搜索
[Tutorialsplanet.NET] Udemy - Deep Learning with TensorFlow 2.0 [2020]
磁力链接/BT种子名称
[Tutorialsplanet.NET] Udemy - Deep Learning with TensorFlow 2.0 [2020]
磁力链接/BT种子简介
种子哈希:
af3a5895ecc7a288538c1cbcd14f00a0de0dd699
文件大小:
1.88G
已经下载:
642
次
下载速度:
极快
收录时间:
2021-04-27
最近下载:
2024-12-06
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:AF3A5895ECC7A288538C1CBCD14F00A0DE0DD699
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
最近搜索
初尝试
双腿榨
和爸妈
15000
国产出轨
金庸小说
骑乘自卫
激変
julietta, magdalena
百合mp4
伺候绿帽
刘梓晨
+momsincontrol
vrtm-259
纹身小美女
rion
abw-277
跳蛋骚妇
1837582+
atkgirlfriends
网赚
嗲声嗲气推特网红人气学妹露出狂嘉欣jane收费自拍
淫水多多的
sm圈
91张总再操极品高颜值网红学生妹 这次操熟了无套一
+水元ゆうな
形异 夺命舰
国内澡堂子内部员工
氛围
魔性论坛
文件列表
14. Appendix Linear Algebra Fundamentals/11. Why is Linear Algebra Useful.mp4
151.3 MB
1. Welcome! Course introduction/1. Meet your instructors and why you should study machine learning.mp4
110.9 MB
13. Business case/4. Preprocessing the data.mp4
88.4 MB
13. Business case/1. Exploring the dataset and identifying predictors.mp4
69.5 MB
13. Business case/9. Setting an early stopping mechanism.mp4
52.2 MB
14. Appendix Linear Algebra Fundamentals/3. Linear Algebra and Geometry.mp4
52.2 MB
14. Appendix Linear Algebra Fundamentals/10. Dot Product of Matrices.mp4
51.8 MB
12. The MNIST example/6. Preprocess the data - shuffle and batch the data.mp4
43.6 MB
12. The MNIST example/10. Learning.mp4
42.9 MB
2. Introduction to neural networks/24. N-parameter gradient descent.mp4
41.4 MB
3. Setting up the working environment/9. Installing TensorFlow 2.mp4
40.6 MB
2. Introduction to neural networks/12. The linear model. Multiple inputs and multiple outputs.mp4
40.1 MB
14. Appendix Linear Algebra Fundamentals/8. Transpose of a Matrix.mp4
39.9 MB
5. TensorFlow - An introduction/5. Model layout - inputs, outputs, targets, weights, biases, optimizer and loss.mp4
36.4 MB
14. Appendix Linear Algebra Fundamentals/2. Scalars and Vectors.mp4
35.5 MB
14. Appendix Linear Algebra Fundamentals/1. What is a Matrix.mp4
35.2 MB
5. TensorFlow - An introduction/1. TensorFlow outline.mp4
35.2 MB
14. Appendix Linear Algebra Fundamentals/6. Addition and Subtraction of Matrices.mp4
34.2 MB
3. Setting up the working environment/2. Why Python and why Jupyter.mp4
33.6 MB
13. Business case/8. Learning and interpreting the result.mp4
32.7 MB
13. Business case/3. Balancing the dataset.mp4
31.9 MB
5. TensorFlow - An introduction/6. Interpreting the result and extracting the weights and bias.mp4
31.7 MB
12. The MNIST example/13. Testing the model.mp4
31.0 MB
12. The MNIST example/4. Preprocess the data - create a validation dataset and scale the data.mp4
30.5 MB
3. Setting up the working environment/4. Installing Anaconda.mp4
29.8 MB
12. The MNIST example/8. Outline the model.mp4
29.6 MB
14. Appendix Linear Algebra Fundamentals/4. Scalars, Vectors and Matrices in Python.mp4
28.0 MB
14. Appendix Linear Algebra Fundamentals/9. Dot Product of Vectors.mp4
25.1 MB
5. TensorFlow - An introduction/7. Cutomizing your model.mp4
24.0 MB
14. Appendix Linear Algebra Fundamentals/5. Tensors.mp4
23.6 MB
5. TensorFlow - An introduction/2. TensorFlow 2 intro.mp4
23.1 MB
4. Minimal example - your first machine learning algorithm/4. Minimal example - part 4.mp4
21.8 MB
3. Setting up the working environment/6. The Jupyter dashboard - part 2.mp4
19.7 MB
12. The MNIST example/2. How to tackle the MNIST.mp4
19.6 MB
2. Introduction to neural networks/22. One parameter gradient descent.mp4
18.6 MB
13. Business case/6. Load the preprocessed data.mp4
18.4 MB
