搜索
[DesireCourse.Net] Udemy - The Complete Machine Learning Course with Python
磁力链接/BT种子名称
[DesireCourse.Net] Udemy - The Complete Machine Learning Course with Python
磁力链接/BT种子简介
种子哈希:
b214ca1c763b2d13b1007e4c93226f42dc0b69b2
文件大小:
6.79G
已经下载:
227
次
下载速度:
极快
收录时间:
2022-02-04
最近下载:
2024-10-28
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:B214CA1C763B2D13B1007E4C93226F42DC0B69B2
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
少女初夜
萝莉岛
最近搜索
mompov.2019.11.01
坑里
privatesociety roxanne
start-220
高潮时的泛红
电信女员工
spider man 2007
新干线变形机器人
[dragsterps]
小粉灯老板娘
擦工
family in bed
白嫩高中
1pondo-041015_059
双流
fdd+風間ゆみ
jena lily
do not dry my load lily lou
お母さんの情色
小宝寻花+++萌
2500元
身材比例超好
杨晨晨
america girl
ゴブリンの巣穴 mp4
julia roberts
找我
aisteam_epatch0501.exe
fuck+team+five
讓人眼前一亮的小美女即清純又開放的那種基本無敵
文件列表
6. Tree/6. Project HR.mp4
186.5 MB
7. Ensemble Machine Learning/2. Bagging.mp4
173.5 MB
12. Appendix A1 Foundations of Deep Learning/4. What is Deep Learning.mp4
163.2 MB
3. Regression/2. EDA.mp4
159.0 MB
11. Deep Learning/3. Motivational Example - Project MNIST.mp4
152.0 MB
11. Deep Learning/1. Estimating Simple Function with Neural Networks.mp4
150.8 MB
13. Computer Vision and Convolutional Neural Network (CNN)/4. Visualizing CNN.mp4
148.8 MB
3. Regression/15. Data Preprocessing.mp4
142.1 MB
13. Computer Vision and Convolutional Neural Network (CNN)/11. Training Your CNN 2.mp4
134.8 MB
3. Regression/19. CV Illustration.mp4
133.4 MB
10. Unsupervised Learning Clustering/1. Clustering.mp4
131.8 MB
3. Regression/9. Multiple Regression 1.mp4
131.6 MB
13. Computer Vision and Convolutional Neural Network (CNN)/10. Training Your CNN 1.mp4
130.9 MB
4. Classification/1. Logistic Regression.mp4
125.4 MB
3. Regression/7. Robust Regression.mp4
124.8 MB
13. Computer Vision and Convolutional Neural Network (CNN)/16. Feature Extraction.mp4
116.5 MB
3. Regression/12. Polynomial Regression.mp4
116.2 MB
4. Classification/3. Understanding MNIST.mp4
114.3 MB
3. Regression/4. Correlation Analysis and Feature Selection.mp4
110.3 MB
4. Classification/10. Precision Recall Tradeoff.mp4
107.0 MB
3. Regression/8. Evaluate Regression Model Performance.mp4
104.5 MB
13. Computer Vision and Convolutional Neural Network (CNN)/15. Transfer Learning.mp4
101.7 MB
2. Getting Started with Anaconda/6. Iris Project 4 Visualization.mp4
98.0 MB
3. Regression/10. Multiple Regression 2.mp4
95.6 MB
2. Getting Started with Anaconda/3. Iris Project 1 Working with Error Messages.mp4
94.2 MB
12. Appendix A1 Foundations of Deep Learning/9. Tensor Operations.mp4
93.1 MB
13. Computer Vision and Convolutional Neural Network (CNN)/9. Pooling, Flatten, Dense.mp4
92.4 MB
13. Computer Vision and Convolutional Neural Network (CNN)/7. Layer - Filter.mp4
88.5 MB
5. Support Vector Machine (SVM)/2. Linear SVM Classification.mp4
84.9 MB
7. Ensemble Machine Learning/3. Random Forests and Extra-Trees.mp4
84.2 MB
13. Computer Vision and Convolutional Neural Network (CNN)/13. Model Performance Comparison.mp4
83.6 MB
3. Regression/6. Five Steps Machine Learning Process.mp4
81.0 MB
12. Appendix A1 Foundations of Deep Learning/3. Learning Representations.mp4
81.0 MB
3. Regression/5. Linear Regression with Scikit-Learn.mp4
80.7 MB
11. Deep Learning/5. Natural Language Processing - Binary Classification.mp4
79.7 MB
8. k-Nearest Neighbours (kNN)/2. Project Cancer Detection.mp4
79.4 MB
