.mp4
6.3 MB
2. Setting up the working environment/5.1 Shortcuts-for-Jupyter.pdf
634.0 kB
13. Calculating expected loss/1. Calculating expected loss.srt
20.7 kB
3. Dataset description/1.1 LCDataDictionary.xlsx
20.1 kB
5. PD Model Data Preparation/25. Data preparation. Preprocessing continuous variables creating dummies (Part 2).srt
19.8 kB
4. General preprocessing/3. Preprocessing few continuous variables.srt
17.7 kB
5. PD Model Data Preparation/28. Data preparation. Preprocessing continuous variables creating dummies (Part 3).srt
17.3 kB
8. Applying the PD Model for decision making/2. Creating a scorecard.srt
17.2 kB
5. PD Model Data Preparation/18. Data preparation. Preprocessing discrete variables creating dummies (Part 2).srt
15.4 kB
9. PD model monitoring/3. Population stability index preprocessing.srt
15.1 kB
6. PD model estimation/5. Build a logistic regression model with p-values.srt
14.8 kB
7. PD model validation/3. Evaluation of model performance accuracy and area under the curve (AUC).srt
14.7 kB
9. PD model monitoring/4. Population stability index calculation and interpretation.srt
14.6 kB
7. PD model validation/5. Evaluation of model performance Gini and Kolmogorov-Smirnov.srt
13.8 kB
5. PD Model Data Preparation/15. Data preparation. Preprocessing discrete variables visualizing results.srt
13.2 kB
1. Introduction/8. Basel II approaches SA, F-IRB, and A-IRB.srt
12.9 kB
1. Introduction/10. Different facility types (asset classes) and credit risk modeling approaches.srt
12.2 kB
5. PD Model Data Preparation/9. Data preparation. Splitting data.srt
11.8 kB
8. Applying the PD Model for decision making/8. Setting cut-offs.srt
11.7 kB
5. PD Model Data Preparation/11. Data preparation. An example.srt
11.4 kB
6. PD model estimation/1. The PD model. Logistic regression with dummy variables.srt
10.8 kB
5. PD Model Data Preparation/23. Data preparation. Preprocessing continuous variables creating dummies (Part 1).srt
10.1 kB
5. PD Model Data Preparation/16. Data preparation. Preprocessing discrete variables creating dummies (Part 1).srt
9.8 kB
4. General preprocessing/6. Preprocessing few discrete variables.srt
9.1 kB
7. PD model validation/1. Out-of-sample validation (test).srt
9.0 kB
5. PD Model Data Preparation/5. Fine classing, weight of evidence, and coarse classing.srt
8.9 kB
10. LGD and EAD Models Preparing the data/1. LGD and EAD models independent variables..srt
8.5 kB
12. EAD model/1. EAD model estimation and interpretation.srt
8.2 kB
3. Dataset description/3. Dependent variables and independent variables.srt
8.2 kB
6. PD model estimation/7. Interpreting the coefficients in the PD model.srt
8.2 kB
1. Introduction/1. What does the course cover.srt
8.2 kB
5. PD Model Data Preparation/13. Data preparation. Preprocessing discrete variables automating calculations.srt
8.0 kB
10. LGD and EAD Models Preparing the data/5. LGD and EAD models distribution of recovery rates and credit conversion factors.srt
7.9 kB
8. Applying the PD Model for decision making/4. Calculating credit score.srt
7.7 kB
6. PD model estimation/3. Loading the data and selecting the features.srt
7.5 kB
5. PD Model Data Preparation/3. Dependent variable Good Bad (default) definition.srt
7.3 kB
10. LGD and EAD Models Preparing the data/3. LGD and EAD models dependent variables.srt
7.1 kB
9. PD model monitoring/1. PD model monitoring via assessing population stability.srt
7.0 kB
5. PD Model Data Preparation/7. Information value.srt
7.0 kB
11. LGD model/2. LGD model testing the model.srt
7.0 kB
2. Setting up the working environment/5. Jupyter Dashboard - Part 2.srt
6.8 kB
5. PD Model Data Preparation/21. Data preparation. Preprocessing continuous variables Automating calculations.srt
6.8 kB
2. Setting up the working environment/2. Why Python and why Jupyter.srt
6.6 kB
1. Introduction/2. What is credit risk and why is it important.srt
6.2 kB
11. LGD model/4. LGD model estimating the accuracy of the model.srt
6.1 kB
1. Introduction/6. Capital adequacy, regulations, and the Basel II accord.srt
5.9 kB
12. EAD model/3. EAD model validation.srt
5.8 kB
4. General preprocessing/1. Importing the data into Python.srt
5.7 kB
8. Applying the PD Model for decision making/1. Calculating probability of default for a single customer.srt
5.7 kB
