MuerBT磁力搜索 BT种子搜索利器 免费下载BT种子,超5000万条种子数据

Udemy - LangChain- Develop AI Agents with LangChain & LangGraph (7.2025)

磁力链接/BT种子名称

Udemy - LangChain- Develop AI Agents with LangChain & LangGraph (7.2025)

磁力链接/BT种子简介

种子哈希:a8ecd35ad2fc6f1559cde3b0bf59b91a099d3c7e
文件大小: 8.24G
已经下载:5次
下载速度:极快
收录时间:2025-09-19
最近下载:2025-09-20

移花宫入口

移花宫.com邀月.com怜星.com花无缺.comyhgbt.icuyhgbt.top

磁力链接下载

magnet:?xt=urn:btih:A8ECD35AD2FC6F1559CDE3B0BF59B91A099D3C7E
推荐使用PIKPAK网盘下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看

下载BT种子文件

磁力链接 迅雷下载 PIKPAK在线播放 世界之窗 91视频 含羞草 欲漫涩 逼哩逼哩 成人快手 51品茶 抖阴破解版 极乐禁地 91短视频 暗网Xvideo TikTok成人版 PornHub 听泉鉴鲍 少女日记 草榴社区 哆哔涩漫 呦乐园 萝莉岛 悠悠禁区 悠悠禁区 拔萝卜 疯马秀

最近搜索

户外珊珊 木乃伊合集 反差 大学 潮涨海岸 桃子小小 丝袜白袜 气质爆 美貌 美少妇 极品熟女✨ 漂亮大奶宝贝+身材丰满深喉插嘴+ 美女珠珠 推特 大神 约炮 惠里 花样道具 模特是 性爱炮王 国模视频 舞会员 4595846 最新++母子 几杯红酒 性感网袜 氣質長髮美女修長美腿 嫂子酒店 在一起 会所第一 眼镜姐yjj 重口味网红【点点】 [反差婊子]