11. Deep Learning/4. Binary Classification Problem.mp4
75.6 MB
5. Support Vector Machine (SVM)/4. Radial Basis Function.mp4
73.5 MB
12. Appendix A1 Foundations of Deep Learning/13. Over and Under Fitting.mp4
73.5 MB
3. Regression/16. Variance-Bias Trade Off.mp4
72.0 MB
6. Tree/7. Project HR with Google Colab.mp4
69.8 MB
13. Computer Vision and Convolutional Neural Network (CNN)/3. Motivational Example.mp4
69.4 MB
2. Getting Started with Anaconda/4. Iris Project 2 Reading CSV Data into Memory.mp4
67.7 MB
13. Computer Vision and Convolutional Neural Network (CNN)/1. Outline.mp4
66.7 MB
8. k-Nearest Neighbours (kNN)/1. kNN Introduction.mp4
66.0 MB
3. Regression/13. Dealing with Non-linear Relationships.mp4
65.7 MB
5. Support Vector Machine (SVM)/5. Support Vector Regression.mp4
62.6 MB
7. Ensemble Machine Learning/8. Project HR - Human Resources Analytics.mp4
62.1 MB
10. Unsupervised Learning Clustering/2. k_Means Clustering.mp4
60.5 MB
4. Classification/4. SGD.mp4
60.1 MB
3. Regression/17. Learning Curve.mp4
59.1 MB
2. Getting Started with Anaconda/5. Iris Project 3 Loading data from Seaborn.mp4
58.6 MB
12. Appendix A1 Foundations of Deep Learning/10. Gradient Based Optimization.mp4
57.6 MB
6. Tree/3. Visualizing Boundary.mp4
57.4 MB
4. Classification/6. Confusion Matrix.mp4
57.4 MB
1. Introduction/1. What Does the Course Cover.mp4
57.0 MB
4. Classification/12. ROC.mp4
54.8 MB
4. Classification/5. Performance Measure and Stratified k-Fold.mp4
54.0 MB
6. Tree/2. Training and Visualizing a Decision Tree.mp4
53.9 MB
2. Getting Started with Anaconda/2. Hello World.mp4
53.7 MB
7. Ensemble Machine Learning/4. AdaBoost.mp4
52.3 MB
8. k-Nearest Neighbours (kNN)/4. Project Cancer Detection Part 1.mp4
51.8 MB
9. Unsupervised Learning Dimensionality Reduction/2. PCA Introduction.mp4
51.4 MB
3. Regression/1. Scikit-Learn.mp4
50.8 MB
3. Regression/18. Cross Validation.mp4
50.4 MB
9. Unsupervised Learning Dimensionality Reduction/3. Project Wine.mp4
50.2 MB
7. Ensemble Machine Learning/9. Ensemble of Ensembles Part 1.mp4
48.7 MB
3. Regression/11. Regularized Regression.mp4
46.5 MB
6. Tree/1. Introduction to Decision Tree.mp4
46.0 MB
13. Computer Vision and Convolutional Neural Network (CNN)/2. Neural Network Revision.mp4
45.9 MB
4. Classification/2. Introduction to Classification.mp4
44.2 MB
12. Appendix A1 Foundations of Deep Learning/5. Learning Neural Networks.mp4
42.6 MB
6. Tree/4. Tree Regression, Regularization and Over Fitting.mp4
42.0 MB
2. Getting Started with Anaconda/1. Installing Applications and Creating Environment.mp4
40.3 MB
5. Support Vector Machine (SVM)/1. Support Vector Machine (SVM) Concepts.mp4
39.7 MB
7. Ensemble Machine Learning/10. Ensemble of ensembles Part 2.mp4
39.7 MB
12. Appendix A1 Foundations of Deep Learning/12. Categories of Machine Learning.mp4
39.3 MB
7. Ensemble Machine Learning/1. Ensemble Learning Methods Introduction.mp4
39.0 MB
9. Unsupervised Learning Dimensionality Reduction/4. Kernel PCA.mp4
38.4 MB
3. Regression/14. Feature Importance.mp4
38.0 MB
6. Tree/5. End to End Modeling.mp4
37.3 MB
13. Computer Vision and Convolutional Neural Network (CNN)/17. State of the Art Tools.mp4
37.1 MB
7. Ensemble Machine Learning/7. XGBoost.mp4
36.8 MB
5. Support Vector Machine (SVM)/3. Polynomial Kernel.mp4
36.7 MB
9. Unsupervised Learning Dimensionality Reduction/6. LDA vs PCA.mp4
35.8 MB
