搜索
[GigaCourse.Com] Udemy - 2022 Python for Machine Learning & Data Science Masterclass
磁力链接/BT种子名称
[GigaCourse.Com] Udemy - 2022 Python for Machine Learning & Data Science Masterclass
磁力链接/BT种子简介
种子哈希:
a68127cc952118bb1eb3f925987d45851b0ea4ee
文件大小:
11.49G
已经下载:
1794
次
下载速度:
极快
收录时间:
2023-12-19
最近下载:
2024-12-01
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:A68127CC952118BB1EB3F925987D45851B0EA4EE
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
最近搜索
ls land issue 04
今日の5の2
24.05.21
elizabeth skylar
hermanas hasta la muerte
besthottwife
mmks
舞顶胯
逼里都是精液
west wing
猛男约炮
into the storm
主播
探花柒哥酒店约网红脸❤️极品00后高端外围
원교
diana.grace
外男友
レイプ
ts
ktra-041
【光头探花营业】
乱伦の中出
doks-129
芳心
abw-196
867
jjaa+c
fsdss-547
怼拍
a+good+day+to+die
文件列表
23 - Hierarchical Clustering/004 Hierarchical Clustering - Coding Part Two - Scikit-Learn.mp4
219.4 MB
05 - Pandas/028 Pandas Project Exercise Solutions.mp4
180.9 MB
13 - Logistic Regression/016 Logistic Regression Project Exercise - Solutions.mp4
169.1 MB
08 - Data Analysis and Visualization Capstone Project Exercise/004 Capstone Project Solutions - Part Three.mp4
144.1 MB
17 - Random Forests/007 Coding Classification with Random Forest Classifier - Part Two.mp4
136.7 MB
19 - Supervised Learning Capstone Project/003 Solution Walkthrough - Supervised Learning Project - Cohort Analysis.mp4
136.5 MB
05 - Pandas/026 Pandas Pivot Tables.mp4
135.4 MB
24 - DBSCAN - Density-based spatial clustering of applications with noise/007 DBSCAN - Outlier Project Exercise Solutions.mp4
134.1 MB
25 - PCA - Principal Component Analysis and Manifold Learning/007 PCA - Project Exercise Solution.mp4
125.3 MB
11 - Feature Engineering and Data Preparation/005 Dealing with Missing Data _ Part Two - Filling or Dropping data based on Rows.mp4
123.3 MB
16 - Tree Based Methods_ Decision Tree Learning/008 Coding Decision Trees - Part Two -Creating the Model.mp4
121.4 MB
23 - Hierarchical Clustering/003 Hierarchical Clustering - Coding Part One - Data and Visualization.mp4
120.6 MB
19 - Supervised Learning Capstone Project/004 Solution Walkthrough - Supervised Learning Project - Tree Models.mp4
119.8 MB
07 - Seaborn Data Visualizations/002 Scatterplots with Seaborn.mp4
116.7 MB
08 - Data Analysis and Visualization Capstone Project Exercise/002 Capstone Project Solutions - Part One.mp4
116.0 MB
26 - Model Deployment/003 Model Persistence.mp4
115.1 MB
24 - DBSCAN - Density-based spatial clustering of applications with noise/002 DBSCAN - Theory and Intuition.mp4
114.4 MB
22 - K-Means Clustering/011 K-Means Clustering Exercise Solution - Part Two.mp4
113.5 MB
08 - Data Analysis and Visualization Capstone Project Exercise/003 Capstone Project Solutions - Part Two.mp4
111.3 MB
19 - Supervised Learning Capstone Project/002 Solution Walkthrough - Supervised Learning Project - Data and EDA.mp4
111.3 MB
06 - Matplotlib/011 Matplotlib Exercise Questions - Solutions.mp4
111.0 MB
07 - Seaborn Data Visualizations/014 Seaborn Plot Exercises Solutions.mp4
110.9 MB
11 - Feature Engineering and Data Preparation/006 Dealing with Missing Data _ Part 3 - Fixing data based on Columns.mp4
110.3 MB
13 - Logistic Regression/014 Multi-Class Classification with Logistic Regression - Part Two - Model.mp4
110.2 MB
24 - DBSCAN - Density-based spatial clustering of applications with noise/005 DBSCAN - Hyperparameter Tuning Methods.mp4
110.2 MB
14 - KNN - K Nearest Neighbors/006 KNN Classification Project Exercise Solutions.mp4
110.1 MB
11 - Feature Engineering and Data Preparation/003 Dealing with Outliers.mp4
108.3 MB
14 - KNN - K Nearest Neighbors/004 KNN Coding with Python - Part Two - Choosing K.mp4
107.9 MB
05 - Pandas/023 Pandas Input and Output - HTML Tables.mp4
107.3 MB
20 - Naive Bayes Classification and Natural Language Processing/010 Text Classification Project Exercise Solutions.mp4
105.5 MB
04 - NumPy/002 NumPy Arrays.mp4
104.3 MB
16 - Tree Based Methods_ Decision Tree Learning/007 Coding Decision Trees - Part One - The Data.mp4
103.5 MB
22 - K-Means Clustering/004 K-Means Clustering - Coding Part One.mp4
102.7 MB
05 - Pandas/004 DataFrames - Part One - Creating a DataFrame.mp4
102.2 MB
06 - Matplotlib/006 Matplotlib - Subplots Functionality.mp4
101.3 MB
05 - Pandas/025 Pandas Input and Output - SQL Databases.mp4
100.6 MB
25 - PCA - Principal Component Analysis and Manifold Learning/004 PCA - Manual Implementation in Python.mp4
99.7 MB
10 - Linear Regression/024 L1 Regularization - Lasso Regression - Background and Implementation.mp4
99.2 MB
15 - Support Vector Machines/010 Support Vector Machine Project Solutions.mp4
97.9 MB
05 - Pandas/015 GroupBy Operations - Part Two - MultiIndex.mp4
97.4 MB
12 - Cross Validation , Grid Search, and the Linear Regression Project/008 Linear Regression Project - Solutions.mp4
95.7 MB
15 - Support Vector Machines/007 SVM with Scikit-Learn and Python - Classification Part Two.mp4
95.0 MB
10 - Linear Regression/023 L2 Regularization - Ridge Regression - Python Implementation.mp4
93.7 MB
07 - Seaborn Data Visualizations/011 Seaborn Grid Plots.mp4
91.2 MB
05 - Pandas/014 GroupBy Operations - Part One.mp4
91.2 MB
10 - Linear Regression/003 Linear Regression - Understanding Ordinary Least Squares.mp4
90.6 MB
05 - Pandas/010 Pandas - Useful Methods - Apply on Multiple Columns.mp4
89.5 MB
17 - Random Forests/009 Coding Regression with Random Forest Regressor - Part Two - Basic Models.mp4
89.1 MB
07 - Seaborn Data Visualizations/008 Categorical Plots - Distributions within Categories - Coding with Seaborn.mp4
88.7 MB
01 - Introduction to Course/003 Anaconda Python and Jupyter Install and Setup.mp4
88.6 MB
05 - Pandas/006 DataFrames - Part Three - Working with Columns.mp4
88.2 MB
10 - Linear Regression/011 Linear Regression - Model Deployment and Coefficient Interpretation.mp4
85.1 MB
22 - K-Means Clustering/005 K-Means Clustering Coding Part Two.mp4
84.8 MB
22 - K-Means Clustering/007 K-Means Color Quantization - Part One.mp4
84.5 MB
05 - Pandas/021 Pandas - Time Methods for Date and Time Data.mp4
84.1 MB
22 - K-Means Clustering/010 K-Means Clustering Exercise Solution - Part One.mp4