文件列表

  • 03. Ice Breaker Real World Generative AI Agent application/2. Integrating Linkedin Data Processing - Part 1.mp4 292.2 MB
  • 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/6. Building an AI LangChain Chat Assistant- Frontend with Streamlit (UI).mp4 203.9 MB
  • 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/8. Optional RAG Pipeline Optimization featuring FireCrawl.mp4 200.0 MB
  • 17. LangChain Glossary/5. LangChain Token Limitation Handeling Strategies.mp4 177.0 MB
  • 12. Reflection Agent/4. Defining our LangGraph Graph.mp4 172.7 MB
  • 10. Let's Talk About LLM Applications In Production/5. Finished course Whats next!.mp4 169.2 MB
  • 13. Reflexion Agent/1. What are we building.mp4 166.3 MB
  • 13. Reflexion Agent/4. Actor Agent.mp4 163.4 MB
  • 14. Agentic RAG/13. Self RAG- Implementation.mp4 152.1 MB
  • 04. Diving Deep Into ReAct Agents- Whats is the magic/5. ReAct prompt, LLM Reasoning Engine, Output Parsing and Tool Execution.mp4 147.4 MB
  • 02. The GIST of LangChain- Get started by with your Hello World chain/3. Project Setup (vscode) - optional.mp4 147.0 MB
  • 14. Agentic RAG/14. Adaptive RAG.mp4 145.6 MB
  • 14. Agentic RAG/8. Building a Relevance Filter for RAG using LangChain's Structured Output.mp4 138.8 MB
  • 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/5. Retrieval + Augmentation + Generation = RAG.mp4 133.5 MB
  • 05. The GIST of RAG- Embeddings, Vector Databases and, & Retrieval/2. Medium Analyzer- Class Review TextLoader,TextSplitter,OpenAIEmbeddings,Pinecone.mp4 131.1 MB
  • 03. Ice Breaker Real World Generative AI Agent application/9. Output Parsers- Getting Ready to work with a Frontend.mp4 129.0 MB
  • 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/2. Environment Setup.mp4 128.7 MB
  • 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/4. Pinecone Vectorstore Ingestion.mp4 127.4 MB
  • 03. Ice Breaker Real World Generative AI Agent application/5. Linkedin Data Processing- Part 4 Custom Search Agent Implementation.mp4 125.8 MB
  • 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/7. Building an AI LangChain Chat Assistant- Memory.mp4 124.0 MB
  • 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/11. Adding Sidebar and LangChain's color theme with Cursor Composer.mp4 116.5 MB
  • 02. The GIST of LangChain- Get started by with your Hello World chain/5. Your First LangChain application - Chaining a simple prompt.mp4 112.0 MB
  • 02. The GIST of LangChain- Get started by with your Hello World chain/2. Project Setup (Pycharm) recommend).mp4 110.0 MB
  • 15. Intro to MCP - Model Context Protocol with LangChain/5. mcpdoc.mp4 108.9 MB
  • 03. Ice Breaker Real World Generative AI Agent application/11. Tracing application with LangSmith.mp4 106.5 MB
  • 02. The GIST of LangChain- Get started by with your Hello World chain/6. Using Open Source Models With LangChain (Ollama, Llama3, Mistral).mp4 104.9 MB
  • 10. Let's Talk About LLM Applications In Production/4. Generative UIUX featuring CopilotKit.mp4 103.6 MB
  • 10. Let's Talk About LLM Applications In Production/3. LLMs in Production Privacy & Data Retention.mp4 101.2 MB
  • 10. Let's Talk About LLM Applications In Production/7. Open Source LLMs VS Managed LLM Providers (Deepseek).mp4 100.9 MB
  • 03. Ice Breaker Real World Generative AI Agent application/8. Optional Twitter Data Processing- Part 2- Agents.mp4 98.5 MB
  • 08. Prompt Engineering Theory/5. Chain of Thought Prompting.mp4 96.3 MB
  • 05. The GIST of RAG- Embeddings, Vector Databases and, & Retrieval/1. Medium Analyzer- Boilerplate Project Setup.mp4 95.9 MB
  • 04. Diving Deep Into ReAct Agents- Whats is the magic/7. CallbackHandlers, ReAct Prompt and finalizing the ReAct Agent loop.mp4 94.9 MB
  • 07. Building a slim ChatGPT Code-Interpreter (Advanced Agents, OpenAI Functions)/1. What are we building (A slim Version of GPT Code-Interpreter).mp4 94.8 MB
  • 07. Building a slim ChatGPT Code-Interpreter (Advanced Agents, OpenAI Functions)/6. Function Tool Calling in LangChain.mp4 94.5 MB
  • 07. Building a slim ChatGPT Code-Interpreter (Advanced Agents, OpenAI Functions)/4. CSV Agent.mp4 94.2 MB
  • 08. Prompt Engineering Theory/7. Prompt Engineering Quick Tips.mp4 93.8 MB
  • 05. The GIST of RAG- Embeddings, Vector Databases and, & Retrieval/4. Medium Analyzer- Retrieval Implementation Implementation with chains.mp4 91.9 MB
  • 08. Prompt Engineering Theory/6. ReAct Prompting.mp4 91.6 MB
  • 11. -------------------Introduction To LangGraph -------------------/11. Hands On Running Our LangGraph React Agent with Function Calling.mp4 90.2 MB
  • 03. Ice Breaker Real World Generative AI Agent application/7. Optional Twitter Data Processing- Part 1- Scraping.mp4 87.1 MB
  • 17. LangChain Glossary/1. ChatModels.mp4 86.2 MB
  • 14. Agentic RAG/10. Creating the LLM Generation Chain and Node for LangGraph.mp4 85.3 MB
  • 04. Diving Deep Into ReAct Agents- Whats is the magic/3. Defining Tools for our ReAct agent.mp4 85.3 MB
  • 13. Reflexion Agent/6. ToolNode - Executing Tools.mp4 81.8 MB
  • 03. Ice Breaker Real World Generative AI Agent application/10. FullsStack App- Building our LLM powered by LangChain FullStack Application.mp4 81.6 MB
  • 07. Building a slim ChatGPT Code-Interpreter (Advanced Agents, OpenAI Functions)/7. Function Calling Vs ReAct.mp4 81.5 MB
  • 14. Agentic RAG/5. LangChain Vector Store Ingestion Pipeline (WebLoader, ChromaDB).mp4 80.9 MB
  • 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/12. Documentation Helper In Production.mp4 78.6 MB
  • 09. Troubleshooting Section/4. LangChain Version In Course (V0.3.3).mp4 78.0 MB
  • 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/1. What are we building (RAG).mp4 76.9 MB
  • 13. Reflexion Agent/7. Building our LangGraph Graph.mp4 75.7 MB
  • 05. The GIST of RAG- Embeddings, Vector Databases and, & Retrieval/6. Chat With Your PDF- FAISS Local Vectorstore.mp4 71.7 MB
  • 18. Bonus/1. Bonus.mp4 70.9 MB
  • 08. Prompt Engineering Theory/4. Few Shot Prompting.mp4 69.5 MB
  • 05. The GIST of RAG- Embeddings, Vector Databases and, & Retrieval/3. Medium Analyzer- Ingestion Implementation.mp4 69.0 MB
  • 11. -------------------Introduction To LangGraph -------------------/8. Hands On Coding the Agent's Brain Implementing the ReAct Runnable.mp4 64.4 MB
  • 10. Let's Talk About LLM Applications In Production/1. LLM Applications in Production.mp4 63.5 MB
  • 11. -------------------Introduction To LangGraph -------------------/2. Why LangGraph LangGraph VS LangChain.mp4 60.5 MB
