MuerBT磁力搜索 BT种子搜索利器 免费下载BT种子,超5000万条种子数据

[Tutorialsplanet.NET] Udemy - Deep Learning with TensorFlow 2.0 [2020]

磁力链接/BT种子名称

[Tutorialsplanet.NET] Udemy - Deep Learning with TensorFlow 2.0 [2020]

磁力链接/BT种子简介

种子哈希:af3a5895ecc7a288538c1cbcd14f00a0de0dd699
文件大小: 1.88G
已经下载:722次
下载速度:极快
收录时间:2021-04-27
最近下载:2025-04-28

移花宫入口

移花宫.com邀月.com怜星.com花无缺.comyhgbt.icuyhgbt.top

磁力链接下载

magnet:?xt=urn:btih:AF3A5895ECC7A288538C1CBCD14F00A0DE0DD699
推荐使用PIKPAK网盘下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看

下载BT种子文件

磁力链接 迅雷下载 PIKPAK在线播放 世界之窗 小蓝俱乐部 含羞草 欲漫涩 逼哩逼哩 成人快手 51品茶 母狗园 51动漫 91短视频 抖音Max 海王TV TikTok成人版 PornHub 暗网Xvideo 草榴社区 哆哔涩漫 呦乐园 萝莉岛 搜同 91暗网

最近搜索

口爆颜射吃精 我不行了 三次 极品反差婊❤️高颜值极品美人与男友家中激情啪啪啪,传教士后入猛艹,简直太爽太棒了 “寻小小” 重磅】大神【狮子座】至尊内部 刺激口爆 你的小狗 插里了 无毛美穴 电影 私密养生spa 位极品 首次 妹妹和同学 女友不在家 core-056 生猛小伙 【小杰撩妹】 行 哭可怜 兽医系琪琪 和一起操 愛の乱 母狗妈妈 ももさわ 初次 爱健身爱生活桉x fs超火名媛solazola【173cm九头身大长腿】天使脸蛋和爆乳 【优优】

