搜索
Udacity - Deep Learning Foundation v1.0.0
磁力链接/BT种子名称
Udacity - Deep Learning Foundation v1.0.0
磁力链接/BT种子简介
种子哈希:
b349001e006031687d3fc744a9ea57988a67d388
文件大小:
5.55G
已经下载:
763
次
下载速度:
极快
收录时间:
2022-04-04
最近下载:
2024-11-09
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:B349001E006031687D3FC744A9EA57988A67D388
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
少女初夜
萝莉岛
最近搜索
nibuh大佬 国漫同人2022究极大合集282部
户外jk 小七
苪
学生 清纯 流出
1洞
+草榴社区
眼镜女口爆
1-21
熊出没+时空
小女友17岁
lionheart+
ls models oriental
【极品女友】
raiders of th lost ark
波 浪
+臀
肉感探花
“看片自慰
健身肌肉猛男 fighterr
ai明星换脸 杨幂
prokofiev warner
职业女
黑水露
fc2-3109397
拍摄模特
jukujo+club
娜露啪啪
姐姐新婚
lord rings 1080p bluray
e奶宿舍
文件列表
Part 03-Module 02-Lesson 03_Q&A with FloydHub Founders/01. Floyd QA-KUc59DPfBeo.mp4
226.1 MB
Part 01-Module 02-Lesson 01_Regression/03. Siraj's Intro to Deep Learning - How to Make a Prediction-QN1ZwKszguE.mp4
66.5 MB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/12. Mini Project 3 Solution-imnxzCev4SI.mp4
57.2 MB
Part 07-Module 01-Lesson 04_Sentiment Analysis/13. Mini Project 3 Solution-imnxzCev4SI.mp4
57.2 MB
Part 03-Module 07-Lesson 02_Siraj's Reinforcement Learning/01. How to Win Slot Machines - Intro to Deep Learning #13-AIeWLTUYLZQ.mp4
54.5 MB
Part 03-Module 08-Lesson 01_Siraj's Image Generation/01. How to Generate Images - Intro to Deep Learning #14-3-UDwk1U77s.mp4
53.2 MB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/13. Understanding Neural Noise-ubqhh4Iv7O4.mp4
52.7 MB
Part 07-Module 01-Lesson 04_Sentiment Analysis/14. Understanding Neural Noise-ubqhh4Iv7O4.mp4
52.7 MB
Part 11-Module 01-Lesson 09_Deep Q-Learning/07. Experience Replay-wX_-SZG-YMQ.mp4
50.7 MB
Part 03-Module 06-Lesson 02_Siraj's Chatbot/01. How to Make a Chatbot - Intro to Deep Learning #12-t5qgjJIBy9g.mp4
49.9 MB
Part 04-Module 01-Lesson 02_Siraj's Video Generation/01. How to Generate Video - Intro to Deep Learning #15--E2N1kQc8MM.mp4
49.1 MB
Part 11-Module 01-Lesson 10_Policy-Based Methods/07. M2L3 07 V2-ZBLLGIN1EfU.mp4
45.7 MB
Part 03-Module 03-Lesson 02_Siraj's Music Generation/01. How to Generate Music - Intro to Deep Learning #9-4DMm5Lhey1U.mp4
45.6 MB
Part 03-Module 02-Lesson 02_Siraj's Style Transfer/01. How to Generate Art - Intro to Deep Learning #8-Oex0eWoU7AQ.mp4
43.2 MB
Part 02-Module 05-Lesson 03_Siraj's Image Classification/02. How to Make an Image Classifier - Intro to Deep Learning #6-cAICT4Al5Ow.mp4
42.6 MB
Part 03-Module 01-Lesson 02_Siraj's Stock Prediction/01. How to Predict Stock Prices Easily - Intro to Deep Learning #7-ftMq5ps503w.mp4
41.3 MB
Part 11-Module 01-Lesson 09_Deep Q-Learning/10. DQN Improvements-Zfdbp93A2GU.mp4
41.3 MB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/20. Mini Project 6 Solution-ji0famK7gOQ.mp4
41.0 MB
Part 07-Module 01-Lesson 04_Sentiment Analysis/21. Mini Project 6 Solution-ji0famK7gOQ.mp4
41.0 MB
Part 01-Module 01-Lesson 04_Applying Deep Learning/03. Traffic Navigation with Deep Reinforcement Learning-az5ElmV4DhY.mp4
40.0 MB
Part 06-Module 01-Lesson 02_Applying Deep Learning/03. Traffic Navigation with Deep Reinforcement Learning-az5ElmV4DhY.mp4
40.0 MB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/10. 12 Backpropagation Example B V6 Final-yiSwuMP2UIA.mp4
38.9 MB
Part 03-Module 05-Lesson 02_Siraj's Language Translation/01. How to Make a Language Translator - Intro to Deep Learning #11-nRBnh4qbPHI.mp4
38.3 MB
Part 03-Module 04-Lesson 01_Siraj's Text Summarization/01. How to Make a Text Summarizer - Intro to Deep Learning #10-ogrJaOIuBx4.mp4
38.0 MB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/25. 23 From RNNs To LSTMs V4 Final-MsqybcWmzGY.mp4
37.9 MB
Part 04-Module 02-Lesson 01_Siraj's One-Shot Learning/01. How to Learn from Little Data - Intro to Deep Learning #17-tChcZpBbTTA.mp4
37.1 MB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/08. 08 Backpropagation Theory V6 Final-Xlgd8I3TWUg.mp4
36.5 MB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/21. Analysis What's Going on in the Weights-UHsT35pbpcE.mp4
35.3 MB
Part 07-Module 01-Lesson 04_Sentiment Analysis/22. Analysis What's Going on in the Weights-UHsT35pbpcE.mp4
35.3 MB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/03. MC Prediction State Values-0q2wSWyuBj8.mp4
35.0 MB
Part 11-Module 01-Lesson 08_RL in Continuous Spaces/01. Deep Reinforcement Learning-GPjK124RU5g.mp4
34.8 MB
Part 11-Module 01-Lesson 10_Policy-Based Methods/02. M2L3 02 V2-ToS8vXGdODE.mp4
34.1 MB
Part 11-Module 01-Lesson 04_Dynamic Programming/14. Policy Improvement-4_adUEK0IHg.mp4
31.9 MB
Part 11-Module 01-Lesson 06_Temporal-Difference Methods/03. TD Prediction TD(0)-CsD6b0csU7o.mp4
31.6 MB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/17. Mini Project 5 Solution-Hv86B_jjWTI.mp4
30.3 MB
Part 07-Module 01-Lesson 04_Sentiment Analysis/18. Mini Project 5 Solution-Hv86B_jjWTI.mp4
30.3 MB
Part 11-Module 01-Lesson 08_RL in Continuous Spaces/11. Linear Function Approximation-OJ5wrB7o-pI.mp4
30.1 MB
Part 11-Module 01-Lesson 04_Dynamic Programming/05. An Iterative Method-AX-hG3KvwzY.mp4
28.9 MB
Part 03-Module 03-Lesson 02_Siraj's Music Generation/02. How to Succeed in any Programming Interview-5KB5KAak6tM.mp4
28.3 MB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/06. 07 FeedForward B V3-kTYbTVh1d0k.mp4
27.9 MB
Part 11-Module 01-Lesson 04_Dynamic Programming/08. Iterative Policy Evaluation-eDXIL_oOJHI.mp4
27.9 MB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/05. 04 RNN FFNN Reminder A V7 Final-_vrp2lZjXf0.mp4
27.0 MB
Part 11-Module 01-Lesson 09_Deep Q-Learning/06. Deep Q Network-GgtR_d1OB-M.mp4
26.9 MB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/06. Mini Project 1 Solution-l4r5l0HvHRI.mp4
26.0 MB
Part 07-Module 01-Lesson 04_Sentiment Analysis/07. Mini Project 1 Solution-l4r5l0HvHRI.mp4
26.0 MB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/03. 02 RNN History V4 Final-HbxAnYUfRnc.mp4
25.4 MB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/02. Andrew Trask - Intro-da1I0mea1jQ.mp4
24.9 MB
Part 07-Module 01-Lesson 04_Sentiment Analysis/02. Andrew Trask - Intro-da1I0mea1jQ.mp4
24.9 MB
Part 03-Module 02-Lesson 01_Embeddings and Word2vec/02. Implementing Word2Vec-7M431_f9HgE.mp4
24.5 MB
Part 09-Module 01-Lesson 05_Embeddings and Word2vec/02. Implementing Word2Vec-7M431_f9HgE.mp4
24.5 MB
Part 03-Module 04-Lesson 03_Sentiment Prediction RNN/07. Sentiment RNN 2-V9YGGjmoHS0.mp4
24.2 MB
Part 09-Module 01-Lesson 06_Sentiment Prediction RNN/07. Sentiment RNN 2-V9YGGjmoHS0.mp4
24.2 MB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/18. Further Noise Reduction-Kl3hWxizKVg.mp4
23.4 MB
Part 07-Module 01-Lesson 04_Sentiment Analysis/19. Further Noise Reduction-Kl3hWxizKVg.mp4
23.4 MB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/16. 18 RNN Example V5 Final-MDLk3fhpTx0.mp4
23.2 MB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/06. MC Prediction Action Values-08tLtbh0xLs.mp4
23.1 MB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/13. MC Control Policy Improvement-2RKH-BInX7s.mp4
23.1 MB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/17. 19 RNN BPTT A V6 Final-eE2L3-2wKac.mp4
22.6 MB
Part 03-Module 08-Lesson 02_Autoencoders/05. Convolutional Autoencoders-18SZVRaumGs.mp4
22.6 MB
Part 08-Module 01-Lesson 05_Autoencoders/05. Convolutional Autoencoders-18SZVRaumGs.mp4
22.6 MB
Part 11-Module 01-Lesson 08_RL in Continuous Spaces/03. Discrete vs. Continuous Spaces-uHstLeRzaE8.mp4
22.4 MB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/13. 16 RNN B V4 Final-wsif3p5t7CI.mp4
22.1 MB
Part 11-Module 01-Lesson 10_Policy-Based Methods/04. M2L3 04 V1-QicxmyE5vTo.mp4
22.0 MB
Part 11-Module 01-Lesson 09_Deep Q-Learning/08. Fixed Q Targets-SWpyiEezfp4.mp4
22.0 MB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/02. 01 RNN Intro V6 Final-AIQEqg6F38A.mp4
21.9 MB
Part 11-Module 01-Lesson 06_Temporal-Difference Methods/01. Introduction-yXErXQulI_o.mp4
21.7 MB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/15. Understanding Inefficiencies in our Network-4MuS-6ATxCU.mp4
21.7 MB
Part 07-Module 01-Lesson 04_Sentiment Analysis/16. Understanding Inefficiencies in our Network-4MuS-6ATxCU.mp4
21.7 MB
Part 11-Module 01-Lesson 03_The RL Framework The Solution/02. Policies-hc3LrvaC13U.mp4
21.2 MB
Part 11-Module 01-Lesson 08_RL in Continuous Spaces/10. Function Approximation-UTGWVY6jEdg.mp4
21.1 MB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/10. MC Control Incremental Mean-E2RITH-2NUE.mp4
21.0 MB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/11. Convolutional Layers-RnM1D-XI--8.mp4
20.8 MB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/05. 05 RNN FFNN Reminder B V6 Final-FfPjaGcZODc.mp4
20.6 MB
Part 03-Module 04-Lesson 03_Sentiment Prediction RNN/05. Building The RNN 1-XTD6slf64fM.mp4
20.0 MB
Part 09-Module 01-Lesson 06_Sentiment Prediction RNN/05. Building The RNN 1-XTD6slf64fM.mp4
20.0 MB
Part 03-Module 03-Lesson 01_TensorBoard/04. TensorBoard Variables 1-QG41p4Wx5wc.mp4
19.9 MB
Part 11-Module 01-Lesson 10_Policy-Based Methods/03. M2L3 03 V2-TePX-0Bs23E.mp4
19.8 MB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/17. CNNs For Image Classification-l9vg_1YUlzg.mp4
19.0 MB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/18. 20 RNN BPTT B V5 Final-bUU9BEQw0IA.mp4
19.0 MB
Part 04-Module 02-Lesson 05_Semi-Supervised Learning/05. Building The Generator And Discriminator-OWytckbbeGQ.mp4
18.8 MB
Part 10-Module 01-Lesson 03_Semi-Supervised Learning/05. Building The Generator And Discriminator-OWytckbbeGQ.mp4
18.8 MB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/06. 06 FeedForward A V7 Final-4rCfnWbx8-0.mp4
18.6 MB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/02. Applications of CNNs-HrYNL_1SV2Y.mp4
18.6 MB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/04. Framing the Problem-IsTOnkAKaJw.mp4
18.5 MB
Part 07-Module 01-Lesson 04_Sentiment Analysis/05. Framing the Problem-IsTOnkAKaJw.mp4
18.5 MB
Part 01-Module 01-Lesson 01_Welcome/01. Welcome-PdPdogFHnvE.mp4
18.4 MB
Part 02-Module 02-Lesson 02_Intro to TFLearn/05. Sentiment Analysis Solution SC-s7FKYC5Zcm8.mp4
18.4 MB
Part 11-Module 01-Lesson 09_Deep Q-Learning/09. Deep Q-Learning Algorithm-MqTXoCxQ_eY.mp4
18.3 MB
Part 11-Module 01-Lesson 09_Deep Q-Learning/05. Q-Learning-AI5gLgYMSq8.mp4
18.2 MB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/04. 03 RNN Applications V3 Final-6JbTNARuKII.mp4
18.1 MB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/19. 21 RNN BPTT C V7 Final-uBy_eIJDD1M.mp4
18.1 MB
Part 11-Module 01-Lesson 09_Deep Q-Learning/04. Temporal Difference Learning-lpmDi0QeUm8.mp4
17.8 MB
Part 11-Module 01-Lesson 11_Actor-Critic Methods/07. Summary-hvYQ_3LgCYs.mp4
17.7 MB
Part 11-Module 01-Lesson 10_Policy-Based Methods/05. M2L3 05 V1-eZxxNNIZuwA.mp4
17.5 MB
Part 11-Module 01-Lesson 06_Temporal-Difference Methods/10. TD Control Sarsamax-4DxoYuR7aZ4.mp4
17.3 MB
Part 04-Module 02-Lesson 03_Deep Convolutional GANs/05. DCGAN And The Generator-CH6BxLTKt7s.mp4
16.8 MB
Part 10-Module 01-Lesson 02_Deep Convolutional GANs/05. DCGAN And The Generator-CH6BxLTKt7s.mp4
16.8 MB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/05. GANs Architecture -gaEs7ccZv_Q.mp4
16.7 MB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/05. GANs Architecture -gaEs7ccZv_Q.mp4
16.7 MB
Part 04-Module 02-Lesson 05_Semi-Supervised Learning/06. Model Loss Exercise-W7TawMNxBds.mp4
16.6 MB
Part 10-Module 01-Lesson 03_Semi-Supervised Learning/06. Model Loss Exercise-W7TawMNxBds.mp4
16.6 MB
Part 03-Module 08-Lesson 02_Autoencoders/03. A-Simple-Autoencoders 21718-lXGdkCT8E1c.mp4
16.4 MB
Part 08-Module 01-Lesson 05_Autoencoders/03. A-Simple-Autoencoders 21718-lXGdkCT8E1c.mp4
16.4 MB
Part 11-Module 01-Lesson 04_Dynamic Programming/23. Value Iteration-XNeQn8N36y8.mp4
16.4 MB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/04. Neural Networks-Mqogpnp1lrU.mp4
15.6 MB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/09. 10 Backpropagation Example A V3 Final-3k72z_WaeXg.mp4
15.5 MB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/17. MDPs, Part 3-UlXHFbla3QI.mp4
15.5 MB
Part 03-Module 03-Lesson 01_TensorBoard/05. TensorBoard Hyperparameters-THiwPbkjoLQ.mp4
15.1 MB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/11. Discounted Return-opXGNPwwn7g.mp4
15.0 MB
Part 06-Module 01-Lesson 01_Welcome to Deep Learning/01. 01 Welcome To The Deep Learning Program-3QPEmwq2NaE.mp4
15.0 MB
Part 11-Module 01-Lesson 04_Dynamic Programming/20. Truncated Policy Iteration-a-RvCxlPMho.mp4
14.8 MB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/06. Implementing a Character-wise RNN-KPCMn_jg2oY.mp4
14.3 MB
Part 09-Module 01-Lesson 03_Implementation of RNN and LSTM/05. Implementing a Character-wise RNN-KPCMn_jg2oY.mp4
14.3 MB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/04. Games, Equilibrium, GANs Solution Render-2zi8DOWIVas.mp4
14.1 MB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/04. Games, Equilibrium, GANs Solution Render-2zi8DOWIVas.mp4
14.1 MB
Part 01-Module 01-Lesson 01_Welcome/03. Meet Your Instructors -EcP0U4720sA.mp4
14.0 MB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/25. Transfer Learning-LHG5FltaR6I.mp4
14.0 MB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/14. Build The Network And Results-hu8iMMqajmQ.mp4
13.9 MB
Part 09-Module 01-Lesson 03_Implementation of RNN and LSTM/13. Build The Network And Results-hu8iMMqajmQ.mp4
13.9 MB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/09. Local Connectivity-z9wiDg0w-Dc.mp4
13.7 MB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/26. Transfer Learning in Keras-HsIAznMM1LA.mp4
13.6 MB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/08. 13 Overfitting Intro V4 Final-rmBLnVbFfFY.mp4
13.4 MB
Part 03-Module 08-Lesson 02_Autoencoders/06. Convolutional Autoencoder Solutions-w3iPs6YnqmY.mp4
13.3 MB
Part 08-Module 01-Lesson 05_Autoencoders/06. Convolutional Autoencoder Solutions-w3iPs6YnqmY.mp4
13.3 MB
Part 11-Module 01-Lesson 09_Deep Q-Learning/02. Neural Nets as Value Functions-cBi7vLrk8QQ.mp4
13.3 MB
Part 04-Module 02-Lesson 05_Semi-Supervised Learning/07. Model Optimization Exercise-wNpI1wUA4Io.mp4
13.3 MB
Part 10-Module 01-Lesson 03_Semi-Supervised Learning/07. Model Optimization Exercise-wNpI1wUA4Io.mp4
13.3 MB
Part 11-Module 01-Lesson 08_RL in Continuous Spaces/05. Discretization-j2eZyUpy--E.mp4
13.2 MB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/18. MC Control Constant-alpha-QFV1nI9Zpoo.mp4
13.1 MB
Part 03-Module 03-Lesson 01_TensorBoard/02. TensorBoard Graphs 1-M64FWxf1yK4.mp4
12.6 MB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/02. Cool Things To Do With GANs-bo-ToTdhgew.mp4
12.6 MB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/02. Cool Things To Do With GANs-bo-ToTdhgew.mp4
12.6 MB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/22. Andrew Trask - Outro-nIF0GLOQglQ.mp4
12.4 MB
Part 07-Module 01-Lesson 04_Sentiment Analysis/23. Andrew Trask - Outro-nIF0GLOQglQ.mp4
12.4 MB
Part 02-Module 02-Lesson 02_Intro to TFLearn/04. TFLearn-YF7S6hi4bnc.mp4
12.3 MB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/16. A Trained GAN-TR-uEJcjig4.mp4
12.2 MB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/16. A Trained GAN-TR-uEJcjig4.mp4
12.2 MB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/11. Gradient Descent-Math-7sxA5Ap8AWM.mp4
11.8 MB
Part 07-Module 01-Lesson 02_Implementing Gradient Descent/03. Gradient Descent-Math-7sxA5Ap8AWM.mp4
11.8 MB
Part 03-Module 04-Lesson 03_Sentiment Prediction RNN/02. Sentiment Prediction-uGN3rZJRiMY.mp4
11.8 MB
Part 09-Module 01-Lesson 06_Sentiment Prediction RNN/02. Sentiment Prediction-uGN3rZJRiMY.mp4
11.8 MB
Part 03-Module 04-Lesson 02_Weight Initialization/03. Weight Initialization 2-BI3f0Cdc_nU.mp4
11.6 MB
Part 08-Module 01-Lesson 03_Weight Initialization/03. Weight Initialization 2-BI3f0Cdc_nU.mp4
11.6 MB
Part 03-Module 03-Lesson 01_TensorBoard/03. TensorBoard Graphs 2-REmz7HUj6f4.mp4
11.6 MB
Part 11-Module 01-Lesson 08_RL in Continuous Spaces/07. Tile Coding-BRs7AnTZ_8k.mp4
11.6 MB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/01. Introducing Andrew Trask-U3PqQF-8qyI.mp4
11.3 MB
Part 03-Module 04-Lesson 02_Weight Initialization/02. Weight Initialization 1-6vXMYu_TQIA.mp4
11.3 MB
Part 08-Module 01-Lesson 03_Weight Initialization/02. Weight Initialization 1-6vXMYu_TQIA.mp4
11.3 MB
Part 11-Module 01-Lesson 11_Actor-Critic Methods/05. RL M2L4 05 Advantage Function RENDER V1 V2-vpLmzKqcgfc.mp4
11.2 MB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/01. 00 Luis Introducing Ortal Newtitle121217-oXv7GiC-jrM.mp4
11.2 MB
Part 01-Module 03-Lesson 01_Matrix Math and NumPy Refresher/02. Data Has Dimensions-F4NSv776X0c.mp4
11.1 MB
Part 06-Module 01-Lesson 05_Matrix Math and NumPy Refresher/02. Data Has Dimensions-F4NSv776X0c.mp4
11.1 MB
Part 03-Module 07-Lesson 01_Reinforcement Learning/03. 02 Q-Learning-WQgdnzzhSLM.mp4
11.1 MB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/14. 17 RNN Unfolded V3 Final-xLIA_PTWXog.mp4
11.0 MB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/12. 14 RNN A V4 Final-ofbnDxGSUcg.mp4
10.9 MB
Part 11-Module 01-Lesson 09_Deep Q-Learning/03. Monte Carlo Learning-qOviWYwcvsg.mp4
10.9 MB
Part 11-Module 01-Lesson 11_Actor-Critic Methods/01. RL M2L4 01 Actor Critic Methods RENDER V1 V1-FXhyxJzgt8U.mp4
10.9 MB
Part 11-Module 01-Lesson 08_RL in Continuous Spaces/09. Coarse Coding-Uu1J5KLAfTU.mp4
10.8 MB
Part 01-Module 01-Lesson 02_Anaconda/02. Why Anaconda-VXukXZv7SCQ.mp4
10.8 MB
Part 06-Module 01-Lesson 03_Anaconda/02. Why Anaconda-VXukXZv7SCQ.mp4
10.8 MB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/03. Other Generative Models, How GANs Work-MF0QCP1OC9I.mp4
10.8 MB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/03. Other Generative Models, How GANs Work-MF0QCP1OC9I.mp4
10.8 MB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/20. Image Augmentation in Keras-odStujZq3GY.mp4
10.8 MB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/10. Building a Neural Network-aM2k7RTjjJI.mp4
10.7 MB
Part 07-Module 01-Lesson 04_Sentiment Analysis/11. Building a Neural Network-aM2k7RTjjJI.mp4
10.7 MB
Part 04-Module 02-Lesson 05_Semi-Supervised Learning/02. Semi-Supervised Learning-_LRpHPxZaX0.mp4
10.6 MB
Part 10-Module 01-Lesson 03_Semi-Supervised Learning/02. Semi-Supervised Learning-_LRpHPxZaX0.mp4
10.6 MB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/03. Episodic vs. Continuing Tasks-E1I-BPanSM8.mp4
10.6 MB
Part 11-Module 01-Lesson 11_Actor-Critic Methods/04. RL M2L4 04 The Actor And The Critic V1-bvbE9F7urd4.mp4
10.5 MB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/10. Cumulative Reward-ysriH65lV9o.mp4
10.4 MB
Part 11-Module 01-Lesson 08_RL in Continuous Spaces/14. Summary-MTEBk43oByU.mp4
10.4 MB
Part 03-Module 02-Lesson 01_Embeddings and Word2vec/09. Training Results-uISA5ns47s8.mp4
10.3 MB
Part 09-Module 01-Lesson 05_Embeddings and Word2vec/09. Training Results-uISA5ns47s8.mp4
10.3 MB
Part 11-Module 01-Lesson 06_Temporal-Difference Methods/06. TD Prediction Action Values-1c029-7_9GA.mp4
10.2 MB
Part 03-Module 02-Lesson 01_Embeddings and Word2vec/03. Subsampling Solution-MAUM_mV_lj8.mp4
10.1 MB
Part 09-Module 01-Lesson 05_Embeddings and Word2vec/03. Subsampling Solution-MAUM_mV_lj8.mp4
10.1 MB
Part 03-Module 01-Lesson 03_Hyperparameters/03. Learning Rate-HLMjeDez7ps.mp4
10.1 MB
Part 04-Module 02-Lesson 02_Hyperparameters/03. Learning Rate-HLMjeDez7ps.mp4
10.1 MB
Part 09-Module 01-Lesson 04_Hyperparameters/03. Learning Rate-HLMjeDez7ps.mp4
10.1 MB
Part 03-Module 04-Lesson 02_Weight Initialization/05. Weight Initialization 4-FM6t7AsodGQ.mp4
10.0 MB
Part 08-Module 01-Lesson 03_Weight Initialization/05. Weight Initialization 4-FM6t7AsodGQ.mp4
10.0 MB
Part 11-Module 01-Lesson 01_Introduction to RL/04. OpenAI Gym-MktEOWp3QLg.mp4
9.9 MB
Part 03-Module 05-Lesson 01_Transfer Learning in TensorFlow/05. Data Preparation-WfsDMq-b3y4.mp4
9.7 MB
Part 08-Module 01-Lesson 06_Transfer Learning in TensorFlow/05. Data Preparation-WfsDMq-b3y4.mp4
9.7 MB
Part 02-Module 01-Lesson 01_Model Evaluation and Validation/07. Model-Complexity-Graph Solution 2-5pWHGkNyRhA.mp4
9.7 MB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/09. Mini Project 2 Solution-45ihpPaeO8E.mp4
9.7 MB
Part 07-Module 01-Lesson 04_Sentiment Analysis/10. Mini Project 2 Solution-45ihpPaeO8E.mp4
9.7 MB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/23. Visualizing CNNs-mnqS_EhEZVg.mp4
9.6 MB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/03. Solving Problems - Big And Small-WHcRQMGSbqg.mp4
9.6 MB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/12. MC Control Policy Evaluation-3_opwMzpEEI.mp4
9.5 MB
Part 01-Module 03-Lesson 01_Matrix Math and NumPy Refresher/09. Matrix Transposes-NVK5xCY3CZE.mp4
9.5 MB
Part 06-Module 01-Lesson 05_Matrix Math and NumPy Refresher/09. Matrix Transposes-NVK5xCY3CZE.mp4
9.5 MB
Part 11-Module 01-Lesson 09_Deep Q-Learning/01. Intro to Deep Q-Learning-o3cmuUDhP3I.mp4
9.5 MB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/10. RNN Output-RkanDkcrTxs.mp4
9.4 MB
Part 09-Module 01-Lesson 03_Implementation of RNN and LSTM/09. RNN Output-RkanDkcrTxs.mp4