83.8 MB
15 - Support Vector Machines/008 SVM with Scikit-Learn and Python - Regression Tasks.mp4
80.0 MB
05 - Pandas/011 Pandas - Useful Methods - Statistical Information and Sorting.mp4
78.0 MB
25 - PCA - Principal Component Analysis and Manifold Learning/005 PCA - SciKit-Learn.mp4
77.7 MB
05 - Pandas/013 Missing Data - Pandas Operations.mp4
77.2 MB
12 - Cross Validation , Grid Search, and the Linear Regression Project/006 Grid Search.mp4
76.7 MB
05 - Pandas/007 DataFrames - Part Four - Working with Rows.mp4
76.1 MB
10 - Linear Regression/006 Python coding Simple Linear Regression.mp4
73.5 MB
05 - Pandas/008 Pandas - Conditional Filtering.mp4
72.6 MB
26 - Model Deployment/006 Model API - Creating the Script.mp4
70.5 MB
01 - Introduction to Course/33985574-UNZIP-FOR-NOTEBOOKS-FINAL.zip
70.4 MB
01 - Introduction to Course/33985614-UNZIP-FOR-NOTEBOOKS-FINAL.zip
70.4 MB
24 - DBSCAN - Density-based spatial clustering of applications with noise/003 DBSCAN versus K-Means Clustering.mp4
69.9 MB
10 - Linear Regression/025 L1 and L2 Regularization - Elastic Net.mp4
69.6 MB
22 - K-Means Clustering/008 K-Means Color Quantization - Part Two.mp4
68.2 MB
18 - Boosting Methods/005 AdaBoost Coding Part Two - The Model.mp4
66.2 MB
20 - Naive Bayes Classification and Natural Language Processing/005 Feature Extraction from Text - Coding Count Vectorization Manually.mp4
65.9 MB
22 - K-Means Clustering/012 K-Means Clustering Exercise Solution - Part Three.mp4
65.5 MB
13 - Logistic Regression/007 Logistic Regression with Scikit-Learn - Part One - EDA.mp4
65.5 MB
14 - KNN - K Nearest Neighbors/003 KNN Coding with Python - Part One.mp4
64.5 MB
07 - Seaborn Data Visualizations/012 Seaborn - Matrix Plots.mp4
64.5 MB
10 - Linear Regression/008 Linear Regression - Scikit-Learn Train Test Split.mp4
64.4 MB
10 - Linear Regression/022 L2 Regularization - Ridge Regression Theory.mp4
64.3 MB
22 - K-Means Clustering/006 K-Means Clustering Coding Part Three.mp4
62.7 MB
22 - K-Means Clustering/009 K-Means Clustering Exercise Overview.mp4
62.4 MB
12 - Cross Validation , Grid Search, and the Linear Regression Project/003 Cross Validation - Test _ Validation _ Train Split.mp4
62.3 MB
07 - Seaborn Data Visualizations/004 Distribution Plots - Part Two - Coding with Seaborn.mp4
62.1 MB
11 - Feature Engineering and Data Preparation/007 Dealing with Categorical Data - Encoding Options.mp4
61.7 MB
18 - Boosting Methods/007 Gradient Boosting Coding Walkthrough.mp4
60.7 MB
02 - OPTIONAL_ Python Crash Course/003 Python Crash Course - Part Two.mp4
60.4 MB
13 - Logistic Regression/012 Logistic Regression with Scikit-Learn - Part Three - Performance Evaluation.mp4
59.8 MB
10 - Linear Regression/016 Polynomial Regression - Choosing Degree of Polynomial.mp4
58.4 MB
13 - Logistic Regression/006 Logistic Regression - Theory and Intuition - Best fit with Maximum Likelihood.mp4
57.6 MB
10 - Linear Regression/002 Linear Regression - Algorithm History.mp4
57.5 MB
05 - Pandas/009 Pandas - Useful Methods - Apply on Single Column.mp4
56.3 MB
10 - Linear Regression/009 Linear Regression - Scikit-Learn Performance Evaluation - Regression.mp4
56.0 MB
25 - PCA - Principal Component Analysis and Manifold Learning/006 PCA - Project Exercise Overview.mp4
55.3 MB
15 - Support Vector Machines/005 SVM - Theory and Intuition - Kernel Trick and Mathematics.mp4
55.2 MB
22 - K-Means Clustering/003 K-Means Clustering Theory.mp4
55.0 MB
16 - Tree Based Methods_ Decision Tree Learning/006 Constructing Decision Trees with Gini Impurity - Part Two.mp4
54.9 MB
17 - Random Forests/006 Coding Classification with Random Forest Classifier - Part One.mp4
54.6 MB
23 - Hierarchical Clustering/002 Hierarchical Clustering - Theory and Intuition.mp4
54.6 MB
07 - Seaborn Data Visualizations/006 Categorical Plots - Statistics within Categories - Coding with Seaborn.mp4
54.2 MB
07 - Seaborn Data Visualizations/010 Seaborn - Comparison Plots - Coding with Seaborn.mp4
53.6 MB
17 - Random Forests/011 Coding Regression with Random Forest Regressor - Part Four - Advanced Models.mp4
53.1 MB
20 - Naive Bayes Classification and Natural Language Processing/006 Feature Extraction from Text - Coding with Scikit-Learn.mp4
52.8 MB
24 - DBSCAN - Density-based spatial clustering of applications with noise/006 DBSCAN - Outlier Project Exercise Overview.mp4
52.7 MB
06 - Matplotlib/010 Matplotlib Exercise Questions Overview.mp4
51.4 MB
02 - OPTIONAL_ Python Crash Course/006 Python Crash Course - Exercise Solutions.mp4
51.1 MB
20 - Naive Bayes Classification and Natural Language Processing/003 Naive Bayes Algorithm - Part Two - Model Algorithm.mp4
51.0 MB
07 - Seaborn Data Visualizations/013 Seaborn Plot Exercises Overview.mp4
50.2 MB
15 - Support Vector Machines/003 SVM - Theory and Intuition - Hyperplanes and Margins.mp4
50.1 MB
12 - Cross Validation , Grid Search, and the Linear Regression Project/002 Cross Validation - Test _ Train Split.mp4
49.1 MB
15 - Support Vector Machines/006 SVM with Scikit-Learn and Python - Classification Part One.mp4
48.5 MB
17 - Random Forests/010 Coding Regression with Random Forest Regressor - Part Three - Polynomials.mp4
47.7 MB
05 - Pandas/020 Pandas - Text Methods for String Data.mp4
47.3 MB
12 - Cross Validation , Grid Search, and the Linear Regression Project/005 Cross Validation - cross_validate.mp4
47.2 MB
07 - Seaborn Data Visualizations/007 Categorical Plots - Distributions within Categories - Understanding Plot Types.mp4
47.1 MB
12 - Cross Validation , Grid Search, and the Linear Regression Project/004 Cross Validation - cross_val_score.mp4
46.6 MB
06 - Matplotlib/008 Matplotlib Styling - Colors and Styles.mp4
46.4 MB
10 - Linear Regression/010 Linear Regression - Residual Plots.mp4
46.2 MB
18 - Boosting Methods/004 AdaBoost Coding Part One - The Data.mp4
44.3 MB
18 - Boosting Methods/003 AdaBoost Theory and Intuition.mp4
43.5 MB
05 - Pandas/005 DataFrames - Part Two - Basic Properties.mp4
42.2 MB
05 - Pandas/017 Combining DataFrames - Inner Merge.mp4
42.2 MB
10 - Linear Regression/013 Polynomial Regression - Creating Polynomial Features.mp4