文件列表

  • 14. Appendix Linear Algebra Fundamentals/11. Why is Linear Algebra Useful.mp4 151.3 MB
  • 1. Welcome! Course introduction/1. Meet your instructors and why you should study machine learning.mp4 110.9 MB
  • 13. Business case/4. Preprocessing the data.mp4 88.4 MB
  • 13. Business case/1. Exploring the dataset and identifying predictors.mp4 69.5 MB
  • 13. Business case/9. Setting an early stopping mechanism.mp4 52.2 MB
  • 14. Appendix Linear Algebra Fundamentals/3. Linear Algebra and Geometry.mp4 52.2 MB
  • 14. Appendix Linear Algebra Fundamentals/10. Dot Product of Matrices.mp4 51.8 MB
  • 12. The MNIST example/6. Preprocess the data - shuffle and batch the data.mp4 43.6 MB
  • 12. The MNIST example/10. Learning.mp4 42.9 MB
  • 2. Introduction to neural networks/24. N-parameter gradient descent.mp4 41.4 MB
  • 3. Setting up the working environment/9. Installing TensorFlow 2.mp4 40.6 MB
  • 2. Introduction to neural networks/12. The linear model. Multiple inputs and multiple outputs.mp4 40.1 MB
  • 14. Appendix Linear Algebra Fundamentals/8. Transpose of a Matrix.mp4 39.9 MB
  • 5. TensorFlow - An introduction/5. Model layout - inputs, outputs, targets, weights, biases, optimizer and loss.mp4 36.4 MB
  • 14. Appendix Linear Algebra Fundamentals/2. Scalars and Vectors.mp4 35.5 MB
  • 14. Appendix Linear Algebra Fundamentals/1. What is a Matrix.mp4 35.2 MB
  • 5. TensorFlow - An introduction/1. TensorFlow outline.mp4 35.2 MB
  • 14. Appendix Linear Algebra Fundamentals/6. Addition and Subtraction of Matrices.mp4 34.2 MB
  • 3. Setting up the working environment/2. Why Python and why Jupyter.mp4 33.6 MB
  • 13. Business case/8. Learning and interpreting the result.mp4 32.7 MB
  • 13. Business case/3. Balancing the dataset.mp4 31.9 MB
  • 5. TensorFlow - An introduction/6. Interpreting the result and extracting the weights and bias.mp4 31.7 MB
  • 12. The MNIST example/13. Testing the model.mp4 31.0 MB
  • 12. The MNIST example/4. Preprocess the data - create a validation dataset and scale the data.mp4 30.5 MB
  • 3. Setting up the working environment/4. Installing Anaconda.mp4 29.8 MB
  • 12. The MNIST example/8. Outline the model.mp4 29.6 MB
  • 14. Appendix Linear Algebra Fundamentals/4. Scalars, Vectors and Matrices in Python.mp4 28.0 MB
  • 14. Appendix Linear Algebra Fundamentals/9. Dot Product of Vectors.mp4 25.1 MB
  • 5. TensorFlow - An introduction/7. Cutomizing your model.mp4 24.0 MB
  • 14. Appendix Linear Algebra Fundamentals/5. Tensors.mp4 23.6 MB
  • 5. TensorFlow - An introduction/2. TensorFlow 2 intro.mp4 23.1 MB
  • 4. Minimal example - your first machine learning algorithm/4. Minimal example - part 4.mp4 21.8 MB
  • 3. Setting up the working environment/6. The Jupyter dashboard - part 2.mp4 19.7 MB
  • 12. The MNIST example/2. How to tackle the MNIST.mp4 19.6 MB
  • 2. Introduction to neural networks/22. One parameter gradient descent.mp4 18.6 MB
  • 13. Business case/6. Load the preprocessed data.mp4 18.4 MB
  • 5. TensorFlow - An introduction/4. Types of file formats in TensorFlow and data handling.mp4 17.2 MB
  • 1. Welcome! Course introduction/2. What does the course cover.mp4 17.1 MB
  • 12. The MNIST example/3. Importing the relevant packages and load the data.mp4 17.1 MB
  • 15. Conclusion/1. See how much you have learned.mp4 14.6 MB
  • 12. The MNIST example/9. Select the loss and the optimizer.mp4 14.6 MB
  • 2. Introduction to neural networks/1. Introduction to neural networks.mp4 14.2 MB
  • 6. Going deeper Introduction to deep neural networks/3. Understanding deep nets in depth.mp4 14.0 MB