9.4 MB
Part 11-Module 01-Lesson 08_RL in Continuous Spaces/12. Kernel Functions-RdkPVYyVOvU.mp4
9.3 MB
Part 01-Module 01-Lesson 01_Welcome/02. Projects You Will Build-yDPuDuCMST8.mp4
9.3 MB
Part 03-Module 06-Lesson 01_Sequence to Sequence/06. Preprocessing-ktQW6p9pOS4.mp4
9.3 MB
Part 03-Module 05-Lesson 01_Transfer Learning in TensorFlow/03. Building VGGNet-615SslQiGvo.mp4
9.3 MB
Part 08-Module 01-Lesson 06_Transfer Learning in TensorFlow/03. Building VGGNet-615SslQiGvo.mp4
9.3 MB
Part 04-Module 02-Lesson 05_Semi-Supervised Learning/10. Model Loss Solution-r3DtohmychE.mp4
9.3 MB
Part 10-Module 01-Lesson 03_Semi-Supervised Learning/10. Model Loss Solution-r3DtohmychE.mp4
9.3 MB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/18. CNNs in Keras Practical Example-faFvmGDwXX0.mp4
9.1 MB
Part 11-Module 01-Lesson 11_Actor-Critic Methods/02. RL M2L4 02 A Better Score Function V2-_HBJ3l10-OE.mp4
9.1 MB
Part 03-Module 08-Lesson 02_Autoencoders/04. Simple Autoencoder Solution-Nv_D6DHfEk8.mp4
9.0 MB
Part 08-Module 01-Lesson 05_Autoencoders/04. Simple Autoencoder Solution-Nv_D6DHfEk8.mp4
9.0 MB
Part 02-Module 05-Lesson 01_Deep Neural Networks/01. Mat HS-9P7UPWFu8w8.mp4
8.9 MB
Part 11-Module 01-Lesson 01_Introduction to RL/02. Applications-CV6B84mKRNM.mp4
8.9 MB
Part 02-Module 05-Lesson 02_Convolutional Networks/04. Convolutional Networks-ISHGyvsT0QY.mp4
8.8 MB
Part 03-Module 04-Lesson 03_Sentiment Prediction RNN/06. Training The Network-nknJ3Xu3ld0.mp4
8.8 MB
Part 09-Module 01-Lesson 06_Sentiment Prediction RNN/06. Training The Network-nknJ3Xu3ld0.mp4
8.8 MB
Part 02-Module 05-Lesson 01_Deep Neural Networks/08. Regularization Intro-pECnr-5F3_Q.mp4
8.7 MB
Part 03-Module 05-Lesson 01_Transfer Learning in TensorFlow/02. Transfer Learning--WmQwYr0DYjY.mp4
8.7 MB
Part 08-Module 01-Lesson 06_Transfer Learning in TensorFlow/02. Transfer Learning--WmQwYr0DYjY.mp4
8.7 MB
Part 04-Module 02-Lesson 03_Deep Convolutional GANs/02. Deconvolution-sX_AxtB6CHI.mp4
8.7 MB
Part 10-Module 01-Lesson 02_Deep Convolutional GANs/02. Deconvolution-sX_AxtB6CHI.mp4
8.7 MB
Part 03-Module 05-Lesson 01_Transfer Learning in TensorFlow/10. Training And Testing-NLPtmQjGYCA.mp4
8.6 MB
Part 08-Module 01-Lesson 06_Transfer Learning in TensorFlow/10. Training And Testing-NLPtmQjGYCA.mp4
8.6 MB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/26. Conclusion-WhpE_8sTt-0.mp4
8.6 MB
Part 11-Module 01-Lesson 04_Dynamic Programming/17. Policy Iteration-gqv7o1kBDc0.mp4
8.5 MB
Part 03-Module 02-Lesson 01_Embeddings and Word2vec/06. Building The Network-fhSb5c6UX6M.mp4
8.5 MB
Part 09-Module 01-Lesson 05_Embeddings and Word2vec/06. Building The Network-fhSb5c6UX6M.mp4
8.5 MB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/22. Groundbreaking CNN Architectures-ddrB-mhMfkY.mp4
8.5 MB
Part 04-Module 02-Lesson 03_Deep Convolutional GANs/09. Building And Training The Network-nXKk9GI4X14.mp4
8.5 MB
Part 10-Module 01-Lesson 02_Deep Convolutional GANs/09. Building And Training The Network-nXKk9GI4X14.mp4
8.5 MB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/08. Goals and Rewards, Part 2-pVIFc72VYH8.mp4
8.4 MB
Part 02-Module 03-Lesson 01_MiniFlow/01. Miniflow Introduction-Nqp_UifEwt0.mp4
8.4 MB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/10. Convolutional Layers-h5R_JvdUrUI.mp4
8.4 MB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/12. Stride and Padding-0r9o8hprDXQ.mp4
8.4 MB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/08. LSTM Cell-ajC-5uWB8S4.mp4
8.2 MB
Part 09-Module 01-Lesson 03_Implementation of RNN and LSTM/07. LSTM Cell-ajC-5uWB8S4.mp4
8.2 MB
Part 11-Module 01-Lesson 01_Introduction to RL/03. The Setting-nh8Gwdu19nc.mp4
8.1 MB
Part 03-Module 02-Lesson 01_Embeddings and Word2vec/04. Making Batches-jx7qwdw-94k.mp4
8.1 MB
Part 09-Module 01-Lesson 05_Embeddings and Word2vec/04. Making Batches-jx7qwdw-94k.mp4
8.1 MB
Part 11-Module 01-Lesson 10_Policy-Based Methods/08. M2L3 08 V1-og3W6CXn1F0.mp4
8.0 MB
Part 11-Module 01-Lesson 06_Temporal-Difference Methods/07. TD Control Sarsa(0)-LkFkjfsRpXc.mp4
8.0 MB
Part 07-Module 01-Lesson 03_Training Neural Networks/07. Regularization-ndYnUrx8xvs.mp4
7.9 MB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/img/chess-game.jpg
7.9 MB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/02. Introduction-tn-CrUTkCUc.mp4
7.9 MB
Part 04-Module 02-Lesson 05_Semi-Supervised Learning/09. Discriminator Solution-_X8ssUzu_Bo.mp4
7.8 MB
Part 10-Module 01-Lesson 03_Semi-Supervised Learning/09. Discriminator Solution-_X8ssUzu_Bo.mp4
7.8 MB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/03. Logistic Regression - Solution-1iNylA3fJDs.mp4
7.7 MB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/02. The Setting, Revisited-V6Q1uF8a6kA.mp4
7.7 MB
Part 01-Module 03-Lesson 01_Matrix Math and NumPy Refresher/07. Matrix Multiplication Part 2-8jtk8BzBdj8.mp4
7.7 MB
Part 06-Module 01-Lesson 05_Matrix Math and NumPy Refresher/07. Matrix Multiplication Part 2-8jtk8BzBdj8.mp4
7.7 MB
Part 03-Module 02-Lesson 01_Embeddings and Word2vec/08. Building The Network Solution-pkBAhQ2Ki-8.mp4
7.7 MB
Part 09-Module 01-Lesson 05_Embeddings and Word2vec/08. Building The Network Solution-pkBAhQ2Ki-8.mp4
7.7 MB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/24. RNN Summary-nXP0oGGRrO8.mp4
7.6 MB
Part 04-Module 02-Lesson 03_Deep Convolutional GANs/06. Generator Solution-jyPwUEZg05Q.mp4
7.6 MB
Part 10-Module 01-Lesson 02_Deep Convolutional GANs/06. Generator Solution-jyPwUEZg05Q.mp4
7.6 MB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/14. Error Functions-jfKShxGAbok.mp4
7.6 MB
Part 11-Module 01-Lesson 09_Deep Q-Learning/13. Wrap Up-x6JggcDTcys.mp4
7.6 MB
Part 04-Module 02-Lesson 05_Semi-Supervised Learning/12. Trained Semi-Supervised GAN-9yWYZDX8-O8.mp4
7.5 MB
Part 10-Module 01-Lesson 03_Semi-Supervised Learning/12. Trained Semi-Supervised GAN-9yWYZDX8-O8.mp4
7.5 MB
Part 01-Module 01-Lesson 03_Jupyter Notebooks/02. Jupyter-qiYDWFLyXvg.mp4
7.5 MB
Part 06-Module 01-Lesson 04_Jupyter Notebooks/02. Jupyter-qiYDWFLyXvg.mp4
7.5 MB
Part 11-Module 01-Lesson 03_The RL Framework The Solution/11. Optimal Policies-2rguYpVyCto.mp4
7.5 MB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/13. Build The Network-RVNjDlWTBQU.mp4
7.4 MB
Part 09-Module 01-Lesson 03_Implementation of RNN and LSTM/12. Build The Network-RVNjDlWTBQU.mp4
7.4 MB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/08. Generator Network-btHVXnICmzQ.mp4
7.4 MB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/08. Generator Network-btHVXnICmzQ.mp4
7.4 MB
Part 01-Module 01-Lesson 01_Welcome/04. The first week-krK-TcGoYUI.mp4
7.4 MB
Part 04-Module 02-Lesson 03_Deep Convolutional GANs/10. Hyperparameters Solution-Rt8MlVDtpi8.mp4
7.3 MB
Part 10-Module 01-Lesson 02_Deep Convolutional GANs/10. Hyperparameters Solution-Rt8MlVDtpi8.mp4
7.3 MB
Part 11-Module 01-Lesson 01_Introduction to RL/05. Resources-_YPqfAnCqtk.mp4
7.3 MB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/09. Generalized Policy Iteration-XRmz4nolEsw.mp4
7.3 MB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/02. LSTMs-RYbSHogZetc.mp4
7.2 MB
Part 03-Module 04-Lesson 03_Sentiment Prediction RNN/03. Data Preprocessing-h4-LwZU9_k8.mp4
7.2 MB
Part 09-Module 01-Lesson 06_Sentiment Prediction RNN/03. Data Preprocessing-h4-LwZU9_k8.mp4
7.2 MB
Part 01-Module 01-Lesson 01_Welcome/08. We Value Your Feedback-Dl23R0YCQ0U.mp4
7.2 MB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/07. Goals and Rewards, Part 1-XPnj3Ya3EuM.mp4
7.2 MB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/15. Training Losses and Optimizers Solutions-HlABZ9Q7xEo.mp4
7.2 MB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/15. Training Losses and Optimizers Solutions-HlABZ9Q7xEo.mp4
7.2 MB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/14. MDPs, Part 2-CUTtQvxKkNw.mp4
7.2 MB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/18. ROC Curve-2Iw5TiGzJI4.mp4
7.0 MB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/07. Transforming Text into Numbers-7rHBU5cbePE.mp4
7.0 MB
Part 07-Module 01-Lesson 04_Sentiment Analysis/08. Transforming Text into Numbers-7rHBU5cbePE.mp4
7.0 MB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/21. CrossEntropy V1-1BnhC6e0TFw.mp4
6.9 MB
Part 11-Module 01-Lesson 03_The RL Framework The Solution/09. Action-Value Functions-KJLaRfOOPGA.mp4
6.9 MB
Part 01-Module 01-Lesson 01_Welcome/09. Getting-Setup-1SuxTnuQkeE.mp4
6.9 MB
Part 06-Module 01-Lesson 01_Welcome to Deep Learning/10. Getting-Setup-1SuxTnuQkeE.mp4
6.9 MB
Part 02-Module 01-Lesson 01_Model Evaluation and Validation/06. 04 L Types Of Errors-Twf1qnPZeSY.mp4
6.9 MB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/34. Backpropagation V2-1SmY3TZTyUk.mp4
6.8 MB
Part 07-Module 01-Lesson 03_Training Neural Networks/04. Underfitting And Overfitting-xj4PlXMsN-Y.mp4
6.7 MB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/10. Generator and Discriminator Solutions-9By2pAck044.mp4
6.6 MB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/10. Generator and Discriminator Solutions-9By2pAck044.mp4
6.6 MB
Part 01-Module 03-Lesson 03_Your first neural network/01. Introduction to the Project-dOwEDeJp8yw.mp4
6.5 MB
Part 11-Module 01-Lesson 04_Dynamic Programming/01. Introduction-ek2PD9RDrWw.mp4
6.5 MB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/03. How Computers Interpret Images-V4f6p6uRhu8.mp4
6.5 MB
Part 06-Module 01-Lesson 01_Welcome to Deep Learning/05. Projects You will Build-PqpdX7YxTlU.mp4
6.5 MB
Part 04-Module 02-Lesson 05_Semi-Supervised Learning/04. Data Prep-P5hOx09mwaM.mp4
6.4 MB
Part 10-Module 01-Lesson 03_Semi-Supervised Learning/04. Data Prep-P5hOx09mwaM.mp4
6.4 MB
Part 11-Module 01-Lesson 11_Actor-Critic Methods/03. RL M2L4 03 Two Function Approximators V1-37KQEgLaLfw.mp4
6.4 MB
Part 11-Module 01-Lesson 03_The RL Framework The Solution/08. Optimality-j231aRV74QM.mp4
6.3 MB
Part 01-Module 03-Lesson 01_Matrix Math and NumPy Refresher/06. Matrix Multiplication Part 1-JRoCFQRP4B0.mp4
6.2 MB
Part 06-Module 01-Lesson 05_Matrix Math and NumPy Refresher/06. Matrix Multiplication Part 1-JRoCFQRP4B0.mp4
6.2 MB
Part 04-Module 02-Lesson 05_Semi-Supervised Learning/03. Introducing Semi-Supervised Learning-tnCClNy5z5c.mp4
6.2 MB
Part 10-Module 01-Lesson 03_Semi-Supervised Learning/03. Introducing Semi-Supervised Learning-tnCClNy5z5c.mp4
6.2 MB
Part 06-Module 01-Lesson 01_Welcome to Deep Learning/02. Meet Your Instructors--UOFRxCu414.mp4
6.1 MB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/13. Training Losses-IaAeDrXMEcU.mp4
6.1 MB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/13. Training Losses-IaAeDrXMEcU.mp4
6.1 MB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/15. Pooling Layers-OkkIZNs7Cyc.mp4
6.1 MB
Part 03-Module 06-Lesson 01_Sequence to Sequence/02. Jay's Introduction-HPOzAlXhuxQ.mp4
6.1 MB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/02. What Is Deep Learning-INt1nULYPak.mp4
6.1 MB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 1-1yJx-QtlvNI.mp4
6.0 MB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.mp4
6.0 MB
Part 02-Module 01-Lesson 01_Model Evaluation and Validation/02. Testing-gmxGRJSKEb0.mp4
5.9 MB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/07. When do MLPs (not) work well-deMeuLdZN3Q.mp4
5.8 MB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/12. Validating The Training-Oxm9ofvov3I.mp4
5.8 MB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/20. 21 L Measuring Performance-byP0DJImOSk.mp4
5.8 MB
Part 04-Module 02-Lesson 05_Semi-Supervised Learning/08. Training The Network -P-LXQPVXl4A.mp4
5.7 MB
Part 10-Module 01-Lesson 03_Semi-Supervised Learning/08. Training The Network -P-LXQPVXl4A.mp4
5.7 MB
Part 03-Module 04-Lesson 02_Weight Initialization/04. Weight Initialization 3-JIQl0jMpdsI.mp4
5.7 MB
Part 08-Module 01-Lesson 03_Weight Initialization/04. Weight Initialization 3-JIQl0jMpdsI.mp4
5.7 MB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/05. Categorical Cross-Entropy-3sDYifgjFck.mp4
5.7 MB
Part 02-Module 01-Lesson 01_Model Evaluation and Validation/07. Model Complexity Graph-Question-YS5OQCA5cLY.mp4
5.7 MB
Part 11-Module 01-Lesson 03_The RL Framework The Solution/01. Introduction-9Wyf5Zsska8.mp4
5.7 MB
Part 03-Module 06-Lesson 01_Sequence to Sequence/05. Architecture in More Depth-rdAo4MqLbEk.mp4
5.6 MB
Part 05-Module 01-Lesson 01_Enroll in your next Nanodegree program/img/carnd.jpg
5.6 MB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs. Continuous-Rm2KxFaPiJg.mp4
5.6 MB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.mp4
5.6 MB
Part 11-Module 01-Lesson 03_The RL Framework The Solution/05. State-Value Functions-llakAjwox_8.mp4
5.5 MB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/06. Model Validation in Keras-002jNXSM6CU.mp4
5.5 MB
Part 11-Module 01-Lesson 01_Introduction to RL/01. Introduction-6jSFl5kxIBs.mp4
5.4 MB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.mp4
5.4 MB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/07. Batching Data Solution-o3nBxHJLQcc.mp4
5.3 MB
Part 09-Module 01-Lesson 03_Implementation of RNN and LSTM/06. Batching Data Solution-o3nBxHJLQcc.mp4
5.3 MB
Part 02-Module 01-Lesson 01_Model Evaluation and Validation/03. Confusion Matrix-Question-9GLNjmMUB_4.mp4
5.3 MB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/24. Confusion Matrix-Question 1-9GLNjmMUB_4.mp4
5.3 MB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/07. Getting Started with GANs-QA2ntKUha4g.mp4
5.3 MB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/07. Getting Started with GANs-QA2ntKUha4g.mp4
5.3 MB
Part 02-Module 05-Lesson 02_Convolutional Networks/18. Explore the Design Space-FG7M9tWH2nQ.mp4
5.2 MB
Part 11-Module 01-Lesson 10_Policy-Based Methods/01. M2L3 01 V1-YOSREyp04HA.mp4
5.2 MB
Part 11-Module 01-Lesson 08_RL in Continuous Spaces/13. Non-Linear Function Approximation-rITnmpD2mN8.mp4
5.2 MB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/01. Introduction-W2EP3riQSus.mp4
5.2 MB
Part 07-Module 01-Lesson 03_Training Neural Networks/05. Model Complexity Graph-NnS0FJyVcDQ.mp4
5.1 MB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/23. Error Function-V5kkHldUlVU.mp4
5.1 MB
Part 03-Module 01-Lesson 03_Hyperparameters/05. Minibatch Size-GrrO1NFxaW8.mp4
5.0 MB
Part 04-Module 02-Lesson 02_Hyperparameters/05. Minibatch Size-GrrO1NFxaW8.mp4
5.0 MB
Part 09-Module 01-Lesson 04_Hyperparameters/05. Minibatch Size-GrrO1NFxaW8.mp4
5.0 MB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/32. Combinando modelos-Boy3zHVrWB4.mp4
5.0 MB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/02. 02 Skin Cancer V4-70jGZeiTNgk.mp4
5.0 MB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/12. Output And Loss Solutions-CT8hcU7FmGc.mp4
4.9 MB
Part 09-Module 01-Lesson 03_Implementation of RNN and LSTM/11. Output And Loss Solutions-CT8hcU7FmGc.mp4
4.9 MB
Part 11-Module 01-Lesson 04_Dynamic Programming/04. Another Gridworld Example-n9SbomnLb-U.mp4
4.9 MB
Part 03-Module 06-Lesson 01_Sequence to Sequence/04. Architecture encoder decoder-dkHdEAJnV_w.mp4
4.7 MB
Part 03-Module 05-Lesson 01_Transfer Learning in TensorFlow/06. Data Preparation-WEtKkHlhhZA.mp4
4.6 MB
Part 08-Module 01-Lesson 06_Transfer Learning in TensorFlow/06. Data Preparation-WEtKkHlhhZA.mp4
4.6 MB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/04. MLPs For Image Classification-TIFStebu530.mp4
4.6 MB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/06. The Reward Hypothesis-uAqNwgZ49JE.mp4
4.6 MB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/12. Building the Network Solution-Ikp3rVzG970.mp4
4.5 MB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/12. Building the Network Solution-Ikp3rVzG970.mp4
4.5 MB
Part 11-Module 01-Lesson 06_Temporal-Difference Methods/13. TD Control Expected Sarsa-kEKupCyU0P0.mp4
4.5 MB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/11. Network Loss-itu-uNK4brc.mp4
4.5 MB
Part 09-Module 01-Lesson 03_Implementation of RNN and LSTM/10. Network Loss-itu-uNK4brc.mp4
4.5 MB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/20. Cross Entropy 1-iREoPUrpXvE.mp4
4.4 MB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/11. Building the Network-5sZkRSHfiAE.mp4
4.4 MB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/11. Building the Network-5sZkRSHfiAE.mp4
4.4 MB
Part 07-Module 01-Lesson 03_Training Neural Networks/08. Dropout-Ty6K6YiGdBs.mp4
4.4 MB
Part 01-Module 02-Lesson 01_Regression/01. Welcome to Week One-10M2DnJuziE.mp4
4.4 MB
Part 03-Module 05-Lesson 01_Transfer Learning in TensorFlow/09. Training The Classifier-b7Fy3cIoJ1Y.mp4
4.4 MB
Part 08-Module 01-Lesson 06_Transfer Learning in TensorFlow/09. Training The Classifier-b7Fy3cIoJ1Y.mp4
4.4 MB
Part 03-Module 02-Lesson 01_Embeddings and Word2vec/07. Negative Sampling-gW17AHBKbHY.mp4
4.4 MB
Part 09-Module 01-Lesson 05_Embeddings and Word2vec/07. Negative Sampling-gW17AHBKbHY.mp4
4.4 MB
Part 04-Module 02-Lesson 05_Semi-Supervised Learning/11. Model Optimizer Solution-_Qhz9SbR7xY.mp4
4.3 MB
Part 10-Module 01-Lesson 03_Semi-Supervised Learning/11. Model Optimizer Solution-_Qhz9SbR7xY.mp4
4.3 MB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.mp4
4.3 MB
Part 11-Module 01-Lesson 03_The RL Framework The Solution/06. Bellman Equations-UgIaDMvSdUo.mp4
4.3 MB
Part 03-Module 01-Lesson 03_Hyperparameters/08. RNN Hyperparameters-yQvnv7l_aUo.mp4
4.3 MB
Part 04-Module 02-Lesson 02_Hyperparameters/08. RNN Hyperparameters-yQvnv7l_aUo.mp4
4.3 MB
Part 09-Module 01-Lesson 04_Hyperparameters/08. RNN Hyperparameters-yQvnv7l_aUo.mp4
4.3 MB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/19. Normalized Inputs And Initial Weights-WaHQ9-UXIIg.mp4
4.3 MB
Part 07-Module 01-Lesson 04_Sentiment Analysis/01. Introducing Andrew Trask-ltO71Bm8b3M.mp4
4.3 MB
Part 01-Module 03-Lesson 01_Matrix Math and NumPy Refresher/04. Element-wise Matrix Operations-vjUykZyzko4.mp4
4.2 MB
Part 06-Module 01-Lesson 05_Matrix Math and NumPy Refresher/04. Element-wise Matrix Operations-vjUykZyzko4.mp4
4.2 MB
Part 09-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/03. LSTM Basics-gjb68a4XsqE.mp4
4.2 MB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 Q Softmax V2-RC_A9Tu99y4.mp4
4.2 MB
Part 03-Module 05-Lesson 01_Transfer Learning in TensorFlow/08. Building The Classifier-6ifxRQ_gL7w.mp4
4.2 MB
Part 08-Module 01-Lesson 06_Transfer Learning in TensorFlow/08. Building The Classifier-6ifxRQ_gL7w.mp4
4.2 MB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/01. Intro To RNNs-64HSG6HAfEI.mp4
4.2 MB
Part 07-Module 01-Lesson 03_Training Neural Networks/13. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.mp4
4.1 MB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/22. 30 L Stochastic Gradient Descent-U9iEGUd9kJ0.mp4
4.1 MB
Part 03-Module 02-Lesson 01_Embeddings and Word2vec/05. Batches Solution-DdfR0RjSC-Q.mp4
4.1 MB
Part 09-Module 01-Lesson 05_Embeddings and Word2vec/05. Batches Solution-DdfR0RjSC-Q.mp4
4.1 MB
Part 04-Module 02-Lesson 03_Deep Convolutional GANs/08. Discriminator Solution-ffPWI2yJscw.mp4
4.1 MB
Part 10-Module 01-Lesson 02_Deep Convolutional GANs/08. Discriminator Solution-ffPWI2yJscw.mp4
4.1 MB
Part 03-Module 07-Lesson 03_Translation Project/01. Machine Translation Intro-5thBwpcYoiI.mp4
4.0 MB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/13. MDPs, Part 1-NBWbluSbxPg.mp4
4.0 MB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/05. Linear Boundaries-X-uMlsBi07k.mp4
4.0 MB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 2-6nUUeQ9AeUA.mp4
4.0 MB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/24. Gradient Descent-rhVIF-nigrY.mp4
3.9 MB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.mp4
3.8 MB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/01. Introducing Luis-nto-stLuN6M.mp4
3.8 MB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/17. 17 L Transition Into Practical Aspects Of Learning-bKqkRFOOKoA.mp4
3.8 MB
Part 09-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/02. RNN Vs LSTM-70MgF-IwAr8.mp4
3.8 MB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/09. LSTM Cell Solution-X4uA0dq_4jA.mp4
3.7 MB
Part 09-Module 01-Lesson 03_Implementation of RNN and LSTM/08. LSTM Cell Solution-X4uA0dq_4jA.mp4
3.7 MB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/13. Error Functions-YfUUunxWIJw.mp4
3.7 MB
Part 02-Module 05-Lesson 02_Convolutional Networks/img/screen-shot-2016-11-24-at-12.09.24-pm.png
3.7 MB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/img/screen-shot-2016-11-24-at-12.09.24-pm.png
3.7 MB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/23. What Is The Neural Network Looking At-qN-rvoxPbBw.mp4
3.6 MB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/02. Logistic Regression - Question-kSs6O3R7JUI.mp4
3.6 MB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/14. Training Optimizers-AU5gH7LS57E.mp4
3.6 MB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/14. Training Optimizers-AU5gH7LS57E.mp4
3.6 MB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/15. Backpropagation-MZL97-2joxQ.mp4
3.6 MB
Part 07-Module 01-Lesson 02_Implementing Gradient Descent/07. Backpropagation-MZL97-2joxQ.mp4