42.0 MB
04 - NumPy/003 NumPy Indexing and Selection.mp4
41.6 MB
05 - Pandas/027 Pandas Project Exercise Overview.mp4
41.3 MB
13 - Logistic Regression/013 Multi-Class Classification with Logistic Regression - Part One - Data and EDA.mp4
39.2 MB
05 - Pandas/022 Pandas Input and Output - CSV Files.mp4
39.0 MB
05 - Pandas/016 Combining DataFrames - Concatenation.mp4
38.6 MB
10 - Linear Regression/014 Polynomial Regression - Training and Evaluation.mp4
38.1 MB
10 - Linear Regression/015 Bias Variance Trade-Off.mp4
37.9 MB
11 - Feature Engineering and Data Preparation/002 Introduction to Feature Engineering and Data Preparation.mp4
37.9 MB
04 - NumPy/004 NumPy Operations.mp4
37.8 MB
13 - Logistic Regression/005 Logistic Regression - Theory and Intuition - Linear to Logistic Math.mp4
37.8 MB
01 - Introduction to Course/005 Environment Setup.mp4
37.4 MB
16 - Tree Based Methods_ Decision Tree Learning/002 Decision Tree - History.mp4
37.3 MB
04 - NumPy/006 Numpy Exercises - Solutions.mp4
36.6 MB
06 - Matplotlib/004 Matplotlib - Implementing Figures and Axes.mp4
36.6 MB
15 - Support Vector Machines/009 Support Vector Machine Project Overview.mp4
36.5 MB
20 - Naive Bayes Classification and Natural Language Processing/008 Natural Language Processing - Classification of Text - Part Two.mp4
36.5 MB
09 - Machine Learning Concepts Overview/004 Supervised Machine Learning Process.mp4
35.2 MB
26 - Model Deployment/007 Testing the API.mp4
34.8 MB
13 - Logistic Regression/010 Classification Metrics - Precison, Recall, F1-Score.mp4
34.8 MB
10 - Linear Regression/020 Introduction to Cross Validation.mp4
34.6 MB
17 - Random Forests/005 Random Forests - Bootstrapping and Out-of-Bag Error.mp4
34.3 MB
13 - Logistic Regression/008 Logistic Regression with Scikit-Learn - Part Two - Model Training.mp4
34.2 MB
02 - OPTIONAL_ Python Crash Course/004 Python Crash Course - Part Three.mp4
33.6 MB
10 - Linear Regression/007 Overview of Scikit-Learn and Python.mp4
33.0 MB
08 - Data Analysis and Visualization Capstone Project Exercise/001 Capstone Project Overview.mp4
32.6 MB
06 - Matplotlib/002 Matplotlib Basics.mp4
32.6 MB
20 - Naive Bayes Classification and Natural Language Processing/009 Text Classification Project Exercise Overview.mp4
32.0 MB
19 - Supervised Learning Capstone Project/001 Introduction to Supervised Learning Capstone Project.mp4
31.3 MB
02 - OPTIONAL_ Python Crash Course/002 Python Crash Course - Part One.mp4
31.2 MB
25 - PCA - Principal Component Analysis and Manifold Learning/002 PCA Theory and Intuition - Part One.mp4
31.2 MB
20 - Naive Bayes Classification and Natural Language Processing/004 Feature Extraction from Text - Part One - Theory and Intuition.mp4
30.8 MB
10 - Linear Regression/005 Linear Regression - Gradient Descent.mp4
30.6 MB
05 - Pandas/002 Series - Part One.mp4
30.0 MB
20 - Naive Bayes Classification and Natural Language Processing/007 Natural Language Processing - Classification of Text - Part One.mp4
29.6 MB
17 - Random Forests/004 Random Forests - Number of Estimators and Features in Subsets.mp4
28.6 MB
05 - Pandas/012 Missing Data - Overview.mp4
28.6 MB
05 - Pandas/003 Series - Part Two.mp4
27.4 MB
05 - Pandas/024 Pandas Input and Output - Excel Files.mp4
27.1 MB
06 - Matplotlib/009 Advanced Matplotlib Commands (Optional).mp4
26.4 MB
22 - K-Means Clustering/002 Clustering General Overview.mp4
26.1 MB
10 - Linear Regression/019 Feature Scaling.mp4
25.5 MB
13 - Logistic Regression/015 Logistic Regression Exercise Project Overview.mp4
25.5 MB
17 - Random Forests/002 Random Forests - History and Motivation.mp4
25.2 MB
12 - Cross Validation , Grid Search, and the Linear Regression Project/007 Linear Regression Project Overview.mp4
24.8 MB
14 - KNN - K Nearest Neighbors/002 KNN Classification - Theory and Intuition.mp4
24.7 MB
10 - Linear Regression/017 Polynomial Regression - Model Deployment.mp4
24.4 MB
18 - Boosting Methods/006 Gradient Boosting Theory.mp4
24.1 MB
10 - Linear Regression/012 Polynomial Regression - Theory and Motivation.mp4
23.3 MB
05 - Pandas/019 Combining DataFrames - Outer Merge.mp4
23.3 MB
20 - Naive Bayes Classification and Natural Language Processing/002 Naive Bayes Algorithm - Part One - Bayes Theorem.mp4
23.1 MB
18 - Boosting Methods/002 Boosting Methods - Motivation and History.mp4
23.0 MB
13 - Logistic Regression/009 Classification Metrics - Confusion Matrix and Accuracy.mp4
22.8 MB
14 - KNN - K Nearest Neighbors/005 KNN Classification Project Exercise Overview.mp4
22.2 MB
09 - Machine Learning Concepts Overview/002 Why Machine Learning_.mp4
22.1 MB
10 - Linear Regression/021 Regularization Data Setup.mp4
21.1 MB
16 - Tree Based Methods_ Decision Tree Learning/004 Decision Tree - Understanding Gini Impurity.mp4
20.4 MB
11 - Feature Engineering and Data Preparation/004 Dealing with Missing Data _ Part One - Evaluation of Missing Data.mp4
20.0 MB
25 - PCA - Principal Component Analysis and Manifold Learning/003 PCA Theory and Intuition - Part Two.mp4
20.0 MB
26 - Model Deployment/002 Model Deployment Considerations.mp4
19.2 MB
09 - Machine Learning Concepts Overview/003 Types of Machine Learning Algorithms.mp4
19.0 MB
16 - Tree Based Methods_ Decision Tree Learning/005 Constructing Decision Trees with Gini Impurity - Part One.mp4
18.6 MB
26 - Model Deployment/004 Model Deployment as an API - General Overview.mp4
18.3 MB
13 - Logistic Regression/003 Logistic Regression - Theory and Intuition - Part One_ The Logistic Function.mp4
18.2 MB
10 - Linear Regression/026 Linear Regression Project - Data Overview.mp4
17.8 MB
10 - Linear Regression/004 Linear Regression - Cost Functions.mp4
17.4 MB
05 - Pandas/018 Combining DataFrames - Left and Right Merge.mp4
17.2 MB
06 - Matplotlib/007 Matplotlib Styling - Legends.mp4
17.0 MB
13 - Logistic Regression/011 Classification Metrics - ROC Curves.mp4
16.9 MB
07 - Seaborn Data Visualizations/005 Categorical Plots - Statistics within Categories - Understanding Plot Types.mp4
16.8 MB
15 - Support Vector Machines/002 History of Support Vector Machines.mp4
16.3 MB
10 - Linear Regression/018 Regularization Overview.mp4