  • 02. The GIST of LangChain- Get started by with your Hello World chain/1. What is LangChain LangChain Under 6 Minutes.mp4 57.4 MB
  • 04. Diving Deep Into ReAct Agents- Whats is the magic/6. AgentAction, AgentFinish, ReAct Loop.mp4 56.8 MB
  • 15. Intro to MCP - Model Context Protocol with LangChain/9. LangChain's MultiServerMCPClient from the LangChain MCP Adapter.mp4 56.7 MB
  • 15. Intro to MCP - Model Context Protocol with LangChain/3. LLM.txt.mp4 56.5 MB
  • 15. Intro to MCP - Model Context Protocol with LangChain/6. Bridging the Gap The LangChain MCP Adapter Explained.mp4 56.3 MB
  • 15. Intro to MCP - Model Context Protocol with LangChain/2. How LLMs REALLY Use Tools Understanding Tool Calling.mp4 56.3 MB
  • 15. Intro to MCP - Model Context Protocol with LangChain/8. Simple SSE MCP Server.mp4 56.1 MB
  • 15. Intro to MCP - Model Context Protocol with LangChain/1. Why MCP (Model Context Protocol).mp4 55.7 MB
  • 17. LangChain Glossary/7. LangChain Memory Theory Deepdive (LangGraph).mp4 55.6 MB
  • 16. Useful tools when developing LLM Applications/3. LangChain VS LlamaIndex.mp4 52.6 MB
  • 01. Introduction/3. Course Structure + How to get the best of Udemy PLEASE DO NOT SKIP.mp4 51.5 MB
  • 07. Building a slim ChatGPT Code-Interpreter (Advanced Agents, OpenAI Functions)/5. Wrapping Everything Router Agent.mp4 51.2 MB
  • 09. Troubleshooting Section/1. Have a technical issue WATCH THIS FIRST. I Promise this will help!.mp4 50.6 MB
  • 11. -------------------Introduction To LangGraph -------------------/5. LangGraph Core Components.mp4 49.0 MB
  • 14. Agentic RAG/3. Boilerplate Setup for an Agentic RAG Agent with LangGraph.mp4 44.5 MB
  • 04. Diving Deep Into ReAct Agents- Whats is the magic/2. Environment Setup + ReAct Algorithm overview.mp4 42.9 MB
  • 14. Agentic RAG/11. Building and Running the Complete LangGraph Agent.mp4 41.0 MB
  • 14. Agentic RAG/4. Code Structure.mp4 40.6 MB
  • 16. Useful tools when developing LLM Applications/2. TextSplitting Playground.mp4 39.0 MB
  • 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/10. What is Cursor.mp4 38.9 MB
  • 03. Ice Breaker Real World Generative AI Agent application/6. Linkedin Data Processing- Part 5 Custom Search Agent Testing.mp4 38.3 MB
  • 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/3. OPTIONAL Manually Scraping the LangChain Documentation.mp4 38.2 MB
  • 03. Ice Breaker Real World Generative AI Agent application/4. Linkedin Data Processing- Part 3 Tools, Agent Executor, create_react_agent.mp4 36.4 MB
  • 03. Ice Breaker Real World Generative AI Agent application/1. Ice Breaker- What are we building here.mp4 36.2 MB
  • 10. Let's Talk About LLM Applications In Production/8. Confidence in AI Results By Assaf Elovic & Harrison Chase.mp4 34.8 MB
  • 12. Reflection Agent/5. LangSmith Tracing.mp4 34.3 MB
  • 04. Diving Deep Into ReAct Agents- Whats is the magic/1. What are we building ReAct AgentExecutor from scratch.mp4 34.1 MB
  • 11. -------------------Introduction To LangGraph -------------------/10. Hands On Bringing Your ReAct Agent to Life Connecting Nodes into a Graph.mp4 34.1 MB
  • 07. Building a slim ChatGPT Code-Interpreter (Advanced Agents, OpenAI Functions)/3. Python Agent.mp4 33.9 MB
  • 15. Intro to MCP - Model Context Protocol with LangChain/4. MCP Inspector.mp4 33.9 MB
  • 13. Reflexion Agent/5. Revisor Agent.mp4 33.5 MB
  • 11. -------------------Introduction To LangGraph -------------------/9. Hands On 43. Building Blocks Defining Your Agent's Nodes in LangGraph.mp4 32.3 MB
  • 14. Agentic RAG/1. What are Building In this Section- Agentic RAG Architecture.mp4 31.7 MB
  • 09. Troubleshooting Section/2. Tweet API- tweepy.errors.Forbidden 403 Forbidden.mp4 30.8 MB
  • 14. Agentic RAG/9. Implementing a Web Search Node in LangGraph using Tavily API.mp4 30.7 MB
  • 11. -------------------Introduction To LangGraph -------------------/7. Hands On Get Started Setting Up Your ReAct Agent Project Environment.mp4 30.2 MB
  • 01. Introduction/4. Course's Community.mp4 28.0 MB
  • 05. The GIST of RAG- Embeddings, Vector Databases and, & Retrieval/5. Medium Analyzer- Retrieval Implementation Implementation with LCEL.mp4 27.4 MB
  • 17. LangChain Glossary/6. LangChain Memory Intro- Co Reference Resolution.mp4 26.5 MB
  • 10. Let's Talk About LLM Applications In Production/6. Official LangChain Academy Courses.mp4 25.7 MB
  • 03. Ice Breaker Real World Generative AI Agent application/12. Real World Ice breaker Agents.mp4 25.3 MB
  • 08. Prompt Engineering Theory/1. The GIST of LLMs.mp4 24.8 MB
  • 12. Reflection Agent/3. Creating the Reflector Chain and the Tweet Reviosr Chain.mp4 24.8 MB
  • 07. Building a slim ChatGPT Code-Interpreter (Advanced Agents, OpenAI Functions)/2. Project Setup.mp4 22.5 MB
  • 13. Reflexion Agent/2. Project Setup.mp4 22.5 MB
  • 10. Let's Talk About LLM Applications In Production/2. LLM Application Development landscape.mp4 22.1 MB
  • 11. -------------------Introduction To LangGraph -------------------/3. What are Graphs.mp4 21.1 MB
  • 14. Agentic RAG/7. Fetching Context for LLMs The LangGraph Retrieve Node.mp4 20.8 MB
  • 17. LangChain Glossary/2. Messages.mp4 20.0 MB
  • 08. Prompt Engineering Theory/3. Zero Shot Prompting.mp4 19.9 MB
  • 04. Diving Deep Into ReAct Agents- Whats is the magic/8. Recap with LangSmith.mp4 19.8 MB
  • 16. Useful tools when developing LLM Applications/1. LangChain Hub - Downloads prompt from the community.mp4 19.7 MB
  • 02. The GIST of LangChain- Get started by with your Hello World chain/9. Which LLM to Use (OpenAI, Gemini, Anthropic, Mistral, Llama).mp4 19.7 MB
  • 11. -------------------Introduction To LangGraph -------------------/4. LangGraph & Flow Engineering.mp4 19.6 MB
  • 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/9. Leveraging Cursor IDE for UI Improvements.mp4 18.9 MB
  • 11. -------------------Introduction To LangGraph -------------------/6. --------- Hands On Implementing ReAct AgentExecutor with LangGraph ---------.mp4 18.9 MB
  • 12. Reflection Agent/2. Project Setup.mp4 18.7 MB
  • 14. Agentic RAG/12. Self RAG- Intro.mp4 18.3 MB
  • 04. Diving Deep Into ReAct Agents- Whats is the magic/4. Debugging LangChain Resolving LLM stop Token & Template Indentation Issues.mp4 17.5 MB
  • 14. Agentic RAG/2. Improving RAG Quality with the Corrective RAG Flow.mp4 17.2 MB
  • 02. The GIST of LangChain- Get started by with your Hello World chain/8. LangChain Version In Course (V0.3.3) - (No breaking changes in 0.3.3).mp4 16.5 MB