3.6 MB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/21. 29 L Optimizing A Logistic Classifier-U_7nO1dm2tY.mp4
3.6 MB
Part 03-Module 01-Lesson 03_Hyperparameters/07. Number Of Hidden Units Layers-IkGAIQH5wH8.mp4
3.6 MB
Part 04-Module 02-Lesson 02_Hyperparameters/07. Number Of Hidden Units Layers-IkGAIQH5wH8.mp4
3.6 MB
Part 09-Module 01-Lesson 04_Hyperparameters/07. Number Of Hidden Units Layers-IkGAIQH5wH8.mp4
3.6 MB
Part 02-Module 01-Lesson 01_Model Evaluation and Validation/05. Regression-Metrics-906P4BPnl9A.mp4
3.5 MB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/34. Calculating The Gradient 1 -tVuZDbUrzzI.mp4
3.5 MB
Part 04-Module 02-Lesson 03_Deep Convolutional GANs/07. Discriminator-XRqOUbf96eI.mp4
3.4 MB
Part 10-Module 01-Lesson 02_Deep Convolutional GANs/07. Discriminator-XRqOUbf96eI.mp4
3.4 MB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/01. GANs Intro-F7XgI6TmaGI.mp4
3.4 MB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/01. GANs Intro-F7XgI6TmaGI.mp4
3.4 MB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.mp4
3.4 MB
Part 03-Module 05-Lesson 01_Transfer Learning in TensorFlow/04. Pretrained VGGNet-BpzI6Svmuv8.mp4
3.3 MB
Part 08-Module 01-Lesson 06_Transfer Learning in TensorFlow/04. Pretrained VGGNet-BpzI6Svmuv8.mp4
3.3 MB
Part 02-Module 05-Lesson 02_Convolutional Networks/28. 1x1 Convolutions-Zmzgerm6SjA.mp4
3.3 MB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/32. Layers-pg99FkXYK0M.mp4
3.3 MB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/16. 16 L Minimizing Cross-Entropy-YrDMXFhvh9E.mp4
3.2 MB
Part 03-Module 07-Lesson 01_Reinforcement Learning/02. 01 Q-Learning-Npu9gyD6-4o.mp4
3.2 MB
Part 11-Module 01-Lesson 11_Actor-Critic Methods/06. RL M2L4 06 Actor Critic With Advantage RENDER V1 V1-Bwd2OF7hJXQ.mp4
3.2 MB
Part 02-Module 05-Lesson 02_Convolutional Networks/img/screen-shot-2016-11-24-at-12.09.02-pm.png
3.2 MB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/img/screen-shot-2016-11-24-at-12.09.02-pm.png
3.2 MB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/01. Intro to Vincent-0_M6a04ofz8.mp4
3.2 MB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/25. Confusion Matrix-3rpN-YYlfes.mp4
3.2 MB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz - Cross 1--xxrisIvD0E.mp4
3.2 MB
Part 11-Module 01-Lesson 10_Policy-Based Methods/06. M2L3 06 V1-RMjdQkl6CqE.mp4
3.2 MB
Part 07-Module 01-Lesson 03_Training Neural Networks/02. Training Optimization-UiGKhx9pUYc.mp4
3.1 MB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/01. Introduction-X_9l_ZqXXBA.mp4
3.0 MB
Part 02-Module 05-Lesson 02_Convolutional Networks/img/screen-shot-2016-11-24-at-12.08.11-pm.png
3.0 MB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/img/screen-shot-2016-11-24-at-12.08.11-pm.png
3.0 MB
Part 02-Module 05-Lesson 04_Image Classification/01. Project Intro-awEYy2Df3hg.mp4
3.0 MB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/03. Character-Wise RNN-dXl3eWCGLdU.mp4
3.0 MB
Part 09-Module 01-Lesson 03_Implementation of RNN and LSTM/02. Character-Wise RNN-dXl3eWCGLdU.mp4
3.0 MB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/11. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.mp4
3.0 MB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/05. The Data-2RLbbV7MQNA.mp4
3.0 MB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/14. Multilayer perceptrons-Rs9petvTBLk.mp4
3.0 MB
Part 07-Module 01-Lesson 02_Implementing Gradient Descent/06. Multilayer perceptrons-Rs9petvTBLk.mp4
3.0 MB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/11. Solution Random Vs Preinitialized Thoughts-sOuoRZRKDzs.mp4
3.0 MB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.mp4
3.0 MB
Part 02-Module 01-Lesson 01_Model Evaluation and Validation/08. K Fold Cross Validation-dRtgSJgSt_I.mp4
2.9 MB
Part 11-Module 01-Lesson 07_Solve OpenAI Gym's Taxi-v2 Task/img/open-agent-monitor-main.gif
2.9 MB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/09. Training Your Logistic Classifier-WQsdr1EJgz8.mp4
2.9 MB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/21. ROC Curve-fWwe_JlpnlQ.mp4
2.8 MB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/09. AND And OR Perceptrons-45K5N0P9wJk.mp4
2.8 MB
Part 02-Module 05-Lesson 02_Convolutional Networks/29. Inception Module-SlTm03bEOxA.mp4
2.7 MB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/06. 09 Higher Dimensions-eBHunImDmWw.mp4
2.7 MB
Part 02-Module 05-Lesson 01_Deep Neural Networks/11. Dropout RENDER-6DcImJS8uV8.mp4
2.7 MB
Part 07-Module 01-Lesson 06_TensorFlow/17. Conclusion-wOiUQDgGD9E.mp4
2.7 MB
Part 02-Module 05-Lesson 01_Deep Neural Networks/05. Training a Deep Learning Network-CsB7yUtMJyk.mp4
2.7 MB
Part 03-Module 06-Lesson 01_Sequence to Sequence/03. Applications seq2seq-tDJBDwriJYQ.mp4
2.6 MB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/10. Gradient Descent-29PmNG7fuuM.mp4
2.6 MB
Part 07-Module 01-Lesson 02_Implementing Gradient Descent/02. Gradient Descent-29PmNG7fuuM.mp4
2.6 MB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-10-27-at-1.29.13-pm.png
2.6 MB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/22. Visualization-aGIGB4Ta3_A.mp4
2.5 MB
Part 11-Module 01-Lesson 03_The RL Framework The Solution/04. Gridworld Example-XeHBmPFqTsE.mp4
2.5 MB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/17. 16 Solution Diagnosing Cancer V3-IJYvt2ssUFk.mp4
2.4 MB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/23. 31 L Momentum And Learning Rate Decay-O3QYdmQjXds.mp4
2.4 MB
Part 07-Module 01-Lesson 03_Training Neural Networks/12. Other Activation Functions-kA-1vUt6cvQ.mp4
2.4 MB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/04. Sequence-Batching-Z4OiyU0Cldg.mp4
2.4 MB
Part 09-Module 01-Lesson 03_Implementation of RNN and LSTM/03. Sequence-Batching-Z4OiyU0Cldg.mp4
2.4 MB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs Continuous-rdP-RPDFkl0.mp4
2.4 MB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/24. 32 L Parameter Hyperspace!-5a3-iIhdguc.mp4
2.3 MB
Part 03-Module 08-Lesson 02_Autoencoders/02. Autoencoders-ar5Iyx68cWc.mp4
2.3 MB
Part 08-Module 01-Lesson 05_Autoencoders/02. Autoencoders-ar5Iyx68cWc.mp4
2.3 MB
Part 09-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/05. Learn Gate-aVHVI7ovbHY.mp4
2.3 MB
Part 03-Module 01-Lesson 03_Hyperparameters/02. Introduction-erwnzFD7AeE.mp4
2.3 MB
Part 04-Module 02-Lesson 02_Hyperparameters/02. Introduction-erwnzFD7AeE.mp4
2.3 MB
Part 09-Module 01-Lesson 04_Hyperparameters/02. Introduction-erwnzFD7AeE.mp4
2.3 MB
Part 02-Module 05-Lesson 02_Convolutional Networks/03. Statistical Invariance-0Hr5YwUUhr0.mp4
2.3 MB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/04. Medical Classification-RCOSP60dV7U.mp4
2.3 MB
Part 04-Module 02-Lesson 04_Generate Faces/01. Last Project - Congrats-UUqU8SYBZ9Q.mp4
2.3 MB
Part 07-Module 01-Lesson 05_Keras/06. Keras Lab-a50un22BsLI.mp4
2.3 MB
Part 07-Module 01-Lesson 03_Training Neural Networks/15. Momentum-r-rYz_PEWC8.mp4
2.2 MB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/30. Non-Linear Data-F7ZiE8PQiSc.mp4
2.2 MB
Part 03-Module 04-Lesson 03_Sentiment Prediction RNN/04. Creating Testing Sets-BRBbrNLz1ho.mp4
2.2 MB
Part 09-Module 01-Lesson 06_Sentiment Prediction RNN/04. Creating Testing Sets-BRBbrNLz1ho.mp4
2.2 MB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/21. Formula For Cross 1-qvr_ego_d6w.mp4
2.2 MB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/03. Classsification Example-Dh625piH7Z0.mp4
2.2 MB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/01. Introducing Alexis-38ExGpdyvJI.mp4
2.2 MB
Part 07-Module 01-Lesson 03_Training Neural Networks/03. Testing-EeBZpb-PSac.mp4
2.1 MB
Part 03-Module 05-Lesson 01_Transfer Learning in TensorFlow/07. Building The Classifier-pPHiVddBY0Q.mp4
2.1 MB
Part 08-Module 01-Lesson 06_Transfer Learning in TensorFlow/07. Building The Classifier-pPHiVddBY0Q.mp4
2.1 MB
Part 11-Module 01-Lesson 07_Solve OpenAI Gym's Taxi-v2 Task/img/run-main.gif
2.1 MB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/25. Gradient Descent Algorithm-snxmBgi_GeU.mp4
2.1 MB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 S Softmax-n8S-v_LCTms.mp4
2.0 MB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/10. Perceptron Algorithm--zhTROHtscQ.mp4
2.0 MB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/32. Multiclass Classification-uNTtvxwfox0.mp4
2.0 MB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz Cross Entropy-njq6bYrPqSU.mp4
2.0 MB
Part 07-Module 01-Lesson 03_Training Neural Networks/16. Error Functions Around the World-34AAcTECu2A.mp4
1.8 MB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/16. Quiz - Softmax-NNoezNnAMTY.mp4
1.8 MB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.mp4
1.8 MB
Part 09-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/11. Other Architectures-MsxFDuYlTuQ.mp4
1.8 MB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/17. One-Hot Encoding-AePvjhyvsBo.mp4
1.7 MB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/img/skin-disease-classes.png
1.7 MB
Part 02-Module 01-Lesson 01_Model Evaluation and Validation/04. Accuracy Question-AmFoZTf-Hb0.mp4
1.7 MB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/04. Classification Example-46PywnGa_cQ.mp4
1.7 MB
Part 04-Module 02-Lesson 04_Generate Faces/02. P5 Intro-jvJtHYBX7sM.mp4
1.7 MB
Part 02-Module 05-Lesson 02_Convolutional Networks/08. Convolutions Cont.-utOv-BKI_vo.mp4
1.7 MB
Part 02-Module 05-Lesson 02_Convolutional Networks/01. Intro to CNNs-B61jxZ4rkMs.mp4
1.7 MB
Part 09-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/09. Putting It All Together-IF8FlKW-Zo0.mp4
1.7 MB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/10. 10 Quiz Random Vs Preinitiliazed Weights V3-DRC1e4XGl2M.mp4
1.7 MB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/14. Solution Sensitivty And Specificity-GBZjyeMjKxc.mp4
1.7 MB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/img/lesions.png
1.6 MB
Part 02-Module 05-Lesson 01_Deep Neural Networks/09. Regularization-QcJBhbuCl5g.mp4
1.6 MB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/01. Introduction-ZCpXvVdIdnY.mp4
1.6 MB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/03. Survival Rate-QPlp3NeGuSk.mp4
1.6 MB
Part 09-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/08. LSTM 7 Use Gate-5Ifolm1jTdY.mp4
1.6 MB
Part 11-Module 01-Lesson 04_Dynamic Programming/img/frozen-lake-6.jpg
1.6 MB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.mp4
1.6 MB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/08. Solution Data Challenges-1z3o4niQuNg.mp4
1.6 MB
Part 03-Module 01-Lesson 03_Hyperparameters/06. Number Of Iterations-TTdHpSb4DV8.mp4
1.5 MB
Part 04-Module 02-Lesson 02_Hyperparameters/06. Number Of Iterations-TTdHpSb4DV8.mp4
1.5 MB
Part 09-Module 01-Lesson 04_Hyperparameters/06. Number Of Iterations-TTdHpSb4DV8.mp4
1.5 MB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/06. 06 Image Challenge V3-Efnoj1KNPHw.mp4
1.5 MB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/34. Chain Rule-YAhIBOnbt54.mp4
1.5 MB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/09. Regra da cadeia-YAhIBOnbt54.mp4
1.5 MB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/04. Let'S Get Started-ySIDqaXLhHw.mp4
1.5 MB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/12. Non-Linear Regions-B8UrWnHh1Wc.mp4
1.4 MB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/08. Supervised Classification-XTGsutypAPE.mp4
1.4 MB
Part 07-Module 01-Lesson 03_Training Neural Networks/11. Vanishing Gradient-W_JJm_5syFw.mp4
1.4 MB
Part 02-Module 05-Lesson 01_Deep Neural Networks/12. Dropout Pt. 2-8nG8zzJMbZw.mp4
1.3 MB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/09. Training The Neural Network-HwiI-UXUx-M.mp4
1.3 MB
Part 02-Module 05-Lesson 02_Convolutional Networks/img/arch.png
1.3 MB
Part 08-Module 01-Lesson 02_CNNs in TensorFlow/img/arch.png
1.3 MB
Part 02-Module 05-Lesson 02_Convolutional Networks/img/convolutionalnetworksquiz.png
1.2 MB
Part 02-Module 05-Lesson 02_Convolutional Networks/07. Feature-Map-Sizes-Solution-W4xtf8LTz1c.mp4
1.2 MB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/28. Mini Project Introduction-Rgf3YVFWl-M.mp4
1.2 MB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/16. 15 Quiz Diagnosing Cancer V3-4UzkwecBJro.mp4
1.2 MB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/29. Continuous Perceptrons-07-JJ-aGEfM.mp4
1.2 MB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/31. Non-Linear Models-HWuBKCZsCo8.mp4
1.2 MB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-12.31.11-pm.png
1.2 MB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/20. Solution ROC Curve-sdUUf6RRmXI.mp4
1.2 MB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/19. 17 Quiz ROC Curve 1 PT2 V1-Xv3v59_CfEU.mp4
1.2 MB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-10-11-at-2.04.14-pm.png
1.2 MB
Part 09-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/04. LSTM Architecture-ycwthhdx8ws.mp4
1.1 MB
Part 02-Module 03-Lesson 01_MiniFlow/07. Pixels are Features!-qE5YYXtPq9U.mp4
1.1 MB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-03-at-10.43.49-pm.png
1.1 MB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/09. Discriminator Network-nWXxT8OqCfs.mp4
1.1 MB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/09. Discriminator Network-nWXxT8OqCfs.mp4
1.1 MB
Part 09-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/06. Forget Gate-iWxpfxLUPSU.mp4
1.1 MB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-11.12.31-am.png
1.1 MB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-11.16.19-am.png
1.1 MB
Part 07-Module 01-Lesson 03_Training Neural Networks/06. DL 53 Q Regularization-KxROxcRsHL8.mp4
1.1 MB
Part 11-Module 01-Lesson 04_Dynamic Programming/img/statevalue.png
1.0 MB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/img/logistic-regression-quiz.png
1.0 MB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/08. Why Neural Networks-zAkzOZntK6Y.mp4
1.0 MB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-11.14.30-am.png
1.0 MB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/09. XOR Perceptron-TF83GfjYLdw.mp4
969.7 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/14. Learning Rate-TwJ8aSZoh2U.mp4
949.3 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-10-at-9.12.16-pm.png
919.6 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/img/nature.png
914.5 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/13. 13 Quiz Sensitivity And Specificty V3-O17MnhWBmKA.mp4
909.9 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-12.49.13-pm.png
892.7 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/07. 07 Quiz Data Challenges V1-F8yc7BlV93c.mp4
883.2 kB
Part 01-Module 01-Lesson 04_Applying Deep Learning/img/chi-waves.png
843.4 kB
Part 06-Module 01-Lesson 02_Applying Deep Learning/img/chi-waves.png
843.4 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/09. Local Minima-gF_sW_nY-xw.mp4
839.5 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/02. Color-Question-BdQccpMwk80.mp4
839.5 kB
Part 11-Module 01-Lesson 07_Solve OpenAI Gym's Taxi-v2 Task/img/open-terminal.gif
838.9 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-12.49.52-pm.png
826.0 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-29-at-3.49.20-pm.png
776.8 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/img/student-quiz.png
767.0 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/13. 13 L One Hot Encoding-phYsxqlilUk.mp4
750.0 kB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/img/screen-shot-2017-10-04-at-4.58.58-pm.png
733.2 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/07. Feature-Map-Sizes-Question-lp1NrLZnCUM.mp4
725.9 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-2.04.54-pm.png
713.1 kB
Part 09-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/07. Remember Gate-0qlm86HaXuU.mp4
693.2 kB
Part 03-Module 04-Lesson 04_Generate TV Scripts/01. Project-3-Intro-qNpv7IjQzo0.mp4
683.2 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/18. Numerical Stability-_SbGcOS-jcQ.mp4
647.1 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/img/actionvalue.png
643.5 kB
Part 11-Module 01-Lesson 03_The RL Framework The Solution/img/screen-shot-2017-09-24-at-4.28.04-pm.png
637.6 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/img/go.jpg
629.6 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/img/and-to-or.png
620.7 kB
Part 02-Module 05-Lesson 01_Deep Neural Networks/10. Regularization-Quiz-E0eEW6V0_sA.mp4
612.7 kB
Part 01-Module 01-Lesson 02_Anaconda/media/conda_default_install.mp4
609.6 kB
Part 06-Module 01-Lesson 03_Anaconda/media/conda_default_install.mp4
609.6 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/img/cat-3.png
589.7 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-29-at-3.51.44-pm.png
531.3 kB
Part 02-Module 03-Lesson 01_MiniFlow/img/screen-shot-2016-10-21-at-15.43.05.png
493.1 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-12.10.02-pm.png
489.9 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/img/screen-shot-2018-03-19-at-3.49.28-pm.png
482.9 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/img/screen-shot-2018-03-19-at-3.49.28-pm.png
482.9 kB
Part 06-Module 01-Lesson 01_Welcome to Deep Learning/img/examples.jpg
480.4 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/img/threshold.png
479.5 kB
Part 11-Module 01-Lesson 03_The RL Framework The Solution/img/screen-shot-2017-08-31-at-3.27.10-pm.png
474.2 kB
assets/img/udacimak.png
472.1 kB
Part 06-Module 01-Lesson 01_Welcome to Deep Learning/img/quadcopter.png
466.6 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/img/retriever-patch-shifted.png
453.9 kB
Part 01-Module 01-Lesson 02_Anaconda/img/screen-shot-2018-03-19-at-2.49.57-pm.png
453.1 kB
Part 01-Module 01-Lesson 03_Jupyter Notebooks/img/screen-shot-2018-03-19-at-2.49.57-pm.png
453.1 kB
Part 06-Module 01-Lesson 03_Anaconda/img/screen-shot-2018-03-19-at-2.49.57-pm.png
453.1 kB
Part 06-Module 01-Lesson 04_Jupyter Notebooks/img/screen-shot-2018-03-19-at-2.49.57-pm.png
453.1 kB
Part 02-Module 04-Lesson 01_Cloud Computing/img/screen-shot-2017-11-26-at-9.38.24-am.png
451.5 kB
Part 08-Module 01-Lesson 01_Cloud Computing/img/screen-shot-2017-11-26-at-9.38.24-am.png
451.5 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/img/retriever-patch.png
446.0 kB
Part 01-Module 01-Lesson 02_Anaconda/img/conda-search.png
441.2 kB
Part 06-Module 01-Lesson 03_Anaconda/img/conda-search.png
441.2 kB
Part 02-Module 05-Lesson 01_Deep Neural Networks/img/regularization-quiz.png
431.0 kB
Part 06-Module 01-Lesson 01_Welcome to Deep Learning/img/study-group.png
425.2 kB
Part 02-Module 04-Lesson 01_Cloud Computing/img/screen-shot-2017-11-26-at-9.55.20-am.png
424.2 kB
Part 08-Module 01-Lesson 01_Cloud Computing/img/screen-shot-2017-11-26-at-9.55.20-am.png
424.2 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/img/screen-shot-2017-09-26-at-2.18.38-pm.png
415.6 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/18. Images-1GdiN5Wc8LA.mp4
404.9 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/10. Random Restart-idyBBCzXiqg.mp4
404.5 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/img/or-quiz.png
403.1 kB
Part 01-Module 01-Lesson 01_Welcome/img/screen-shot-2017-01-26-at-3.29.37-pm.png
398.3 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-11.48.22-am.png
395.8 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/img/value-iteration.png
390.4 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-27-at-3.46.35-pm.png
375.8 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/img/download-repo.png
375.4 kB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/img/mc-pred-action.png
372.3 kB
Part 01-Module 01-Lesson 01_Welcome/img/review-example.png
371.5 kB
Part 06-Module 01-Lesson 01_Welcome to Deep Learning/img/review-example.png
371.5 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2018-01-02-at-2.27.51-pm.png
371.3 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-06-at-1.40.14-pm.png
369.8 kB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/img/mc-pred-state.png
356.5 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-03-at-11.34.41-pm.png
355.8 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/img/generated-mnist.png
354.3 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/img/generated-mnist.png
354.3 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/img/vlcsnap-2016-11-24-16h01m35s262.png
349.5 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-29-at-3.08.28-pm.png
342.6 kB
Part 11-Module 01-Lesson 06_Temporal-Difference Methods/img/screen-shot-2017-12-17-at-12.49.34-pm.png
340.5 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/img/teeth-whiskers-tongue.png
339.9 kB
Part 01-Module 01-Lesson 03_Jupyter Notebooks/media/Markdown+cells.mp4
338.3 kB
Part 06-Module 01-Lesson 04_Jupyter Notebooks/media/Markdown+cells.mp4
338.3 kB
Part 02-Module 03-Lesson 01_MiniFlow/img/boston-back-bay-reflection.jpg
325.5 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-08-at-3.43.34-pm.png
324.4 kB
Part 11-Module 01-Lesson 06_Temporal-Difference Methods/img/td-prediction.png