  • 12. The MNIST example/1. The dataset.mp4 14.0 MB
  • 2. Introduction to neural networks/5. Types of machine learning.mp4 12.8 MB
  • 2. Introduction to neural networks/20. Cross-entropy loss.mp4 11.9 MB
  • 14. Appendix Linear Algebra Fundamentals/7. Errors when Adding Matrices.mp4 11.7 MB
  • 8. Overfitting/1. Underfitting and overfitting.mp4 11.6 MB
  • 6. Going deeper Introduction to deep neural networks/7. Backpropagation.mp4 11.6 MB
  • 15. Conclusion/3. An overview of CNNs.mp4 11.5 MB
  • 13. Business case/11. Testing the model.mp4 11.3 MB
  • 4. Minimal example - your first machine learning algorithm/2. Minimal example - part 2.mp4 11.2 MB
  • 10. Gradient descent and learning rates/4. Learning rate schedules.mp4 10.8 MB
  • 4. Minimal example - your first machine learning algorithm/3. Minimal example - part 3.mp4 10.2 MB
  • 8. Overfitting/6. Early stopping.mp4 9.9 MB
  • 10. Gradient descent and learning rates/1. Stochastic gradient descent.mp4 9.8 MB
  • 8. Overfitting/3. Training and validation.mp4 9.7 MB
  • 2. Introduction to neural networks/7. The linear model.mp4 9.6 MB
  • 6. Going deeper Introduction to deep neural networks/4. Why do we need non-linearities.mp4 9.4 MB
  • 10. Gradient descent and learning rates/6. Adaptive learning rate schedules.mp4 9.3 MB
  • 2. Introduction to neural networks/3. Training the model.mp4 9.2 MB
  • 6. Going deeper Introduction to deep neural networks/5. Activation functions.mp4 9.2 MB
  • 3. Setting up the working environment/5. The Jupyter dashboard - part 1.mp4 9.1 MB
  • 11. Preprocessing/1. Preprocessing introduction.mp4 8.8 MB
  • 11. Preprocessing/3. Standardization.mp4 8.7 MB
  • 9. Initialization/1. Initialization - Introduction.mp4 8.4 MB
  • 15. Conclusion/6. An overview of non-NN approaches.mp4 8.2 MB
  • 10. Gradient descent and learning rates/7. Adaptive moment estimation.mp4 8.1 MB
  • 2. Introduction to neural networks/10. The linear model. Multiple inputs.mp4 7.9 MB
  • 8. Overfitting/4. Training, validation, and test.mp4 7.8 MB
  • 6. Going deeper Introduction to deep neural networks/6. Softmax activation.mp4 7.7 MB
  • 13. Business case/2. Outlining the business case solution.mp4 7.7 MB
  • 2. Introduction to neural networks/18. L2-norm loss.mp4 7.6 MB
  • 8. Overfitting/5. N-fold cross validation.mp4 7.3 MB
  • 6. Going deeper Introduction to deep neural networks/8. Backpropagation - visual representation.mp4 7.2 MB
  • 8. Overfitting/2. Underfitting and overfitting - classification.mp4 7.1 MB
  • 5. TensorFlow - An introduction/3. A Note on Coding in TensorFlow.mp4 7.1 MB
  • 6. Going deeper Introduction to deep neural networks/2. What is a deep net.mp4 7.1 MB
  • 4. Minimal example - your first machine learning algorithm/1. Minimal example - part 1.mp4 6.9 MB
  • 2. Introduction to neural networks/14. Graphical representation.mp4 6.7 MB
  • 15. Conclusion/2. What’s further out there in the machine and deep learning world.mp4 6.6 MB
  • 11. Preprocessing/5. One-hot and binary encoding.mp4 6.5 MB
  • 10. Gradient descent and learning rates/3. Momentum.mp4 6.4 MB
  • 11. Preprocessing/4. Dealing with categorical data.mp4 6.4 MB
  • 3. Setting up the working environment/1. Setting up the environment - An introduction - Do not skip, please!.mp4 6.2 MB
  • 9. Initialization/3. Xavier initialization.mp4 6.1 MB
  • 2. Introduction to neural networks/16. The objective function.mp4 6.0 MB
  • 9. Initialization/2. Types of simple initializations.mp4 5.9 MB
  • 15. Conclusion/5. An overview of RNNs.mp4 5.1 MB
  • 6. Going deeper Introduction to deep neural networks/1. Layers.mp4 5.0 MB