  • 02. The GIST of LangChain- Get started by with your Hello World chain/4. Environment Variables and .env File.mp4 15.9 MB
  • 03. Ice Breaker Real World Generative AI Agent application/3. Linkedin Data Processing - Part 2 - Agents Theory.mp4 14.5 MB
  • 17. LangChain Glossary/3. RecursiveCharacterTextSplitter.mp4 13.8 MB
  • 11. -------------------Introduction To LangGraph -------------------/1. What is LangGraph.mp4 12.7 MB
  • 09. Troubleshooting Section/3. Pinecone AttributeError init is no longer a top-level attribute of pinecone.mp4 12.1 MB
  • 17. LangChain Glossary/4. Document.mp4 9.9 MB
  • 08. Prompt Engineering Theory/2. What is a Prompt Composition of a formal prompt.mp4 9.5 MB
  • 14. Agentic RAG/6. Managing Information Flow in LangGraph The GraphState.mp4 9.5 MB
  • 15. Intro to MCP - Model Context Protocol with LangChain/7. What are we MCBuilding.mp4 9.4 MB
  • 01. Introduction/2. Course Objectives.mp4 9.1 MB
  • 01. Introduction/1. Course Introduction.mp4 6.4 MB
  • 12. Reflection Agent/1. What are we building.mp4 4.6 MB
  • 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/2. langchain-docs.zip 3.1 MB
  • 14. Agentic RAG/51133263/9. Implementing a Web Search Node in LangGraph using Tavily API/meta.json 838.1 kB
  • 14. Agentic RAG/51133263/9. Implementing a Web Search Node in LangGraph using Tavily API/meta_selected.json 119.8 kB
  • 07. Building a slim ChatGPT Code-Interpreter (Advanced Agents, OpenAI Functions)/5. code-interpreter-3-router-agent.zip 53.4 kB
  • 07. Building a slim ChatGPT Code-Interpreter (Advanced Agents, OpenAI Functions)/5. code-interpreter-3-router-agent-start-here.zip 53.1 kB
  • 07. Building a slim ChatGPT Code-Interpreter (Advanced Agents, OpenAI Functions)/4. code-interpreter-2-csv-agent.zip 52.9 kB
  • 05. The GIST of RAG- Embeddings, Vector Databases and, & Retrieval/4. rag-gist-4-retrieval-implementation-chains.zip 52.6 kB
  • 14. Agentic RAG/51133263/9. Implementing a Web Search Node in LangGraph using Tavily API/raw.mpd 52.5 kB
  • 05. The GIST of RAG- Embeddings, Vector Databases and, & Retrieval/3. rag-gist-3-ingestion-implementation.zip 52.3 kB
  • 05. The GIST of RAG- Embeddings, Vector Databases and, & Retrieval/2. rag-gist-2-imports.zip 51.4 kB
  • 05. The GIST of RAG- Embeddings, Vector Databases and, & Retrieval/1. rag-gist-1-setup.zip 51.3 kB
  • 04. Diving Deep Into ReAct Agents- Whats is the magic/7. react-langchain-final.zip 50.2 kB
  • 04. Diving Deep Into ReAct Agents- Whats is the magic/6. react-langchain-3.zip 49.9 kB
  • 04. Diving Deep Into ReAct Agents- Whats is the magic/5. react-langchain-2.zip 49.8 kB
  • 07. Building a slim ChatGPT Code-Interpreter (Advanced Agents, OpenAI Functions)/3. code-interpreter-1-python-agent.zip 45.8 kB
  • 04. Diving Deep Into ReAct Agents- Whats is the magic/3. react-langchain-1.zip 42.5 kB
  • 04. Diving Deep Into ReAct Agents- Whats is the magic/2. react-langchain-final-0.zip 41.9 kB
  • 04. Diving Deep Into ReAct Agents- Whats is the magic/9.2 From ReAct Prompting to Modern Tool Calling.html 29.4 kB
  • 03. Ice Breaker Real World Generative AI Agent application/5. Linkedin Data Processing- Part 4 Custom Search Agent Implementation.vtt 27.2 kB
  • 03. Ice Breaker Real World Generative AI Agent application/2. Integrating Linkedin Data Processing - Part 1.vtt 27.1 kB
  • 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/6. Building an AI LangChain Chat Assistant- Frontend with Streamlit (UI).vtt 26.3 kB
  • 02. The GIST of LangChain- Get started by with your Hello World chain/7.1 LangChain Model Switching Groq API Integration.html 26.0 kB
  • 11. -------------------Introduction To LangGraph -------------------/2. Why LangGraph LangGraph VS LangChain.vtt 22.8 kB
  • 05. The GIST of RAG- Embeddings, Vector Databases and, & Retrieval/4. Medium Analyzer- Retrieval Implementation Implementation with chains.vtt 20.1 kB
  • 13. Reflexion Agent/4. Actor Agent.vtt 20.0 kB
  • 14. Agentic RAG/13. Self RAG- Implementation.vtt 19.0 kB
  • 04. Diving Deep Into ReAct Agents- Whats is the magic/5. ReAct prompt, LLM Reasoning Engine, Output Parsing and Tool Execution.vtt 18.9 kB
  • 04. Diving Deep Into ReAct Agents- Whats is the magic/3. Defining Tools for our ReAct agent.vtt 18.6 kB
  • 05. The GIST of RAG- Embeddings, Vector Databases and, & Retrieval/6. Chat With Your PDF- FAISS Local Vectorstore.vtt 18.1 kB
  • 02. The GIST of LangChain- Get started by with your Hello World chain/5. Your First LangChain application - Chaining a simple prompt.vtt 18.1 kB
  • 14. Agentic RAG/8. Building a Relevance Filter for RAG using LangChain's Structured Output.vtt 15.7 kB
  • 15. Intro to MCP - Model Context Protocol with LangChain/5. mcpdoc.vtt 15.6 kB
  • 17. LangChain Glossary/5. LangChain Token Limitation Handeling Strategies.vtt 15.6 kB
  • 05. The GIST of RAG- Embeddings, Vector Databases and, & Retrieval/3. Medium Analyzer- Ingestion Implementation.vtt 15.2 kB
  • 02. The GIST of LangChain- Get started by with your Hello World chain/3. Project Setup (vscode) - optional.vtt 15.0 kB
  • 07. Building a slim ChatGPT Code-Interpreter (Advanced Agents, OpenAI Functions)/4. episode_info.csv 14.5 kB
  • 03. Ice Breaker Real World Generative AI Agent application/9. Output Parsers- Getting Ready to work with a Frontend.vtt 14.3 kB
  • 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/4. Pinecone Vectorstore Ingestion.vtt 13.9 kB
  • 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/8. Optional RAG Pipeline Optimization featuring FireCrawl.vtt 13.9 kB
  • 14. Agentic RAG/14. Adaptive RAG.vtt 13.6 kB
  • 03. Ice Breaker Real World Generative AI Agent application/10. FullsStack App- Building our LLM powered by LangChain FullStack Application.vtt 13.3 kB
  • 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/5. Retrieval + Augmentation + Generation = RAG.vtt 13.1 kB
  • 03. Ice Breaker Real World Generative AI Agent application/7. Optional Twitter Data Processing- Part 1- Scraping.vtt 13.1 kB
  • 12. Reflection Agent/4. Defining our LangGraph Graph.vtt 12.9 kB
  • 05. The GIST of RAG- Embeddings, Vector Databases and, & Retrieval/2. Medium Analyzer- Class Review TextLoader,TextSplitter,OpenAIEmbeddings,Pinecone.vtt 12.5 kB
  • 10. Let's Talk About LLM Applications In Production/7. Open Source LLMs VS Managed LLM Providers (Deepseek).vtt 12.5 kB
  • 08. Prompt Engineering Theory/7. Prompt Engineering Quick Tips.vtt 12.4 kB