318.6 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/img/confusion-matrix.png
318.4 kB
Part 11-Module 01-Lesson 09_Deep Q-Learning/img/atari-network.png
317.4 kB
Part 07-Module 01-Lesson 05_Keras/img/all-ranks.png
315.9 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/img/a-b-c-fill-nn.png
312.8 kB
Part 01-Module 01-Lesson 01_Welcome/img/screen-shot-2017-01-26-at-2.51.02-pm.png
309.8 kB
Part 06-Module 01-Lesson 01_Welcome to Deep Learning/img/screen-shot-2017-01-26-at-2.51.02-pm.png
309.8 kB
Part 02-Module 03-Lesson 01_MiniFlow/img/screen-shot-2016-10-26-at-19.28.34.png
304.9 kB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/img/mc-control-glie.png
304.3 kB
Part 11-Module 01-Lesson 06_Temporal-Difference Methods/img/sarsa.png
293.7 kB
Part 02-Module 05-Lesson 01_Deep Neural Networks/img/layers.png
293.0 kB
Part 07-Module 01-Lesson 06_TensorFlow/img/layers.png
293.0 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/img/vlcsnap-2016-11-24-15h52m47s438.png
287.0 kB
Part 02-Module 04-Lesson 01_Cloud Computing/img/screen-shot-2018-01-08-at-5.38.03-am.png
282.8 kB
Part 08-Module 01-Lesson 01_Cloud Computing/img/screen-shot-2018-01-08-at-5.38.03-am.png
282.8 kB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/img/mc-control-constant-a.png
281.6 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/img/truncated-iter.png
280.6 kB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/img/screen-shot-2017-10-04-at-5.01.26-pm.png
278.4 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-10-30-at-10.54.50-am.png
276.4 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/img/and-quiz.png
272.2 kB
Part 11-Module 01-Lesson 06_Temporal-Difference Methods/img/sarsamax.png
270.9 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.mp4
266.2 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/img/policy-eval.png
265.9 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/img/screen-shot-2017-09-26-at-11.03.16-pm.png
265.9 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-06.png
265.3 kB
Part 06-Module 01-Lesson 01_Welcome to Deep Learning/img/screen-shot-2018-06-12-at-5.07.10-pm.png
263.6 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-04.png
261.3 kB
Part 11-Module 01-Lesson 06_Temporal-Difference Methods/img/expected-sarsa.png
260.5 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-01.png
257.3 kB
Part 11-Module 01-Lesson 06_Temporal-Difference Methods/img/matengai-of-kuniga-coast-in-oki-island-shimane-pref600.jpg
252.9 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-11.23.49-pm.png
252.9 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-10.png
247.6 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-08.png
247.4 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/img/iteration.png
247.2 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2018-01-02-at-2.49.43-pm.png
239.2 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-07.png
238.9 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/img/perceptron-graphics.001.jpeg
238.2 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-05.png
238.1 kB
assets/js/katex.min.js
236.8 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/img/cat-2.jpeg
236.8 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/img/cat-1.jpeg
236.3 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-27-at-1.58.01-pm.png
235.5 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-03.png
234.4 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-09.png
233.5 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-06-at-2.38.51-pm.png
230.7 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/img/truncated-eval.png
230.6 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/img/hq-new-plot-perceptron-combine.png
230.3 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/img/dog-1210559-1280.jpg
228.3 kB
Part 06-Module 01-Lesson 01_Welcome to Deep Learning/img/karpathy-network.png
227.1 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/img/full-padding-no-strides-transposed.gif
227.1 kB
index.html
225.9 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/img/screen-shot-2017-09-26-at-4.22.09-pm.png
224.6 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-02.png
224.5 kB
Part 01-Module 01-Lesson 03_Jupyter Notebooks/media/notebook+interface.mp4
220.6 kB
Part 06-Module 01-Lesson 04_Jupyter Notebooks/media/notebook+interface.mp4
220.6 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/img/xor.png
220.1 kB
Part 02-Module 05-Lesson 01_Deep Neural Networks/img/multi-layer.png
219.5 kB
Part 07-Module 01-Lesson 06_TensorFlow/img/multi-layer.png
219.5 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/img/screen-shot-2017-09-21-at-12.20.50-pm.png
215.6 kB
Part 02-Module 01-Lesson 01_Model Evaluation and Validation/img/meme.png
214.1 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/img/meme.png
214.1 kB
Part 07-Module 01-Lesson 05_Keras/img/meme.png
214.1 kB
Part 07-Module 01-Lesson 06_TensorFlow/img/meme.png
214.1 kB
Part 09-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/img/meme.png
214.1 kB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/img/exploration-vs.-exploitation.png
209.2 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/img/screen-shot-2017-09-21-at-12.20.30-pm.png
208.0 kB
Part 11-Module 01-Lesson 03_The RL Framework The Solution/img/screen-shot-2017-09-21-at-12.20.30-pm.png
208.0 kB
Part 01-Module 01-Lesson 02_Anaconda/media/conda_install.mp4
206.6 kB
Part 06-Module 01-Lesson 03_Anaconda/media/conda_install.mp4
206.6 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/img/hq-new-plot-perceptron-combine-v2.png
205.7 kB
Part 02-Module 04-Lesson 01_Cloud Computing/img/screen-shot-2017-06-13-at-12.58.03-pm.png
201.0 kB
Part 08-Module 01-Lesson 01_Cloud Computing/img/screen-shot-2017-06-13-at-12.58.03-pm.png
201.0 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/media/monkey-doctor.png
194.5 kB
Part 02-Module 01-Lesson 01_Model Evaluation and Validation/img/confusion.png
193.4 kB
Part 02-Module 04-Lesson 01_Cloud Computing/img/p2-limit-increase.png
192.7 kB
Part 08-Module 01-Lesson 01_Cloud Computing/img/p2-limit-increase.png
192.7 kB
Part 02-Module 02-Lesson 02_Intro to TFLearn/img/cezanne-c-600x600.jpg
191.0 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/img/new-confusion-matrix.png
190.6 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/img/1omsg2-mkguagky1c64uflw.gif
188.4 kB
Part 11-Module 01-Lesson 07_Solve OpenAI Gym's Taxi-v2 Task/img/new-tab.gif
185.7 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/img/pup.jpg
185.6 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-27-at-3.44.20-pm.png
185.3 kB
Part 09-Module 01-Lesson 03_Implementation of RNN and LSTM/img/screen-shot-2017-11-30-at-1.34.44-pm.png
185.0 kB
Part 01-Module 01-Lesson 04_Applying Deep Learning/img/mat-headshot.png
184.3 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/img/mat-headshot.png
184.3 kB
Part 02-Module 02-Lesson 02_Intro to TFLearn/img/mat-headshot.png
184.3 kB
Part 02-Module 02-Lesson 03_Preparing for Siraj's Lesson/img/mat-headshot.png
184.3 kB
Part 02-Module 05-Lesson 03_Siraj's Image Classification/img/mat-headshot.png
184.3 kB
Part 03-Module 02-Lesson 01_Embeddings and Word2vec/img/mat-headshot.png
184.3 kB
Part 03-Module 03-Lesson 01_TensorBoard/img/mat-headshot.png
184.3 kB
Part 03-Module 04-Lesson 02_Weight Initialization/img/mat-headshot.png
184.3 kB
Part 03-Module 04-Lesson 03_Sentiment Prediction RNN/img/mat-headshot.png
184.3 kB
Part 03-Module 05-Lesson 01_Transfer Learning in TensorFlow/img/mat-headshot.png
184.3 kB
Part 03-Module 06-Lesson 01_Sequence to Sequence/img/mat-headshot.png
184.3 kB
Part 03-Module 07-Lesson 01_Reinforcement Learning/img/mat-headshot.png
184.3 kB
Part 03-Module 08-Lesson 02_Autoencoders/img/mat-headshot.png
184.3 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/img/mat-headshot.png
184.3 kB
Part 04-Module 02-Lesson 03_Deep Convolutional GANs/img/mat-headshot.png
184.3 kB
Part 04-Module 02-Lesson 05_Semi-Supervised Learning/img/mat-headshot.png
184.3 kB
Part 06-Module 01-Lesson 02_Applying Deep Learning/img/mat-headshot.png
184.3 kB
Part 07-Module 01-Lesson 02_Implementing Gradient Descent/img/mat-headshot.png
184.3 kB
Part 08-Module 01-Lesson 03_Weight Initialization/img/mat-headshot.png
184.3 kB
Part 08-Module 01-Lesson 05_Autoencoders/img/mat-headshot.png
184.3 kB
Part 08-Module 01-Lesson 06_Transfer Learning in TensorFlow/img/mat-headshot.png
184.3 kB
Part 09-Module 01-Lesson 05_Embeddings and Word2vec/img/mat-headshot.png
184.3 kB
Part 09-Module 01-Lesson 06_Sentiment Prediction RNN/img/mat-headshot.png
184.3 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/img/mat-headshot.png
184.3 kB
Part 10-Module 01-Lesson 02_Deep Convolutional GANs/img/mat-headshot.png
184.3 kB
Part 10-Module 01-Lesson 03_Semi-Supervised Learning/img/mat-headshot.png
184.3 kB
Part 02-Module 01-Lesson 01_Model Evaluation and Validation/img/accuracy.png
183.6 kB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/img/2-card-21.png
180.1 kB
Part 02-Module 03-Lesson 01_MiniFlow/media/input-to-output-2.mp4
176.2 kB
Part 04-Module 02-Lesson 03_Deep Convolutional GANs/img/svhn-examples.png
174.0 kB
Part 10-Module 01-Lesson 02_Deep Convolutional GANs/img/svhn-examples.png
174.0 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-29-at-5.33.53-pm.png
173.7 kB
Part 01-Module 01-Lesson 03_Jupyter Notebooks/media/command+palette.mp4
173.2 kB
Part 06-Module 01-Lesson 04_Jupyter Notebooks/media/command+palette.mp4
173.2 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/img/screen-shot-2016-11-24-at-12.49.43-pm.png
169.6 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-06-at-2.09.07-pm.png
168.0 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-4.14.45-pm.png
167.8 kB
Part 02-Module 03-Lesson 01_MiniFlow/img/example-neural-network.png
167.0 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-3.49.24-pm.png
163.3 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/img/screen-shot-2017-12-17-at-9.41.03-am.png
162.0 kB
img/part-header-2.jpg
161.7 kB
Part 01-Module 01-Lesson 03_Jupyter Notebooks/img/magic-timeit.png
161.1 kB
Part 06-Module 01-Lesson 04_Jupyter Notebooks/img/magic-timeit.png
161.1 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/img/precision-recall.png
160.5 kB
Part 06-Module 01-Lesson 01_Welcome to Deep Learning/img/rnn.png
159.4 kB
Part 01-Module 01-Lesson 03_Jupyter Notebooks/img/server-shutdown.png
159.2 kB
Part 06-Module 01-Lesson 04_Jupyter Notebooks/img/server-shutdown.png
159.2 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/img/sensitivity-specificity.png
158.9 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/img/screen-shot-2017-09-21-at-3.08.03-pm.png
156.6 kB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/img/incremental.png
155.6 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/img/est-action.png
154.2 kB
Part 02-Module 04-Lesson 01_Cloud Computing/img/screen-shot-2017-11-26-at-10.30.15-am.png
148.6 kB
Part 08-Module 01-Lesson 01_Cloud Computing/img/screen-shot-2017-11-26-at-10.30.15-am.png
148.6 kB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/img/constant-alpha.png
147.1 kB
assets/css/bootstrap.min.css
140.9 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/img/roc-curves.png
140.6 kB
Part 02-Module 04-Lesson 01_Cloud Computing/img/screen-shot-2018-07-19-at-5.39.37-pm.png
134.2 kB
Part 08-Module 01-Lesson 01_Cloud Computing/img/screen-shot-2018-07-19-at-5.39.37-pm.png
134.2 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/img/sample-confusion-matrix.png
133.7 kB
Part 02-Module 04-Lesson 01_Cloud Computing/img/p2xlarge-limit-request.png
132.8 kB
Part 08-Module 01-Lesson 01_Cloud Computing/img/p2xlarge-limit-request.png
132.8 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-02-at-11.03.45-pm.png
132.5 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-10-27-at-6.29.49-pm.png
132.4 kB
Part 11-Module 01-Lesson 08_RL in Continuous Spaces/img/poker-hand-3-of-a-kind.png
131.7 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/img/filter-depth.png
130.8 kB
assets/js/plyr.polyfilled.min.js
129.2 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/img/improve.png
127.4 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/img/admissions-data.png
121.2 kB
Part 07-Module 01-Lesson 02_Implementing Gradient Descent/img/admissions-data.png
121.2 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/img/hq-perceptron.png
118.7 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/img/backgammonboard.svg.png
115.5 kB
Part 03-Module 02-Lesson 01_Embeddings and Word2vec/img/linear-relationships.png
115.0 kB
Part 09-Module 01-Lesson 05_Embeddings and Word2vec/img/linear-relationships.png
115.0 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-27-at-2.00.15-pm.png
112.9 kB
Part 01-Module 01-Lesson 03_Jupyter Notebooks/img/conda-tab.png
112.6 kB
Part 06-Module 01-Lesson 04_Jupyter Notebooks/img/conda-tab.png
112.6 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-03-at-11.36.39-pm.png
112.3 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-17-at-5.38.55-pm.png
110.6 kB
Part 02-Module 03-Lesson 01_MiniFlow/img/topological-sort.001.jpeg
109.8 kB
Part 02-Module 04-Lesson 01_Cloud Computing/img/amazonwebservices-logo.svg.png
109.7 kB
Part 08-Module 01-Lesson 01_Cloud Computing/img/amazonwebservices-logo.svg.png
109.7 kB
Part 02-Module 02-Lesson 03_Preparing for Siraj's Lesson/img/vector-dog-cat.png
109.1 kB
Part 01-Module 01-Lesson 03_Jupyter Notebooks/img/notebook-server.png
105.8 kB
Part 06-Module 01-Lesson 04_Jupyter Notebooks/img/notebook-server.png
105.8 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/img/article-2278590-1792e332000005dc-394-634x615.jpg
105.5 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-05-at-12.09.13-pm.png
105.1 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/img/legend.png
104.5 kB
Part 01-Module 01-Lesson 03_Jupyter Notebooks/img/new-notebook.png
104.2 kB
Part 06-Module 01-Lesson 04_Jupyter Notebooks/img/new-notebook.png
104.2 kB
Part 01-Module 01-Lesson 02_Anaconda/media/conda_enter.mp4
99.6 kB
Part 06-Module 01-Lesson 03_Anaconda/media/conda_enter.mp4
99.6 kB
Part 02-Module 01-Lesson 01_Model Evaluation and Validation/img/complexity.png
97.9 kB
Part 01-Module 01-Lesson 03_Jupyter Notebooks/img/notebook-json.png
97.6 kB
Part 06-Module 01-Lesson 04_Jupyter Notebooks/img/notebook-json.png
97.6 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-27-at-1.46.43-pm.png
97.2 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/img/xor-quiz.png
96.4 kB
Part 07-Module 01-Lesson 05_Keras/img/summary.png
96.0 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/img/perceptronquiz.png
95.9 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/img/hq-new-and-or-percep-fixed.png
94.8 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/img/example-data.png
94.3 kB
Part 07-Module 01-Lesson 02_Implementing Gradient Descent/img/example-data.png
94.3 kB
Part 01-Module 01-Lesson 03_Jupyter Notebooks/img/magic-matplotlib.png
92.9 kB
Part 06-Module 01-Lesson 04_Jupyter Notebooks/img/magic-matplotlib.png
92.9 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/img/regularization-quiz.png
90.0 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/img/tensorflow.png
87.3 kB
Part 07-Module 01-Lesson 06_TensorFlow/img/tensorflow.png
87.3 kB
assets/js/jquery-3.3.1.min.js
86.9 kB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/img/screen-shot-2017-10-05-at-3.55.40-pm.png
86.7 kB
Part 01-Module 01-Lesson 02_Anaconda/img/conda-install.png
83.1 kB
Part 06-Module 01-Lesson 03_Anaconda/img/conda-install.png
83.1 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-27-at-1.43.36-pm.png
82.8 kB
Part 01-Module 01-Lesson 03_Jupyter Notebooks/img/notebook-download.png
81.5 kB
Part 06-Module 01-Lesson 04_Jupyter Notebooks/img/notebook-download.png
81.5 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-02-at-10.29.14-pm.png
81.2 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/img/matrix-mult-3.png
80.9 kB
Part 07-Module 01-Lesson 02_Implementing Gradient Descent/img/matrix-mult-3.png
80.9 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/img/roc.png
80.9 kB
Part 11-Module 01-Lesson 03_The RL Framework The Solution/img/screen-shot-2017-09-25-at-6.02.37-pm.png
80.7 kB
Part 01-Module 01-Lesson 04_Applying Deep Learning/img/flappy-bird.jpg
78.1 kB
Part 06-Module 01-Lesson 02_Applying Deep Learning/img/flappy-bird.jpg
78.1 kB
Part 06-Module 01-Lesson 01_Welcome to Deep Learning/img/word-embeddings.jpg
76.9 kB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/img/screen-shot-2017-10-12-at-5.47.45-pm.png
75.4 kB
Part 11-Module 01-Lesson 09_Deep Q-Learning/img/enable-gpu.png
75.2 kB
Part 01-Module 01-Lesson 03_Jupyter Notebooks/img/nbconvert-example.png
75.1 kB
Part 06-Module 01-Lesson 04_Jupyter Notebooks/img/nbconvert-example.png
75.1 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/img/gradient-descent.png
73.7 kB
Part 07-Module 01-Lesson 02_Implementing Gradient Descent/img/gradient-descent.png
73.7 kB
Part 09-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/img/screen-shot-2017-11-16-at-5.54.40-pm.png
73.1 kB
Part 01-Module 01-Lesson 02_Anaconda/img/conda-create-env.png
72.5 kB
Part 06-Module 01-Lesson 03_Anaconda/img/conda-create-env.png
72.5 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/img/notebook.png
71.9 kB
assets/css/fonts/KaTeX_AMS-Regular.ttf
71.4 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-30-at-4.40.57-pm.png
71.3 kB
Part 01-Module 01-Lesson 04_Applying Deep Learning/img/grokking-deep-learning.jpg
71.2 kB
Part 06-Module 01-Lesson 02_Applying Deep Learning/img/grokking-deep-learning.jpg
71.2 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/img/and-table.png
70.8 kB
Part 02-Module 03-Lesson 01_MiniFlow/img/addition-graph.png
70.6 kB
Part 01-Module 01-Lesson 03_Jupyter Notebooks/img/magic-pdb.png
70.3 kB
Part 06-Module 01-Lesson 04_Jupyter Notebooks/img/magic-pdb.png
70.3 kB
Part 01-Module 02-Lesson 01_Regression/img/just-a-2d-reg.png
70.1 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-30-at-4.41.08-pm.png
70.1 kB
assets/css/fonts/KaTeX_Main-Regular.ttf
70.1 kB
Part 11-Module 01-Lesson 01_Introduction to RL/img/paper-notes.svg.png
69.0 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-4.17.19-pm.png
68.7 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-4.17.35-pm.png
68.4 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/img/example-after-bias.png
67.3 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-05-at-11.55.58-am.png
66.8 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/img/screen-shot-2016-11-24-at-12.50.54-pm.png
66.2 kB
Part 11-Module 01-Lesson 03_The RL Framework The Solution/img/screen-shot-2017-09-25-at-5.51.40-pm.png
66.1 kB
Part 01-Module 01-Lesson 02_Anaconda/img/conda-env-export.png
65.6 kB
Part 06-Module 01-Lesson 03_Anaconda/img/conda-env-export.png
65.6 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/img/convolution-schematic.gif
65.2 kB
Part 08-Module 01-Lesson 02_CNNs in TensorFlow/img/convolution-schematic.gif
65.2 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/img/convolution-schematic.gif
65.2 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/img/points.png
64.7 kB
Part 02-Module 03-Lesson 01_MiniFlow/img/pasted-image-at-2016-10-25-01-17-pm.png
64.3 kB
Part 02-Module 05-Lesson 01_Deep Neural Networks/img/dropout-node.jpeg
64.2 kB
Part 07-Module 01-Lesson 06_TensorFlow/img/dropout-node.jpeg
64.2 kB
Part 02-Module 02-Lesson 02_Intro to TFLearn/img/cross-entropy-diagram.png
64.2 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/img/cross-entropy-diagram.png
64.2 kB
Part 07-Module 01-Lesson 06_TensorFlow/img/cross-entropy-diagram.png
64.2 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2018-01-16-at-2.40.57-pm.png
64.1 kB
Part 01-Module 01-Lesson 03_Jupyter Notebooks/img/notebook-shutdown.png
63.8 kB
Part 06-Module 01-Lesson 04_Jupyter Notebooks/img/notebook-shutdown.png
63.8 kB
Part 01-Module 01-Lesson 03_Jupyter Notebooks/img/slides-cell-toolbar-menu.png
62.8 kB
Part 06-Module 01-Lesson 04_Jupyter Notebooks/img/slides-cell-toolbar-menu.png
62.8 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-11.42.56-am.png
62.7 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-01-at-1.48.59-pm.png
62.5 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-11.50.40-am.png
62.5 kB
assets/css/fonts/KaTeX_Main-Bold.ttf
61.7 kB
Part 06-Module 01-Lesson 01_Welcome to Deep Learning/img/convolutional-neural-networks-2.jpg
61.1 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/img/network-with-labeled-weights.png
60.9 kB
Part 07-Module 01-Lesson 02_Implementing Gradient Descent/img/network-with-labeled-weights.png
60.9 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-11.37.27-am.png
60.5 kB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/img/screen-shot-2017-10-04-at-2.46.11-pm.png
60.4 kB
Part 03-Module 02-Lesson 03_Q&A with FloydHub Founders/01. Floyd QA-KUc59DPfBeo.en-US.vtt
60.4 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-4.10.56-pm.png