  • 10. Gradient descent and learning rates/2. Gradient descent pitfalls.mp4 4.5 MB
  • 11. Preprocessing/2. Basic preprocessing.mp4 3.8 MB
  • 10. Gradient descent and learning rates/5. Learning rate schedules. A picture.mp4 3.3 MB
  • 6. Going deeper Introduction to deep neural networks/1.1 Course Notes - Section 6.pdf 958.9 kB
  • 6. Going deeper Introduction to deep neural networks/2.1 Course Notes - Section 6.pdf 958.9 kB
  • 2. Introduction to neural networks/1.1 Course Notes - Section 2.pdf 949.9 kB
  • 2. Introduction to neural networks/10.1 Course Notes - Section 2.pdf 949.9 kB
  • 2. Introduction to neural networks/12.1 Course Notes - Section 2.pdf 949.9 kB
  • 2. Introduction to neural networks/14.1 Course Notes - Section 2.pdf 949.9 kB
  • 2. Introduction to neural networks/16.1 Course Notes - Section 2.pdf 949.9 kB
  • 2. Introduction to neural networks/18.1 Course Notes - Section 2.pdf 949.9 kB
  • 2. Introduction to neural networks/20.1 Course Notes - Section 2.pdf 949.9 kB
  • 2. Introduction to neural networks/22.1 Course Notes - Section 2.pdf 949.9 kB
  • 2. Introduction to neural networks/24.1 Course Notes - Section 2.pdf 949.9 kB
  • 2. Introduction to neural networks/3.1 Course Notes - Section 2.pdf 949.9 kB
  • 2. Introduction to neural networks/5.1 Course Notes - Section 2.pdf 949.9 kB
  • 2. Introduction to neural networks/7.1 Course Notes - Section 2.pdf 949.9 kB
  • 13. Business case/1.1 Audiobooks_data.csv 640.2 kB
  • 13. Business case/4.3 Audiobooks_data.csv 640.2 kB
  • 13. Business case/5.3 Audiobooks_data.csv 640.2 kB
  • 3. Setting up the working environment/7.1 Shortcuts for Jupyter.pdf 634.0 kB
  • 7. Backpropagation. A peek into the Mathematics of Optimization/1.1 Backpropagation-a-peek-into-the-Mathematics-of-Optimization.pdf 186.8 kB
  • 2. Introduction to neural networks/22.2 GD-function-example.xlsx 43.4 kB
  • 13. Business case/4. Preprocessing the data.srt 12.6 kB
  • 14. Appendix Linear Algebra Fundamentals/11. Why is Linear Algebra Useful.srt 12.1 kB
  • 4. Minimal example - your first machine learning algorithm/4. Minimal example - part 4.srt 11.1 kB
  • 13. Business case/1. Exploring the dataset and identifying predictors.srt 10.9 kB
  • 1. Welcome! Course introduction/1. Meet your instructors and why you should study machine learning.srt 10.4 kB
  • 14. Appendix Linear Algebra Fundamentals/10. Dot Product of Matrices.srt 9.7 kB
  • 12. The MNIST example/6. Preprocess the data - shuffle and batch the data.srt 9.5 kB
  • 2. Introduction to neural networks/22. One parameter gradient descent.srt 8.7 kB
  • 12. The MNIST example/10. Learning.srt 8.1 kB
  • 5. TensorFlow - An introduction/5. Model layout - inputs, outputs, targets, weights, biases, optimizer and loss.srt 8.0 kB
  • 13. Business case/9. Setting an early stopping mechanism.srt 8.0 kB
  • 2. Introduction to neural networks/24. N-parameter gradient descent.srt 7.7 kB
  • 12. The MNIST example/8. Outline the model.srt 7.4 kB
  • 8. Overfitting/6. Early stopping.srt 7.0 kB
  • 4. Minimal example - your first machine learning algorithm/2. Minimal example - part 2.srt 7.0 kB
  • 3. Setting up the working environment/6. The Jupyter dashboard - part 2.srt 6.9 kB
  • 6. Going deeper Introduction to deep neural networks/3. Understanding deep nets in depth.srt 6.8 kB
  • 15. Conclusion/3. An overview of CNNs.srt 6.6 kB
  • 3. Setting up the working environment/9. Installing TensorFlow 2.srt 6.5 kB
  • 3. Setting up the working environment/2. Why Python and why Jupyter.srt 6.5 kB
  • 12. The MNIST example/4. Preprocess the data - create a validation dataset and scale the data.srt 6.4 kB