5. TensorFlow - An introduction/4. Types of file formats in TensorFlow and data handling.mp4
17.2 MB
1. Welcome! Course introduction/2. What does the course cover.mp4
17.1 MB
12. The MNIST example/3. Importing the relevant packages and load the data.mp4
17.1 MB
15. Conclusion/1. See how much you have learned.mp4
14.6 MB
12. The MNIST example/9. Select the loss and the optimizer.mp4
14.6 MB
2. Introduction to neural networks/1. Introduction to neural networks.mp4
14.2 MB
6. Going deeper Introduction to deep neural networks/3. Understanding deep nets in depth.mp4
14.0 MB
12. The MNIST example/1. The dataset.mp4
14.0 MB
2. Introduction to neural networks/5. Types of machine learning.mp4
12.8 MB
2. Introduction to neural networks/20. Cross-entropy loss.mp4
11.9 MB
14. Appendix Linear Algebra Fundamentals/7. Errors when Adding Matrices.mp4
11.7 MB
8. Overfitting/1. Underfitting and overfitting.mp4
11.6 MB
6. Going deeper Introduction to deep neural networks/7. Backpropagation.mp4
11.6 MB
15. Conclusion/3. An overview of CNNs.mp4
11.5 MB
13. Business case/11. Testing the model.mp4
11.3 MB
4. Minimal example - your first machine learning algorithm/2. Minimal example - part 2.mp4
11.2 MB
10. Gradient descent and learning rates/4. Learning rate schedules.mp4
10.8 MB
4. Minimal example - your first machine learning algorithm/3. Minimal example - part 3.mp4
10.2 MB
8. Overfitting/6. Early stopping.mp4
9.9 MB
10. Gradient descent and learning rates/1. Stochastic gradient descent.mp4
9.8 MB
8. Overfitting/3. Training and validation.mp4
9.7 MB
2. Introduction to neural networks/7. The linear model.mp4
9.6 MB
6. Going deeper Introduction to deep neural networks/4. Why do we need non-linearities.mp4
9.4 MB
10. Gradient descent and learning rates/6. Adaptive learning rate schedules.mp4
9.3 MB
2. Introduction to neural networks/3. Training the model.mp4
9.2 MB
6. Going deeper Introduction to deep neural networks/5. Activation functions.mp4
9.2 MB
3. Setting up the working environment/5. The Jupyter dashboard - part 1.mp4
9.1 MB
11. Preprocessing/1. Preprocessing introduction.mp4
8.8 MB
11. Preprocessing/3. Standardization.mp4
8.7 MB
9. Initialization/1. Initialization - Introduction.mp4
8.4 MB
15. Conclusion/6. An overview of non-NN approaches.mp4
8.2 MB
10. Gradient descent and learning rates/7. Adaptive moment estimation.mp4
8.1 MB
2. Introduction to neural networks/10. The linear model. Multiple inputs.mp4
7.9 MB
8. Overfitting/4. Training, validation, and test.mp4
7.8 MB
6. Going deeper Introduction to deep neural networks/6. Softmax activation.mp4
7.7 MB
13. Business case/2. Outlining the business case solution.mp4
7.7 MB
2. Introduction to neural networks/18. L2-norm loss.mp4
7.6 MB
8. Overfitting/5. N-fold cross validation.mp4
7.3 MB
6. Going deeper Introduction to deep neural networks/8. Backpropagation - visual representation.mp4
7.2 MB
8. Overfitting/2. Underfitting and overfitting - classification.mp4
7.1 MB
5. TensorFlow - An introduction/3. A Note on Coding in TensorFlow.mp4
7.1 MB
6. Going deeper Introduction to deep neural networks/2. What is a deep net.mp4
7.1 MB
4. Minimal example - your first machine learning algorithm/1. Minimal example - part 1.mp4
6.9 MB
2. Introduction to neural networks/14. Graphical representation.mp4
6.7 MB
15. Conclusion/2. What’s further out there in the machine and deep learning world.mp4
6.6 MB
11. Preprocessing/5. One-hot and binary encoding.mp4
6.5 MB
10. Gradient descent and learning rates/3. Momentum.mp4
6.4 MB
11. Preprocessing/4. Dealing with categorical data.mp4