13. Computer Vision and Convolutional Neural Network (CNN)/8. Activation Function.mp4
33.9 MB
9. Unsupervised Learning Dimensionality Reduction/1. Dimensionality Reduction Concept.mp4
32.9 MB
9. Unsupervised Learning Dimensionality Reduction/7. Project Abalone.mp4
32.2 MB
13. Computer Vision and Convolutional Neural Network (CNN)/5. Understanding CNN.mp4
31.5 MB
13. Computer Vision and Convolutional Neural Network (CNN)/6. Layer - Input.mp4
30.5 MB
13. Computer Vision and Convolutional Neural Network (CNN)/14. Data Augmentation.mp4
29.9 MB
12. Appendix A1 Foundations of Deep Learning/14. Machine Learning Workflow.mp4
28.8 MB
4. Classification/7. Precision.mp4
24.7 MB
3. Regression/3. Correlation Analysis and Feature Selection.mp4
23.7 MB
11. Deep Learning/2. Neural Network Architecture.mp4
23.5 MB
7. Ensemble Machine Learning/6. XGBoost Installation.mp4
23.3 MB
7. Ensemble Machine Learning/5. Gradient Boosting Machine.mp4
23.0 MB
9. Unsupervised Learning Dimensionality Reduction/5. Kernel PCA Demo.mp4
22.5 MB
4. Classification/11. Altering the Precision Recall Tradeoff.mp4
21.9 MB
12. Appendix A1 Foundations of Deep Learning/2. Differences between Classical Programming and Machine Learning.mp4
21.9 MB
4. Classification/8. Recall.mp4
20.6 MB
12. Appendix A1 Foundations of Deep Learning/11. Getting Started with Neural Network and Deep Learning Libraries.mp4
19.6 MB
12. Appendix A1 Foundations of Deep Learning/8. Tensors.mp4
17.7 MB
12. Appendix A1 Foundations of Deep Learning/7. Building Block Introduction.mp4
14.8 MB
12. Appendix A1 Foundations of Deep Learning/1. Introduction to Neural Networks.mp4
14.4 MB
4. Classification/9. f1.mp4
12.7 MB
13. Computer Vision and Convolutional Neural Network (CNN)/12. Loading Previously Trained Model.mp4
11.7 MB
12. Appendix A1 Foundations of Deep Learning/6. Why Now.mp4
9.5 MB
3. Regression/3.1 0305.zip
2.2 MB
8. k-Nearest Neighbours (kNN)/4.1 0805.zip
41.7 kB
6. Tree/6. Project HR.srt
31.5 kB
3. Regression/15. Data Preprocessing.srt
28.8 kB
11. Deep Learning/1. Estimating Simple Function with Neural Networks.srt
27.0 kB
12. Appendix A1 Foundations of Deep Learning/4. What is Deep Learning.srt
26.9 kB
11. Deep Learning/3. Motivational Example - Project MNIST.srt
26.4 kB
4. Classification/1. Logistic Regression.srt
26.0 kB
8. k-Nearest Neighbours (kNN)/4. Project Cancer Detection Part 1.srt
25.1 kB
3. Regression/2. EDA.srt
25.0 kB
3. Regression/9. Multiple Regression 1.srt
24.9 kB
13. Computer Vision and Convolutional Neural Network (CNN)/11. Training Your CNN 2.srt
24.4 kB
7. Ensemble Machine Learning/2. Bagging.srt
23.4 kB
4. Classification/10. Precision Recall Tradeoff.srt
22.8 kB
3. Regression/12. Polynomial Regression.srt
22.6 kB
3. Regression/7. Robust Regression.srt
22.3 kB
3. Regression/19. CV Illustration.srt
21.8 kB
12. Appendix A1 Foundations of Deep Learning/9. Tensor Operations.srt
21.5 kB
13. Computer Vision and Convolutional Neural Network (CNN)/7. Layer - Filter.srt
21.4 kB
10. Unsupervised Learning Clustering/1. Clustering.srt
21.2 kB
3. Regression/8. Evaluate Regression Model Performance.srt
19.6 kB
4. Classification/3. Understanding MNIST.srt
18.7 kB
12. Appendix A1 Foundations of Deep Learning/13. Over and Under Fitting.srt
18.6 kB
13. Computer Vision and Convolutional Neural Network (CNN)/4. Visualizing CNN.srt
17.9 kB
13. Computer Vision and Convolutional Neural Network (CNN)/10. Training Your CNN 1.srt