  • 13. Business case/8. Learning and interpreting the result.srt 6.4 kB
  • 1. Welcome! Course introduction/2. What does the course cover.srt 6.4 kB
  • 5. TensorFlow - An introduction/6. Interpreting the result and extracting the weights and bias.srt 6.3 kB
  • 14. Appendix Linear Algebra Fundamentals/4. Scalars, Vectors and Matrices in Python.srt 6.3 kB
  • 12. The MNIST example/13. Testing the model.srt 6.2 kB
  • 10. Gradient descent and learning rates/4. Learning rate schedules.srt 6.1 kB
  • 11. Preprocessing/3. Standardization.srt 6.1 kB
  • 2. Introduction to neural networks/1. Introduction to neural networks.srt 6.1 kB
  • 8. Overfitting/1. Underfitting and overfitting.srt 5.8 kB
  • 2. Introduction to neural networks/12. The linear model. Multiple inputs and multiple outputs.srt 5.6 kB
  • 14. Appendix Linear Algebra Fundamentals/8. Transpose of a Matrix.srt 5.5 kB
  • 2. Introduction to neural networks/20. Cross-entropy loss.srt 5.5 kB
  • 2. Introduction to neural networks/5. Types of machine learning.srt 5.4 kB
  • 5. TensorFlow - An introduction/1. TensorFlow outline.srt 5.4 kB
  • 10. Gradient descent and learning rates/6. Adaptive learning rate schedules.srt 5.3 kB
  • 15. Conclusion/1. See how much you have learned.srt 5.3 kB
  • 6. Going deeper Introduction to deep neural networks/5. Activation functions.srt 5.3 kB
  • 15. Conclusion/6. An overview of non-NN approaches.srt 5.3 kB
  • 10. Gradient descent and learning rates/1. Stochastic gradient descent.srt 5.0 kB
  • 8. Overfitting/3. Training and validation.srt 5.0 kB
  • 11. Preprocessing/5. One-hot and binary encoding.srt 4.9 kB
  • 13. Business case/6. Load the preprocessed data.srt 4.8 kB
  • 3. Setting up the working environment/4. Installing Anaconda.srt 4.7 kB
  • 4. Minimal example - your first machine learning algorithm/1. Minimal example - part 1.srt 4.6 kB
  • 13. Business case/3. Balancing the dataset.srt 4.6 kB
  • 4. Minimal example - your first machine learning algorithm/3. Minimal example - part 3.srt 4.5 kB
  • 6. Going deeper Introduction to deep neural networks/7. Backpropagation.srt 4.5 kB
  • 14. Appendix Linear Algebra Fundamentals/1. What is a Matrix.srt 4.4 kB
  • 6. Going deeper Introduction to deep neural networks/6. Softmax activation.srt 4.4 kB
  • 2. Introduction to neural networks/3. Training the model.srt 4.4 kB
  • 14. Appendix Linear Algebra Fundamentals/9. Dot Product of Vectors.srt 4.4 kB
  • 8. Overfitting/5. N-fold cross validation.srt 4.3 kB
  • 5. TensorFlow - An introduction/7. Cutomizing your model.srt 4.2 kB
  • 14. Appendix Linear Algebra Fundamentals/3. Linear Algebra and Geometry.srt 4.2 kB
  • 14. Appendix Linear Algebra Fundamentals/6. Addition and Subtraction of Matrices.srt 4.1 kB
  • 6. Going deeper Introduction to deep neural networks/8. Backpropagation - visual representation.srt 4.1 kB
  • 2. Introduction to neural networks/7. The linear model.srt 4.0 kB
  • 11. Preprocessing/1. Preprocessing introduction.srt 3.9 kB
  • 6. Going deeper Introduction to deep neural networks/4. Why do we need non-linearities.srt 3.9 kB
  • 14. Appendix Linear Algebra Fundamentals/2. Scalars and Vectors.srt 3.9 kB
  • 9. Initialization/3. Xavier initialization.srt 3.8 kB
  • 9. Initialization/2. Types of simple initializations.srt 3.8 kB
  • 5. TensorFlow - An introduction/2. TensorFlow 2 intro.srt 3.7 kB
  • 15. Conclusion/5. An overview of RNNs.srt 3.7 kB
  • 14. Appendix Linear Algebra Fundamentals/5. Tensors.srt 3.7 kB
  • 12. The MNIST example/1. The dataset.srt 3.7 kB
  • 8. Overfitting/4. Training, validation, and test.srt 3.6 kB