6.4 MB
3. Setting up the working environment/1. Setting up the environment - An introduction - Do not skip, please!.mp4
6.2 MB
9. Initialization/3. Xavier initialization.mp4
6.1 MB
2. Introduction to neural networks/16. The objective function.mp4
6.0 MB
9. Initialization/2. Types of simple initializations.mp4
5.9 MB
15. Conclusion/5. An overview of RNNs.mp4
5.1 MB
6. Going deeper Introduction to deep neural networks/1. Layers.mp4
5.0 MB
10. Gradient descent and learning rates/2. Gradient descent pitfalls.mp4
4.5 MB
11. Preprocessing/2. Basic preprocessing.mp4
3.8 MB
10. Gradient descent and learning rates/5. Learning rate schedules. A picture.mp4
3.3 MB
6. Going deeper Introduction to deep neural networks/1.1 Course Notes - Section 6.pdf
958.9 kB
6. Going deeper Introduction to deep neural networks/2.1 Course Notes - Section 6.pdf
958.9 kB
2. Introduction to neural networks/1.1 Course Notes - Section 2.pdf
949.9 kB
2. Introduction to neural networks/10.1 Course Notes - Section 2.pdf
949.9 kB
2. Introduction to neural networks/12.1 Course Notes - Section 2.pdf
949.9 kB
2. Introduction to neural networks/14.1 Course Notes - Section 2.pdf
949.9 kB
2. Introduction to neural networks/16.1 Course Notes - Section 2.pdf
949.9 kB
2. Introduction to neural networks/18.1 Course Notes - Section 2.pdf
949.9 kB
2. Introduction to neural networks/20.1 Course Notes - Section 2.pdf
949.9 kB
2. Introduction to neural networks/22.1 Course Notes - Section 2.pdf
949.9 kB
2. Introduction to neural networks/24.1 Course Notes - Section 2.pdf
949.9 kB
2. Introduction to neural networks/3.1 Course Notes - Section 2.pdf
949.9 kB
2. Introduction to neural networks/5.1 Course Notes - Section 2.pdf
949.9 kB
2. Introduction to neural networks/7.1 Course Notes - Section 2.pdf
949.9 kB
13. Business case/1.1 Audiobooks_data.csv
640.2 kB
13. Business case/4.3 Audiobooks_data.csv
640.2 kB
13. Business case/5.3 Audiobooks_data.csv
640.2 kB
3. Setting up the working environment/7.1 Shortcuts for Jupyter.pdf
634.0 kB
7. Backpropagation. A peek into the Mathematics of Optimization/1.1 Backpropagation-a-peek-into-the-Mathematics-of-Optimization.pdf
186.8 kB
2. Introduction to neural networks/22.2 GD-function-example.xlsx
43.4 kB
13. Business case/4. Preprocessing the data.srt
12.6 kB
14. Appendix Linear Algebra Fundamentals/11. Why is Linear Algebra Useful.srt
12.1 kB
4. Minimal example - your first machine learning algorithm/4. Minimal example - part 4.srt
11.1 kB
13. Business case/1. Exploring the dataset and identifying predictors.srt
10.9 kB
1. Welcome! Course introduction/1. Meet your instructors and why you should study machine learning.srt
10.4 kB
14. Appendix Linear Algebra Fundamentals/10. Dot Product of Matrices.srt
9.7 kB
12. The MNIST example/6. Preprocess the data - shuffle and batch the data.srt
9.5 kB
2. Introduction to neural networks/22. One parameter gradient descent.srt
8.7 kB
12. The MNIST example/10. Learning.srt
8.1 kB
5. TensorFlow - An introduction/5. Model layout - inputs, outputs, targets, weights, biases, optimizer and loss.srt
8.0 kB
13. Business case/9. Setting an early stopping mechanism.srt
8.0 kB
2. Introduction to neural networks/24. N-parameter gradient descent.srt
7.7 kB
12. The MNIST example/8. Outline the model.srt
7.4 kB
8. Overfitting/6. Early stopping.srt
7.0 kB
4. Minimal example - your first machine learning algorithm/2. Minimal example - part 2.srt
7.0 kB
3. Setting up the working environment/6. The Jupyter dashboard - part 2.srt
6.9 kB