60.1 kB
Part 02-Module 02-Lesson 02_Intro to TFLearn/img/sigmoids.png
59.6 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/img/sigmoids.png
59.6 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-3.45.50-pm.png
59.3 kB
Part 02-Module 03-Lesson 01_MiniFlow/img/w1-backprop-graph.png
58.7 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/img/screen-shot-2016-11-24-at-12.49.08-pm.png
58.7 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-27-at-2.44.11-pm.png
58.2 kB
Part 11-Module 01-Lesson 06_Temporal-Difference Methods/img/screen-shot-2017-10-17-at-11.02.44-am.png
57.9 kB
Part 01-Module 01-Lesson 03_Jupyter Notebooks/img/magic-timeit2.png
57.5 kB
Part 06-Module 01-Lesson 04_Jupyter Notebooks/img/magic-timeit2.png
57.5 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/img/screen-shot-2017-09-21-at-3.25.10-pm.png
56.9 kB
Part 01-Module 03-Lesson 03_Your first neural network/media/Screen+Shot+2017-01-27+at+11.38.54+AM.png
56.4 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/img/derivative-example.png
56.4 kB
Part 07-Module 01-Lesson 02_Implementing Gradient Descent/img/derivative-example.png
56.4 kB
Part 02-Module 02-Lesson 03_Preparing for Siraj's Lesson/img/vect-add-sub.png
55.9 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-4.08.59-pm.png
55.5 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/img/notmnist.png
55.5 kB
Part 07-Module 01-Lesson 06_TensorFlow/img/notmnist.png
55.5 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-3.44.15-pm.png
55.4 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/img/heirarchy-diagram.jpg
54.9 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-02-at-11.06.19-pm.png
54.7 kB
Part 01-Module 01-Lesson 03_Jupyter Notebooks/img/slides-choose-slide-type.png
54.6 kB
Part 06-Module 01-Lesson 04_Jupyter Notebooks/img/slides-choose-slide-type.png
54.6 kB
Part 11-Module 01-Lesson 03_The RL Framework The Solution/img/screen-shot-2017-09-25-at-9.18.00-pm.png
53.7 kB
Part 02-Module 02-Lesson 02_Intro to TFLearn/img/softmax-input-output.png
53.7 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/img/softmax-input-output.png
53.7 kB
Part 07-Module 01-Lesson 06_TensorFlow/img/softmax-input-output.png
53.7 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/img/screen-shot-2017-09-21-at-3.46.12-pm.png
53.5 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/img/network-with-labeled-nodes.png
53.2 kB
Part 07-Module 01-Lesson 02_Implementing Gradient Descent/img/network-with-labeled-nodes.png
53.2 kB
Part 01-Module 03-Lesson 01_Matrix Math and NumPy Refresher/img/input-times-weights.png
53.1 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/img/input-times-weights.png
53.1 kB
Part 06-Module 01-Lesson 05_Matrix Math and NumPy Refresher/img/input-times-weights.png
53.1 kB
Part 07-Module 01-Lesson 02_Implementing Gradient Descent/img/input-times-weights.png
53.1 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-27-at-3.48.31-pm.png
52.9 kB
Part 02-Module 03-Lesson 01_MiniFlow/img/w2-backprop-graph.png
51.3 kB
assets/js/bootstrap.min.js
51.0 kB
Part 07-Module 01-Lesson 05_Keras/img/data.png
50.7 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-06-at-4.12.59-pm.png
50.4 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/img/simple-neuron.png
50.3 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-02-at-10.58.26-pm.png
50.0 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/img/multilayer-diagram-weights.png
49.7 kB
Part 07-Module 01-Lesson 02_Implementing Gradient Descent/img/multilayer-diagram-weights.png
49.7 kB
Part 03-Module 02-Lesson 03_Q&A with FloydHub Founders/01. Floyd QA-KUc59DPfBeo.pt-BR.vtt
49.6 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-4.07.21-pm.png
49.3 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-3.42.29-pm.png
49.0 kB
Part 02-Module 04-Lesson 01_Cloud Computing/img/stop.png
48.7 kB
Part 08-Module 01-Lesson 01_Cloud Computing/img/stop.png
48.7 kB
Part 11-Module 01-Lesson 07_Solve OpenAI Gym's Taxi-v2 Task/img/screen-shot-2018-04-14-at-3.13.15-pm.png
48.2 kB
assets/css/fonts/KaTeX_Main-Italic.ttf
48.0 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/img/sample-roc-curve.png
47.4 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/img/layer-1-grid.png
46.8 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/img/layer-1-grid.png
46.8 kB
Part 09-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/img/screen-shot-2017-11-16-at-4.31.41-pm.png
46.0 kB
assets/js/jquery.mCustomScrollbar.concat.min.js
45.5 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-02-at-10.46.12-pm.png
45.0 kB
assets/css/fonts/KaTeX_Main-BoldItalic.ttf
44.8 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-4.21.41-pm.png
44.2 kB
Part 02-Module 03-Lesson 01_MiniFlow/img/neuron.png
44.0 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-3.38.11-pm.png
43.8 kB
Part 02-Module 03-Lesson 01_MiniFlow/img/two-layer-graph.png
43.8 kB
Part 06-Module 01-Lesson 01_Welcome to Deep Learning/img/faces.png
43.8 kB
assets/css/jquery.mCustomScrollbar.min.css
42.8 kB
Part 02-Module 04-Lesson 01_Cloud Computing/img/aws-add-sec-group.png
42.7 kB
Part 08-Module 01-Lesson 01_Cloud Computing/img/aws-add-sec-group.png
42.7 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-3.54.17-pm.png
42.7 kB
Part 09-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/img/screen-shot-2017-11-16-at-4.26.22-pm.png
42.2 kB
Part 02-Module 02-Lesson 02_Intro to TFLearn/img/screen-shot-2017-02-02-at-10.00.16-pm.png
41.6 kB
assets/css/fonts/KaTeX_Math-Italic.ttf
41.4 kB
Part 01-Module 01-Lesson 03_Jupyter Notebooks/img/conda-environments.png
41.1 kB
Part 06-Module 01-Lesson 04_Jupyter Notebooks/img/conda-environments.png
41.1 kB
assets/css/fonts/KaTeX_AMS-Regular.woff
40.2 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-09-at-6.01.16-pm.png
40.1 kB
assets/css/fonts/KaTeX_Math-BoldItalic.ttf
39.7 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/img/hq-new-xor-table.png
39.5 kB
assets/css/fonts/KaTeX_Main-Regular.woff
39.4 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/img/local-minima.png
39.0 kB
Part 07-Module 01-Lesson 02_Implementing Gradient Descent/img/local-minima.png
39.0 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/img/maxpool.jpeg
38.0 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/img/maxpool.jpeg
38.0 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-01-at-3.38.43-pm.png
37.9 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/img/example-before-bias.png
37.8 kB
assets/css/fonts/KaTeX_Main-Bold.woff
36.8 kB
Part 02-Module 03-Lesson 01_MiniFlow/12. Backpropagation.html
36.5 kB
assets/css/fonts/KaTeX_Typewriter-Regular.ttf
36.3 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/img/grid-layer-1.png
36.1 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/img/grid-layer-1.png
36.1 kB
assets/css/fonts/KaTeX_Fraktur-Bold.ttf
36.0 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-09-at-3.53.12-pm.png
35.9 kB
assets/css/fonts/KaTeX_Fraktur-Regular.ttf
34.7 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-01-at-4.47.47-pm.png
34.1 kB
Part 02-Module 04-Lesson 01_Cloud Computing/img/screen-shot-2018-01-08-at-5.37.22-am.png
34.0 kB
Part 08-Module 01-Lesson 01_Cloud Computing/img/screen-shot-2018-01-08-at-5.37.22-am.png
34.0 kB
assets/css/fonts/KaTeX_SansSerif-Bold.ttf
34.0 kB
Part 02-Module 02-Lesson 02_Intro to TFLearn/img/relu.png
33.9 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/img/relu.png
33.9 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-05-at-12.16.55-pm.png
33.3 kB
assets/css/fonts/KaTeX_AMS-Regular.woff2
33.2 kB
assets/css/fonts/KaTeX_Main-Regular.woff2
32.9 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/img/roc-curve.png
32.2 kB
Part 02-Module 05-Lesson 01_Deep Neural Networks/img/relu-network.png
31.8 kB
Part 07-Module 01-Lesson 06_TensorFlow/img/relu-network.png
31.8 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/img/session.png
31.6 kB
Part 07-Module 01-Lesson 06_TensorFlow/img/session.png
31.6 kB
assets/css/fonts/KaTeX_SansSerif-Italic.ttf
31.3 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2018-02-21-at-3.10.10-pm.png
31.1 kB
Part 01-Module 01-Lesson 03_Jupyter Notebooks/img/notebook-components.png
31.0 kB
Part 06-Module 01-Lesson 04_Jupyter Notebooks/img/notebook-components.png
31.0 kB
assets/css/fonts/KaTeX_Main-Bold.woff2
30.6 kB
assets/css/fonts/KaTeX_SansSerif-Regular.ttf
30.2 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/img/pooling-dims.png
29.9 kB
Part 01-Module 02-Lesson 01_Regression/img/lin-reg-no-outliers.png
29.3 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/img/conv-dims.png
29.2 kB
Part 09-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/img/screen-shot-2017-11-16-at-4.27.58-pm.png
28.4 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/img/sigmoid.png
28.4 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/img/06-l-supervised-classification-391-1.jpg
28.3 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/img/screen-shot-2017-09-20-at-12.02.06-pm.png
28.3 kB
Part 01-Module 02-Lesson 01_Regression/img/lin-reg-w-outliers.png
28.2 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/13. Implementing Gradient Descent.html
27.9 kB
Part 02-Module 02-Lesson 02_Intro to TFLearn/img/softmax.png
27.7 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/img/softmax.png
27.7 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-05-at-12.04.21-am.png
27.7 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/img/screen-shot-2017-09-21-at-4.34.08-pm.png
27.5 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/25. Quiz Mini-batch.html
27.4 kB
assets/css/fonts/KaTeX_Main-Italic.woff
27.2 kB
Part 03-Module 01-Lesson 03_Hyperparameters/img/f3iwvmld-400x400.jpg
27.1 kB
Part 04-Module 02-Lesson 02_Hyperparameters/img/f3iwvmld-400x400.jpg
27.1 kB
Part 09-Module 01-Lesson 04_Hyperparameters/img/f3iwvmld-400x400.jpg
27.1 kB
Part 07-Module 01-Lesson 02_Implementing Gradient Descent/05. Implementing Gradient Descent.html
27.0 kB
Part 02-Module 03-Lesson 01_MiniFlow/img/gradient-descent-convergence.gif
27.0 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/img/heaviside-step-graph-2.png
26.9 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-11.54.48-pm.png
26.8 kB
Part 01-Module 02-Lesson 01_Regression/img/just-a-simple-lin-reg.png
26.6 kB
assets/css/fonts/KaTeX_Main-BoldItalic.woff
26.2 kB
Part 02-Module 03-Lesson 01_MiniFlow/img/gradient-descent-divergence.gif
26.2 kB
Part 07-Module 01-Lesson 06_TensorFlow/07. Quiz Mini-batch.html
26.1 kB
Part 11-Module 01-Lesson 03_The RL Framework The Solution/img/screen-shot-2017-09-25-at-11.35.38-am.png
25.8 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/img/max-pooling.png
25.8 kB
Part 08-Module 01-Lesson 02_CNNs in TensorFlow/img/max-pooling.png
25.8 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2018-02-21-at-3.02.16-pm.png
25.8 kB
Part 03-Module 08-Lesson 02_Autoencoders/img/autoencoder-1.png
25.3 kB
Part 08-Module 01-Lesson 05_Autoencoders/img/autoencoder-1.png
25.3 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/img/weights-0-1-2.png
25.2 kB
Part 07-Module 01-Lesson 06_TensorFlow/img/weights-0-1-2.png
25.2 kB
Part 02-Module 03-Lesson 01_MiniFlow/img/tensorflow-825x510.png
25.1 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/img/screen-shot-2016-11-24-at-12.51.47-pm.png
24.9 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2018-02-21-at-3.05.00-pm.png
24.9 kB
assets/css/fonts/KaTeX_Script-Regular.ttf
24.9 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-4.02.19-pm.png
24.8 kB
Part 02-Module 03-Lesson 01_MiniFlow/13. Stochastic Gradient Descent.html
24.4 kB
assets/css/plyr.css
24.2 kB
Part 01-Module 02-Lesson 01_Regression/img/quadraticlinearregression.png
24.1 kB
assets/css/fonts/KaTeX_Math-Italic.woff
23.8 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-01-at-5.14.13-pm.png
23.8 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/10. Quiz TensorFlow Linear Function.html
23.4 kB
assets/css/fonts/KaTeX_Fraktur-Bold.woff
23.4 kB
assets/css/fonts/KaTeX_Math-BoldItalic.woff
23.2 kB
Part 02-Module 05-Lesson 03_Siraj's Image Classification/02. How to Make an Image Classifier - Intro to Deep Learning #6-cAICT4Al5Ow.ru.vtt
23.1 kB
Part 02-Module 04-Lesson 01_Cloud Computing/img/launch-instance.png
23.1 kB
Part 08-Module 01-Lesson 01_Cloud Computing/img/launch-instance.png
23.1 kB
assets/css/fonts/KaTeX_Main-Italic.woff2
23.1 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-01-at-11.43.26-am.png
23.1 kB
Part 03-Module 06-Lesson 01_Sequence to Sequence/img/sequence-to-sequence-unrolled-encoder-decoder.png
23.0 kB
Part 06-Module 01-Lesson 01_Welcome to Deep Learning/img/sequence-to-sequence-unrolled-encoder-decoder.png
23.0 kB
Part 01-Module 01-Lesson 01_Welcome/img/view.png
22.9 kB
assets/css/fonts/KaTeX_Fraktur-Regular.woff
22.8 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/16. Implementing Backpropagation.html
22.5 kB
Part 03-Module 06-Lesson 01_Sequence to Sequence/img/sequence-to-sequence-embedding-encoder-decoder.png
22.5 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/img/screen-shot-2016-11-24-at-10.05.46-pm.png
22.5 kB
assets/css/fonts/KaTeX_Main-BoldItalic.woff2
22.2 kB
Part 07-Module 01-Lesson 06_TensorFlow/04. Quiz TensorFlow Linear Function.html
22.1 kB
assets/css/katex.min.css
22.1 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/14. Multilayer Perceptrons.html
22.0 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/05. Perceptron.html
21.9 kB
Part 07-Module 01-Lesson 02_Implementing Gradient Descent/08. Implementing Backpropagation.html
21.7 kB
Part 07-Module 01-Lesson 02_Implementing Gradient Descent/06. Multilayer Perceptrons.html
21.2 kB
Part 07-Module 01-Lesson 05_Keras/img/student-acceptance.png
21.0 kB
assets/css/fonts/KaTeX_Typewriter-Regular.woff
20.9 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/img/mnist-012.png
20.7 kB
Part 07-Module 01-Lesson 06_TensorFlow/img/mnist-012.png
20.7 kB
assets/css/fonts/KaTeX_Fraktur-Bold.woff2
20.5 kB
assets/css/fonts/KaTeX_Math-Italic.woff2
20.4 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/15. Backpropagation.html
20.4 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-11.51.54-pm.png
20.3 kB
Part 04-Module 02-Lesson 05_Semi-Supervised Learning/06. Model Loss Exercise-W7TawMNxBds.pt-BR.vtt
20.3 kB
Part 10-Module 01-Lesson 03_Semi-Supervised Learning/06. Model Loss Exercise-W7TawMNxBds.pt-BR.vtt
20.3 kB
assets/css/fonts/KaTeX_Math-BoldItalic.woff2
20.0 kB
assets/css/fonts/KaTeX_Fraktur-Regular.woff2
19.9 kB
Part 02-Module 03-Lesson 01_MiniFlow/14. SGD Solution.html
19.8 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/29. Mini Project Dermatologist AI.html
19.7 kB
assets/css/fonts/KaTeX_Caligraphic-Bold.ttf
19.6 kB
Part 02-Module 03-Lesson 01_MiniFlow/07. Linear Transform.html
19.5 kB
Part 07-Module 01-Lesson 02_Implementing Gradient Descent/07. Backpropagation.html
19.5 kB
Part 03-Module 01-Lesson 02_Siraj's Stock Prediction/01. How to Predict Stock Prices Easily - Intro to Deep Learning #7-ftMq5ps503w.en.vtt
19.3 kB
assets/css/fonts/KaTeX_SansSerif-Bold.woff
19.2 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/09. Perceptrons as Logical Operators.html
19.1 kB
assets/css/fonts/KaTeX_Caligraphic-Regular.ttf
19.0 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/12. Mini Project 3 Solution-imnxzCev4SI.en.vtt
18.9 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/13. Mini Project 3 Solution-imnxzCev4SI.en.vtt
18.9 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/25. Transfer Learning.html
18.9 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/30. Convolutional Network in TensorFlow.html
18.9 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/10. Backpropagation- Example (part b).html
18.8 kB
Part 04-Module 01-Lesson 02_Siraj's Video Generation/01. How to Generate Video - Intro to Deep Learning #15--E2N1kQc8MM.en.vtt
18.5 kB
Part 03-Module 04-Lesson 01_Siraj's Text Summarization/01. How to Make a Text Summarizer - Intro to Deep Learning #10-ogrJaOIuBx4.en.vtt
18.3 kB
Part 03-Module 03-Lesson 02_Siraj's Music Generation/02. How to Succeed in any Programming Interview-5KB5KAak6tM.ru.vtt
18.2 kB
assets/css/fonts/KaTeX_SansSerif-Italic.woff
18.1 kB
Part 03-Module 04-Lesson 03_Sentiment Prediction RNN/07. Sentiment RNN 2-V9YGGjmoHS0.en.vtt
18.1 kB
Part 09-Module 01-Lesson 06_Sentiment Prediction RNN/07. Sentiment RNN 2-V9YGGjmoHS0.en.vtt
18.1 kB
Part 04-Module 02-Lesson 05_Semi-Supervised Learning/07. Model Optimization Exercise-wNpI1wUA4Io.pt-BR.vtt
18.0 kB
Part 10-Module 01-Lesson 03_Semi-Supervised Learning/07. Model Optimization Exercise-wNpI1wUA4Io.pt-BR.vtt
18.0 kB
Part 02-Module 03-Lesson 01_MiniFlow/09. Cost.html
17.9 kB
Part 03-Module 03-Lesson 02_Siraj's Music Generation/02. How to Succeed in any Programming Interview-5KB5KAak6tM.ko.vtt
17.9 kB
Part 02-Module 02-Lesson 02_Intro to TFLearn/img/mnist-matrix.png
17.8 kB
Part 03-Module 04-Lesson 01_Siraj's Text Summarization/01. How to Make a Text Summarizer - Intro to Deep Learning #10-ogrJaOIuBx4.pt-BR.vtt
17.7 kB
Part 03-Module 02-Lesson 01_Embeddings and Word2vec/02. Implementing Word2Vec-7M431_f9HgE.pt-BR.vtt
17.6 kB
Part 09-Module 01-Lesson 05_Embeddings and Word2vec/02. Implementing Word2Vec-7M431_f9HgE.pt-BR.vtt
17.6 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/18. Backpropagation Through Time (part b).html
17.6 kB
Part 03-Module 07-Lesson 02_Siraj's Reinforcement Learning/01. How to Win Slot Machines - Intro to Deep Learning #13-AIeWLTUYLZQ.en.vtt
17.6 kB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/15. Exploration vs. Exploitation.html
17.6 kB
Part 02-Module 05-Lesson 01_Deep Neural Networks/img/two-layer-network.png
17.6 kB
assets/css/fonts/KaTeX_Typewriter-Regular.woff2
17.5 kB
Part 02-Module 03-Lesson 01_MiniFlow/08. Sigmoid Function.html
17.4 kB
Part 03-Module 04-Lesson 01_Siraj's Text Summarization/01. How to Make a Text Summarizer - Intro to Deep Learning #10-ogrJaOIuBx4.fi.vtt
17.3 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-11.48.08-pm.png
17.3 kB
Part 03-Module 02-Lesson 01_Embeddings and Word2vec/02. Implementing Word2Vec-7M431_f9HgE.en.vtt
17.3 kB
Part 09-Module 01-Lesson 05_Embeddings and Word2vec/02. Implementing Word2Vec-7M431_f9HgE.en.vtt
17.3 kB
Part 03-Module 06-Lesson 02_Siraj's Chatbot/01. How to Make a Chatbot - Intro to Deep Learning #12-t5qgjJIBy9g.en.vtt
17.2 kB
Part 02-Module 02-Lesson 03_Preparing for Siraj's Lesson/img/ascii-alphabet.png
17.2 kB
Part 03-Module 08-Lesson 01_Siraj's Image Generation/01. How to Generate Images - Intro to Deep Learning #14-3-UDwk1U77s.en.vtt
16.9 kB
assets/css/fonts/KaTeX_SansSerif-Regular.woff
16.8 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/11. ReLU and Softmax Activation Functions.html
16.6 kB
Part 06-Module 01-Lesson 01_Welcome to Deep Learning/06. Deadline Policy.html
16.5 kB
Part 01-Module 01-Lesson 01_Welcome/07. Deadline Policy.html
16.4 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/12. Mini Project 3 Solution-imnxzCev4SI.zh-CN.vtt
16.2 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/13. Mini Project 3 Solution-imnxzCev4SI.zh-CN.vtt
16.2 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/12. Mini Project 3 Solution-imnxzCev4SI.pt-BR.vtt
16.2 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/13. Mini Project 3 Solution-imnxzCev4SI.pt-BR.vtt
16.2 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/24. Gradient Descent.html
16.2 kB
Part 03-Module 04-Lesson 03_Sentiment Prediction RNN/07. Sentiment RNN 2-V9YGGjmoHS0.pt-BR.vtt
16.1 kB
Part 09-Module 01-Lesson 06_Sentiment Prediction RNN/07. Sentiment RNN 2-V9YGGjmoHS0.pt-BR.vtt
16.1 kB
Part 02-Module 04-Lesson 01_Cloud Computing/img/review-and-launch.png
16.1 kB
Part 08-Module 01-Lesson 01_Cloud Computing/img/review-and-launch.png
16.1 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/14. Quiz Dimensionality.html
16.1 kB
Part 01-Module 02-Lesson 01_Regression/03. Siraj's Intro to Deep Learning - How to Make a Prediction-QN1ZwKszguE.en.vtt
16.0 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/13. Understanding Neural Noise-ubqhh4Iv7O4.en.vtt
16.0 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/14. Understanding Neural Noise-ubqhh4Iv7O4.en.vtt
16.0 kB
Part 03-Module 06-Lesson 01_Sequence to Sequence/08. Inputs.html
16.0 kB
assets/css/fonts/KaTeX_SansSerif-Bold.woff2
16.0 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/11. Perceptron Algorithm.html
15.9 kB
Part 01-Module 02-Lesson 01_Regression/04. Linear Regression.html
15.8 kB
Part 07-Module 01-Lesson 05_Keras/02. Keras.html
15.7 kB
Part 04-Module 02-Lesson 01_Siraj's One-Shot Learning/01. How to Learn from Little Data - Intro to Deep Learning #17-tChcZpBbTTA.en.vtt
15.6 kB
Part 04-Module 02-Lesson 05_Semi-Supervised Learning/05. Building The Generator And Discriminator-OWytckbbeGQ.en.vtt
15.5 kB
Part 10-Module 01-Lesson 03_Semi-Supervised Learning/05. Building The Generator And Discriminator-OWytckbbeGQ.en.vtt