  • 9. Initialization/1. Initialization - Introduction.srt 3.6 kB
  • 10. Gradient descent and learning rates/3. Momentum.srt 3.6 kB
  • 12. The MNIST example/2. How to tackle the MNIST.srt 3.6 kB
  • 5. TensorFlow - An introduction/4. Types of file formats in TensorFlow and data handling.srt 3.6 kB
  • 10. Gradient descent and learning rates/7. Adaptive moment estimation.srt 3.4 kB
  • 6. Going deeper Introduction to deep neural networks/2. What is a deep net.srt 3.4 kB
  • 3. Setting up the working environment/5. The Jupyter dashboard - part 1.srt 3.2 kB
  • 2. Introduction to neural networks/10. The linear model. Multiple inputs.srt 3.2 kB
  • 12. The MNIST example/3. Importing the relevant packages and load the data.srt 3.1 kB
  • 12. The MNIST example/9. Select the loss and the optimizer.srt 3.1 kB
  • 10. Gradient descent and learning rates/2. Gradient descent pitfalls.srt 2.9 kB
  • 2. Introduction to neural networks/18. L2-norm loss.srt 2.9 kB
  • 11. Preprocessing/4. Dealing with categorical data.srt 2.8 kB
  • 8. Overfitting/2. Underfitting and overfitting - classification.srt 2.8 kB
  • 2. Introduction to neural networks/14. Graphical representation.srt 2.8 kB
  • 14. Appendix Linear Algebra Fundamentals/7. Errors when Adding Matrices.srt 2.6 kB
  • 15. Conclusion/2. What’s further out there in the machine and deep learning world.srt 2.6 kB
  • 16. Bonus lecture/1. Bonus lecture Next steps.html 2.6 kB
  • 6. Going deeper Introduction to deep neural networks/1. Layers.srt 2.5 kB
  • 10. Gradient descent and learning rates/5. Learning rate schedules. A picture.srt 2.2 kB
  • 12. The MNIST example/12. MNIST - solutions.html 2.2 kB
  • 13. Business case/11. Testing the model.srt 2.1 kB
  • 2. Introduction to neural networks/16. The objective function.srt 2.1 kB
  • 13. Business case/2. Outlining the business case solution.srt 2.0 kB
  • 12. The MNIST example/11. MNIST - exercises.html 2.0 kB
  • 11. Preprocessing/2. Basic preprocessing.srt 1.7 kB
  • 4. Minimal example - your first machine learning algorithm/5. Minimal example - Exercises.html 1.6 kB
  • 3. Setting up the working environment/1. Setting up the environment - An introduction - Do not skip, please!.srt 1.4 kB
  • 5. TensorFlow - An introduction/3. A Note on Coding in TensorFlow.srt 1.4 kB
  • 15. Conclusion/4. How DeepMind uses deep learning.html 1.4 kB
  • 5. TensorFlow - An introduction/8. Minimal example with TensorFlow - Exercises.html 1.4 kB
  • 2. Introduction to neural networks/9. Need Help with Linear Algebra.html 829 Bytes
  • 1. Welcome! Course introduction/4. Download All Resources and Important FAQ.html 720 Bytes
  • 7. Backpropagation. A peek into the Mathematics of Optimization/1. Backpropagation. A peek into the Mathematics of Optimization.html 539 Bytes
  • 13. Business case/12. Final exercise.html 445 Bytes
  • 13. Business case/5. Preprocessing exercise.html 404 Bytes
  • 3. Setting up the working environment/7. Jupyter Shortcuts.html 332 Bytes
  • 3. Setting up the working environment/11. Installing packages - solution.html 267 Bytes
  • 14. Appendix Linear Algebra Fundamentals/7.1 Errors when Adding Matrices Python Notebook.html 220 Bytes
  • 3. Setting up the working environment/10. Installing packages - exercise.html 198 Bytes
  • 13. Business case/10. Setting an early stopping mechanism - Exercise.html 191 Bytes
  • 14. Appendix Linear Algebra Fundamentals/4.1 Scalars, Vectors and Matrices Python Notebook.html 181 Bytes
  • 14. Appendix Linear Algebra Fundamentals/6.1 Addition and Subtraction Python Notebook.html 178 Bytes