17.1 kB
2. Getting Started with Anaconda/3. Iris Project 1 Working with Error Messages.srt
16.4 kB
3. Regression/5. Linear Regression with Scikit-Learn.srt
16.4 kB
3. Regression/10. Multiple Regression 2.srt
15.8 kB
3. Regression/4. Correlation Analysis and Feature Selection.srt
15.6 kB
3. Regression/16. Variance-Bias Trade Off.srt
14.9 kB
2. Getting Started with Anaconda/2. Hello World.srt
14.3 kB
13. Computer Vision and Convolutional Neural Network (CNN)/9. Pooling, Flatten, Dense.srt
14.2 kB
13. Computer Vision and Convolutional Neural Network (CNN)/16. Feature Extraction.srt
14.1 kB
12. Appendix A1 Foundations of Deep Learning/10. Gradient Based Optimization.srt
14.1 kB
5. Support Vector Machine (SVM)/2. Linear SVM Classification.srt
13.4 kB
13. Computer Vision and Convolutional Neural Network (CNN)/15. Transfer Learning.srt
13.3 kB
11. Deep Learning/5. Natural Language Processing - Binary Classification.srt
13.1 kB
12. Appendix A1 Foundations of Deep Learning/5. Learning Neural Networks.srt
13.0 kB
6. Tree/7. Project HR with Google Colab.srt
13.0 kB
12. Appendix A1 Foundations of Deep Learning/3. Learning Representations.srt
12.9 kB
2. Getting Started with Anaconda/6. Iris Project 4 Visualization.srt
12.7 kB
11. Deep Learning/4. Binary Classification Problem.srt
12.5 kB
12. Appendix A1 Foundations of Deep Learning/12. Categories of Machine Learning.srt
12.4 kB
8. k-Nearest Neighbours (kNN)/1. kNN Introduction.srt
12.3 kB
4. Classification/6. Confusion Matrix.srt
12.0 kB
13. Computer Vision and Convolutional Neural Network (CNN)/13. Model Performance Comparison.srt
11.8 kB
7. Ensemble Machine Learning/3. Random Forests and Extra-Trees.srt
11.8 kB
4. Classification/4. SGD.srt
11.8 kB
3. Regression/13. Dealing with Non-linear Relationships.srt
11.3 kB
3. Regression/1. Scikit-Learn.srt
11.2 kB
3. Regression/17. Learning Curve.srt
11.1 kB
10. Unsupervised Learning Clustering/2. k_Means Clustering.srt
11.1 kB
2. Getting Started with Anaconda/4. Iris Project 2 Reading CSV Data into Memory.srt
11.1 kB
2. Getting Started with Anaconda/5. Iris Project 3 Loading data from Seaborn.srt
11.0 kB
3. Regression/3. Correlation Analysis and Feature Selection.srt
10.9 kB
8. k-Nearest Neighbours (kNN)/2. Project Cancer Detection.srt
10.8 kB
7. Ensemble Machine Learning/8. Project HR - Human Resources Analytics.srt
10.7 kB
3. Regression/18. Cross Validation.srt
10.5 kB
3. Regression/6. Five Steps Machine Learning Process.srt
10.2 kB
13. Computer Vision and Convolutional Neural Network (CNN)/2. Neural Network Revision.srt
10.2 kB
5. Support Vector Machine (SVM)/5. Support Vector Regression.srt
10.0 kB
6. Tree/3. Visualizing Boundary.srt
9.8 kB
13. Computer Vision and Convolutional Neural Network (CNN)/3. Motivational Example.srt
9.7 kB
5. Support Vector Machine (SVM)/4. Radial Basis Function.srt
9.6 kB
9. Unsupervised Learning Dimensionality Reduction/2. PCA Introduction.srt
9.0 kB
4. Classification/5. Performance Measure and Stratified k-Fold.srt
8.9 kB
6. Tree/1. Introduction to Decision Tree.srt
8.9 kB
5. Support Vector Machine (SVM)/1. Support Vector Machine (SVM) Concepts.srt
8.8 kB
3. Regression/11. Regularized Regression.srt
8.7 kB
4. Classification/12. ROC.srt
8.4 kB
7. Ensemble Machine Learning/4. AdaBoost.srt
8.4 kB
11. Deep Learning/2. Neural Network Architecture.srt
8.1 kB