16.3 MB
07 - Seaborn Data Visualizations/003 Distribution Plots - Part One - Understanding Plot Types.mp4
15.8 MB
03 - Machine Learning Pathway Overview/001 Machine Learning Pathway.mp4
14.8 MB
13 - Logistic Regression/002 Introduction to Logistic Regression Section.mp4
14.6 MB
24 - DBSCAN - Density-based spatial clustering of applications with noise/004 DBSCAN - Hyperparameter Theory.mp4
14.5 MB
21 - Unsupervised Learning/001 Unsupervised Learning Overview.mp4
14.4 MB
17 - Random Forests/008 Coding Regression with Random Forest Regressor - Part One - Data.mp4
14.3 MB
09 - Machine Learning Concepts Overview/001 Introduction to Machine Learning Overview Section.mp4
13.8 MB
06 - Matplotlib/005 Matplotlib - Figure Parameters.mp4
13.7 MB
06 - Matplotlib/003 Matplotlib - Understanding the Figure Object.mp4
12.3 MB
07 - Seaborn Data Visualizations/009 Seaborn - Comparison Plots - Understanding the Plot Types.mp4
11.1 MB
15 - Support Vector Machines/004 SVM - Theory and Intuition - Kernel Intuition.mp4
10.3 MB
04 - NumPy/005 NumPy Exercises.mp4
10.1 MB
17 - Random Forests/003 Random Forests - Key Hyperparameters.mp4
8.7 MB
13 - Logistic Regression/004 Logistic Regression - Theory and Intuition - Part Two_ Linear to Logistic.mp4
8.4 MB
16 - Tree Based Methods_ Decision Tree Learning/003 Decision Tree - Terminology.mp4
7.6 MB
20 - Naive Bayes Classification and Natural Language Processing/31640132-moviereviews.csv
7.6 MB
01 - Introduction to Course/002 COURSE OVERVIEW LECTURE - PLEASE DO NOT SKIP_.mp4
7.6 MB
19 - Supervised Learning Capstone Project/31389398-17-Supervised-Learning-Capstone-Project.zip
7.4 MB
05 - Pandas/001 Introduction to Pandas.mp4
7.0 MB
06 - Matplotlib/001 Introduction to Matplotlib.mp4
6.9 MB
22 - K-Means Clustering/32407448-20-Kmeans-Clustering.zip
6.1 MB
07 - Seaborn Data Visualizations/001 Introduction to Seaborn.mp4
6.0 MB
12 - Cross Validation , Grid Search, and the Linear Regression Project/001 Section Overview and Introduction.mp4
5.9 MB
09 - Machine Learning Concepts Overview/005 Companion Book - Introduction to Statistical Learning.mp4
5.4 MB
25 - PCA - Principal Component Analysis and Manifold Learning/001 Introduction to Principal Component Analysis.mp4
5.3 MB
22 - K-Means Clustering/32407452-bank-full.csv
5.2 MB
20 - Naive Bayes Classification and Natural Language Processing/001 Introduction to NLP and Naive Bayes Section.mp4
4.4 MB
26 - Model Deployment/001 Model Deployment Section Overview.mp4
4.4 MB
25 - PCA - Principal Component Analysis and Manifold Learning/33912220-23-PCA-Principal-Component-Analysis.zip
4.1 MB
17 - Random Forests/30930956-15-Random-Forests.zip
4.1 MB
14 - KNN - K Nearest Neighbors/001 Introduction to KNN Section.mp4
3.8 MB
22 - K-Means Clustering/001 Introduction to K-Means Clustering Section.mp4
3.7 MB
24 - DBSCAN - Density-based spatial clustering of applications with noise/33643014-22-DBSCAN.zip
3.7 MB
02 - OPTIONAL_ Python Crash Course/005 Python Crash Course - Exercise Questions.mp4
3.6 MB
04 - NumPy/001 Introduction to NumPy.mp4
3.5 MB
20 - Naive Bayes Classification and Natural Language Processing/31640102-airline-tweets.csv
3.4 MB
18 - Boosting Methods/001 Introduction to Boosting Section.mp4
3.1 MB
17 - Random Forests/001 Introduction to Random Forests Section.mp4
3.0 MB
15 - Support Vector Machines/001 Introduction to Support Vector Machines.mp4
2.9 MB
10 - Linear Regression/001 Introduction to Linear Regression Section.mp4
2.7 MB
16 - Tree Based Methods_ Decision Tree Learning/001 Introduction to Tree Based Methods.mp4
2.4 MB
13 - Logistic Regression/29304858-11-Logistic-Regression-Models.zip
2.1 MB
24 - DBSCAN - Density-based spatial clustering of applications with noise/001 Introduction to DBSCAN Section.mp4
1.9 MB
16 - Tree Based Methods_ Decision Tree Learning/30205020-14-Decision-Trees.zip
1.9 MB
23 - Hierarchical Clustering/001 Introduction to Hierarchical Clustering.mp4
1.8 MB
15 - Support Vector Machines/29902052-13-Support-Vector-Machines.zip
1.6 MB
14 - KNN - K Nearest Neighbors/29434428-12-K-Nearest-Neighbors.zip
1.4 MB
19 - Supervised Learning Capstone Project/31389400-Telco-Customer-Churn.csv
976.5 kB
18 - Boosting Methods/31286608-16-Boosted-Trees.zip
940.0 kB
23 - Hierarchical Clustering/33028500-21-Hierarchical-Clustering.zip
636.5 kB
25 - PCA - Principal Component Analysis and Manifold Learning/33912190-digits.csv
497.2 kB
18 - Boosting Methods/31286610-mushrooms.csv
374.0 kB
20 - Naive Bayes Classification and Natural Language Processing/31640094-18-Naive-Bayes-and-NLP.zip
197.1 kB
22 - K-Means Clustering/33555798-palm-trees.jpg
176.9 kB
25 - PCA - Principal Component Analysis and Manifold Learning/33912194-cancer-tumor-data-features.csv
120.8 kB
24 - DBSCAN - Density-based spatial clustering of applications with noise/33643060-cluster-circles.csv
61.3 kB
24 - DBSCAN - Density-based spatial clustering of applications with noise/33643082-cluster-moons.csv
60.1 kB
24 - DBSCAN - Density-based spatial clustering of applications with noise/33643080-cluster-blobs.csv
57.2 kB
17 - Random Forests/30930966-data-banknote-authentication.csv
46.5 kB
23 - Hierarchical Clustering/004 Hierarchical Clustering - Coding Part Two - Scikit-Learn__en.srt
43.3 kB
11 - Feature Engineering and Data Preparation/003 Dealing with Outliers__en.srt
42.2 kB
05 - Pandas/028 Pandas Project Exercise Solutions__en.srt
39.7 kB
19 - Supervised Learning Capstone Project/003 Solution Walkthrough - Supervised Learning Project - Cohort Analysis__en.srt
39.7 kB
24 - DBSCAN - Density-based spatial clustering of applications with noise/33643070-cluster-two-blobs-outliers.csv
39.2 kB
24 - DBSCAN - Density-based spatial clustering of applications with noise/33643072-cluster-two-blobs.csv
39.2 kB
24 - DBSCAN - Density-based spatial clustering of applications with noise/007 DBSCAN - Outlier Project Exercise Solutions__en.srt
39.0 kB
11 - Feature Engineering and Data Preparation/006 Dealing with Missing Data _ Part 3 - Fixing data based on Columns__en.srt
37.6 kB
22 - K-Means Clustering/32407456-CIA-Country-Facts.csv
33.5 kB