6. Going deeper Introduction to deep neural networks/3. Understanding deep nets in depth.srt
6.8 kB
15. Conclusion/3. An overview of CNNs.srt
6.6 kB
3. Setting up the working environment/9. Installing TensorFlow 2.srt
6.5 kB
3. Setting up the working environment/2. Why Python and why Jupyter.srt
6.5 kB
12. The MNIST example/4. Preprocess the data - create a validation dataset and scale the data.srt
6.4 kB
13. Business case/8. Learning and interpreting the result.srt
6.4 kB
1. Welcome! Course introduction/2. What does the course cover.srt
6.4 kB
5. TensorFlow - An introduction/6. Interpreting the result and extracting the weights and bias.srt
6.3 kB
14. Appendix Linear Algebra Fundamentals/4. Scalars, Vectors and Matrices in Python.srt
6.3 kB
12. The MNIST example/13. Testing the model.srt
6.2 kB
10. Gradient descent and learning rates/4. Learning rate schedules.srt
6.1 kB
11. Preprocessing/3. Standardization.srt
6.1 kB
2. Introduction to neural networks/1. Introduction to neural networks.srt
6.1 kB
8. Overfitting/1. Underfitting and overfitting.srt
5.8 kB
2. Introduction to neural networks/12. The linear model. Multiple inputs and multiple outputs.srt
5.6 kB
14. Appendix Linear Algebra Fundamentals/8. Transpose of a Matrix.srt
5.5 kB
2. Introduction to neural networks/20. Cross-entropy loss.srt
5.5 kB
2. Introduction to neural networks/5. Types of machine learning.srt
5.4 kB
5. TensorFlow - An introduction/1. TensorFlow outline.srt
5.4 kB
10. Gradient descent and learning rates/6. Adaptive learning rate schedules.srt
5.3 kB
15. Conclusion/1. See how much you have learned.srt
5.3 kB
6. Going deeper Introduction to deep neural networks/5. Activation functions.srt
5.3 kB
15. Conclusion/6. An overview of non-NN approaches.srt
5.3 kB
10. Gradient descent and learning rates/1. Stochastic gradient descent.srt
5.0 kB
8. Overfitting/3. Training and validation.srt
5.0 kB
11. Preprocessing/5. One-hot and binary encoding.srt
4.9 kB
13. Business case/6. Load the preprocessed data.srt
4.8 kB
3. Setting up the working environment/4. Installing Anaconda.srt
4.7 kB
4. Minimal example - your first machine learning algorithm/1. Minimal example - part 1.srt
4.6 kB
13. Business case/3. Balancing the dataset.srt
4.6 kB
4. Minimal example - your first machine learning algorithm/3. Minimal example - part 3.srt
4.5 kB
6. Going deeper Introduction to deep neural networks/7. Backpropagation.srt
4.5 kB
14. Appendix Linear Algebra Fundamentals/1. What is a Matrix.srt
4.4 kB
6. Going deeper Introduction to deep neural networks/6. Softmax activation.srt
4.4 kB
2. Introduction to neural networks/3. Training the model.srt
4.4 kB
14. Appendix Linear Algebra Fundamentals/9. Dot Product of Vectors.srt
4.4 kB
8. Overfitting/5. N-fold cross validation.srt
4.3 kB
5. TensorFlow - An introduction/7. Cutomizing your model.srt
4.2 kB
14. Appendix Linear Algebra Fundamentals/3. Linear Algebra and Geometry.srt
4.2 kB
14. Appendix Linear Algebra Fundamentals/6. Addition and Subtraction of Matrices.srt
4.1 kB
6. Going deeper Introduction to deep neural networks/8. Backpropagation - visual representation.srt
4.1 kB
2. Introduction to neural networks/7. The linear model.srt
4.0 kB
11. Preprocessing/1. Preprocessing introduction.srt
3.9 kB
6. Going deeper Introduction to deep neural networks/4. Why do we need non-linearities.srt
3.9 kB
14. Appendix Linear Algebra Fundamentals/2. Scalars and Vectors.srt
3.9 kB
9. Initialization/3. Xavier initialization.srt
3.8 kB
9. Initialization/2. Types of simple initializations.srt
3.8 kB