5. PD Model Data Preparation/31. Data preparation. Preprocessing the test dataset.srt
5.6 kB
5. PD Model Data Preparation/1. How is the PD model going to look like.srt
5.4 kB
11. LGD model/6. LGD model stage 2 – linear regression.srt
5.4 kB
1. Introduction/4. Expected loss (EL) and its components PD, LGD and EAD.srt
5.4 kB
6. PD model estimation/4. PD model estimation.srt
5.0 kB
11. LGD model/8. LGD model stage 2 – linear regression evaluation.srt
4.7 kB
4. General preprocessing/8. Check for missing values and clean.srt
4.7 kB
2. Setting up the working environment/3. Installing Anaconda.srt
4.7 kB
11. LGD model/1. LGD model preparing the inputs.srt
4.5 kB
11. LGD model/10. LGD model combining stage 1 and stage 2.srt
4.3 kB
8. Applying the PD Model for decision making/6. From credit score to PD.srt
4.2 kB
11. LGD model/5. LGD model saving the model.srt
4.1 kB
3. Dataset description/1. Our example consumer loans. A first look at the dataset.srt
4.1 kB
2. Setting up the working environment/4. Jupyter Dashboard - Part 1.srt
3.3 kB
2. Setting up the working environment/6. Installing the sklearn package.srt
2.0 kB
5. PD Model Data Preparation/27. Data preparation. Preprocessing continuous variables creating dummies. Homework.html
1.9 kB
11. LGD model/12. Homework building an updated LGD model.html
1.5 kB
5. PD Model Data Preparation/30. Data preparation. Preprocessing continuous variables creating dummies. Homework.html
1.4 kB
2. Setting up the working environment/1. Setting up the environment - Do not skip, please!.srt
1.3 kB
5. PD Model Data Preparation/20. Data preparation. Preprocessing discrete variables. Homework..html
1.3 kB
13. Calculating expected loss/3. Homework calculate expected loss on more recent data.html
974 Bytes
8. Applying the PD Model for decision making/10. Setting cut-offs. Homework.html
957 Bytes
4. General preprocessing/5. Preprocessing few continuous variables Homework.html
919 Bytes
12. EAD model/5. Homework building an updated EAD model.html
875 Bytes
9. PD model monitoring/6. Homework building an updated PD model.html
820 Bytes
4. General preprocessing/10. Check for missing values and clean Homework.html
668 Bytes
13. Calculating expected loss/1.1 Calculating expected loss with comments.html
207 Bytes
13. Calculating expected loss/3.2 Calculating expected loss complete notebook with comments.html
207 Bytes
10. LGD and EAD Models Preparing the data/1.3 LGD and EAD models independent variables with comments.html
202 Bytes
10. LGD and EAD Models Preparing the data/3.2 LGD and EAD models dependent variables with comments.html
202 Bytes
10. LGD and EAD Models Preparing the data/5.2 LGD and EAD models distribution of recovery rates and credit conversion factors with comments.html
202 Bytes
11. LGD model/1.2 LGD model preparing the inputs with comments.html
202 Bytes
11. LGD model/10.2 LGD model combining stage 1 and stage 2 with comments.html
202 Bytes
11. LGD model/2.1 LGD model testing the model with comments.html
202 Bytes
11. LGD model/4.1 LGD model estimating the accuracy of the model with comments.html
202 Bytes
11. LGD model/5.1 LGD model saving the model with comments.html
202 Bytes
11. LGD model/6.2 LGD model stage 2 – linear regression with comments.html
202 Bytes
11. LGD model/8.1 LGD model stage 2 – linear regression evaluation with comments.html
202 Bytes
12. EAD model/1.1 EAD model estimation and interpretation with comments.html
202 Bytes
12. EAD model/3.1 EAD model validation with comments.html
202 Bytes
5. PD Model Data Preparation/18.1 Data preparation. Preprocessing discrete variables creating dummies (Part 2) with comments.html
189 Bytes
5. PD Model Data Preparation/20.1 Data preparation. Preprocessing discrete variables. Homework with comments.html
189 Bytes
5. PD Model Data Preparation/21.1 Data preparation. Preprocessing continuous variables Automating calculations with comments.html
189 Bytes
5. PD Model Data Preparation/23.2 Data preparation. Preprocessing continuous variables creating dummies (Part 1) with comments.html
189 Bytes
5. PD Model Data Preparation/25.2 Data preparation. Preprocessing continuous variables creating dummies (Part 2) with comments.html
189 Bytes
5. PD Model Data Preparation/27.2 Data preparation. Preprocessing continuous variables creating dummies. Homework with comments.html