16 - Tree Based Methods_ Decision Tree Learning/008 Coding Decision Trees - Part Two -Creating the Model__en.srt
33.5 kB
24 - DBSCAN - Density-based spatial clustering of applications with noise/005 DBSCAN - Hyperparameter Tuning Methods__en.srt
33.4 kB
05 - Pandas/026 Pandas Pivot Tables__en.srt
33.0 kB
04 - NumPy/002 NumPy Arrays__en.srt
32.7 kB
05 - Pandas/021 Pandas - Time Methods for Date and Time Data__en.srt
32.5 kB
11 - Feature Engineering and Data Preparation/005 Dealing with Missing Data _ Part Two - Filling or Dropping data based on Rows__en.srt
32.2 kB
13 - Logistic Regression/016 Logistic Regression Project Exercise - Solutions_en.vtt
31.6 kB
08 - Data Analysis and Visualization Capstone Project Exercise/004 Capstone Project Solutions - Part Three__en.srt
31.6 kB
14 - KNN - K Nearest Neighbors/004 KNN Coding with Python - Part Two - Choosing K_en.vtt
31.4 kB
22 - K-Means Clustering/004 K-Means Clustering - Coding Part One__en.srt
31.1 kB
07 - Seaborn Data Visualizations/002 Scatterplots with Seaborn__en.srt
30.4 kB
19 - Supervised Learning Capstone Project/002 Solution Walkthrough - Supervised Learning Project - Data and EDA__en.srt
30.4 kB
05 - Pandas/025 Pandas Input and Output - SQL Databases__en.srt
30.1 kB
19 - Supervised Learning Capstone Project/004 Solution Walkthrough - Supervised Learning Project - Tree Models_en.vtt
30.1 kB
15 - Support Vector Machines/005 SVM - Theory and Intuition - Kernel Trick and Mathematics__en.srt
30.0 kB
16 - Tree Based Methods_ Decision Tree Learning/007 Coding Decision Trees - Part One - The Data__en.srt
30.0 kB
05 - Pandas/004 DataFrames - Part One - Creating a DataFrame__en.srt
29.7 kB
18 - Boosting Methods/003 AdaBoost Theory and Intuition__en.srt
29.6 kB
06 - Matplotlib/006 Matplotlib - Subplots Functionality__en.srt
29.3 kB
07 - Seaborn Data Visualizations/008 Categorical Plots - Distributions within Categories - Coding with Seaborn__en.srt
28.9 kB
10 - Linear Regression/006 Python coding Simple Linear Regression__en.srt
28.8 kB
26 - Model Deployment/003 Model Persistence_en.vtt
28.8 kB
17 - Random Forests/007 Coding Classification with Random Forest Classifier - Part Two_en.vtt
28.6 kB
05 - Pandas/013 Missing Data - Pandas Operations__en.srt
28.1 kB
20 - Naive Bayes Classification and Natural Language Processing/005 Feature Extraction from Text - Coding Count Vectorization Manually__en.srt
27.9 kB
05 - Pandas/008 Pandas - Conditional Filtering__en.srt
27.8 kB
08 - Data Analysis and Visualization Capstone Project Exercise/002 Capstone Project Solutions - Part One__en.srt
27.5 kB
18 - Boosting Methods/005 AdaBoost Coding Part Two - The Model__en.srt
27.2 kB
22 - K-Means Clustering/005 K-Means Clustering Coding Part Two__en.srt
27.2 kB
24 - DBSCAN - Density-based spatial clustering of applications with noise/002 DBSCAN - Theory and Intuition__en.srt
27.1 kB
20 - Naive Bayes Classification and Natural Language Processing/003 Naive Bayes Algorithm - Part Two - Model Algorithm__en.srt
27.0 kB
25 - PCA - Principal Component Analysis and Manifold Learning/004 PCA - Manual Implementation in Python__en.srt
26.9 kB
15 - Support Vector Machines/008 SVM with Scikit-Learn and Python - Regression Tasks_en.vtt
26.8 kB
26 - Model Deployment/006 Model API - Creating the Script__en.srt
26.7 kB
05 - Pandas/010 Pandas - Useful Methods - Apply on Multiple Columns__en.srt
26.6 kB
25 - PCA - Principal Component Analysis and Manifold Learning/007 PCA - Project Exercise Solution__en.srt
26.3 kB
19 - Supervised Learning Capstone Project/001 Introduction to Supervised Learning Capstone Project__en.srt
26.3 kB
15 - Support Vector Machines/008 SVM with Scikit-Learn and Python - Regression Tasks__en.srt
26.3 kB
10 - Linear Regression/011 Linear Regression - Model Deployment and Coefficient Interpretation__en.srt
26.2 kB
23 - Hierarchical Clustering/003 Hierarchical Clustering - Coding Part One - Data and Visualization__en.srt
26.0 kB
13 - Logistic Regression/005 Logistic Regression - Theory and Intuition - Linear to Logistic Math__en.srt
25.4 kB
07 - Seaborn Data Visualizations/004 Distribution Plots - Part Two - Coding with Seaborn__en.srt
25.4 kB
02 - OPTIONAL_ Python Crash Course/002 Python Crash Course - Part One__en.srt
25.2 kB
06 - Matplotlib/011 Matplotlib Exercise Questions - Solutions__en.srt
25.1 kB
11 - Feature Engineering and Data Preparation/002 Introduction to Feature Engineering and Data Preparation__en.srt
24.7 kB
05 - Pandas/020 Pandas - Text Methods for String Data__en.srt
24.5 kB
13 - Logistic Regression/014 Multi-Class Classification with Logistic Regression - Part Two - Model__en.srt
24.4 kB
10 - Linear Regression/008 Linear Regression - Scikit-Learn Train Test Split__en.srt
24.3 kB
22 - K-Means Clustering/011 K-Means Clustering Exercise Solution - Part Two__en.srt
24.1 kB
08 - Data Analysis and Visualization Capstone Project Exercise/003 Capstone Project Solutions - Part Two__en.srt
24.0 kB
13 - Logistic Regression/012 Logistic Regression with Scikit-Learn - Part Three - Performance Evaluation__en.srt
24.0 kB
05 - Pandas/011 Pandas - Useful Methods - Statistical Information and Sorting__en.srt
24.0 kB
10 - Linear Regression/009 Linear Regression - Scikit-Learn Performance Evaluation - Regression__en.srt
23.6 kB
10 - Linear Regression/023 L2 Regularization - Ridge Regression - Python Implementation_en.vtt
23.5 kB
13 - Logistic Regression/006 Logistic Regression - Theory and Intuition - Best fit with Maximum Likelihood__en.srt
23.5 kB
10 - Linear Regression/025 L1 and L2 Regularization - Elastic Net_en.vtt
23.2 kB
10 - Linear Regression/003 Linear Regression - Understanding Ordinary Least Squares__en.srt
23.1 kB
15 - Support Vector Machines/010 Support Vector Machine Project Solutions_en.vtt
23.0 kB
07 - Seaborn Data Visualizations/014 Seaborn Plot Exercises Solutions__en.srt
22.9 kB
05 - Pandas/023 Pandas Input and Output - HTML Tables__en.srt
22.9 kB
13 - Logistic Regression/007 Logistic Regression with Scikit-Learn - Part One - EDA__en.srt
22.4 kB
12 - Cross Validation , Grid Search, and the Linear Regression Project/003 Cross Validation - Test _ Validation _ Train Split__en.srt