5. TensorFlow - An introduction/2. TensorFlow 2 intro.srt
3.7 kB
15. Conclusion/5. An overview of RNNs.srt
3.7 kB
14. Appendix Linear Algebra Fundamentals/5. Tensors.srt
3.7 kB
12. The MNIST example/1. The dataset.srt
3.7 kB
8. Overfitting/4. Training, validation, and test.srt
3.6 kB
9. Initialization/1. Initialization - Introduction.srt
3.6 kB
10. Gradient descent and learning rates/3. Momentum.srt
3.6 kB
12. The MNIST example/2. How to tackle the MNIST.srt
3.6 kB
5. TensorFlow - An introduction/4. Types of file formats in TensorFlow and data handling.srt
3.6 kB
10. Gradient descent and learning rates/7. Adaptive moment estimation.srt
3.4 kB
6. Going deeper Introduction to deep neural networks/2. What is a deep net.srt
3.4 kB
3. Setting up the working environment/5. The Jupyter dashboard - part 1.srt
3.2 kB
2. Introduction to neural networks/10. The linear model. Multiple inputs.srt
3.2 kB
12. The MNIST example/3. Importing the relevant packages and load the data.srt
3.1 kB
12. The MNIST example/9. Select the loss and the optimizer.srt
3.1 kB
10. Gradient descent and learning rates/2. Gradient descent pitfalls.srt
2.9 kB
2. Introduction to neural networks/18. L2-norm loss.srt
2.9 kB
11. Preprocessing/4. Dealing with categorical data.srt
2.8 kB
8. Overfitting/2. Underfitting and overfitting - classification.srt
2.8 kB
2. Introduction to neural networks/14. Graphical representation.srt
2.8 kB
14. Appendix Linear Algebra Fundamentals/7. Errors when Adding Matrices.srt
2.6 kB
15. Conclusion/2. What’s further out there in the machine and deep learning world.srt
2.6 kB
16. Bonus lecture/1. Bonus lecture Next steps.html
2.6 kB
6. Going deeper Introduction to deep neural networks/1. Layers.srt
2.5 kB
10. Gradient descent and learning rates/5. Learning rate schedules. A picture.srt
2.2 kB
12. The MNIST example/12. MNIST - solutions.html
2.2 kB
13. Business case/11. Testing the model.srt
2.1 kB
2. Introduction to neural networks/16. The objective function.srt
2.1 kB
13. Business case/2. Outlining the business case solution.srt
2.0 kB
12. The MNIST example/11. MNIST - exercises.html
2.0 kB
11. Preprocessing/2. Basic preprocessing.srt
1.7 kB
4. Minimal example - your first machine learning algorithm/5. Minimal example - Exercises.html
1.6 kB
3. Setting up the working environment/1. Setting up the environment - An introduction - Do not skip, please!.srt
1.4 kB
5. TensorFlow - An introduction/3. A Note on Coding in TensorFlow.srt
1.4 kB
15. Conclusion/4. How DeepMind uses deep learning.html
1.4 kB
5. TensorFlow - An introduction/8. Minimal example with TensorFlow - Exercises.html
1.4 kB
2. Introduction to neural networks/9. Need Help with Linear Algebra.html
829 Bytes
1. Welcome! Course introduction/4. Download All Resources and Important FAQ.html
720 Bytes
7. Backpropagation. A peek into the Mathematics of Optimization/1. Backpropagation. A peek into the Mathematics of Optimization.html
539 Bytes
13. Business case/12. Final exercise.html
445 Bytes
13. Business case/5. Preprocessing exercise.html
404 Bytes
3. Setting up the working environment/7. Jupyter Shortcuts.html
332 Bytes
3. Setting up the working environment/11. Installing packages - solution.html
267 Bytes
14. Appendix Linear Algebra Fundamentals/7.1 Errors when Adding Matrices Python Notebook.html
220 Bytes
3. Setting up the working environment/10. Installing packages - exercise.html
198 Bytes
13. Business case/10. Setting an early stopping mechanism - Exercise.html
191 Bytes
14. Appendix Linear Algebra Fundamentals/4.1 Scalars, Vectors and Matrices Python Notebook.html