  • 10. Let's Talk About LLM Applications In Production/1. LLM Applications in Production.vtt 12.3 kB
  • 15. Intro to MCP - Model Context Protocol with LangChain/9. LangChain's MultiServerMCPClient from the LangChain MCP Adapter.vtt 12.1 kB
  • 02. The GIST of LangChain- Get started by with your Hello World chain/2. Project Setup (Pycharm) recommend).vtt 12.1 kB
  • 04. Diving Deep Into ReAct Agents- Whats is the magic/7. CallbackHandlers, ReAct Prompt and finalizing the ReAct Agent loop.vtt 11.8 kB
  • 07. Building a slim ChatGPT Code-Interpreter (Advanced Agents, OpenAI Functions)/4. CSV Agent.vtt 11.8 kB
  • 04. Diving Deep Into ReAct Agents- Whats is the magic/6. AgentAction, AgentFinish, ReAct Loop.vtt 11.7 kB
  • 02. The GIST of LangChain- Get started by with your Hello World chain/6. Using Open Source Models With LangChain (Ollama, Llama3, Mistral).vtt 11.5 kB
  • 03. Ice Breaker Real World Generative AI Agent application/11. Tracing application with LangSmith.vtt 11.3 kB
  • 17. LangChain Glossary/7. LangChain Memory Theory Deepdive (LangGraph).vtt 11.2 kB
  • 07. Building a slim ChatGPT Code-Interpreter (Advanced Agents, OpenAI Functions)/5. Wrapping Everything Router Agent.vtt 11.0 kB
  • 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/11. Adding Sidebar and LangChain's color theme with Cursor Composer.vtt 10.6 kB
  • 10. Let's Talk About LLM Applications In Production/3. LLMs in Production Privacy & Data Retention.vtt 10.4 kB
  • 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/7. Building an AI LangChain Chat Assistant- Memory.vtt 10.4 kB
  • 07. Building a slim ChatGPT Code-Interpreter (Advanced Agents, OpenAI Functions)/3. Python Agent.vtt 10.2 kB
  • 08. Prompt Engineering Theory/4. Few Shot Prompting.vtt 10.2 kB
  • 11. -------------------Introduction To LangGraph -------------------/8. Hands On Coding the Agent's Brain Implementing the ReAct Runnable.vtt 10.0 kB
  • 08. Prompt Engineering Theory/5. Chain of Thought Prompting.vtt 10.0 kB
  • 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/12. Documentation Helper In Production.vtt 9.8 kB
  • 17. LangChain Glossary/1. ChatModels.vtt 9.5 kB
  • 14. Agentic RAG/11. Building and Running the Complete LangGraph Agent.vtt 9.5 kB
  • 13. Reflexion Agent/6. ToolNode - Executing Tools.vtt 9.3 kB
  • 11. -------------------Introduction To LangGraph -------------------/11. Hands On Running Our LangGraph React Agent with Function Calling.vtt 9.3 kB
  • 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/2. Environment Setup.vtt 9.3 kB
  • 03. Ice Breaker Real World Generative AI Agent application/8. Optional Twitter Data Processing- Part 2- Agents.vtt 9.1 kB
  • 11. -------------------Introduction To LangGraph -------------------/10. Hands On Bringing Your ReAct Agent to Life Connecting Nodes into a Graph.vtt 9.0 kB
  • 07. Building a slim ChatGPT Code-Interpreter (Advanced Agents, OpenAI Functions)/6. Function Tool Calling in LangChain.vtt 9.0 kB
  • 10. Let's Talk About LLM Applications In Production/5. Finished course Whats next!.vtt 9.0 kB
  • 02. The GIST of LangChain- Get started by with your Hello World chain/1. What is LangChain LangChain Under 6 Minutes.vtt 8.9 kB
  • 13. Reflexion Agent/7. Building our LangGraph Graph.vtt 8.8 kB
  • 09. Troubleshooting Section/2. Tweet API- tweepy.errors.Forbidden 403 Forbidden.vtt 8.6 kB
  • 08. Prompt Engineering Theory/6. ReAct Prompting.vtt 8.6 kB
  • 14. Agentic RAG/4. Code Structure.vtt 8.6 kB
  • 03. Ice Breaker Real World Generative AI Agent application/4. Linkedin Data Processing- Part 3 Tools, Agent Executor, create_react_agent.vtt 8.4 kB
  • 11. -------------------Introduction To LangGraph -------------------/4. LangGraph & Flow Engineering.vtt 8.2 kB
  • 04. Diving Deep Into ReAct Agents- Whats is the magic/2. Environment Setup + ReAct Algorithm overview.vtt 8.0 kB
  • 14. Agentic RAG/5. LangChain Vector Store Ingestion Pipeline (WebLoader, ChromaDB).vtt 8.0 kB
  • 01. Introduction/2. Course Objectives.vtt 7.9 kB
  • 15. Intro to MCP - Model Context Protocol with LangChain/3. LLM.txt.vtt 7.8 kB
  • 07. Building a slim ChatGPT Code-Interpreter (Advanced Agents, OpenAI Functions)/1. What are we building (A slim Version of GPT Code-Interpreter).vtt 7.7 kB
  • 13. Reflexion Agent/1. What are we building.vtt 7.6 kB
  • 15. Intro to MCP - Model Context Protocol with LangChain/2. How LLMs REALLY Use Tools Understanding Tool Calling.vtt 7.5 kB
  • 05. The GIST of RAG- Embeddings, Vector Databases and, & Retrieval/1. Medium Analyzer- Boilerplate Project Setup.vtt 7.4 kB
  • 11. -------------------Introduction To LangGraph -------------------/9. Hands On 43. Building Blocks Defining Your Agent's Nodes in LangGraph.vtt 7.4 kB
  • 11. -------------------Introduction To LangGraph -------------------/5. LangGraph Core Components.vtt 7.2 kB
  • 15. Intro to MCP - Model Context Protocol with LangChain/1. Why MCP (Model Context Protocol).vtt 7.1 kB
  • 11. -------------------Introduction To LangGraph -------------------/1. What is LangGraph.vtt 6.9 kB
  • 03. Ice Breaker Real World Generative AI Agent application/6. Linkedin Data Processing- Part 5 Custom Search Agent Testing.vtt 6.8 kB
  • 07. Building a slim ChatGPT Code-Interpreter (Advanced Agents, OpenAI Functions)/7. Function Calling Vs ReAct.vtt 6.5 kB
  • 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/10. What is Cursor.vtt 6.5 kB
  • 03. Ice Breaker Real World Generative AI Agent application/3. Linkedin Data Processing - Part 2 - Agents Theory.vtt 6.2 kB
  • 11. -------------------Introduction To LangGraph -------------------/7. Hands On Get Started Setting Up Your ReAct Agent Project Environment.vtt 6.2 kB
  • 12. Reflection Agent/3. Creating the Reflector Chain and the Tweet Reviosr Chain.vtt 6.1 kB
  • 10. Let's Talk About LLM Applications In Production/4. Generative UIUX featuring CopilotKit.vtt 5.9 kB
  • 05. The GIST of RAG- Embeddings, Vector Databases and, & Retrieval/5. Medium Analyzer- Retrieval Implementation Implementation with LCEL.vtt 5.9 kB
  • 14. Agentic RAG/10. Creating the LLM Generation Chain and Node for LangGraph.vtt 5.9 kB
  • 14. Agentic RAG/9. Implementing a Web Search Node in LangGraph using Tavily API.vtt 5.8 kB
  • 16. Useful tools when developing LLM Applications/1. LangChain Hub - Downloads prompt from the community.vtt 5.6 kB
  • 16. Useful tools when developing LLM Applications/2. TextSplitting Playground.vtt 5.6 kB
  • 09. Troubleshooting Section/4. LangChain Version In Course (V0.3.3).vtt 5.5 kB