15.5 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/16. Visualizing CNNs.html
15.5 kB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/19. MC Control Constant-alpha, Part 2.html
15.5 kB
assets/css/fonts/KaTeX_SansSerif-Italic.woff2
15.2 kB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/22. Summary.html
15.2 kB
Part 07-Module 01-Lesson 06_TensorFlow/14. Save and Restore TensorFlow Models.html
15.2 kB
Part 02-Module 05-Lesson 03_Siraj's Image Classification/02. How to Make an Image Classifier - Intro to Deep Learning #6-cAICT4Al5Ow.pt.vtt
15.1 kB
Part 02-Module 03-Lesson 01_MiniFlow/04. Forward Propagation.html
15.1 kB
Part 03-Module 02-Lesson 02_Siraj's Style Transfer/01. How to Generate Art - Intro to Deep Learning #8-Oex0eWoU7AQ.en.vtt
15.1 kB
Part 03-Module 04-Lesson 03_Sentiment Prediction RNN/07. Sentiment RNN 2-V9YGGjmoHS0.zh-CN.vtt
15.1 kB
Part 09-Module 01-Lesson 06_Sentiment Prediction RNN/07. Sentiment RNN 2-V9YGGjmoHS0.zh-CN.vtt
15.1 kB
Part 04-Module 02-Lesson 05_Semi-Supervised Learning/05. Building The Generator And Discriminator-OWytckbbeGQ.pt-BR.vtt
14.9 kB
Part 10-Module 01-Lesson 03_Semi-Supervised Learning/05. Building The Generator And Discriminator-OWytckbbeGQ.pt-BR.vtt
14.9 kB
Part 03-Module 03-Lesson 02_Siraj's Music Generation/01. How to Generate Music - Intro to Deep Learning #9-4DMm5Lhey1U.en.vtt
14.9 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/26. Epochs.html
14.8 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/06. The Feedforward Process.html
14.8 kB
Part 02-Module 05-Lesson 01_Deep Neural Networks/06. Save and Restore TensorFlow Models.html
14.8 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/09. Backpropagation - Example (part a).html
14.8 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/24. Refresh on Confusion Matrices.html
14.7 kB
Part 02-Module 05-Lesson 03_Siraj's Image Classification/02. How to Make an Image Classifier - Intro to Deep Learning #6-cAICT4Al5Ow.en.vtt
14.6 kB
Part 03-Module 02-Lesson 01_Embeddings and Word2vec/02. Implementing Word2Vec-7M431_f9HgE.zh-CN.vtt
14.6 kB
Part 09-Module 01-Lesson 05_Embeddings and Word2vec/02. Implementing Word2Vec-7M431_f9HgE.zh-CN.vtt
14.6 kB
Part 11-Module 01-Lesson 09_Deep Q-Learning/10. DQN Improvements-Zfdbp93A2GU.pt-BR.vtt
14.5 kB
Part 03-Module 08-Lesson 02_Autoencoders/05. Convolutional Autoencoders-18SZVRaumGs.en.vtt
14.5 kB
Part 08-Module 01-Lesson 05_Autoencoders/05. Convolutional Autoencoders-18SZVRaumGs.en.vtt
14.5 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-12.42.42-pm.png
14.5 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/06. Filters.html
14.5 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/16. Quiz One-Step Dynamics, Part 2.html
14.4 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/24. Visualizing CNNs (Part 2).html
14.4 kB
Part 02-Module 02-Lesson 02_Intro to TFLearn/02. ReLU and Softmax Activation Functions.html
14.4 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/20. Mini Project 6 Solution-ji0famK7gOQ.en.vtt
14.3 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/21. Mini Project 6 Solution-ji0famK7gOQ.en.vtt
14.3 kB
Part 03-Module 04-Lesson 03_Sentiment Prediction RNN/05. Building The RNN 1-XTD6slf64fM.en.vtt
14.2 kB
Part 09-Module 01-Lesson 06_Sentiment Prediction RNN/05. Building The RNN 1-XTD6slf64fM.en.vtt
14.2 kB
Part 03-Module 08-Lesson 02_Autoencoders/05. Convolutional Autoencoders-18SZVRaumGs.pt-BR.vtt
14.2 kB
Part 08-Module 01-Lesson 05_Autoencoders/05. Convolutional Autoencoders-18SZVRaumGs.pt-BR.vtt
14.2 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/19. Backpropagation Through Time (part c).html
14.1 kB
Part 04-Module 02-Lesson 05_Semi-Supervised Learning/05. Building The Generator And Discriminator-OWytckbbeGQ.zh-CN.vtt
14.1 kB
Part 10-Module 01-Lesson 03_Semi-Supervised Learning/05. Building The Generator And Discriminator-OWytckbbeGQ.zh-CN.vtt
14.1 kB
Part 07-Module 01-Lesson 06_TensorFlow/16. Quiz TensorFlow Dropout.html
14.0 kB
Part 03-Module 05-Lesson 02_Siraj's Language Translation/01. How to Make a Language Translator - Intro to Deep Learning #11-nRBnh4qbPHI.en.vtt
14.0 kB
assets/css/fonts/KaTeX_SansSerif-Regular.woff2
14.0 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/13. Understanding Neural Noise-ubqhh4Iv7O4.pt-BR.vtt
14.0 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/14. Understanding Neural Noise-ubqhh4Iv7O4.pt-BR.vtt
14.0 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/21. Analysis What's Going on in the Weights-UHsT35pbpcE.en.vtt
14.0 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/22. Analysis What's Going on in the Weights-UHsT35pbpcE.en.vtt
14.0 kB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/14. Quiz Epsilon-Greedy Policies.html
13.9 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/27. Summary.html
13.9 kB
Part 03-Module 03-Lesson 01_TensorBoard/04. TensorBoard Variables 1-QG41p4Wx5wc.en.vtt
13.9 kB
assets/css/fonts/KaTeX_Script-Regular.woff
13.9 kB
Part 04-Module 02-Lesson 01_Siraj's One-Shot Learning/01. How to Learn from Little Data - Intro to Deep Learning #17-tChcZpBbTTA.nl.vtt
13.8 kB
Part 02-Module 04-Lesson 01_Cloud Computing/img/aws-create-account.png
13.8 kB
Part 08-Module 01-Lesson 01_Cloud Computing/img/aws-create-account.png
13.8 kB
Part 01-Module 02-Lesson 01_Regression/03. Siraj's Intro to Deep Learning - How to Make a Prediction-QN1ZwKszguE.pt.vtt
13.8 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/05. Intuition.html
13.8 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/13. Understanding Neural Noise-ubqhh4Iv7O4.zh-CN.vtt
13.8 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/14. Understanding Neural Noise-ubqhh4Iv7O4.zh-CN.vtt
13.8 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/09. Parameters.html
13.7 kB
Part 02-Module 05-Lesson 01_Deep Neural Networks/13. Quiz TensorFlow Dropout.html
13.6 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/23. Some more math.html
13.6 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/24. RNN Summary.html
13.6 kB
Part 07-Module 01-Lesson 06_TensorFlow/08. Epochs.html
13.6 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/10. Gradient Descent.html
13.5 kB
Part 01-Module 03-Lesson 01_Matrix Math and NumPy Refresher/03. Data in NumPy.html
13.5 kB
Part 06-Module 01-Lesson 05_Matrix Math and NumPy Refresher/03. Data in NumPy.html
13.5 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/09. The Simplest Neural Network.html
13.4 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/img/backprop-network.png
13.4 kB
Part 07-Module 01-Lesson 02_Implementing Gradient Descent/img/backprop-network.png
13.4 kB
Part 02-Module 03-Lesson 01_MiniFlow/06. Learning and Loss.html
13.4 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/06. An Iterative Method, Part 2.html
13.4 kB
Part 02-Module 03-Lesson 01_MiniFlow/05. Forward Propagation Solution.html
13.3 kB
Part 03-Module 08-Lesson 02_Autoencoders/03. A-Simple-Autoencoders 21718-lXGdkCT8E1c.en.vtt
13.3 kB
Part 08-Module 01-Lesson 05_Autoencoders/03. A-Simple-Autoencoders 21718-lXGdkCT8E1c.en.vtt
13.3 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/img/screen-shot-2017-10-02-at-10.41.44-am.png
13.2 kB
assets/css/fonts/KaTeX_Size1-Regular.ttf
13.2 kB
Part 02-Module 04-Lesson 01_Cloud Computing/img/edit-security-group.png
13.1 kB
Part 08-Module 01-Lesson 01_Cloud Computing/img/edit-security-group.png
13.1 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/img/screen-shot-2016-11-24-at-10.05.37-pm.png
13.1 kB
Part 03-Module 04-Lesson 04_Generate TV Scripts/Project Rubric - Generate TV Scripts.html
13.0 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/02. Applications of CNNs.html
13.0 kB
Part 03-Module 03-Lesson 01_TensorBoard/04. TensorBoard Variables 1-QG41p4Wx5wc.zh-CN.vtt
12.9 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/32. Neural Network Architecture.html
12.9 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/21. Analysis What's Going on in the Weights-UHsT35pbpcE.pt-BR.vtt
12.9 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/22. Analysis What's Going on in the Weights-UHsT35pbpcE.pt-BR.vtt
12.9 kB
Part 08-Module 01-Lesson 02_CNNs in TensorFlow/07. CNNs in TensorFlow.html
12.8 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/05. GANs Architecture -gaEs7ccZv_Q.pt-BR.vtt
12.8 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/05. GANs Architecture -gaEs7ccZv_Q.pt-BR.vtt
12.8 kB
Part 06-Module 01-Lesson 01_Welcome to Deep Learning/04. Program Structure.html
12.8 kB
Part 04-Module 02-Lesson 05_Semi-Supervised Learning/06. Model Loss Exercise-W7TawMNxBds.en.vtt
12.8 kB
Part 10-Module 01-Lesson 03_Semi-Supervised Learning/06. Model Loss Exercise-W7TawMNxBds.en.vtt
12.8 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/09. Implementation.html
12.8 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/17. Backpropagation Through Time (part a).html
12.8 kB
Part 07-Module 01-Lesson 02_Implementing Gradient Descent/02. Gradient Descent.html
12.7 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/img/screen-shot-2016-11-24-at-12.51.51-pm.png
12.6 kB
Part 03-Module 04-Lesson 03_Sentiment Prediction RNN/05. Building The RNN 1-XTD6slf64fM.pt-BR.vtt
12.6 kB
Part 09-Module 01-Lesson 06_Sentiment Prediction RNN/05. Building The RNN 1-XTD6slf64fM.pt-BR.vtt
12.6 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/16. Softmax.html
12.6 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/13. RNN (part b).html
12.5 kB
Part 02-Module 04-Lesson 01_Cloud Computing/05. Launch an Instance.html
12.5 kB
Part 08-Module 01-Lesson 01_Cloud Computing/05. Launch an Instance.html
12.5 kB
Part 11-Module 01-Lesson 03_The RL Framework The Solution/12. Quiz Optimal Policies.html
12.5 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/17. CNNs For Image Classification-l9vg_1YUlzg.pt-BR.vtt
12.5 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/34. Backpropagation.html
12.5 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/20. Mini Project 6 Solution-ji0famK7gOQ.pt-BR.vtt
12.5 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/21. Mini Project 6 Solution-ji0famK7gOQ.pt-BR.vtt
12.5 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/27. Lab TensorFlow Neural Network.html
12.4 kB
Part 11-Module 01-Lesson 09_Deep Q-Learning/10. DQN Improvements-Zfdbp93A2GU.en.vtt
12.4 kB
assets/css/fonts/KaTeX_Size2-Regular.ttf
12.4 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/20. Mini Project 6 Solution-ji0famK7gOQ.zh-CN.vtt
12.4 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/21. Mini Project 6 Solution-ji0famK7gOQ.zh-CN.vtt
12.4 kB
Part 03-Module 03-Lesson 02_Siraj's Music Generation/02. How to Succeed in any Programming Interview-5KB5KAak6tM.en.vtt
12.4 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/21. Analysis What's Going on in the Weights-UHsT35pbpcE.zh-CN.vtt
12.4 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/22. Analysis What's Going on in the Weights-UHsT35pbpcE.zh-CN.vtt
12.4 kB
Part 01-Module 01-Lesson 03_Jupyter Notebooks/02. What are Jupyter notebooks.html
12.4 kB
Part 06-Module 01-Lesson 04_Jupyter Notebooks/02. What are Jupyter notebooks.html
12.4 kB
Part 03-Module 04-Lesson 03_Sentiment Prediction RNN/05. Building The RNN 1-XTD6slf64fM.zh-CN.vtt
12.4 kB
Part 09-Module 01-Lesson 06_Sentiment Prediction RNN/05. Building The RNN 1-XTD6slf64fM.zh-CN.vtt
12.4 kB
Part 03-Module 08-Lesson 02_Autoencoders/05. Convolutional Autoencoders-18SZVRaumGs.zh-CN.vtt
12.3 kB
Part 08-Module 01-Lesson 05_Autoencoders/05. Convolutional Autoencoders-18SZVRaumGs.zh-CN.vtt
12.3 kB
Part 01-Module 01-Lesson 01_Welcome/06. Community Support.html
12.3 kB
Part 11-Module 01-Lesson 03_The RL Framework The Solution/07. Quiz State-Value Functions.html
12.3 kB
assets/css/fonts/KaTeX_Script-Regular.woff2
12.3 kB
Part 01-Module 01-Lesson 04_Applying Deep Learning/02. Style Transfer.html
12.2 kB
Part 06-Module 01-Lesson 02_Applying Deep Learning/02. Style Transfer.html
12.2 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/04. Quiz Test Your Intuition.html
12.2 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/11. Action Values.html
12.2 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/19. Summary.html
12.2 kB
assets/css/fonts/KaTeX_Caligraphic-Bold.woff
12.1 kB
Part 01-Module 02-Lesson 01_Regression/06. Multiple Linear Regression.html
12.1 kB
Part 01-Module 03-Lesson 01_Matrix Math and NumPy Refresher/09. Matrix Transposes-NVK5xCY3CZE.en-US.vtt
12.1 kB
Part 06-Module 01-Lesson 05_Matrix Math and NumPy Refresher/09. Matrix Transposes-NVK5xCY3CZE.en-US.vtt
12.1 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/10. Perceptron Trick.html
12.1 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/22. BPTT Quiz 3.html
12.1 kB
Part 07-Module 01-Lesson 06_TensorFlow/13. Deep Neural Network in TensorFlow.html
12.0 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/05. GANs Architecture -gaEs7ccZv_Q.en.vtt
12.0 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/05. GANs Architecture -gaEs7ccZv_Q.en.vtt
12.0 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/13. Convolutional Layers in Keras.html
12.0 kB
Part 03-Module 01-Lesson 03_Hyperparameters/03. Learning Rate-HLMjeDez7ps.en.vtt
12.0 kB
Part 04-Module 02-Lesson 02_Hyperparameters/03. Learning Rate-HLMjeDez7ps.en.vtt
12.0 kB
Part 09-Module 01-Lesson 04_Hyperparameters/03. Learning Rate-HLMjeDez7ps.en.vtt
12.0 kB
Part 03-Module 01-Lesson 03_Hyperparameters/08. RNN Hyperparameters.html
11.9 kB
Part 04-Module 02-Lesson 02_Hyperparameters/08. RNN Hyperparameters.html
11.9 kB
Part 09-Module 01-Lesson 04_Hyperparameters/08. RNN Hyperparameters.html
11.9 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/09. Quiz Goals and Rewards.html
11.9 kB
assets/css/fonts/KaTeX_Caligraphic-Regular.woff
11.9 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/08. Backpropagation- Theory.html
11.9 kB
Part 02-Module 03-Lesson 01_MiniFlow/11. Gradient Descent.html
11.8 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/img/index.jpg
11.8 kB
Part 03-Module 06-Lesson 01_Sequence to Sequence/img/sequence-to-sequence-high-level-encoder-decoder.png
11.8 kB
Part 02-Module 03-Lesson 01_MiniFlow/img/neww-nk-fixed.gif
11.8 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/31. TensorFlow Convolution Layer.html
11.7 kB
Part 11-Module 01-Lesson 03_The RL Framework The Solution/03. Quiz Interpret the Policy.html
11.7 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/17. CNNs For Image Classification-l9vg_1YUlzg.en.vtt
11.6 kB
Part 02-Module 05-Lesson 01_Deep Neural Networks/04. Deep Neural Network in TensorFlow.html
11.6 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/12. Gradient Descent The Code.html
11.6 kB
Part 11-Module 01-Lesson 09_Deep Q-Learning/07. Experience Replay-wX_-SZG-YMQ.pt-BR.vtt
11.6 kB
Part 07-Module 01-Lesson 05_Keras/03. Pre-Lab Student Admissions in Keras.html
11.6 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/img/neilsen-pic.png
11.5 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/04. Games, Equilibrium, GANs Solution Render-2zi8DOWIVas.pt-BR.vtt
11.5 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/04. Games, Equilibrium, GANs Solution Render-2zi8DOWIVas.pt-BR.vtt
11.5 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/07. Quiz An Iterative Method.html
11.4 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/12. Quiz Pole-Balancing.html
11.4 kB
Part 01-Module 03-Lesson 01_Matrix Math and NumPy Refresher/09. Matrix Transposes-NVK5xCY3CZE.pt-BR.vtt
11.4 kB
Part 06-Module 01-Lesson 05_Matrix Math and NumPy Refresher/09. Matrix Transposes-NVK5xCY3CZE.pt-BR.vtt
11.4 kB
Part 04-Module 02-Lesson 03_Deep Convolutional GANs/05. DCGAN And The Generator-CH6BxLTKt7s.en.vtt
11.3 kB
Part 10-Module 01-Lesson 02_Deep Convolutional GANs/05. DCGAN And The Generator-CH6BxLTKt7s.en.vtt
11.3 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/18. Finite MDPs.html
11.3 kB
assets/css/fonts/KaTeX_Size4-Regular.ttf
11.3 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/11. Backpropagation Quiz.html
11.3 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/11. Convolutional Layers-RnM1D-XI--8.pt-BR.vtt
11.3 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-12.40.54-pm.png
11.3 kB
Part 03-Module 03-Lesson 01_TensorBoard/04. TensorBoard Variables 1-QG41p4Wx5wc.pt-BR.vtt
11.2 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/18. Further Noise Reduction-Kl3hWxizKVg.en.vtt
11.2 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/19. Further Noise Reduction-Kl3hWxizKVg.en.vtt
11.2 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/11. Gradient Descent-Math-7sxA5Ap8AWM.pt-BR.vtt
11.1 kB
Part 07-Module 01-Lesson 02_Implementing Gradient Descent/03. Gradient Descent-Math-7sxA5Ap8AWM.pt-BR.vtt
11.1 kB
Part 11-Module 01-Lesson 07_Solve OpenAI Gym's Taxi-v2 Task/02. Instructions.html
11.1 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/11. Gradient Descent-Math-7sxA5Ap8AWM.en.vtt
11.1 kB
Part 07-Module 01-Lesson 02_Implementing Gradient Descent/03. Gradient Descent-Math-7sxA5Ap8AWM.en.vtt
11.1 kB
Part 11-Module 01-Lesson 03_The RL Framework The Solution/13. Summary.html
11.1 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/18. Refresh on ROC Curves.html
11.0 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/05. Feedforward Neural Network-Reminder.html
11.0 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/04. Games, Equilibrium, GANs Solution Render-2zi8DOWIVas.en.vtt
11.0 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/04. Games, Equilibrium, GANs Solution Render-2zi8DOWIVas.en.vtt
11.0 kB
Part 11-Module 01-Lesson 09_Deep Q-Learning/10. DQN Improvements-Zfdbp93A2GU.zh-CN.vtt
11.0 kB
Part 04-Module 02-Lesson 05_Semi-Supervised Learning/06. Model Loss Exercise-W7TawMNxBds.zh-CN.vtt
11.0 kB
Part 10-Module 01-Lesson 03_Semi-Supervised Learning/06. Model Loss Exercise-W7TawMNxBds.zh-CN.vtt
11.0 kB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/06. Implementing a Character-wise RNN-KPCMn_jg2oY.pt-BR.vtt
10.9 kB
Part 09-Module 01-Lesson 03_Implementation of RNN and LSTM/05. Implementing a Character-wise RNN-KPCMn_jg2oY.pt-BR.vtt
10.9 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/21. Cross-Entropy 2.html
10.9 kB
Part 04-Module 02-Lesson 05_Semi-Supervised Learning/07. Model Optimization Exercise-wNpI1wUA4Io.en.vtt
10.9 kB
Part 10-Module 01-Lesson 03_Semi-Supervised Learning/07. Model Optimization Exercise-wNpI1wUA4Io.en.vtt
10.9 kB
Part 02-Module 03-Lesson 01_MiniFlow/img/save-2.png
10.9 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/07. Feature Map Sizes.html
10.9 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/08. Mini Project Training an MLP on MNIST.html
10.9 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/15. Quiz TensorFlow Cross Entropy.html
10.9 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/15. More on Sensitivity and Specificity.html
10.8 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/15. Quiz One-Step Dynamics, Part 1.html
10.8 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-12.42.55-pm.png
10.8 kB
Part 07-Module 01-Lesson 02_Implementing Gradient Descent/04. Gradient Descent The Code.html
10.8 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/14. Categorical Cross-Entropy.html
10.8 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/16. Max Pooling Layers in Keras.html
10.8 kB
Part 01-Module 01-Lesson 03_Jupyter Notebooks/04. Launching the notebook server.html
10.7 kB
Part 06-Module 01-Lesson 04_Jupyter Notebooks/04. Launching the notebook server.html
10.7 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/19. TensorFlow Max Pooling.html
10.7 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/17. CNNs for Image Classification.html
10.6 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/03. RNN History.html
10.6 kB
Part 01-Module 01-Lesson 02_Anaconda/03. What is Anaconda.html
10.6 kB
Part 06-Module 01-Lesson 03_Anaconda/03. What is Anaconda.html
10.6 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/07. OR NOT Perceptron Quiz.html
10.6 kB
Part 01-Module 03-Lesson 01_Matrix Math and NumPy Refresher/09. Matrix Transposes-NVK5xCY3CZE.zh-CN.vtt
10.6 kB
Part 06-Module 01-Lesson 05_Matrix Math and NumPy Refresher/09. Matrix Transposes-NVK5xCY3CZE.zh-CN.vtt
10.6 kB
assets/css/fonts/KaTeX_Caligraphic-Bold.woff2
10.6 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood.html
10.5 kB
Part 03-Module 01-Lesson 03_Hyperparameters/03. Learning Rate-HLMjeDez7ps.pt-BR.vtt
10.5 kB
Part 04-Module 02-Lesson 02_Hyperparameters/03. Learning Rate-HLMjeDez7ps.pt-BR.vtt
10.5 kB
Part 09-Module 01-Lesson 04_Hyperparameters/03. Learning Rate-HLMjeDez7ps.pt-BR.vtt
10.5 kB
Part 11-Module 01-Lesson 03_The RL Framework The Solution/06. Bellman Equations.html
10.5 kB
Part 01-Module 03-Lesson 01_Matrix Math and NumPy Refresher/11. NumPy Quiz.html
10.5 kB
Part 06-Module 01-Lesson 05_Matrix Math and NumPy Refresher/11. NumPy Quiz.html
10.5 kB
Part 07-Module 01-Lesson 06_TensorFlow/15. Finetuning.html
10.5 kB
Part 02-Module 05-Lesson 04_Image Classification/Project Rubric - Image Classification.html