13. Computer Vision and Convolutional Neural Network (CNN)/8. Activation Function.srt
8.0 kB
7. Ensemble Machine Learning/9. Ensemble of Ensembles Part 1.srt
8.0 kB
9. Unsupervised Learning Dimensionality Reduction/3. Project Wine.srt
7.7 kB
6. Tree/2. Training and Visualizing a Decision Tree.srt
7.6 kB
13. Computer Vision and Convolutional Neural Network (CNN)/5. Understanding CNN.srt
7.5 kB
13. Computer Vision and Convolutional Neural Network (CNN)/6. Layer - Input.srt
7.0 kB
13. Computer Vision and Convolutional Neural Network (CNN)/17. State of the Art Tools.srt
6.9 kB
2. Getting Started with Anaconda/1. Installing Applications and Creating Environment.srt
6.9 kB
9. Unsupervised Learning Dimensionality Reduction/4. Kernel PCA.srt
6.7 kB
9. Unsupervised Learning Dimensionality Reduction/6. LDA vs PCA.srt
6.6 kB
7. Ensemble Machine Learning/10. Ensemble of ensembles Part 2.srt
6.3 kB
4. Classification/2. Introduction to Classification.srt
6.2 kB
5. Support Vector Machine (SVM)/3. Polynomial Kernel.srt
6.1 kB
7. Ensemble Machine Learning/1. Ensemble Learning Methods Introduction.srt
6.0 kB
12. Appendix A1 Foundations of Deep Learning/11. Getting Started with Neural Network and Deep Learning Libraries.srt
5.9 kB
12. Appendix A1 Foundations of Deep Learning/14. Machine Learning Workflow.srt
5.8 kB
3. Regression/14. Feature Importance.srt
5.8 kB
9. Unsupervised Learning Dimensionality Reduction/1. Dimensionality Reduction Concept.srt
5.8 kB
12. Appendix A1 Foundations of Deep Learning/7. Building Block Introduction.srt
5.8 kB
6. Tree/4. Tree Regression, Regularization and Over Fitting.srt
5.7 kB
6. Tree/5. End to End Modeling.srt
5.7 kB
7. Ensemble Machine Learning/7. XGBoost.srt
5.5 kB
12. Appendix A1 Foundations of Deep Learning/2. Differences between Classical Programming and Machine Learning.srt
5.2 kB
9. Unsupervised Learning Dimensionality Reduction/7. Project Abalone.srt
4.9 kB
12. Appendix A1 Foundations of Deep Learning/8. Tensors.srt
4.8 kB
13. Computer Vision and Convolutional Neural Network (CNN)/1. Outline.srt
4.7 kB
4. Classification/7. Precision.srt
4.5 kB
4. Classification/8. Recall.srt
4.0 kB
9. Unsupervised Learning Dimensionality Reduction/5. Kernel PCA Demo.srt
4.0 kB
4. Classification/11. Altering the Precision Recall Tradeoff.srt
3.8 kB
7. Ensemble Machine Learning/5. Gradient Boosting Machine.srt
3.8 kB
13. Computer Vision and Convolutional Neural Network (CNN)/14. Data Augmentation.srt
3.7 kB
12. Appendix A1 Foundations of Deep Learning/6. Why Now.srt
3.5 kB
1. Introduction/1. What Does the Course Cover.srt
3.2 kB
7. Ensemble Machine Learning/6. XGBoost Installation.srt
3.1 kB
12. Appendix A1 Foundations of Deep Learning/1. Introduction to Neural Networks.srt
2.8 kB
4. Classification/9. f1.srt
2.4 kB
1. Introduction/2. How to Succeed in This Course.html
2.3 kB
1. Introduction/3. Project Files and Resources.html
2.1 kB
13. Computer Vision and Convolutional Neural Network (CNN)/12. Loading Previously Trained Model.srt
1.9 kB
8. k-Nearest Neighbours (kNN)/3. Addition Materials.html
335 Bytes
0. Websites you may like/[FreeCourseWorld.Com].url
54 Bytes
[FreeCourseWorld.Com].url
54 Bytes
0. Websites you may like/[DesireCourse.Net].url
51 Bytes
[DesireCourse.Net].url
51 Bytes
0. Websites you may like/[CourseClub.Me].url
48 Bytes
[CourseClub.Me].url
48 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>