  • 15. Intro to MCP - Model Context Protocol with LangChain/6. Bridging the Gap The LangChain MCP Adapter Explained.vtt 5.5 kB
  • 12. Reflection Agent/2. Project Setup.vtt 5.4 kB
  • 13. Reflexion Agent/5. Revisor Agent.vtt 5.3 kB
  • 14. Agentic RAG/3. Boilerplate Setup for an Agentic RAG Agent with LangGraph.vtt 5.2 kB
  • 18. Bonus/1. Bonus.vtt 5.2 kB
  • 10. Let's Talk About LLM Applications In Production/2. LLM Application Development landscape.vtt 5.1 kB
  • 08. Prompt Engineering Theory/1. The GIST of LLMs.vtt 4.9 kB
  • 11. -------------------Introduction To LangGraph -------------------/3. What are Graphs.vtt 4.8 kB
  • 07. Building a slim ChatGPT Code-Interpreter (Advanced Agents, OpenAI Functions)/2. Project Setup.vtt 4.7 kB
  • 01. Introduction/3. Course Structure + How to get the best of Udemy PLEASE DO NOT SKIP.vtt 4.7 kB
  • 17. LangChain Glossary/2. Messages.vtt 4.6 kB
  • 01. Introduction/1. Course Introduction.vtt 4.3 kB
  • 16. Useful tools when developing LLM Applications/3. LangChain VS LlamaIndex.vtt 4.2 kB
  • 17. LangChain Glossary/6. LangChain Memory Intro- Co Reference Resolution.vtt 4.2 kB
  • 09. Troubleshooting Section/1. Have a technical issue WATCH THIS FIRST. I Promise this will help!.vtt 4.2 kB
  • 15. Intro to MCP - Model Context Protocol with LangChain/4. MCP Inspector.vtt 4.1 kB
  • 02. The GIST of LangChain- Get started by with your Hello World chain/4. Environment Variables and .env File.vtt 4.0 kB
  • 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/3. OPTIONAL Manually Scraping the LangChain Documentation.vtt 3.9 kB
  • 08. Prompt Engineering Theory/2. What is a Prompt Composition of a formal prompt.vtt 3.8 kB
  • 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/1. What are we building (RAG).vtt 3.8 kB
  • 13. Reflexion Agent/2. Project Setup.vtt 3.7 kB
  • 08. Prompt Engineering Theory/3. Zero Shot Prompting.vtt 3.6 kB
  • 12. Reflection Agent/5. LangSmith Tracing.vtt 3.6 kB
  • 03. Ice Breaker Real World Generative AI Agent application/10. index.html 3.5 kB
  • 01. Introduction/4. Course's Community.vtt 3.4 kB
  • 10. Let's Talk About LLM Applications In Production/6. Official LangChain Academy Courses.vtt 3.3 kB
  • 14. Agentic RAG/1. What are Building In this Section- Agentic RAG Architecture.vtt 3.3 kB
  • 15. Intro to MCP - Model Context Protocol with LangChain/8. Simple SSE MCP Server.vtt 3.3 kB
  • 03. Ice Breaker Real World Generative AI Agent application/12. Real World Ice breaker Agents.vtt 3.2 kB
  • 02. The GIST of LangChain- Get started by with your Hello World chain/5. ice_breaker.py 3.2 kB
  • 11. -------------------Introduction To LangGraph -------------------/6. --------- Hands On Implementing ReAct AgentExecutor with LangGraph ---------.vtt 3.1 kB
  • 04. Diving Deep Into ReAct Agents- Whats is the magic/1. What are we building ReAct AgentExecutor from scratch.vtt 3.0 kB
  • 14. Agentic RAG/6. Managing Information Flow in LangGraph The GraphState.vtt 3.0 kB
  • 04. Diving Deep Into ReAct Agents- Whats is the magic/8. Recap with LangSmith.vtt 2.9 kB
  • 13. Reflexion Agent/3. Section Resources.html 2.8 kB
  • 04. Diving Deep Into ReAct Agents- Whats is the magic/4. Debugging LangChain Resolving LLM stop Token & Template Indentation Issues.vtt 2.7 kB
  • 09. Troubleshooting Section/2. twitter_with_stubs.py 2.7 kB
  • 14. Agentic RAG/7. Fetching Context for LLMs The LangGraph Retrieve Node.vtt 2.7 kB
  • 17. LangChain Glossary/3. RecursiveCharacterTextSplitter.vtt 2.1 kB
  • 09. Troubleshooting Section/2. edens_tweets.json 2.0 kB
  • 14. Agentic RAG/12. Self RAG- Intro.vtt 2.0 kB
  • 03. Ice Breaker Real World Generative AI Agent application/1. Ice Breaker- What are we building here.vtt 2.0 kB
  • 15. Intro to MCP - Model Context Protocol with LangChain/7. What are we MCBuilding.vtt 1.9 kB
  • 02. The GIST of LangChain- Get started by with your Hello World chain/8. LangChain Version In Course (V0.3.3) - (No breaking changes in 0.3.3).vtt 1.9 kB
  • 09. Troubleshooting Section/3. Pinecone AttributeError init is no longer a top-level attribute of pinecone.vtt 1.9 kB
  • 12. Reflection Agent/1. What are we building.vtt 1.8 kB
  • 14. Agentic RAG/2. Improving RAG Quality with the Corrective RAG Flow.vtt 1.8 kB
  • 05. The GIST of RAG- Embeddings, Vector Databases and, & Retrieval/6. main.py 1.5 kB
  • 17. LangChain Glossary/4. Document.vtt 1.5 kB
  • 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/9. Leveraging Cursor IDE for UI Improvements.vtt 1.5 kB
  • 02. The GIST of LangChain- Get started by with your Hello World chain/9. Which LLM to Use (OpenAI, Gemini, Anthropic, Mistral, Llama).vtt 1.3 kB
  • 07. Building a slim ChatGPT Code-Interpreter (Advanced Agents, OpenAI Functions)/6. main.py 1.2 kB
  • 09. Troubleshooting Section/2. twitter.py 1.2 kB
  • 01. Introduction/5. Course Resources.html 1.1 kB
  • 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/3. download_docs.py 1.0 kB
  • 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/3. troubleshooting.txt 398 Bytes
  • 05. The GIST of RAG- Embeddings, Vector Databases and, & Retrieval/1. Medium-Blog-Vector-Database-What-is-it-and-why-you-should-know-it-.txt 182 Bytes
  • 03. Ice Breaker Real World Generative AI Agent application/2. Eden-Marco-Linkedin-Gist.txt 146 Bytes
  • desktop.ini 114 Bytes
  • 02. The GIST of LangChain- Get started by with your Hello World chain/9. Course-LLM-Compatibility-Per-Project.txt 110 Bytes
  • 17. LangChain Glossary/4. LangChain-Document-API-Reference.txt 101 Bytes
  • 13. Reflexion Agent/6. LangGraph-ToolNode-API-Reference.txt 96 Bytes
  • 11. -------------------Introduction To LangGraph -------------------/10. Github-Commit.txt 93 Bytes
  • 11. -------------------Introduction To LangGraph -------------------/11. Github-Commit.txt 93 Bytes
  • 11. -------------------Introduction To LangGraph -------------------/7. Github-Commit.txt 93 Bytes
  • 11. -------------------Introduction To LangGraph -------------------/8. Github-Commit.txt 93 Bytes
  • 11. -------------------Introduction To LangGraph -------------------/9. Github-Commit.txt 93 Bytes
  • 12. Reflection Agent/2. Github-Commit-Code.txt 93 Bytes
  • 12. Reflection Agent/3. Github-Commit-Code.txt 93 Bytes
  • 12. Reflection Agent/4. Github-Commit-Code.txt 93 Bytes
  • 13. Reflexion Agent/5. Github-Commit-Code.txt 93 Bytes
  • 13. Reflexion Agent/6. Github-Commit-Code.txt 93 Bytes
  • 13. Reflexion Agent/7. Github-Commit-Code.txt 93 Bytes