10.5 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs Continuous.html
10.5 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/12. Quiz TensorFlow Softmax.html
10.5 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/05. GANs Architecture -gaEs7ccZv_Q.zh-CN.vtt
10.5 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/05. GANs Architecture -gaEs7ccZv_Q.zh-CN.vtt
10.5 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/04. Neural Networks-Mqogpnp1lrU.en.vtt
10.4 kB
assets/css/fonts/KaTeX_Caligraphic-Regular.woff2
10.4 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/02. OpenAI Gym FrozenLakeEnv.html
10.4 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/18. Further Noise Reduction-Kl3hWxizKVg.pt-BR.vtt
10.4 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/19. Further Noise Reduction-Kl3hWxizKVg.pt-BR.vtt
10.4 kB
Part 04-Module 02-Lesson 05_Semi-Supervised Learning/02. Semi-Supervised Learning-_LRpHPxZaX0.en.vtt
10.4 kB
Part 10-Module 01-Lesson 03_Semi-Supervised Learning/02. Semi-Supervised Learning-_LRpHPxZaX0.en.vtt
10.4 kB
Part 03-Module 01-Lesson 03_Hyperparameters/03. Learning Rate-HLMjeDez7ps.zh-CN.vtt
10.4 kB
Part 04-Module 02-Lesson 02_Hyperparameters/03. Learning Rate-HLMjeDez7ps.zh-CN.vtt
10.4 kB
Part 09-Module 01-Lesson 04_Hyperparameters/03. Learning Rate-HLMjeDez7ps.zh-CN.vtt
10.4 kB
Part 02-Module 03-Lesson 01_MiniFlow/03. MiniFlow Architecture.html
10.3 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/17. TensorFlow Convolution Layer.html
10.3 kB
Part 11-Module 01-Lesson 06_Temporal-Difference Methods/17. Summary.html
10.3 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/33. TensorFlow Pooling Layer.html
10.3 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/06. Hello, Tensor World!.html
10.2 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/11. Convolutional Layers-RnM1D-XI--8.en.vtt
10.2 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/07. Feedforward Quiz.html
10.2 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/18. Further Noise Reduction-Kl3hWxizKVg.zh-CN.vtt
10.2 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/19. Further Noise Reduction-Kl3hWxizKVg.zh-CN.vtt
10.2 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/17. Solution Diagnosing Cancer.html
10.2 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/06. AND Perceptron Quiz.html
10.2 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/16. A Trained GAN-TR-uEJcjig4.en.vtt
10.2 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/16. A Trained GAN-TR-uEJcjig4.en.vtt
10.2 kB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/06. Implementing a Character-wise RNN-KPCMn_jg2oY.en.vtt
10.2 kB
Part 09-Module 01-Lesson 03_Implementation of RNN and LSTM/05. Implementing a Character-wise RNN-KPCMn_jg2oY.en.vtt
10.2 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/26. Pre-Lab Gradient Descent.html
10.1 kB
Part 01-Module 03-Lesson 01_Matrix Math and NumPy Refresher/07. Matrix Multiplication Part 2-8jtk8BzBdj8.en.vtt
10.1 kB
Part 06-Module 01-Lesson 05_Matrix Math and NumPy Refresher/07. Matrix Multiplication Part 2-8jtk8BzBdj8.en.vtt
10.1 kB
Part 02-Module 05-Lesson 01_Deep Neural Networks/07. Finetuning.html
10.1 kB
Part 02-Module 03-Lesson 01_MiniFlow/02. Graphs.html
10.1 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/media/nmn.png
10.1 kB
Part 07-Module 01-Lesson 06_TensorFlow/media/nmn.png
10.1 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/24. Implementation.html
10.1 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/19. Maximizing Probabilities.html
10.1 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/05. Installing TensorFlow.html
10.1 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/23. Logistic Regression.html
10.0 kB
Part 03-Module 07-Lesson 01_Reinforcement Learning/03. 02 Q-Learning-WQgdnzzhSLM.en.vtt
10.0 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/04. Neural Networks-Mqogpnp1lrU.pt-BR.vtt
10.0 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/17. CNNs For Image Classification-l9vg_1YUlzg.zh-CN.vtt
10.0 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-06-at-2.04.24-pm.png
9.9 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/08. XOR Perceptron Quiz.html
9.9 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-10-30-at-11.56.27-am.png
9.9 kB
Part 01-Module 01-Lesson 03_Jupyter Notebooks/09. Magic keywords.html
9.9 kB
Part 06-Module 01-Lesson 04_Jupyter Notebooks/09. Magic keywords.html
9.9 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/11. Solution Convolution Output Shape.html
9.9 kB
Part 03-Module 03-Lesson 01_TensorBoard/05. TensorBoard Hyperparameters-THiwPbkjoLQ.en.vtt
9.9 kB
Part 03-Module 04-Lesson 02_Weight Initialization/02. Weight Initialization 1-6vXMYu_TQIA.en.vtt
9.9 kB
Part 08-Module 01-Lesson 03_Weight Initialization/02. Weight Initialization 1-6vXMYu_TQIA.en.vtt
9.9 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/03. Your Workspace.html
9.9 kB
Part 04-Module 02-Lesson 03_Deep Convolutional GANs/05. DCGAN And The Generator-CH6BxLTKt7s.zh-CN.vtt
9.9 kB
Part 10-Module 01-Lesson 02_Deep Convolutional GANs/05. DCGAN And The Generator-CH6BxLTKt7s.zh-CN.vtt
9.9 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/21. Implementation.html
9.8 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/23. Visualizing CNNs (Part 1).html
9.8 kB
Part 01-Module 03-Lesson 03_Your first neural network/Project Description - Your first neural network.html
9.8 kB
Part 07-Module 01-Lesson 06_TensorFlow/12. Quiz TensorFlow ReLUs.html
9.8 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/25. From RNN to LSTM.html
9.8 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/14. Log-loss Error Function.html
9.8 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/17. Mini Project 5 Solution-Hv86B_jjWTI.en.vtt
9.8 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/18. Mini Project 5 Solution-Hv86B_jjWTI.en.vtt
9.8 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/15. Implementation.html
9.8 kB
Part 04-Module 02-Lesson 05_Semi-Supervised Learning/02. Semi-Supervised Learning-_LRpHPxZaX0.pt-BR.vtt
9.8 kB
Part 10-Module 01-Lesson 03_Semi-Supervised Learning/02. Semi-Supervised Learning-_LRpHPxZaX0.pt-BR.vtt
9.8 kB
Part 11-Module 01-Lesson 09_Deep Q-Learning/07. Experience Replay-wX_-SZG-YMQ.en.vtt
9.7 kB
Part 03-Module 04-Lesson 02_Weight Initialization/03. Weight Initialization 2-BI3f0Cdc_nU.en.vtt
9.7 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/04. Games, Equilibrium, GANs Solution Render-2zi8DOWIVas.zh-CN.vtt
9.7 kB
Part 08-Module 01-Lesson 03_Weight Initialization/03. Weight Initialization 2-BI3f0Cdc_nU.en.vtt
9.7 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/04. Games, Equilibrium, GANs Solution Render-2zi8DOWIVas.zh-CN.vtt
9.7 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/11. Gradient Descent-Math-7sxA5Ap8AWM.zh-CN.vtt
9.7 kB
Part 07-Module 01-Lesson 02_Implementing Gradient Descent/03. Gradient Descent-Math-7sxA5Ap8AWM.zh-CN.vtt
9.7 kB
Part 03-Module 07-Lesson 03_Translation Project/Project Rubric - Translation Project.html
9.7 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/14. Error Functions-jfKShxGAbok.en.vtt
9.7 kB
Part 07-Module 01-Lesson 05_Keras/07. Pre-Lab IMDB Data in Keras.html
9.6 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/33. Feedforward.html
9.6 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/32. Solution TensorFlow Convolution Layer.html
9.6 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/02. Skin Cancer.html
9.6 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/22. Quiz Pooling Mechanics.html
9.6 kB
Part 07-Module 01-Lesson 06_TensorFlow/06. Quiz TensorFlow Cross Entropy.html
9.6 kB
Part 03-Module 07-Lesson 01_Reinforcement Learning/03. 02 Q-Learning-WQgdnzzhSLM.pt-BR.vtt
9.6 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/14. Quiz Parameter Sharing.html
9.5 kB
Part 01-Module 03-Lesson 01_Matrix Math and NumPy Refresher/07. Matrix Multiplication Part 2-8jtk8BzBdj8.pt-BR.vtt
9.5 kB
Part 06-Module 01-Lesson 05_Matrix Math and NumPy Refresher/07. Matrix Multiplication Part 2-8jtk8BzBdj8.pt-BR.vtt
9.5 kB
Part 01-Module 01-Lesson 03_Jupyter Notebooks/07. Markdown cells.html
9.5 kB
Part 06-Module 01-Lesson 04_Jupyter Notebooks/07. Markdown cells.html
9.5 kB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/11. Quiz Incremental Mean.html
9.5 kB
Part 08-Module 01-Lesson 02_CNNs in TensorFlow/01. Convolutional Layers.html
9.5 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/15. Understanding Inefficiencies in our Network-4MuS-6ATxCU.en.vtt
9.5 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/16. Understanding Inefficiencies in our Network-4MuS-6ATxCU.en.vtt
9.5 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/09. Local Connectivity-z9wiDg0w-Dc.pt-BR.vtt
9.5 kB
Part 06-Module 01-Lesson 01_Welcome to Deep Learning/07. Udacity Support.html
9.5 kB
Part 02-Module 04-Lesson 01_Cloud Computing/06. Login to the Instance.html
9.5 kB
Part 08-Module 01-Lesson 01_Cloud Computing/06. Login to the Instance.html
9.5 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/09. Mini Project 2.html
9.5 kB
Part 04-Module 02-Lesson 05_Semi-Supervised Learning/02. Semi-Supervised Learning-_LRpHPxZaX0.zh-CN.vtt
9.5 kB
Part 10-Module 01-Lesson 03_Semi-Supervised Learning/02. Semi-Supervised Learning-_LRpHPxZaX0.zh-CN.vtt
9.5 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/03. Classification Problems 1.html
9.5 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/12. RNN (part a).html
9.5 kB
Part 04-Module 02-Lesson 05_Semi-Supervised Learning/07. Model Optimization Exercise-wNpI1wUA4Io.zh-CN.vtt
9.4 kB
Part 10-Module 01-Lesson 03_Semi-Supervised Learning/07. Model Optimization Exercise-wNpI1wUA4Io.zh-CN.vtt
9.4 kB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/04. Implementation.html
9.4 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/06. Higher Dimensions.html
9.4 kB
Part 01-Module 01-Lesson 03_Jupyter Notebooks/05. Notebook interface.html
9.4 kB
Part 06-Module 01-Lesson 04_Jupyter Notebooks/05. Notebook interface.html
9.4 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/20. Image Augmentation in Keras.html
9.4 kB
Part 02-Module 05-Lesson 01_Deep Neural Networks/03. Quiz TensorFlow ReLUs.html
9.4 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/08. Mini Project 2.html
9.4 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/10. Quiz Convolution Output Shape.html
9.4 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/22. Multi-Class Cross Entropy.html
9.4 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/07. Perceptrons.html
9.4 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/12. Quiz Number of Parameters.html
9.4 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/18. CNNs in Keras Practical Example.html
9.4 kB
Part 02-Module 02-Lesson 02_Intro to TFLearn/06. Handwritten Digit Recognition.html
9.4 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/14. Error Functions-jfKShxGAbok.pt-BR.vtt
9.4 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/16. A Trained GAN-TR-uEJcjig4.pt-BR.vtt
9.3 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/13. Quiz Sensitivity and Specificity.html
9.3 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/16. A Trained GAN-TR-uEJcjig4.pt-BR.vtt
9.3 kB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/02. OpenAI Gym BlackjackEnv.html
9.3 kB
Part 11-Module 01-Lesson 10_Policy-Based Methods/07. M2L3 07 V2-ZBLLGIN1EfU.en.vtt
9.3 kB
Part 04-Module 02-Lesson 03_Deep Convolutional GANs/05. DCGAN And The Generator-CH6BxLTKt7s.pt-BR.vtt
9.3 kB
Part 10-Module 01-Lesson 02_Deep Convolutional GANs/05. DCGAN And The Generator-CH6BxLTKt7s.pt-BR.vtt
9.3 kB
Part 11-Module 01-Lesson 10_Policy-Based Methods/02. M2L3 02 V2-ToS8vXGdODE.en.vtt
9.3 kB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/03. MC Prediction State Values-0q2wSWyuBj8.pt-BR.vtt
9.3 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/04. Neural Networks-Mqogpnp1lrU.zh-CN.vtt
9.3 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/35. Pre-Lab Analyzing Student Data.html
9.3 kB
Part 02-Module 03-Lesson 01_MiniFlow/img/x-mn.png
9.2 kB
Part 01-Module 03-Lesson 01_Matrix Math and NumPy Refresher/10. Transposes in NumPy.html
9.2 kB
Part 06-Module 01-Lesson 05_Matrix Math and NumPy Refresher/10. Transposes in NumPy.html
9.2 kB
Part 01-Module 03-Lesson 01_Matrix Math and NumPy Refresher/05. Element-wise Operations in NumPy.html
9.2 kB
Part 06-Module 01-Lesson 05_Matrix Math and NumPy Refresher/05. Element-wise Operations in NumPy.html
9.2 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/03. Materials.html
9.2 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/10. 12 Backpropagation Example B V6 Final-yiSwuMP2UIA.pt-BR.vtt
9.2 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/34. Solution TensorFlow Pooling Layer.html
9.2 kB
Part 07-Module 01-Lesson 06_TensorFlow/05. Quiz TensorFlow Softmax.html
9.2 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/26. Check Your Understanding.html
9.2 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/09. Local Connectivity-z9wiDg0w-Dc.en.vtt
9.2 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/img/codecogseqn-60-2.png
9.2 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/14. Policy Improvement-4_adUEK0IHg.pt-BR.vtt
9.2 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/16. A Trained GAN-TR-uEJcjig4.zh-CN.vtt
9.1 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/16. A Trained GAN-TR-uEJcjig4.zh-CN.vtt
9.1 kB
Part 02-Module 04-Lesson 01_Cloud Computing/img/launch.png
9.1 kB
Part 08-Module 01-Lesson 01_Cloud Computing/img/launch.png
9.1 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/05. Categorical Cross-Entropy.html
9.1 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/05. Linear Boundaries.html
9.1 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/12. Implementation.html
9.1 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/26. Transfer Learning in Keras.html
9.1 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/06. Mini Project 1 Solution-l4r5l0HvHRI.zh-CN.vtt
9.1 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/07. Mini Project 1 Solution-l4r5l0HvHRI.zh-CN.vtt
9.1 kB
Part 03-Module 03-Lesson 01_TensorBoard/05. TensorBoard Hyperparameters-THiwPbkjoLQ.zh-CN.vtt
9.1 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/06. Mini Project 1 Solution-l4r5l0HvHRI.en.vtt
9.0 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/07. Mini Project 1 Solution-l4r5l0HvHRI.en.vtt
9.0 kB
Part 11-Module 01-Lesson 06_Temporal-Difference Methods/03. TD Prediction TD(0)-CsD6b0csU7o.en.vtt
9.0 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/04. Framing the Problem-IsTOnkAKaJw.en.vtt
9.0 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/05. Framing the Problem-IsTOnkAKaJw.en.vtt
9.0 kB
Part 02-Module 02-Lesson 03_Preparing for Siraj's Lesson/04. Word2vec.html
9.0 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/03. How Computers Interpret Images.html
9.0 kB
Part 01-Module 03-Lesson 01_Matrix Math and NumPy Refresher/02. Data Has Dimensions-F4NSv776X0c.pt-BR.vtt
9.0 kB
Part 06-Module 01-Lesson 05_Matrix Math and NumPy Refresher/02. Data Has Dimensions-F4NSv776X0c.pt-BR.vtt
9.0 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/07. Regularization-ndYnUrx8xvs.pt-BR.vtt
9.0 kB
Part 07-Module 01-Lesson 06_TensorFlow/03. Hello, Tensor World!.html
9.0 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/20. Quiz Pooling Intuition.html
8.9 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/20. BPTT Quiz 1.html
8.9 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/27. Useful Resources.html
8.9 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/24. Quiz Pooling Practice.html
8.9 kB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/06. Implementing a Character-wise RNN-KPCMn_jg2oY.zh-CN.vtt
8.9 kB
Part 09-Module 01-Lesson 03_Implementation of RNN and LSTM/05. Implementing a Character-wise RNN-KPCMn_jg2oY.zh-CN.vtt
8.9 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/11. Convolutional Layers-RnM1D-XI--8.zh-CN.vtt
8.9 kB
Part 02-Module 02-Lesson 02_Intro to TFLearn/04. Sentiment Analysis with TFLearn.html
8.9 kB
Part 03-Module 03-Lesson 01_TensorBoard/02. TensorBoard Graphs 1-M64FWxf1yK4.en.vtt
8.9 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/07. Transition to Classification.html
8.9 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/03. Materials.html
8.9 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/19. Quiz ROC Curve.html
8.9 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/02. Color.html
8.9 kB
Part 01-Module 03-Lesson 01_Matrix Math and NumPy Refresher/02. Data Has Dimensions-F4NSv776X0c.en.vtt
8.9 kB
Part 06-Module 01-Lesson 05_Matrix Math and NumPy Refresher/02. Data Has Dimensions-F4NSv776X0c.en.vtt
8.9 kB
Part 03-Module 04-Lesson 03_Sentiment Prediction RNN/02. Sentiment Prediction-uGN3rZJRiMY.en.vtt
8.9 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/18. ROC Curve-2Iw5TiGzJI4.en.vtt
8.9 kB
Part 09-Module 01-Lesson 06_Sentiment Prediction RNN/02. Sentiment Prediction-uGN3rZJRiMY.en.vtt
8.9 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/35. CNNs - Additional Resources.html
8.8 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/04. RNN Applications.html
8.8 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/22. Groundbreaking CNN Architectures.html
8.8 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/05. Quiz Episodic or Continuing.html
8.8 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/10. Quiz Random vs Pre-initialized Weights.html
8.8 kB
Part 01-Module 03-Lesson 01_Matrix Math and NumPy Refresher/07. Matrix Multiplication Part 2-8jtk8BzBdj8.zh-CN.vtt
8.8 kB
Part 06-Module 01-Lesson 05_Matrix Math and NumPy Refresher/07. Matrix Multiplication Part 2-8jtk8BzBdj8.zh-CN.vtt
8.8 kB
Part 07-Module 01-Lesson 06_TensorFlow/02. Installing TensorFlow.html
8.8 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/07. Quiz Data Challenges.html
8.8 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/26. Quiz Average Pooling.html
8.8 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/36. Notebook Analyzing Student Data.html
8.8 kB
Part 08-Module 01-Lesson 02_CNNs in TensorFlow/02. Quiz Convolutional Layers.html
8.8 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-06-at-2.45.22-pm.png
8.8 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/27. Notebook Gradient Descent.html
8.8 kB
Part 03-Module 07-Lesson 01_Reinforcement Learning/03. 02 Q-Learning-WQgdnzzhSLM.zh-CN.vtt
8.8 kB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/07. Implementation.html
8.7 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/13. One-Hot Encoding.html
8.7 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/28. Perceptron vs Gradient Descent.html
8.7 kB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/03. MC Prediction State Values-0q2wSWyuBj8.en.vtt
8.7 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/08. 08 Backpropagation Theory V6 Final-Xlgd8I3TWUg.en.vtt
8.7 kB
Part 01-Module 01-Lesson 02_Anaconda/06. Managing environments.html
8.7 kB
Part 06-Module 01-Lesson 03_Anaconda/06. Managing environments.html
8.7 kB
Part 01-Module 03-Lesson 01_Matrix Math and NumPy Refresher/08. NumPy Matrix Multiplication.html
8.7 kB
Part 06-Module 01-Lesson 05_Matrix Math and NumPy Refresher/08. NumPy Matrix Multiplication.html
8.7 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/08. Convolutions continued.html
8.7 kB
Part 03-Module 03-Lesson 01_TensorBoard/05. TensorBoard Hyperparameters-THiwPbkjoLQ.pt-BR.vtt
8.7 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/21. Solution Pooling Intuition.html
8.7 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/20. Image Augmentation in Keras-odStujZq3GY.pt-BR.vtt
8.7 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/16. Quiz Diagnosing Cancer.html
8.7 kB
Part 07-Module 01-Lesson 06_TensorFlow/09. Pre-Lab NotMNIST in TensorFlow.html
8.7 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/15. Unfolded Model Quiz.html
8.7 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/08. 08 Backpropagation Theory V6 Final-Xlgd8I3TWUg.pt-BR.vtt
8.6 kB
Part 11-Module 01-Lesson 06_Temporal-Difference Methods/08. Implementation.html
8.6 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/23. Solution Pooling Mechanics.html
8.6 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/20. Mini Project 6.html
8.6 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/20. Cross-Entropy 1.html
8.6 kB
Part 02-Module 02-Lesson 02_Intro to TFLearn/03. Categorical Cross-Entropy.html
8.6 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/21. BPTT Quiz 2.html
8.6 kB
Part 03-Module 04-Lesson 02_Weight Initialization/03. Weight Initialization 2-BI3f0Cdc_nU.pt-BR.vtt
8.6 kB
Part 08-Module 01-Lesson 03_Weight Initialization/03. Weight Initialization 2-BI3f0Cdc_nU.pt-BR.vtt
8.6 kB
Part 02-Module 04-Lesson 01_Cloud Computing/03. Get Access to GPU Instances.html