189 Bytes
5. PD Model Data Preparation/28.2 Data preparation. Preprocessing continuous variables creating dummies (Part 3) with comments.html
189 Bytes
5. PD Model Data Preparation/30.1 Data preparation. Preprocessing continuous variables creating dummies. Homework with comments.html
189 Bytes
5. PD Model Data Preparation/31.1 Data preparation. Preprocessing the test dataset with comments.html
189 Bytes
3. Dataset description/1.3 Data preparation with comments.html
188 Bytes
4. General preprocessing/1.1 Importing the data into Python with comments.html
188 Bytes
4. General preprocessing/10.1 Check for missing values and clean the data Homework - Solution with comments.html
188 Bytes
4. General preprocessing/3.2 Preprocessing few continuous variables with comments.html
188 Bytes
4. General preprocessing/5.1 Preprocessing few continuous variables Homework - Solution with comments.html
188 Bytes
4. General preprocessing/6.1 Preprocessing few discrete variables with comments.html
188 Bytes
4. General preprocessing/8.2 Check for missing values and clean with comments.html
188 Bytes
5. PD Model Data Preparation/11.1 Data preparation. An example with comments.html
188 Bytes
5. PD Model Data Preparation/13.1 Data preparation. Preprocessing discrete variables automating calculations with comments.html
188 Bytes
5. PD Model Data Preparation/15.1 Data preparation. Preprocessing discrete variables visualizing results with comments.html
188 Bytes
5. PD Model Data Preparation/16.1 Data preparation. Preprocessing discrete variables creating dummies (Part 1) with comments.html
188 Bytes
5. PD Model Data Preparation/3.1 Dependent variable GoodBad with comments.html
188 Bytes
5. PD Model Data Preparation/9.2 Data preparation. Splitting data with comments.html
188 Bytes
6. PD model estimation/3.1 Loading the data and selecting the features with comments.html
187 Bytes
6. PD model estimation/4.1 PD model estimation with comments.html
187 Bytes
6. PD model estimation/5.1 Build a logistic regression model with p-values with comments.html
187 Bytes
7. PD model validation/1.2 Out-of-sample validation (test) with comments.html
187 Bytes
7. PD model validation/3.2 Evaluation of model performance accuracy and area under the curve (AUC) with comments.html
187 Bytes
7. PD model validation/5.2 Evaluation of model performance Gini and Kolmogorov-Smirnov with comments.html
187 Bytes
8. Applying the PD Model for decision making/1.1 Calculating probability of default for a single customer with comments.html
187 Bytes
8. Applying the PD Model for decision making/2.2 Creating a scorecard with comments.html
187 Bytes
8. Applying the PD Model for decision making/4.2 Calculating credit score with comments.html
187 Bytes
8. Applying the PD Model for decision making/6.2 From credit score to PD with comments.html
187 Bytes
8. Applying the PD Model for decision making/8.1 Setting cut-offs with comments.html
187 Bytes
13. Calculating expected loss/1.2 Calculating expected loss.html
185 Bytes
13. Calculating expected loss/3.1 Calculating expected loss complete notebook.html
185 Bytes
10. LGD and EAD Models Preparing the data/1.2 LGD and EAD models independent variables..html
180 Bytes
10. LGD and EAD Models Preparing the data/3.1 LGD and EAD models dependent variables.html
180 Bytes
10. LGD and EAD Models Preparing the data/5.1 LGD and EAD models distribution of recovery rates and credit conversion factors.html
180 Bytes
11. LGD model/1.3 LGD model preparing the inputs.html
180 Bytes
11. LGD model/10.1 LGD model combining stage 1 and stage 2.html
180 Bytes
11. LGD model/2.2 LGD model testing the model.html
180 Bytes
11. LGD model/4.2 LGD model estimating the accuracy of the model.html
180 Bytes
11. LGD model/5.2 LGD model saving the model.html
180 Bytes
11. LGD model/6.1 LGD model stage 2 – linear regression.html
180 Bytes
11. LGD model/8.2 LGD model stage 2 – linear regression evaluation.html
180 Bytes
12. EAD model/1.2 EAD model estimation and interpretation.html
180 Bytes
12. EAD model/3.2 EAD model validation.html
180 Bytes
5. PD Model Data Preparation/32.1 PD model data preparation with comments.html
178 Bytes
8. Applying the PD Model for decision making/11.2 PD model complete with comments.html
177 Bytes