  • 14. Agentic RAG/11. Github-Commit-Code.txt 93 Bytes
  • 14. Agentic RAG/13. Github-Commit-Code.txt 93 Bytes
  • 14. Agentic RAG/14. Github-Commit-Code.txt 93 Bytes
  • 15. Intro to MCP - Model Context Protocol with LangChain/8. My-Github-Commit.txt 93 Bytes
  • 03. Ice Breaker Real World Generative AI Agent application/7. Twitter-Troubleshooting-Discord-Thread.txt 88 Bytes
  • 11. -------------------Introduction To LangGraph -------------------/6. LangGraph-ReAct-Course-Repository.txt 87 Bytes
  • 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/4. -Github-Final-Code-for-this-video.txt 84 Bytes
  • 15. Intro to MCP - Model Context Protocol with LangChain/1. New-MCP-Course-Coupon-Included.txt 84 Bytes
  • 03. Ice Breaker Real World Generative AI Agent application/7. Tweet-Scraping-Source-Code-Implementation-Repository-.txt 83 Bytes
  • 10. Let's Talk About LLM Applications In Production/8. CAIR-Blog-Confidence-in-AI-Results-By-Assaf-Elovic-Harrison-Chase.txt 80 Bytes
  • 17. LangChain Glossary/3. Text-Splitting-by-structured-based.txt 80 Bytes
  • 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/5. -Github-Final-Code.txt 76 Bytes
  • 12. Reflection Agent/1. Project-Repository.txt 75 Bytes
  • 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/8. FireCrawl-LangChain-Integration.txt 74 Bytes
  • 13. Reflexion Agent/1. Github-Repository-for-Reflexion-Agent.txt 74 Bytes
  • 12. Reflection Agent/5. My-LangSmith-Trace.txt 73 Bytes
  • 13. Reflexion Agent/7. My-LangSmith-Trace.txt 73 Bytes
  • 11. -------------------Introduction To LangGraph -------------------/4. New-LangGraph-Course-Coupon.txt 71 Bytes
  • 13. Reflexion Agent/1. LangChain-Reflexion-Blog.txt 71 Bytes
  • 03. Ice Breaker Real World Generative AI Agent application/7. Twitter-Scraping-Troubleshooting-Video.txt 70 Bytes
  • 05. The GIST of RAG- Embeddings, Vector Databases and, & Retrieval/2. PineconeVectorStore.txt 69 Bytes
  • 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/3. LangChain-API-Documentation-V0.1.txt 69 Bytes
  • 07. Building a slim ChatGPT Code-Interpreter (Advanced Agents, OpenAI Functions)/2. Goodbye-CVEs-Hello-langchain-experimental.txt 69 Bytes
  • 09. Troubleshooting Section/3. LangChain-Pinecone-Official-Documentation.txt 68 Bytes
  • 03. Ice Breaker Real World Generative AI Agent application/7. Eden-Marco-Tweets-Github-GIST.txt 66 Bytes
  • 03. Ice Breaker Real World Generative AI Agent application/9. LangChain-Structured-Output-PydanticOutputParser-.txt 66 Bytes
  • 05. The GIST of RAG- Embeddings, Vector Databases and, & Retrieval/6. LangChain-FAISS.txt 66 Bytes
  • 05. The GIST of RAG- Embeddings, Vector Databases and, & Retrieval/2. CharacterTextSplitter.txt 65 Bytes
  • 17. LangChain Glossary/3. How-to-recursively-split-text-by-characters.txt 65 Bytes
  • 03. Ice Breaker Real World Generative AI Agent application/4. LangChain-AgentExecutor-Documentation.txt 64 Bytes
  • 17. LangChain Glossary/4. LangChain-Document-Loaders.txt 64 Bytes
  • 02. The GIST of LangChain- Get started by with your Hello World chain/4. .env.example-file.txt 63 Bytes
  • 07. Building a slim ChatGPT Code-Interpreter (Advanced Agents, OpenAI Functions)/3. LangChain-Python-Agent-Documentation.txt 63 Bytes
  • 07. Building a slim ChatGPT Code-Interpreter (Advanced Agents, OpenAI Functions)/5. OpenAI-Functions-Official-Documentation.txt 62 Bytes
  • 13. Reflexion Agent/6. Tool-Calls-In-LangGraph-Official-Documentation.txt 62 Bytes
  • 15. Intro to MCP - Model Context Protocol with LangChain/9. My-Github-Commit.txt 62 Bytes
  • 05. The GIST of RAG- Embeddings, Vector Databases and, & Retrieval/6. LangChain-PDFLoader.txt 61 Bytes
  • 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/6. Streamlit-Session-State-Documentation.txt 61 Bytes
  • 05. The GIST of RAG- Embeddings, Vector Databases and, & Retrieval/2. DocumentLoaders-Conceptual-Guide-.txt 60 Bytes
  • 10. Let's Talk About LLM Applications In Production/3. OpenAI-Official-Data-Usage-Policies.txt 60 Bytes
  • 02. The GIST of LangChain- Get started by with your Hello World chain/6. LangChain-Ollama-Official-Documentation.txt 59 Bytes
  • 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/2. Documentation-Helper-Github-Repository.txt 59 Bytes
  • 15. Intro to MCP - Model Context Protocol with LangChain/3. llms.txt-By-LangChain.txt 59 Bytes
  • 03. Ice Breaker Real World Generative AI Agent application/9. LangChain-Output-Parsers-Official-Documentation.txt 58 Bytes
  • 17. LangChain Glossary/7. LangChain-Memory-Official.txt 57 Bytes
  • 03. Ice Breaker Real World Generative AI Agent application/5. LangChain-ReAct-Agent.txt 56 Bytes
  • 05. The GIST of RAG- Embeddings, Vector Databases and, & Retrieval/2. Text-Splitters-Conceptual-Guide-.txt 56 Bytes
  • 02. The GIST of LangChain- Get started by with your Hello World chain/5. LangChain-LLM-Chain-Quickstart.txt 54 Bytes
  • 04. Diving Deep Into ReAct Agents- Whats is the magic/3. LangChain-custom-tools-official-documentation.txt 54 Bytes
  • 15. Intro to MCP - Model Context Protocol with LangChain/6. LangChain-MCP-Adapters-Github-Repository.txt 54 Bytes
  • 05. The GIST of RAG- Embeddings, Vector Databases and, & Retrieval/2. LangChain-TextEmbeddings.txt 52 Bytes
  • 15. Intro to MCP - Model Context Protocol with LangChain/4. MCP-Inspector-Official-Documentation.txt 52 Bytes
  • 03. Ice Breaker Real World Generative AI Agent application/3. LangChain-Agents-Documentation.txt 51 Bytes
  • 02. The GIST of LangChain- Get started by with your Hello World chain/2. handling-environment-variables-in-python-in-case-you-arent-familiar-with-it-.txt 50 Bytes
  • 02. The GIST of LangChain- Get started by with your Hello World chain/3. handling-environment-variables-with-python-in-case-you-are-not-familiar-with-it-.txt 50 Bytes
  • 03. Ice Breaker Real World Generative AI Agent application/4. LangChain-Tools-Documentation.txt 49 Bytes
  • 07. Building a slim ChatGPT Code-Interpreter (Advanced Agents, OpenAI Functions)/4. LangChain-CSV-Agent-Documentation.txt 49 Bytes
  • 07. Building a slim ChatGPT Code-Interpreter (Advanced Agents, OpenAI Functions)/5. LangChain-Router-Chain.txt 49 Bytes
  • 15. Intro to MCP - Model Context Protocol with LangChain/4. MCP-Inspector-open-source-Repository.txt 49 Bytes
  • 02. The GIST of LangChain- Get started by with your Hello World chain/2. pipenv-crash-course-In-case-you-are-not-familiar-with-pipenv-.txt 48 Bytes