  • 12. The MNIST example/12.4 4. TensorFlow MNIST - Exercise 4 Solution.html 172 Bytes
  • 12. The MNIST example/12.5 5. TensorFlow MNIST - Exercise 5 Solution.html 172 Bytes
  • 13. Business case/7.1 TensorFlow Business Case - Machine Learning - Part 1.html 172 Bytes
  • 13. Business case/8.1 TensorFlow Business Case - Machine Learning - Part 2.html 172 Bytes
  • 13. Business case/9.1 TensorFlow Business Case - Machine Learning - Part 3.html 172 Bytes
  • 14. Appendix Linear Algebra Fundamentals/10.1 Dot Product of Matrices Python Notebook.html 171 Bytes
  • 1. Welcome! Course introduction/3. What does the course cover - Quiz.html 168 Bytes
  • 2. Introduction to neural networks/11. The linear model. Multiple inputs - Quiz.html 168 Bytes
  • 2. Introduction to neural networks/13. The linear model. Multiple inputs and multiple outputs - Quiz.html 168 Bytes
  • 2. Introduction to neural networks/15. Graphical representation - Quiz.html 168 Bytes
  • 2. Introduction to neural networks/17. The objective function - Quiz.html 168 Bytes
  • 2. Introduction to neural networks/19. L2-norm loss - Quiz.html 168 Bytes
  • 2. Introduction to neural networks/2. Introduction to neural networks - Quiz.html 168 Bytes
  • 2. Introduction to neural networks/21. Cross-entropy loss - Quiz.html 168 Bytes
  • 2. Introduction to neural networks/23. One parameter gradient descent - Quiz.html 168 Bytes
  • 2. Introduction to neural networks/25. N-parameter gradient descent - Quiz.html 168 Bytes
  • 2. Introduction to neural networks/4. Training the model - Quiz.html 168 Bytes
  • 2. Introduction to neural networks/6. Types of machine learning - Quiz.html 168 Bytes
  • 2. Introduction to neural networks/8. The linear model - Quiz.html 168 Bytes
  • 3. Setting up the working environment/3. Why Python and why Jupyter - Quiz.html 168 Bytes
  • 3. Setting up the working environment/8. The Jupyter dashboard - Quiz.html 168 Bytes
  • 13. Business case/5.2 TensorFlow Business Case - Preprocessing Exercise Solution.html 167 Bytes
  • 14. Appendix Linear Algebra Fundamentals/8.1 Transpose of a Matrix Python Notebook.html 167 Bytes
  • 13. Business case/11.1 TensorFlow Business Case - Machine Learning Complete Code with Comments.html 166 Bytes
  • 13. Business case/12.1 TensorFlow Business Case - Machine Learning Complete Code with Comments.html 166 Bytes
  • 12. The MNIST example/12.6 8. TensorFlow MNIST - Exercise 8 Solution.html 165 Bytes
  • 12. The MNIST example/12.8 9. TensorFlow MNIST - Exercise 9 Solution.html 165 Bytes
  • 13. Business case/4.2 TensorFlow Business Case - Preprocessing with Comments.html 163 Bytes
  • 5. TensorFlow - An introduction/7.1 TensorFlow Minimal Example - Complete Code with Comments.html 163 Bytes
  • 12. The MNIST example/12.10 7. TensorFlow MNIST - Exercise 7 Solution.html 162 Bytes
  • 12. The MNIST example/12.9 6. TensorFlow MNIST - Exercise 6 Solution.html 162 Bytes
  • 5. TensorFlow - An introduction/8.1 TensorFlow Minimal Example - Exercise 2_2 - Solution.html 162 Bytes
  • 5. TensorFlow - An introduction/8.4 TensorFlow Minimal Example - Exercise 2_1 - Solution.html 162 Bytes
  • 12. The MNIST example/12.1 3. TensorFlow MNIST - Exercise 3 Solution.html 160 Bytes
  • 5. TensorFlow - An introduction/8.2 TensorFlow Minimal Example - Exercise 1 - Solution.html 160 Bytes
  • 5. TensorFlow - An introduction/8.3 TensorFlow Minimal Example - Exercise 3 - Solution.html 160 Bytes
  • 13. Business case/5.1 TensorFlow Business Case - Preprocessing Exercise.html 158 Bytes
  • 12. The MNIST example/12.7 10. TensorFlow MNIST - Exercise 10 Solution.html 157 Bytes