22.2 kB
01 - Introduction to Course/003 Anaconda Python and Jupyter Install and Setup__en.srt
22.1 kB
05 - Pandas/014 GroupBy Operations - Part One__en.srt
21.9 kB
22 - K-Means Clustering/006 K-Means Clustering Coding Part Three__en.srt
21.9 kB
20 - Naive Bayes Classification and Natural Language Processing/010 Text Classification Project Exercise Solutions_en.vtt
21.8 kB
22 - K-Means Clustering/008 K-Means Color Quantization - Part Two__en.srt
21.8 kB
22 - K-Means Clustering/010 K-Means Clustering Exercise Solution - Part One__en.srt
21.6 kB
07 - Seaborn Data Visualizations/012 Seaborn - Matrix Plots__en.srt
21.6 kB
05 - Pandas/007 DataFrames - Part Four - Working with Rows__en.srt
21.6 kB
06 - Matplotlib/008 Matplotlib Styling - Colors and Styles__en.srt
21.6 kB
15 - Support Vector Machines/007 SVM with Scikit-Learn and Python - Classification Part Two_en.vtt
21.5 kB
06 - Matplotlib/004 Matplotlib - Implementing Figures and Axes__en.srt
21.5 kB
05 - Pandas/015 GroupBy Operations - Part Two - MultiIndex__en.srt
21.4 kB
23 - Hierarchical Clustering/33028506-cluster-mpg.csv
21.3 kB
15 - Support Vector Machines/007 SVM with Scikit-Learn and Python - Classification Part Two__en.srt
21.2 kB
10 - Linear Regression/022 L2 Regularization - Ridge Regression Theory__en.srt
21.2 kB
05 - Pandas/006 DataFrames - Part Three - Working with Columns__en.srt
21.1 kB
08 - Data Analysis and Visualization Capstone Project Exercise/001 Capstone Project Overview__en.srt
21.1 kB
07 - Seaborn Data Visualizations/011 Seaborn Grid Plots__en.srt
21.0 kB
17 - Random Forests/009 Coding Regression with Random Forest Regressor - Part Two - Basic Models__en.srt
20.9 kB
22 - K-Means Clustering/007 K-Means Color Quantization - Part One__en.srt
20.9 kB
05 - Pandas/009 Pandas - Useful Methods - Apply on Single Column__en.srt
20.7 kB
10 - Linear Regression/010 Linear Regression - Residual Plots__en.srt
20.7 kB
07 - Seaborn Data Visualizations/007 Categorical Plots - Distributions within Categories - Understanding Plot Types__en.srt
20.6 kB
11 - Feature Engineering and Data Preparation/007 Dealing with Categorical Data - Encoding Options__en.srt
20.6 kB
17 - Random Forests/007 Coding Classification with Random Forest Classifier - Part Two__en.srt
20.5 kB
10 - Linear Regression/016 Polynomial Regression - Choosing Degree of Polynomial__en.srt
20.4 kB
10 - Linear Regression/020 Introduction to Cross Validation__en.srt
20.3 kB
09 - Machine Learning Concepts Overview/004 Supervised Machine Learning Process__en.srt
20.2 kB
06 - Matplotlib/002 Matplotlib Basics__en.srt
20.1 kB
10 - Linear Regression/024 L1 Regularization - Lasso Regression - Background and Implementation_en.vtt
20.1 kB
20 - Naive Bayes Classification and Natural Language Processing/010 Text Classification Project Exercise Solutions__en.srt
19.9 kB
14 - KNN - K Nearest Neighbors/003 KNN Coding with Python - Part One_en.vtt
19.8 kB
12 - Cross Validation , Grid Search, and the Linear Regression Project/006 Grid Search__en.srt
19.7 kB
15 - Support Vector Machines/003 SVM - Theory and Intuition - Hyperplanes and Margins__en.srt
19.0 kB
14 - KNN - K Nearest Neighbors/006 KNN Classification Project Exercise Solutions_en.vtt
19.0 kB
05 - Pandas/017 Combining DataFrames - Inner Merge__en.srt
19.0 kB
05 - Pandas/012 Missing Data - Overview__en.srt
18.8 kB
02 - OPTIONAL_ Python Crash Course/003 Python Crash Course - Part Two__en.srt
18.5 kB
17 - Random Forests/005 Random Forests - Bootstrapping and Out-of-Bag Error__en.srt
18.4 kB
18 - Boosting Methods/007 Gradient Boosting Coding Walkthrough_en.vtt
17.9 kB
12 - Cross Validation , Grid Search, and the Linear Regression Project/002 Cross Validation - Test _ Train Split__en.srt
17.9 kB
24 - DBSCAN - Density-based spatial clustering of applications with noise/003 DBSCAN versus K-Means Clustering__en.srt
17.8 kB
25 - PCA - Principal Component Analysis and Manifold Learning/005 PCA - SciKit-Learn__en.srt
17.7 kB
23 - Hierarchical Clustering/002 Hierarchical Clustering - Theory and Intuition__en.srt
17.7 kB
22 - K-Means Clustering/003 K-Means Clustering Theory__en.srt
17.7 kB
17 - Random Forests/002 Random Forests - History and Motivation__en.srt
17.6 kB
11 - Feature Engineering and Data Preparation/004 Dealing with Missing Data _ Part One - Evaluation of Missing Data__en.srt
17.4 kB
10 - Linear Regression/025 L1 and L2 Regularization - Elastic Net__en.srt
17.4 kB
14 - KNN - K Nearest Neighbors/002 KNN Classification - Theory and Intuition__en.srt
17.3 kB
10 - Linear Regression/005 Linear Regression - Gradient Descent__en.srt
17.1 kB
20 - Naive Bayes Classification and Natural Language Processing/006 Feature Extraction from Text - Coding with Scikit-Learn__en.srt
17.1 kB
18 - Boosting Methods/004 AdaBoost Coding Part One - The Data__en.srt
17.1 kB
05 - Pandas/022 Pandas Input and Output - CSV Files__en.srt
17.0 kB
02 - OPTIONAL_ Python Crash Course/004 Python Crash Course - Part Three__en.srt
17.0 kB
22 - K-Means Clustering/002 Clustering General Overview__en.srt
16.9 kB
16 - Tree Based Methods_ Decision Tree Learning/006 Constructing Decision Trees with Gini Impurity - Part Two__en.srt
16.8 kB
20 - Naive Bayes Classification and Natural Language Processing/007 Natural Language Processing - Classification of Text - Part One__en.srt
16.8 kB
10 - Linear Regression/013 Polynomial Regression - Creating Polynomial Features__en.srt
16.8 kB
15 - Support Vector Machines/006 SVM with Scikit-Learn and Python - Classification Part One__en.srt
16.8 kB
25 - PCA - Principal Component Analysis and Manifold Learning/003 PCA Theory and Intuition - Part Two__en.srt
16.8 kB
04 - NumPy/003 NumPy Indexing and Selection__en.srt
16.6 kB
17 - Random Forests/004 Random Forests - Number of Estimators and Features in Subsets__en.srt
16.6 kB
18 - Boosting Methods/006 Gradient Boosting Theory__en.srt
16.5 kB
20 - Naive Bayes Classification and Natural Language Processing/004 Feature Extraction from Text - Part One - Theory and Intuition__en.srt
16.4 kB
10 - Linear Regression/015 Bias Variance Trade-Off__en.srt