181 Bytes
14. Appendix Linear Algebra Fundamentals/6.1 Addition and Subtraction Python Notebook.html
178 Bytes
12. The MNIST example/12.4 4. TensorFlow MNIST - Exercise 4 Solution.html
172 Bytes
12. The MNIST example/12.5 5. TensorFlow MNIST - Exercise 5 Solution.html
172 Bytes
13. Business case/7.1 TensorFlow Business Case - Machine Learning - Part 1.html
172 Bytes
13. Business case/8.1 TensorFlow Business Case - Machine Learning - Part 2.html
172 Bytes
13. Business case/9.1 TensorFlow Business Case - Machine Learning - Part 3.html
172 Bytes
14. Appendix Linear Algebra Fundamentals/10.1 Dot Product of Matrices Python Notebook.html
171 Bytes
1. Welcome! Course introduction/3. What does the course cover - Quiz.html
168 Bytes
2. Introduction to neural networks/11. The linear model. Multiple inputs - Quiz.html
168 Bytes
2. Introduction to neural networks/13. The linear model. Multiple inputs and multiple outputs - Quiz.html
168 Bytes
2. Introduction to neural networks/15. Graphical representation - Quiz.html
168 Bytes
2. Introduction to neural networks/17. The objective function - Quiz.html
168 Bytes
2. Introduction to neural networks/19. L2-norm loss - Quiz.html
168 Bytes
2. Introduction to neural networks/2. Introduction to neural networks - Quiz.html
168 Bytes
2. Introduction to neural networks/21. Cross-entropy loss - Quiz.html
168 Bytes
2. Introduction to neural networks/23. One parameter gradient descent - Quiz.html
168 Bytes
2. Introduction to neural networks/25. N-parameter gradient descent - Quiz.html
168 Bytes
2. Introduction to neural networks/4. Training the model - Quiz.html
168 Bytes
2. Introduction to neural networks/6. Types of machine learning - Quiz.html
168 Bytes
2. Introduction to neural networks/8. The linear model - Quiz.html
168 Bytes
3. Setting up the working environment/3. Why Python and why Jupyter - Quiz.html
168 Bytes
3. Setting up the working environment/8. The Jupyter dashboard - Quiz.html
168 Bytes
13. Business case/5.2 TensorFlow Business Case - Preprocessing Exercise Solution.html
167 Bytes
14. Appendix Linear Algebra Fundamentals/8.1 Transpose of a Matrix Python Notebook.html
167 Bytes
13. Business case/11.1 TensorFlow Business Case - Machine Learning Complete Code with Comments.html
166 Bytes
13. Business case/12.1 TensorFlow Business Case - Machine Learning Complete Code with Comments.html
166 Bytes
12. The MNIST example/12.6 8. TensorFlow MNIST - Exercise 8 Solution.html
165 Bytes
12. The MNIST example/12.8 9. TensorFlow MNIST - Exercise 9 Solution.html
165 Bytes
13. Business case/4.2 TensorFlow Business Case - Preprocessing with Comments.html
163 Bytes
5. TensorFlow - An introduction/7.1 TensorFlow Minimal Example - Complete Code with Comments.html
163 Bytes
12. The MNIST example/12.10 7. TensorFlow MNIST - Exercise 7 Solution.html
162 Bytes
12. The MNIST example/12.9 6. TensorFlow MNIST - Exercise 6 Solution.html
162 Bytes
5. TensorFlow - An introduction/8.1 TensorFlow Minimal Example - Exercise 2_2 - Solution.html
162 Bytes
5. TensorFlow - An introduction/8.4 TensorFlow Minimal Example - Exercise 2_1 - Solution.html
162 Bytes
12. The MNIST example/12.1 3. TensorFlow MNIST - Exercise 3 Solution.html
160 Bytes
5. TensorFlow - An introduction/8.2 TensorFlow Minimal Example - Exercise 1 - Solution.html
160 Bytes
5. TensorFlow - An introduction/8.3 TensorFlow Minimal Example - Exercise 3 - Solution.html
160 Bytes
13. Business case/5.1 TensorFlow Business Case - Preprocessing Exercise.html
158 Bytes
