搜索
[DesireCourse.Com] Udemy - Deep Learning Recurrent Neural Networks in Python
磁力链接/BT种子名称
[DesireCourse.Com] Udemy - Deep Learning Recurrent Neural Networks in Python
磁力链接/BT种子简介
种子哈希:
ac245fa404c67f4c67e3769e399c90c51396e280
文件大小:
629.16M
已经下载:
507
次
下载速度:
极快
收录时间:
2022-04-08
最近下载:
2024-11-07
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:AC245FA404C67F4C67E3769E399C90C51396E280
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
最近搜索
face ai
lulu298
bugaw
情人约会
硬气
灰丝啪啪
留学被老外男友
falling in reverse the drug in me is you
2023.6-2024.3,【精品】高颜值芭蕾舞蹈生,【抹茶matcha】,清纯外表,照片纯欲风,身
关爱
4511983
sama-418
2018-2023
spsb04
吃瓜群众
blacked hughes
高颜值平面模特人妻qi梅馨
自慰 子宫
奇怪的女人】电报群
老師
捉奸现场
confidence
bella sparkles
[fk]+
sex8
超高颜值ts【惜沫】
ぎばちゃん
海角披风少年
tms+28
โคโยตี้ - mini nonstop 2024 vol.92
文件列表
03 Recurrent Neural Networks for NLP/018 Generating Poetry in Code part 1.mp4
55.0 MB
04 Advanced RNN Units/030 Learning from Wikipedia Data in Code part 1.mp4
51.1 MB
03 Recurrent Neural Networks for NLP/021 Classifying Poetry in Code.mp4
48.1 MB
07 Appendix/036 How to install Numpy Scipy Matplotlib Pandas IPython Theano and TensorFlow.mp4
46.0 MB
02 The Simple Recurrent Unit/010 The Parity Problem in Code using a Feedforward ANN.mp4
40.2 MB
02 The Simple Recurrent Unit/012 The Parity Problem in Code using a Recurrent Neural Network.mp4
39.3 MB
04 Advanced RNN Units/031 Learning from Wikipedia Data in Code part 2.mp4
26.9 MB
04 Advanced RNN Units/023 RRNN in Code - Revisiting Poetry Generation.mp4
26.6 MB
07 Appendix/037 How to Code by Yourself part 1.mp4
25.7 MB
02 The Simple Recurrent Unit/011 Theano Scan Tutorial.mp4
24.9 MB
04 Advanced RNN Units/032 Visualizing the Word Embeddings.mp4
24.6 MB
04 Advanced RNN Units/027 LSTM in Code.mp4
20.3 MB
05 Batch Training/033 Batch Training for Simple RNN.mp4
17.4 MB
04 Advanced RNN Units/025 GRU in Code.mp4
15.8 MB
07 Appendix/038 How to Code by Yourself part 2.mp4
15.5 MB
03 Recurrent Neural Networks for NLP/019 Generating Poetry in Code part 2.mp4
14.2 MB
04 Advanced RNN Units/028 Learning from Wikipedia Data.mp4
13.4 MB
04 Advanced RNN Units/029 Alternative to Wikipedia Data Brown Corpus.mp4
13.1 MB
06 TensorFlow/034 Simple RNN in TensorFlow.mp4
12.6 MB
01 Introduction and Outline/004 How to Succeed in this Course.mp4
10.0 MB
04 Advanced RNN Units/024 Gated Recurrent Unit GRU.mp4
9.5 MB
02 The Simple Recurrent Unit/006 Prediction and Relationship to Markov Models.mp4
9.4 MB
03 Recurrent Neural Networks for NLP/014 Word Embeddings and Recurrent Neural Networks.mp4
9.1 MB
02 The Simple Recurrent Unit/009 The Parity Problem - XOR on Steroids.mp4
8.2 MB
02 The Simple Recurrent Unit/005 Architecture of a Recurrent Unit.mp4
8.1 MB
04 Advanced RNN Units/026 Long Short-Term Memory LSTM.mp4
8.0 MB
03 Recurrent Neural Networks for NLP/017 Generating Poetry.mp4
7.9 MB
02 The Simple Recurrent Unit/008 Backpropagation Through Time BPTT.mp4
7.5 MB
03 Recurrent Neural Networks for NLP/020 Classifying Poetry.mp4
6.6 MB
04 Advanced RNN Units/022 Rated RNN Unit.mp4
6.3 MB
01 Introduction and Outline/002 Review of Important Deep Learning Concepts.mp4
6.0 MB
03 Recurrent Neural Networks for NLP/016 Representing a sequence of words as a sequence of word embeddings.mp4
5.7 MB
01 Introduction and Outline/001 Outline of this Course.mp4
5.2 MB
03 Recurrent Neural Networks for NLP/015 Word Analogies with Word Embeddings.mp4
4.4 MB
07 Appendix/039 BONUS Where to get Udemy coupons and FREE deep learning material.mp4
4.2 MB
07 Appendix/035 How to install wp2txt or WikiExtractor.py.mp4
4.0 MB
02 The Simple Recurrent Unit/007 Unfolding a Recurrent Network.mp4
3.4 MB
01 Introduction and Outline/003 Where to get the Code and Data.mp4
3.3 MB
02 The Simple Recurrent Unit/013 On Adding Complexity.mp4
2.5 MB
[DesireCourse.Com].txt
754 Bytes
[DesireCourse.Com].url
51 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>