16.3 kB
12 - Cross Validation , Grid Search, and the Linear Regression Project/008 Linear Regression Project - Solutions_en.vtt
16.3 kB
03 - Machine Learning Pathway Overview/001 Machine Learning Pathway__en.srt
16.2 kB
17 - Random Forests/006 Coding Classification with Random Forest Classifier - Part One_en.vtt
16.2 kB
07 - Seaborn Data Visualizations/010 Seaborn - Comparison Plots - Coding with Seaborn__en.srt
16.1 kB
25 - PCA - Principal Component Analysis and Manifold Learning/002 PCA Theory and Intuition - Part One__en.srt
16.0 kB
17 - Random Forests/011 Coding Regression with Random Forest Regressor - Part Four - Advanced Models__en.srt
15.8 kB
05 - Pandas/003 Series - Part Two__en.srt
15.7 kB
17 - Random Forests/010 Coding Regression with Random Forest Regressor - Part Three - Polynomials__en.srt
15.7 kB
20 - Naive Bayes Classification and Natural Language Processing/008 Natural Language Processing - Classification of Text - Part Two__en.srt
15.7 kB
12 - Cross Validation , Grid Search, and the Linear Regression Project/004 Cross Validation - cross_val_score_en.vtt
15.6 kB
05 - Pandas/016 Combining DataFrames - Concatenation__en.srt
15.4 kB
07 - Seaborn Data Visualizations/003 Distribution Plots - Part One - Understanding Plot Types__en.srt
15.4 kB
10 - Linear Regression/019 Feature Scaling__en.srt
15.2 kB
24 - DBSCAN - Density-based spatial clustering of applications with noise/33643066-wholesome-customers-data.csv
15.0 kB
09 - Machine Learning Concepts Overview/002 Why Machine Learning___en.srt
15.0 kB
07 - Seaborn Data Visualizations/006 Categorical Plots - Statistics within Categories - Coding with Seaborn__en.srt
15.0 kB
05 - Pandas/019 Combining DataFrames - Outer Merge__en.srt
14.9 kB
01 - Introduction to Course/005 Environment Setup__en.srt
14.8 kB
13 - Logistic Regression/016 Logistic Regression Project Exercise - Solutions__en.srt
14.7 kB
10 - Linear Regression/014 Polynomial Regression - Training and Evaluation__en.srt
14.5 kB
13 - Logistic Regression/009 Classification Metrics - Confusion Matrix and Accuracy__en.srt
14.3 kB
02 - OPTIONAL_ Python Crash Course/006 Python Crash Course - Exercise Solutions__en.srt
13.8 kB
22 - K-Means Clustering/009 K-Means Clustering Exercise Overview__en.srt
13.8 kB
05 - Pandas/002 Series - Part One__en.srt
13.7 kB
05 - Pandas/005 DataFrames - Part Two - Basic Properties__en.srt
13.6 kB
16 - Tree Based Methods_ Decision Tree Learning/002 Decision Tree - History__en.srt
13.5 kB
10 - Linear Regression/002 Linear Regression - Algorithm History__en.srt
13.4 kB
21 - Unsupervised Learning/001 Unsupervised Learning Overview__en.srt
13.2 kB
15 - Support Vector Machines/010 Support Vector Machine Project Solutions__en.srt
13.1 kB
10 - Linear Regression/021 Regularization Data Setup__en.srt
12.7 kB
26 - Model Deployment/007 Testing the API__en.srt
12.5 kB
22 - K-Means Clustering/012 K-Means Clustering Exercise Solution - Part Three__en.srt
12.4 kB
04 - NumPy/004 NumPy Operations__en.srt
12.3 kB
13 - Logistic Regression/013 Multi-Class Classification with Logistic Regression - Part One - Data and EDA__en.srt
12.3 kB
25 - PCA - Principal Component Analysis and Manifold Learning/006 PCA - Project Exercise Overview__en.srt
12.2 kB
20 - Naive Bayes Classification and Natural Language Processing/002 Naive Bayes Algorithm - Part One - Bayes Theorem__en.srt
12.1 kB
09 - Machine Learning Concepts Overview/003 Types of Machine Learning Algorithms__en.srt
11.9 kB
26 - Model Deployment/004 Model Deployment as an API - General Overview__en.srt
11.9 kB
06 - Matplotlib/003 Matplotlib - Understanding the Figure Object__en.srt
11.8 kB
16 - Tree Based Methods_ Decision Tree Learning/005 Constructing Decision Trees with Gini Impurity - Part One__en.srt
11.8 kB
10 - Linear Regression/004 Linear Regression - Cost Functions__en.srt
11.7 kB
07 - Seaborn Data Visualizations/013 Seaborn Plot Exercises Overview__en.srt
11.5 kB
12 - Cross Validation , Grid Search, and the Linear Regression Project/005 Cross Validation - cross_validate__en.srt
11.5 kB
10 - Linear Regression/012 Polynomial Regression - Theory and Motivation__en.srt
11.5 kB
16 - Tree Based Methods_ Decision Tree Learning/004 Decision Tree - Understanding Gini Impurity__en.srt
11.4 kB
13 - Logistic Regression/011 Classification Metrics - ROC Curves__en.srt
11.3 kB
14 - KNN - K Nearest Neighbors/003 KNN Coding with Python - Part One__en.srt
11.3 kB
10 - Linear Regression/007 Overview of Scikit-Learn and Python_en.vtt
11.2 kB
10 - Linear Regression/023 L2 Regularization - Ridge Regression - Python Implementation__en.srt
11.2 kB
05 - Pandas/024 Pandas Input and Output - Excel Files__en.srt
11.1 kB
04 - NumPy/006 Numpy Exercises - Solutions__en.srt
11.1 kB
24 - DBSCAN - Density-based spatial clustering of applications with noise/004 DBSCAN - Hyperparameter Theory__en.srt
11.0 kB
26 - Model Deployment/002 Model Deployment Considerations__en.srt
10.8 kB
06 - Matplotlib/007 Matplotlib Styling - Legends__en.srt
10.6 kB
10 - Linear Regression/018 Regularization Overview__en.srt
10.6 kB
10 - Linear Regression/007 Overview of Scikit-Learn and Python__en.srt
10.4 kB
24 - DBSCAN - Density-based spatial clustering of applications with noise/006 DBSCAN - Outlier Project Exercise Overview__en.srt
10.2 kB
17 - Random Forests/006 Coding Classification with Random Forest Classifier - Part One__en.srt
10.2 kB
05 - Pandas/027 Pandas Project Exercise Overview__en.srt
9.8 kB
13 - Logistic Regression/008 Logistic Regression with Scikit-Learn - Part Two - Model Training__en.srt
9.8 kB
06 - Matplotlib/010 Matplotlib Exercise Questions Overview__en.srt
9.6 kB
05 - Pandas/018 Combining DataFrames - Left and Right Merge__en.srt
9.3 kB
18 - Boosting Methods/002 Boosting Methods - Motivation and History__en.srt
9.2 kB
18 - Boosting Methods/007 Gradient Boosting Coding Walkthrough__en.srt
9.1 kB
07 - Seaborn Data Visualizations/005 Categorical Plots - Statistics within Categories - Understanding Plot Types__en.srt
9.0 kB
12 - Cross Validation , Grid Search, and the Linear Regression Project/008 Linear Regression Project - Solutions__en.srt