  • 14. Appendix Linear Algebra Fundamentals/9.1 Dot Product Python Notebook.html 154 Bytes
  • 4. Minimal example - your first machine learning algorithm/5.2 Minimal_example_Exercise_3.c. Solution.html 154 Bytes
  • 4. Minimal example - your first machine learning algorithm/5.4 Minimal_example_Exercise_3.a. Solution.html 154 Bytes
  • 4. Minimal example - your first machine learning algorithm/5.7 Minimal_example_Exercise_3.d. Solution.html 154 Bytes
  • 4. Minimal example - your first machine learning algorithm/5.8 Minimal_example_Exercise_3.b. Solution.html 154 Bytes
  • 5. TensorFlow - An introduction/8.5 TensorFlow Minimal Example - All Exercises.html 154 Bytes
  • 12. The MNIST example/13.2 TensorFlow MNIST - Complete Code with Comments.html 153 Bytes
  • 12. The MNIST example/10.1 TensorFlow MNIST - Part 6 with comments.html 150 Bytes
  • 12. The MNIST example/12.2 1. TensorFlow MNIST - Exercise 1 Solution.html 150 Bytes
  • 12. The MNIST example/12.3 2. TensorFlow MNIST - Exercise 2 Solution.html 150 Bytes
  • 12. The MNIST example/3.1 TensorFlow MNIST - Part 1 with comments.html 150 Bytes
  • 12. The MNIST example/5.1 TensorFlow MNIST - Part 2 with comments.html 150 Bytes
  • 12. The MNIST example/7.1 TensorFlow MNIST - Part 3 with comments.html 150 Bytes
  • 12. The MNIST example/8.1 TensorFlow MNIST - Part 4 with comments.html 150 Bytes
  • 12. The MNIST example/9.1 TensorFlow MNIST - Part 5 with comments.html 150 Bytes
  • 13. Business case/4.1 TensorFlow Business Case - Preprocessing.html 149 Bytes
  • 4. Minimal example - your first machine learning algorithm/5.1 Minimal_example_Exercise_6_Solution.html 149 Bytes
  • 4. Minimal example - your first machine learning algorithm/5.3 Minimal_example_Exercise_4_Solution.html 149 Bytes
  • 4. Minimal example - your first machine learning algorithm/5.5 Minimal_example_Exercise_5_Solution.html 149 Bytes
  • 4. Minimal example - your first machine learning algorithm/5.6 Minimal_example_Exercise_1_Solution.html 149 Bytes
  • 4. Minimal example - your first machine learning algorithm/5.9 Minimal_example_Exercise_2_Solution.html 149 Bytes
  • 5. TensorFlow - An introduction/7.2 TensorFlow Minimal Example - Complete Code.html 149 Bytes
  • 14. Appendix Linear Algebra Fundamentals/5.1 Tensors Notebook.html 148 Bytes
  • 5. TensorFlow - An introduction/4.1 TensorFlow Minimal Example - Part 1.html 146 Bytes
  • 5. TensorFlow - An introduction/5.1 TensorFlow Minimal Example - Part 2.html 146 Bytes
  • 5. TensorFlow - An introduction/6.1 TensorFlow Minimal Example - Part 3.html 146 Bytes
  • 4. Minimal example - your first machine learning algorithm/4.1 Minimal example - part 4.html 145 Bytes
  • 12. The MNIST example/11.1 TensorFlow MNIST - All Exercises.html 144 Bytes
  • 4. Minimal example - your first machine learning algorithm/5.10 Minimal_example_All_Exercises.html 143 Bytes
  • 12. The MNIST example/13.1 TensorFlow MNIST - Complete Code.html 139 Bytes
  • 4. Minimal example - your first machine learning algorithm/1.1 Minimal example Part 1.html 136 Bytes
  • 4. Minimal example - your first machine learning algorithm/2.1 Minimal example - part 2.html 136 Bytes
  • 4. Minimal example - your first machine learning algorithm/3.1 Minimal example - part 3.html 136 Bytes
  • [Tutorialsplanet.NET].url 128 Bytes
  • 12. The MNIST example/5. Preprocess the data - scale the test data.html 81 Bytes
  • 12. The MNIST example/7. Preprocess the data - shuffle and batch the data.html 81 Bytes
  • 13. Business case/7. Load the preprocessed data - Exercise.html 79 Bytes

随机展示

相关说明

本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!