  • 02. The GIST of LangChain- Get started by with your Hello World chain/3. pipenv-crash-course-In-case-you-are-not-familiar-with-pipenv-.txt 48 Bytes
  • 10. Let's Talk About LLM Applications In Production/4. CoAgents-By-Ariel-Weinberger.txt 48 Bytes
  • 02. The GIST of LangChain- Get started by with your Hello World chain/2. LangChain-Python-Documentation.txt 47 Bytes
  • 02. The GIST of LangChain- Get started by with your Hello World chain/3. LangChain-Python-Documentation.txt 47 Bytes
  • 02. The GIST of LangChain- Get started by with your Hello World chain/5. LangChain-Python-Documentation.txt 47 Bytes
  • 10. Let's Talk About LLM Applications In Production/3. OpenAI-Official-Privacy-Policy.txt 47 Bytes
  • 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/12. Chat-LangChain-Github.txt 46 Bytes
  • 16. Useful tools when developing LLM Applications/2. Text-Splitter-Playground-URL.txt 46 Bytes
  • 17. LangChain Glossary/3. LangChain-Text-Splitting-Playground.txt 46 Bytes
  • 09. Troubleshooting Section/2. Tweepy-Client-Documentation.txt 45 Bytes
  • 12. Reflection Agent/1. LangChain-Reflection-Agent-Blog.txt 45 Bytes
  • 12. Reflection Agent/4. LangGraph-Official-Documentation.txt 41 Bytes
  • 17. LangChain Glossary/6. Coreference-Wikipedia.txt 41 Bytes
  • 01. Introduction/1. Course-Repository.txt 40 Bytes
  • 02. The GIST of LangChain- Get started by with your Hello World chain/2. Course-IceBreaker-Github-Repository.txt 40 Bytes
  • 03. Ice Breaker Real World Generative AI Agent application/10. Course-Repository.txt 40 Bytes
  • 03. Ice Breaker Real World Generative AI Agent application/3. Course-Repository.txt 40 Bytes
  • 03. Ice Breaker Real World Generative AI Agent application/4. Course-Repository.txt 40 Bytes
  • 03. Ice Breaker Real World Generative AI Agent application/5. Course-Repository.txt 40 Bytes
  • 03. Ice Breaker Real World Generative AI Agent application/7. Github-Course-Repository.txt 40 Bytes
  • 03. Ice Breaker Real World Generative AI Agent application/8. Github-Course-Repository.txt 40 Bytes
  • 09. Troubleshooting Section/1. LangChain-Slack-Community.txt 40 Bytes
  • 09. Troubleshooting Section/2. Ice-Breaker-Github-Repository.txt 40 Bytes
  • 01. Introduction/1. Lets-Connect-on-Linkedin-.txt 39 Bytes
  • 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/8. FireCrawl-Official-Documentation.txt 39 Bytes
  • 12. Reflection Agent/2. python-dotenv-Official-Documentation.txt 39 Bytes
  • 03. Ice Breaker Real World Generative AI Agent application/3. Chain-Of-Thought-Research-paper.txt 38 Bytes
  • 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/6. Streamlit-Github-Repository.txt 38 Bytes
  • 08. Prompt Engineering Theory/5. Chain-Of-Thought-Research-paper.txt 38 Bytes
  • 15. Intro to MCP - Model Context Protocol with LangChain/5. LangChain-mcpdoc-MCP-Server-Github-Repo.txt 38 Bytes
  • 03. Ice Breaker Real World Generative AI Agent application/2. Scrapin.io-Register-URL.txt 36 Bytes
  • 03. Ice Breaker Real World Generative AI Agent application/3. ReAct-SYNERGIZING-REASONING-AND-ACTING-IN-LANGUAGE-MODELS-Paper.txt 36 Bytes
  • 08. Prompt Engineering Theory/3. N-Shot-Prompting-Tokyo-University-Research-Paper.txt 36 Bytes
  • 08. Prompt Engineering Theory/4. N-Shot-Prompting-Tokyo-University-Research-Paper.txt 36 Bytes
  • 08. Prompt Engineering Theory/6. REAC-T-SYNERGIZING-REASONING-AND-ACTING-IN-LANGUAGE-MODELS-Paper.txt 36 Bytes
  • 10. Let's Talk About LLM Applications In Production/4. CoAgents-Documentation-by-CopilotKit.txt 35 Bytes
  • 03. Ice Breaker Real World Generative AI Agent application/7. Python-Tweepy-Package.txt 34 Bytes
  • 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/6. Streamlit-Chat-Component-Github-Repository.txt 34 Bytes
  • 04. Diving Deep Into ReAct Agents- Whats is the magic/4. Stop-Arguments-In-ChatModels.txt 32 Bytes
  • 07. Building a slim ChatGPT Code-Interpreter (Advanced Agents, OpenAI Functions)/2. qrcode-Python-Documentation.txt 32 Bytes
  • 13. Reflexion Agent/1. Reflexion-Research-Paper.txt 32 Bytes
  • 14. Agentic RAG/12. Self-RAG-Paper.txt 32 Bytes
  • 03. Ice Breaker Real World Generative AI Agent application/5. LangSmith-Hub.txt 31 Bytes
  • 03. Ice Breaker Real World Generative AI Agent application/8. Tweepy-official-documentation.txt 31 Bytes
  • 02. The GIST of LangChain- Get started by with your Hello World chain/6. Llama3-Official-Website.txt 30 Bytes
  • 01. Introduction/4. Course-Discord-Server-Link2.txt 29 Bytes
  • 02. The GIST of LangChain- Get started by with your Hello World chain/2. Course-Discord-Server.txt 29 Bytes
  • 02. The GIST of LangChain- Get started by with your Hello World chain/5. Course-Discord-Server.txt 29 Bytes
  • 03. Ice Breaker Real World Generative AI Agent application/3. Course-Discord-Server.txt 29 Bytes
  • 09. Troubleshooting Section/1. Course-Discord-Server-URL.txt 29 Bytes
  • 03. Ice Breaker Real World Generative AI Agent application/11. LangSmith.txt 28 Bytes
  • 12. Reflection Agent/5. LangSmith-Platform.txt 28 Bytes
  • 03. Ice Breaker Real World Generative AI Agent application/10. Course-Discord-Server.txt 27 Bytes
  • 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/12. Chat-LangChain.txt 27 Bytes
  • 08. Prompt Engineering Theory/2. Course-Discord-Server.txt 27 Bytes
  • 09. Troubleshooting Section/1. Chat-LangChain.txt 27 Bytes
  • 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/6. Streamlit-Documentation.txt 26 Bytes
  • 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/8. FireCrawl.dev.txt 26 Bytes
  • 10. Let's Talk About LLM Applications In Production/4. CopilotKit-Official-Website.txt 26 Bytes
  • 12. Reflection Agent/2. Poetry-Official-Documentation.txt 26 Bytes
  • 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/2. Pinecone-Official-Website.txt 24 Bytes
  • 18. Bonus/1. langjobs.dev.txt 24 Bytes
  • 02. The GIST of LangChain- Get started by with your Hello World chain/6. Mistral-AI-Official-Website.txt 19 Bytes
  • 02. The GIST of LangChain- Get started by with your Hello World chain/6. Ollama-Official-Website.txt 19 Bytes
  • 03. Ice Breaker Real World Generative AI Agent application/5. Tavily-Search-API.txt 19 Bytes
  • 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/10. Cursor-Official-Website.txt 19 Bytes
  • 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/9. Cursor-Official-Website.txt 19 Bytes
  • 05. The GIST of RAG- Embeddings, Vector Databases and, & Retrieval/6. FAISS-Documentation.txt 17 Bytes

随机展示

相关说明

本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!