9. PD model monitoring/4.1 Monitoring with comments.html
177 Bytes
5. PD Model Data Preparation/18.2 Data preparation. Preprocessing discrete variables creating dummies (Part 2).html
167 Bytes
5. PD Model Data Preparation/20.2 Data preparation. Preprocessing discrete variables Homework - Soluton.html
167 Bytes
5. PD Model Data Preparation/21.2 Data preparation. Preprocessing continuous variables Automating calculations.html
167 Bytes
5. PD Model Data Preparation/23.1 Data preparation. Preprocessing continuous variables creating dummies (Part 1).html
167 Bytes
5. PD Model Data Preparation/25.1 Data preparation. Preprocessing continuous variables creating dummies (Part 2).html
167 Bytes
5. PD Model Data Preparation/27.1 Data preparation. Preprocessing continuous variables creating dummies. Homework.html
167 Bytes
5. PD Model Data Preparation/28.1 Data preparation. Preprocessing continuous variables creating dummies (Part 3).html
167 Bytes
5. PD Model Data Preparation/30.2 Data preparation. Preprocessing continuous variables creating dummies Homework - Solution.html
167 Bytes
5. PD Model Data Preparation/31.2 Data preparation. Preprocessing the test dataset.html
167 Bytes
3. Dataset description/1.2 Data Preparation.html
166 Bytes
4. General preprocessing/1.2 Importing the data into Python.html
166 Bytes
4. General preprocessing/10.2 Check for missing values and clean the data Homework - Solution.html
166 Bytes
4. General preprocessing/3.1 Preprocessing few continuous variables.html
166 Bytes
4. General preprocessing/5.2 Preprocessing few continuous variables Homework - Solution.html
166 Bytes
4. General preprocessing/6.2 Preprocessing few discrete variables.html
166 Bytes
4. General preprocessing/8.1 Check for missing values and clean.html
166 Bytes
5. PD Model Data Preparation/11.2 Data preparation. An example.html
166 Bytes
5. PD Model Data Preparation/13.2 Data preparation. Preprocessing discrete variables automating calculations.html
166 Bytes
5. PD Model Data Preparation/15.2 Data preparation. Preprocessing discrete variables visualizing results.html
166 Bytes
5. PD Model Data Preparation/16.2 Data preparation. Preprocessing discrete variables creating dummies (Part 1).html
166 Bytes
5. PD Model Data Preparation/3.2 Dependent variable GoodBad.html
166 Bytes
5. PD Model Data Preparation/9.1 Data preparation. Splitting data.html
166 Bytes
6. PD model estimation/3.2 Loading the data and selecting the features.html
165 Bytes
6. PD model estimation/4.2 PD model estimation.html
165 Bytes
6. PD model estimation/5.2 Build a logistic regression model with p-values.html
165 Bytes
7. PD model validation/1.1 Out-of-sample validation (test).html
165 Bytes
7. PD model validation/3.1 Evaluation of model performance accuracy and area under the curve (AUC).html
165 Bytes
7. PD model validation/5.1 Evaluation of model performance Gini and Kolmogorov-Smirnov.html
165 Bytes
8. Applying the PD Model for decision making/1.2 Calculating probability of default for a single customer.html
165 Bytes
8. Applying the PD Model for decision making/2.1 Creating a scorecard.html
165 Bytes
8. Applying the PD Model for decision making/4.1 Calculating credit score.html
165 Bytes
8. Applying the PD Model for decision making/6.1 From credit score to PD.html
165 Bytes
8. Applying the PD Model for decision making/8.2 Setting cut-offs.html
165 Bytes
5. PD Model Data Preparation/32.2 PD model data preparation.html
156 Bytes
8. Applying the PD Model for decision making/11.1 PD model complete.html
155 Bytes
9. PD model monitoring/4.2 Monitoring.html
155 Bytes
10. LGD and EAD Models Preparing the data/1.1 loan_data_2007_2014_preprocessed.csv.html
144 Bytes
11. LGD model/1.1 loan_data_2007_2014_preprocessed.csv.html
144 Bytes
1. Introduction/11. Different facility types (asset classes) and credit risk modeling approaches.html
141 Bytes
1. Introduction/3. What is credit risk and why is it important.html
141 Bytes
1. Introduction/5. Expected loss (EL) and its components PD, LGD and EAD.html
141 Bytes
1. Introduction/7. Capital adequacy, regulations, and the Basel II accord.html
141 Bytes
1. Introduction/9. Basel II approaches SA, F-IRB, and A-IRB.html
141 Bytes
10. LGD and EAD Models Preparing the data/2. LGD and EAD models independent variables.html