12. The MNIST example/12.7 10. TensorFlow MNIST - Exercise 10 Solution.html
157 Bytes
14. Appendix Linear Algebra Fundamentals/9.1 Dot Product Python Notebook.html
154 Bytes
4. Minimal example - your first machine learning algorithm/5.2 Minimal_example_Exercise_3.c. Solution.html
154 Bytes
4. Minimal example - your first machine learning algorithm/5.4 Minimal_example_Exercise_3.a. Solution.html
154 Bytes
4. Minimal example - your first machine learning algorithm/5.7 Minimal_example_Exercise_3.d. Solution.html
154 Bytes
4. Minimal example - your first machine learning algorithm/5.8 Minimal_example_Exercise_3.b. Solution.html
154 Bytes
5. TensorFlow - An introduction/8.5 TensorFlow Minimal Example - All Exercises.html
154 Bytes
12. The MNIST example/13.2 TensorFlow MNIST - Complete Code with Comments.html
153 Bytes
12. The MNIST example/10.1 TensorFlow MNIST - Part 6 with comments.html
150 Bytes
12. The MNIST example/12.2 1. TensorFlow MNIST - Exercise 1 Solution.html
150 Bytes
12. The MNIST example/12.3 2. TensorFlow MNIST - Exercise 2 Solution.html
150 Bytes
12. The MNIST example/3.1 TensorFlow MNIST - Part 1 with comments.html
150 Bytes
12. The MNIST example/5.1 TensorFlow MNIST - Part 2 with comments.html
150 Bytes
12. The MNIST example/7.1 TensorFlow MNIST - Part 3 with comments.html
150 Bytes
12. The MNIST example/8.1 TensorFlow MNIST - Part 4 with comments.html
150 Bytes
12. The MNIST example/9.1 TensorFlow MNIST - Part 5 with comments.html
150 Bytes
13. Business case/4.1 TensorFlow Business Case - Preprocessing.html
149 Bytes
4. Minimal example - your first machine learning algorithm/5.1 Minimal_example_Exercise_6_Solution.html
149 Bytes
4. Minimal example - your first machine learning algorithm/5.3 Minimal_example_Exercise_4_Solution.html
149 Bytes
4. Minimal example - your first machine learning algorithm/5.5 Minimal_example_Exercise_5_Solution.html
149 Bytes
4. Minimal example - your first machine learning algorithm/5.6 Minimal_example_Exercise_1_Solution.html
149 Bytes
4. Minimal example - your first machine learning algorithm/5.9 Minimal_example_Exercise_2_Solution.html
149 Bytes
5. TensorFlow - An introduction/7.2 TensorFlow Minimal Example - Complete Code.html
149 Bytes
14. Appendix Linear Algebra Fundamentals/5.1 Tensors Notebook.html
148 Bytes
5. TensorFlow - An introduction/4.1 TensorFlow Minimal Example - Part 1.html
146 Bytes
5. TensorFlow - An introduction/5.1 TensorFlow Minimal Example - Part 2.html
146 Bytes
5. TensorFlow - An introduction/6.1 TensorFlow Minimal Example - Part 3.html
146 Bytes
4. Minimal example - your first machine learning algorithm/4.1 Minimal example - part 4.html
145 Bytes
12. The MNIST example/11.1 TensorFlow MNIST - All Exercises.html
144 Bytes
4. Minimal example - your first machine learning algorithm/5.10 Minimal_example_All_Exercises.html
143 Bytes
12. The MNIST example/13.1 TensorFlow MNIST - Complete Code.html
139 Bytes
4. Minimal example - your first machine learning algorithm/1.1 Minimal example Part 1.html
136 Bytes
4. Minimal example - your first machine learning algorithm/2.1 Minimal example - part 2.html
136 Bytes
4. Minimal example - your first machine learning algorithm/3.1 Minimal example - part 3.html
136 Bytes
[Tutorialsplanet.NET].url
128 Bytes
12. The MNIST example/5. Preprocess the data - scale the test data.html
81 Bytes
12. The MNIST example/7. Preprocess the data - shuffle and batch the data.html
81 Bytes
13. Business case/7. Load the preprocessed data - Exercise.html
79 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>