9.0 kB
07 - Seaborn Data Visualizations/009 Seaborn - Comparison Plots - Understanding the Plot Types__en.srt
8.9 kB
14 - KNN - K Nearest Neighbors/006 KNN Classification Project Exercise Solutions__en.srt
8.8 kB
09 - Machine Learning Concepts Overview/001 Introduction to Machine Learning Overview Section__en.srt
8.8 kB
13 - Logistic Regression/002 Introduction to Logistic Regression Section__en.srt
8.6 kB
10 - Linear Regression/017 Polynomial Regression - Model Deployment__en.srt
8.6 kB
13 - Logistic Regression/010 Classification Metrics - Precison, Recall, F1-Score__en.srt
8.5 kB
12 - Cross Validation , Grid Search, and the Linear Regression Project/004 Cross Validation - cross_val_score__en.srt
8.3 kB
13 - Logistic Regression/003 Logistic Regression - Theory and Intuition - Part One_ The Logistic Function__en.srt
8.3 kB
22 - K-Means Clustering/32407460-country-iso-codes.csv
8.1 kB
20 - Naive Bayes Classification and Natural Language Processing/009 Text Classification Project Exercise Overview__en.srt
8.0 kB
10 - Linear Regression/026 Linear Regression Project - Data Overview__en.srt
7.9 kB
06 - Matplotlib/005 Matplotlib - Figure Parameters__en.srt
7.8 kB
13 - Logistic Regression/004 Logistic Regression - Theory and Intuition - Part Two_ Linear to Logistic__en.srt
7.4 kB
05 - Pandas/001 Introduction to Pandas__en.srt
7.4 kB
01 - Introduction to Course/002 COURSE OVERVIEW LECTURE - PLEASE DO NOT SKIP___en.srt
7.3 kB
15 - Support Vector Machines/004 SVM - Theory and Intuition - Kernel Intuition__en.srt
7.3 kB
15 - Support Vector Machines/009 Support Vector Machine Project Overview__en.srt
7.0 kB
17 - Random Forests/008 Coding Regression with Random Forest Regressor - Part One - Data__en.srt
7.0 kB
06 - Matplotlib/001 Introduction to Matplotlib__en.srt
6.9 kB
15 - Support Vector Machines/002 History of Support Vector Machines__en.srt
6.7 kB
07 - Seaborn Data Visualizations/001 Introduction to Seaborn__en.srt
6.7 kB
06 - Matplotlib/009 Advanced Matplotlib Commands (Optional)__en.srt
6.7 kB
13 - Logistic Regression/015 Logistic Regression Exercise Project Overview__en.srt
6.6 kB
16 - Tree Based Methods_ Decision Tree Learning/003 Decision Tree - Terminology__en.srt
6.6 kB
12 - Cross Validation , Grid Search, and the Linear Regression Project/007 Linear Regression Project Overview__en.srt
6.0 kB
10 - Linear Regression/024 L1 Regularization - Lasso Regression - Background and Implementation__en.srt
5.5 kB
14 - KNN - K Nearest Neighbors/005 KNN Classification Project Exercise Overview__en.srt
5.4 kB
12 - Cross Validation , Grid Search, and the Linear Regression Project/001 Section Overview and Introduction__en.srt
5.2 kB
09 - Machine Learning Concepts Overview/005 Companion Book - Introduction to Statistical Learning__en.srt
4.8 kB
17 - Random Forests/003 Random Forests - Key Hyperparameters__en.srt
4.6 kB
19 - Supervised Learning Capstone Project/004 Solution Walkthrough - Supervised Learning Project - Tree Models__en.srt
4.3 kB
25 - PCA - Principal Component Analysis and Manifold Learning/001 Introduction to Principal Component Analysis__en.srt
4.1 kB
14 - KNN - K Nearest Neighbors/004 KNN Coding with Python - Part Two - Choosing K__en.srt
4.0 kB
20 - Naive Bayes Classification and Natural Language Processing/001 Introduction to NLP and Naive Bayes Section__en.srt
3.8 kB
14 - KNN - K Nearest Neighbors/001 Introduction to KNN Section__en.srt
3.7 kB
22 - K-Means Clustering/001 Introduction to K-Means Clustering Section__en.srt
3.6 kB
26 - Model Deployment/001 Model Deployment Section Overview__en.srt
3.6 kB
26 - Model Deployment/003 Model Persistence__en.srt
3.1 kB
04 - NumPy/001 Introduction to NumPy__en.srt
3.1 kB
17 - Random Forests/001 Introduction to Random Forests Section__en.srt
2.9 kB
10 - Linear Regression/001 Introduction to Linear Regression Section__en.srt
2.7 kB
18 - Boosting Methods/001 Introduction to Boosting Section__en.srt
2.7 kB
02 - OPTIONAL_ Python Crash Course/005 Python Crash Course - Exercise Questions__en.srt
2.6 kB
15 - Support Vector Machines/001 Introduction to Support Vector Machines__en.srt
2.4 kB
16 - Tree Based Methods_ Decision Tree Learning/001 Introduction to Tree Based Methods__en.srt
2.3 kB
04 - NumPy/005 NumPy Exercises__en.srt
2.1 kB
01 - Introduction to Course/001 Welcome to the Course_.html
1.7 kB
24 - DBSCAN - Density-based spatial clustering of applications with noise/001 Introduction to DBSCAN Section__en.srt
1.4 kB
23 - Hierarchical Clustering/001 Introduction to Hierarchical Clustering__en.srt
1.2 kB
11 - Feature Engineering and Data Preparation/001 A note from Jose on Feature Engineering and Data Preparation.html
990 Bytes
01 - Introduction to Course/004 Note on Environment Setup - Please read me_.html
857 Bytes
13 - Logistic Regression/001 Early Bird Note on Downloading .zip for Logistic Regression Notes.html
523 Bytes
02 - OPTIONAL_ Python Crash Course/001 OPTIONAL_ Python Crash Course.html
472 Bytes
26 - Model Deployment/005 Note on Upcoming Video.html
249 Bytes
01 - Introduction to Course/28813464-requirements.txt
221 Bytes
01 - Introduction to Course/external-assets-links.txt
132 Bytes
0. Websites you may like/[CourseClub.Me].url
122 Bytes
10 - Linear Regression/0. Websites you may like/[CourseClub.Me].url
122 Bytes
10 - Linear Regression/[CourseClub.Me].url
122 Bytes
19 - Supervised Learning Capstone Project/0. Websites you may like/[CourseClub.Me].url
122 Bytes
19 - Supervised Learning Capstone Project/[CourseClub.Me].url
122 Bytes
[CourseClub.Me].url
122 Bytes
24 - DBSCAN - Density-based spatial clustering of applications with noise/external-assets-links.txt
103 Bytes
0. Websites you may like/[GigaCourse.Com].url
49 Bytes
10 - Linear Regression/0. Websites you may like/[GigaCourse.Com].url
49 Bytes
10 - Linear Regression/[GigaCourse.Com].url
49 Bytes
19 - Supervised Learning Capstone Project/0. Websites you may like/[GigaCourse.Com].url
49 Bytes
19 - Supervised Learning Capstone Project/[GigaCourse.Com].url
49 Bytes
[GigaCourse.Com].url
49 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>