141 Bytes
10. LGD and EAD Models Preparing the data/4. LGD and EAD models dependent variables.html
141 Bytes
10. LGD and EAD Models Preparing the data/6. LGD and EAD models distribution of recovery rates and credit conversion factors.html
141 Bytes
11. LGD model/11. LGD model combining stage 1 and stage 2.html
141 Bytes
11. LGD model/3. LGD model testing the model.html
141 Bytes
11. LGD model/7. LGD model stage 2 – linear regression with comments.html
141 Bytes
11. LGD model/9. LGD model stage 2 – linear regression evaluation.html
141 Bytes
12. EAD model/2. EAD model estimation and interpretation.html
141 Bytes
12. EAD model/4. EAD model validation.html
141 Bytes
13. Calculating expected loss/2. Calculating expected loss.html
141 Bytes
3. Dataset description/2. Our example consumer loans. A first look at the dataset.html
141 Bytes
3. Dataset description/4. Dependent variables and independent variables.html
141 Bytes
4. General preprocessing/2. Importing the data into Python.html
141 Bytes
4. General preprocessing/4. Preprocessing few continuous variables.html
141 Bytes
4. General preprocessing/7. Preprocessing few discrete variables.html
141 Bytes
4. General preprocessing/9. Check for missing values and clean.html
141 Bytes
5. PD Model Data Preparation/10. Data preparation. Splitting data.html
141 Bytes
5. PD Model Data Preparation/12. Data preparation. An example.html
141 Bytes
5. PD Model Data Preparation/14. Data preparation. Preprocessing discrete variables automating calculations.html
141 Bytes
5. PD Model Data Preparation/17. Data preparation. Preprocessing discrete variables creating dummies (Part 1).html
141 Bytes
5. PD Model Data Preparation/19. Data preparation. Preprocessing discrete variables creating dummies (Part 2).html
141 Bytes
5. PD Model Data Preparation/2. How is the PD model going to look like.html
141 Bytes
5. PD Model Data Preparation/22. Data preparation. Preprocessing continuous variables Automating calculations.html
141 Bytes
5. PD Model Data Preparation/24. Data preparation. Preprocessing continuous variables creating dummies (Part 1).html
141 Bytes
5. PD Model Data Preparation/26. Data preparation. Preprocessing continuous variables creating dummies (Part 2).html
141 Bytes
5. PD Model Data Preparation/29. Data preparation. Preprocessing continuous variables creating dummies (Part 3).html
141 Bytes
5. PD Model Data Preparation/4. Dependent variable Good Bad (default) definition.html
141 Bytes
5. PD Model Data Preparation/6. Fine classing, weight of evidence, and coarse classing.html
141 Bytes
5. PD Model Data Preparation/8. Information value.html
141 Bytes
6. PD model estimation/2. The PD model. Logistic regression with dummy variables.html
141 Bytes
6. PD model estimation/6. Build a logistic regression model with p-values.html
141 Bytes
6. PD model estimation/8. Interpreting the coefficients in the PD model.html
141 Bytes
7. PD model validation/2. Out-of-sample validation (test).html
141 Bytes
7. PD model validation/4. Evaluation of model performance accuracy and area under the curve (AUC).html
141 Bytes
7. PD model validation/6. Evaluation of model performance Gini and Kolmogorov-Smirnov.html
141 Bytes
8. Applying the PD Model for decision making/3. Creating a scorecard.html
141 Bytes
8. Applying the PD Model for decision making/5. Calculating credit score.html
141 Bytes
8. Applying the PD Model for decision making/7. From credit score to PD.html
141 Bytes
8. Applying the PD Model for decision making/9. Setting cut-offs.html
141 Bytes
9. PD model monitoring/2. PD model monitoring via assessing population stability.html
141 Bytes
9. PD model monitoring/5. Population stability index calculation and interpretation.html
141 Bytes
3. Dataset description/1.4 Dataset for the course.html
131 Bytes
3. Dataset description/3.1 Dataset for the course.html
131 Bytes
11. LGD model/12.1 Dataset with new data (loan_data_2015.csv).html
126 Bytes
9. PD model monitoring/6.1 Dataset with new data (loan_data_2015.csv).html
126 Bytes
5. PD Model Data Preparation/32. PD model data preparation notebooks.html
85 Bytes
8. Applying the PD Model for decision making/11. PD model logistic regression notebooks.html
73 Bytes
[FreeCourseWorld.Com].url
54 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>