8.6 kB
Part 08-Module 01-Lesson 01_Cloud Computing/03. Get Access to GPU Instances.html
8.6 kB
Part 01-Module 03-Lesson 03_Your first neural network/Project Rubric - Your first neural network.html
8.6 kB
Part 03-Module 06-Lesson 01_Sequence to Sequence/07. Sequence to sequence in TensorFlow.html
8.6 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/14. Error Functions-jfKShxGAbok.zh-CN.vtt
8.6 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/01. Intro To CNNs.html
8.5 kB
Part 11-Module 01-Lesson 06_Temporal-Difference Methods/16. Analyzing Performance.html
8.5 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/10. 12 Backpropagation Example B V6 Final-yiSwuMP2UIA.en.vtt
8.5 kB
Part 03-Module 04-Lesson 02_Weight Initialization/05. Weight Initialization 4-FM6t7AsodGQ.en.vtt
8.5 kB
Part 08-Module 01-Lesson 03_Weight Initialization/05. Weight Initialization 4-FM6t7AsodGQ.en.vtt
8.5 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/19. Mini Project 6.html
8.5 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/04. Framing the Problem-IsTOnkAKaJw.zh-CN.vtt
8.5 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/05. Framing the Problem-IsTOnkAKaJw.zh-CN.vtt
8.5 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/12. Mini Project 3.html
8.5 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/15. Solution Parameter Sharing.html
8.5 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/01. Instructor.html
8.5 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/17. Mini Project 5 Solution-Hv86B_jjWTI.pt-BR.vtt
8.5 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/18. Mini Project 5 Solution-Hv86B_jjWTI.pt-BR.vtt
8.5 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/21. Mini Project Image Augmentation in Keras.html
8.5 kB
Part 11-Module 01-Lesson 09_Deep Q-Learning/07. Experience Replay-wX_-SZG-YMQ.zh-CN.vtt
8.4 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/11. Mini Project 3.html
8.4 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/05. An Iterative Method-AX-hG3KvwzY.pt-BR.vtt
8.4 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/17. Mini Project 5.html
8.4 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/20. Image Augmentation in Keras-odStujZq3GY.en.vtt
8.4 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/25. Logistic Regression Algorithm.html
8.4 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/15. Understanding Inefficiencies in our Network-4MuS-6ATxCU.zh-CN.vtt
8.4 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/18. Quiz Numerical Stability.html
8.4 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/16. Understanding Inefficiencies in our Network-4MuS-6ATxCU.zh-CN.vtt
8.4 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/18. Explore The Design Space.html
8.4 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/04. Classification Problems 2.html
8.4 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/17. Mini Project 5 Solution-Hv86B_jjWTI.zh-CN.vtt
8.4 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/18. Mini Project 5 Solution-Hv86B_jjWTI.zh-CN.vtt
8.4 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/29. Continuous Perceptrons.html
8.4 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/08. Why Neural Networks.html
8.4 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/03. Statistical Invariance.html
8.4 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/04. Convolutional Networks.html
8.4 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/11. Convolutional Layers (Part 2).html
8.4 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/19. Mini Project CNNs in Keras.html
8.4 kB
Part 03-Module 04-Lesson 02_Weight Initialization/02. Weight Initialization 1-6vXMYu_TQIA.pt-BR.vtt
8.4 kB
Part 07-Module 01-Lesson 06_TensorFlow/01. Intro.html
8.4 kB
Part 08-Module 01-Lesson 03_Weight Initialization/02. Weight Initialization 1-6vXMYu_TQIA.pt-BR.vtt
8.4 kB
assets/css/fonts/KaTeX_Size3-Regular.ttf
8.4 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/13. Solution Number of Parameters.html
8.4 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/16. Mini Project 5.html
8.4 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/12. Non-Linear Regions.html
8.3 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/31. Non-Linear Models.html
8.3 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/04. Underfitting And Overfitting-xj4PlXMsN-Y.pt-BR.vtt
8.3 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/17. One-Hot Encoding.html
8.3 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/28. 1x1 Convolutions.html
8.3 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/29. Inception Module.html
8.3 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/13. Error Functions.html
8.3 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/30. Non-linear Data.html
8.3 kB
Part 01-Module 01-Lesson 02_Anaconda/05. Managing packages.html
8.3 kB
Part 06-Module 01-Lesson 03_Anaconda/05. Managing packages.html
8.3 kB
Part 03-Module 04-Lesson 02_Weight Initialization/02. Weight Initialization 1-6vXMYu_TQIA.zh-CN.vtt
8.3 kB
Part 08-Module 01-Lesson 03_Weight Initialization/02. Weight Initialization 1-6vXMYu_TQIA.zh-CN.vtt
8.3 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/18. ROC Curve-2Iw5TiGzJI4.pt-BR.vtt
8.3 kB
Part 03-Module 01-Lesson 03_Hyperparameters/06. Number of Training Iterations Epochs.html
8.3 kB
Part 04-Module 02-Lesson 02_Hyperparameters/06. Number of Training Iterations Epochs.html
8.3 kB
Part 09-Module 01-Lesson 04_Hyperparameters/06. Number of Training Iterations Epochs.html
8.3 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/37. Outro.html
8.3 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/02. Introduction.html
8.3 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/06. Image Challenges.html
8.3 kB
Part 11-Module 01-Lesson 10_Policy-Based Methods/02. M2L3 02 V2-ToS8vXGdODE.zh-CN.vtt
8.3 kB
Part 03-Module 08-Lesson 02_Autoencoders/06. Convolutional Autoencoder Solutions-w3iPs6YnqmY.en.vtt
8.3 kB
Part 08-Module 01-Lesson 05_Autoencoders/06. Convolutional Autoencoder Solutions-w3iPs6YnqmY.en.vtt
8.3 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/14. Policy Improvement-4_adUEK0IHg.en.vtt
8.3 kB
Part 03-Module 03-Lesson 01_TensorBoard/03. TensorBoard Graphs 2-REmz7HUj6f4.en.vtt
8.3 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/06. Model Validation in Keras.html
8.3 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/04. MLPs for Image Classification.html
8.3 kB
Part 11-Module 01-Lesson 06_Temporal-Difference Methods/02. OpenAI Gym CliffWalkingEnv.html
8.3 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/07. Regularization-ndYnUrx8xvs.en.vtt
8.3 kB
Part 11-Module 01-Lesson 08_RL in Continuous Spaces/02. Resources.html
8.2 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/27. Solution Average Pooling.html
8.2 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/18. Implementation.html
8.2 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/21. CrossEntropy V1-1BnhC6e0TFw.en.vtt
8.2 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/25. Solution Pooling Practice.html
8.2 kB
Part 04-Module 02-Lesson 04_Generate Faces/Project Rubric - Generate Faces.html
8.2 kB
Part 03-Module 04-Lesson 03_Sentiment Prediction RNN/02. Sentiment Prediction-uGN3rZJRiMY.zh-CN.vtt
8.2 kB
Part 09-Module 01-Lesson 06_Sentiment Prediction RNN/02. Sentiment Prediction-uGN3rZJRiMY.zh-CN.vtt
8.2 kB
Part 03-Module 04-Lesson 02_Weight Initialization/03. Weight Initialization 2-BI3f0Cdc_nU.zh-CN.vtt
8.2 kB
Part 08-Module 01-Lesson 03_Weight Initialization/03. Weight Initialization 2-BI3f0Cdc_nU.zh-CN.vtt
8.2 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/11. Discounted Return-opXGNPwwn7g.pt-BR.vtt
8.2 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/img/codecogseqn-43.gif
8.2 kB
Part 01-Module 03-Lesson 01_Matrix Math and NumPy Refresher/06. Matrix Multiplication Part 1-JRoCFQRP4B0.en.vtt
8.1 kB
Part 06-Module 01-Lesson 05_Matrix Math and NumPy Refresher/06. Matrix Multiplication Part 1-JRoCFQRP4B0.en.vtt
8.1 kB
Part 02-Module 02-Lesson 02_Intro to TFLearn/04. TFLearn-YF7S6hi4bnc.en-US.vtt
8.1 kB
Part 07-Module 01-Lesson 06_TensorFlow/11. Two-layer Neural Network.html
8.1 kB
Part 06-Module 01-Lesson 01_Welcome to Deep Learning/03. Learning Plan.html
8.1 kB
Part 01-Module 03-Lesson 01_Matrix Math and NumPy Refresher/06. Matrix Multiplication Part 1-JRoCFQRP4B0.pt-BR.vtt
8.1 kB
Part 06-Module 01-Lesson 05_Matrix Math and NumPy Refresher/06. Matrix Multiplication Part 1-JRoCFQRP4B0.pt-BR.vtt
8.1 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/17. Doing More With Your GAN.html
8.1 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/17. Doing More With Your GAN.html
8.1 kB
Part 11-Module 01-Lesson 10_Policy-Based Methods/07. M2L3 07 V2-ZBLLGIN1EfU.zh-CN.vtt
8.1 kB
Part 11-Module 01-Lesson 06_Temporal-Difference Methods/04. Implementation.html
8.1 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/06. 07 FeedForward B V3-kTYbTVh1d0k.pt-BR.vtt
8.0 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/04. Framing the Problem-IsTOnkAKaJw.pt-BR.vtt
8.0 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/05. Framing the Problem-IsTOnkAKaJw.pt-BR.vtt
8.0 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/15. Understanding Inefficiencies in our Network-4MuS-6ATxCU.pt-BR.vtt
8.0 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/16. Understanding Inefficiencies in our Network-4MuS-6ATxCU.pt-BR.vtt
8.0 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/02. RNN Introduction.html
8.0 kB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/14. Build The Network And Results-hu8iMMqajmQ.en.vtt
8.0 kB
Part 09-Module 01-Lesson 03_Implementation of RNN and LSTM/13. Build The Network And Results-hu8iMMqajmQ.en.vtt
8.0 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/21. CrossEntropy V1-1BnhC6e0TFw.pt-BR.vtt
8.0 kB
Part 11-Module 01-Lesson 08_RL in Continuous Spaces/11. Linear Function Approximation-OJ5wrB7o-pI.pt-BR.vtt
8.0 kB
Part 02-Module 03-Lesson 01_MiniFlow/img/dcdl2-grad-fixed.gif
8.0 kB
Part 06-Module 01-Lesson 01_Welcome to Deep Learning/08. Community Guidelines.html
8.0 kB
Part 03-Module 08-Lesson 02_Autoencoders/06. Convolutional Autoencoder Solutions-w3iPs6YnqmY.pt-BR.vtt
8.0 kB
Part 08-Module 01-Lesson 05_Autoencoders/06. Convolutional Autoencoder Solutions-w3iPs6YnqmY.pt-BR.vtt
8.0 kB
Part 02-Module 02-Lesson 03_Preparing for Siraj's Lesson/03. Converting Documents to Vectors.html
8.0 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/11. Solution Random vs Pre-initialized Weight.html
8.0 kB
Part 01-Module 01-Lesson 04_Applying Deep Learning/03. Traffic Navigation with Deep Reinforcement Learning-az5ElmV4DhY.en-US.vtt
7.9 kB
Part 06-Module 01-Lesson 02_Applying Deep Learning/03. Traffic Navigation with Deep Reinforcement Learning-az5ElmV4DhY.en-US.vtt
7.9 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/01. Introduction.html
7.9 kB
Part 01-Module 03-Lesson 01_Matrix Math and NumPy Refresher/06. Matrix Multiplication Part 1-JRoCFQRP4B0.zh-CN.vtt
7.9 kB
Part 06-Module 01-Lesson 05_Matrix Math and NumPy Refresher/06. Matrix Multiplication Part 1-JRoCFQRP4B0.zh-CN.vtt
7.9 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/14. Solution Sensitivity and Specificity.html
7.9 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/23. What is the network looking at.html
7.9 kB
Part 04-Module 02-Lesson 05_Semi-Supervised Learning/08. Training The Network -P-LXQPVXl4A.pt-BR.vtt
7.9 kB
Part 10-Module 01-Lesson 03_Semi-Supervised Learning/08. Training The Network -P-LXQPVXl4A.pt-BR.vtt
7.9 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/07. When do MLPs (not) work well .html
7.9 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/04. Another Gridworld Example.html
7.9 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/13. MDPs, Part 1.html
7.9 kB
Part 01-Module 01-Lesson 03_Jupyter Notebooks/11. Creating a slideshow.html
7.9 kB
Part 06-Module 01-Lesson 04_Jupyter Notebooks/11. Creating a slideshow.html
7.9 kB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/20. Implementation.html
7.9 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/09. Training the Neural Network.html
7.8 kB
Part 03-Module 03-Lesson 01_TensorBoard/02. TensorBoard Graphs 1-M64FWxf1yK4.zh-CN.vtt
7.8 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/28. Mini Project Introduction.html
7.8 kB
Part 02-Module 02-Lesson 03_Preparing for Siraj's Lesson/02. Bag of Words.html
7.8 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/08. Solution Data Challenges.html
7.8 kB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/14. Build The Network And Results-hu8iMMqajmQ.pt-BR.vtt
7.8 kB
Part 09-Module 01-Lesson 03_Implementation of RNN and LSTM/13. Build The Network And Results-hu8iMMqajmQ.pt-BR.vtt
7.8 kB
Part 05-Module 01-Lesson 01_Enroll in your next Nanodegree program/01. Enroll in your next ND program.html
7.8 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/15. Pooling Layers.html
7.8 kB
Part 02-Module 01-Lesson 01_Model Evaluation and Validation/02. Testing-gmxGRJSKEb0.en-US.vtt
7.8 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/17. Practical Aspects of Learning.html
7.8 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/12. Validating the Training.html
7.8 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/04. Medical Classification.html
7.8 kB
Part 08-Module 01-Lesson 02_CNNs in TensorFlow/04. Max Pooling Layers.html
7.8 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/09. Local Connectivity-z9wiDg0w-Dc.zh-CN.vtt
7.8 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/03. Survival Probability of Skin Cancer.html
7.8 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/20. Solution ROC Curve.html
7.8 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/06. Mini Project 1 Solution-l4r5l0HvHRI.pt-BR.vtt
7.8 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/07. Mini Project 1 Solution-l4r5l0HvHRI.pt-BR.vtt
7.8 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/21. Comparing our Results with Doctors.html
7.8 kB
Part 01-Module 03-Lesson 01_Matrix Math and NumPy Refresher/02. Data Has Dimensions-F4NSv776X0c.zh-CN.vtt
7.8 kB
Part 06-Module 01-Lesson 05_Matrix Math and NumPy Refresher/02. Data Has Dimensions-F4NSv776X0c.zh-CN.vtt
7.8 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/25. Confusion Matrix.html
7.8 kB
Part 01-Module 01-Lesson 04_Applying Deep Learning/03. Traffic Navigation with Deep Reinforcement Learning-az5ElmV4DhY.pt-BR.vtt
7.8 kB
Part 06-Module 01-Lesson 02_Applying Deep Learning/03. Traffic Navigation with Deep Reinforcement Learning-az5ElmV4DhY.pt-BR.vtt
7.8 kB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/16. Implementation.html
7.8 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/19. Normalized Inputs and Initial Weights .html
7.8 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/21. Optimizing a Logistic Classifier.html
7.8 kB
Part 11-Module 01-Lesson 08_RL in Continuous Spaces/03. Discrete vs. Continuous Spaces-uHstLeRzaE8.pt-BR.vtt
7.8 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/10. Mini Project DP (Parts 0 and 1).html
7.8 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/23. Momentum and Learning Rate Decay.html
7.8 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/01. Introducing Alexis.html
7.7 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/10. Convolutional Layers-h5R_JvdUrUI.pt-BR.vtt
7.7 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/22. Visualization.html
7.7 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/16. RNN- Example.html
7.7 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/13. Mini Project DP (Part 2).html
7.7 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/16. Mini Project DP (Part 3).html
7.7 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/19. Mini Project DP (Part 4).html
7.7 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/22. Mini Project DP (Part 5).html
7.7 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/25. Mini Project DP (Part 6).html
7.7 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/09. Training Your Logistic Classifier .html
7.7 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/06. 07 FeedForward B V3-kTYbTVh1d0k.en.vtt
7.7 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/03. Solving Problems - Big and Small .html
7.7 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/01. Intro.html
7.7 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/26. Conclusion.html
7.7 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/22. Stochastic Gradient Descent.html
7.7 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/05. The data.html
7.7 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/16. Minimizing Cross Entropy.html
7.7 kB
Part 03-Module 05-Lesson 01_Transfer Learning in TensorFlow/03. Building VGGNet-615SslQiGvo.en.vtt
7.7 kB
Part 08-Module 01-Lesson 06_Transfer Learning in TensorFlow/03. Building VGGNet-615SslQiGvo.en.vtt
7.7 kB
Part 11-Module 01-Lesson 06_Temporal-Difference Methods/14. Implementation.html
7.7 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/20. Measuring Performance .html
7.7 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/05. An Iterative Method-AX-hG3KvwzY.en.vtt
7.7 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/08. Supervised Classification.html
7.7 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/24. Parameter Hyperspace .html
7.7 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/04. Underfitting And Overfitting-xj4PlXMsN-Y.en.vtt
7.7 kB
Part 01-Module 01-Lesson 02_Anaconda/04. Installing Anaconda.html
7.7 kB
Part 06-Module 01-Lesson 03_Anaconda/04. Installing Anaconda.html
7.7 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/03. Other Generative Models, How GANs Work-MF0QCP1OC9I.pt-BR.vtt
7.7 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/03. Other Generative Models, How GANs Work-MF0QCP1OC9I.pt-BR.vtt
7.7 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/02. What is Deep Learning .html
7.7 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/04. Let's Get Started .html
7.6 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/01. Intro to Vincent .html
7.6 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/15. Mini Project 4.html
7.6 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/03. Other Generative Models, How GANs Work-MF0QCP1OC9I.en.vtt
7.6 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/03. Other Generative Models, How GANs Work-MF0QCP1OC9I.en.vtt
7.6 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/08. Iterative Policy Evaluation-eDXIL_oOJHI.pt-BR.vtt
7.6 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/10. Convolutional Layers (Part 1).html
7.6 kB
Part 11-Module 01-Lesson 07_Solve OpenAI Gym's Taxi-v2 Task/01. Introduction.html
7.6 kB
Part 01-Module 01-Lesson 04_Applying Deep Learning/03. Traffic Navigation with Deep Reinforcement Learning-az5ElmV4DhY.zh-CN.vtt
7.6 kB
Part 06-Module 01-Lesson 02_Applying Deep Learning/03. Traffic Navigation with Deep Reinforcement Learning-az5ElmV4DhY.zh-CN.vtt
7.6 kB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/02. LSTMs-RYbSHogZetc.pt.vtt
7.6 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/09. Local Connectivity.html
7.6 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/12. Stride and Padding.html
7.6 kB
Part 03-Module 05-Lesson 02_Siraj's Language Translation/01. How to Make a Language Translator.html
7.5 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/14. Mini Project 4.html
7.5 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/06. Mini Project 1.html
7.5 kB
Part 01-Module 01-Lesson 04_Applying Deep Learning/03. Traffic Navigation with Deep Reinforcement Learning-az5ElmV4DhY.en.vtt
7.5 kB
Part 06-Module 01-Lesson 02_Applying Deep Learning/03. Traffic Navigation with Deep Reinforcement Learning-az5ElmV4DhY.en.vtt
7.5 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/02. Cool Things To Do With GANs-bo-ToTdhgew.en.vtt
7.5 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/02. Cool Things To Do With GANs-bo-ToTdhgew.en.vtt
7.5 kB
Part 02-Module 01-Lesson 01_Model Evaluation and Validation/02. Testing-gmxGRJSKEb0.pt-BR.vtt
7.5 kB
Part 03-Module 04-Lesson 03_Sentiment Prediction RNN/02. Sentiment Prediction-uGN3rZJRiMY.pt-BR.vtt
7.5 kB
Part 09-Module 01-Lesson 06_Sentiment Prediction RNN/02. Sentiment Prediction-uGN3rZJRiMY.pt-BR.vtt
7.5 kB
Part 11-Module 01-Lesson 08_RL in Continuous Spaces/01. Deep Reinforcement Learning-GPjK124RU5g.pt-BR.vtt
7.5 kB
Part 11-Module 01-Lesson 10_Policy-Based Methods/05. M2L3 05 V1-eZxxNNIZuwA.en.vtt
7.5 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/08. Iterative Policy Evaluation-eDXIL_oOJHI.en.vtt
7.5 kB
Part 11-Module 01-Lesson 06_Temporal-Difference Methods/03. TD Prediction TD(0)-CsD6b0csU7o.zh-CN.vtt
7.5 kB
Part 11-Module 01-Lesson 01_Introduction to RL/03. The Setting-nh8Gwdu19nc.pt-BR.vtt
7.5 kB
Part 03-Module 03-Lesson 01_TensorBoard/03. TensorBoard Graphs 2-REmz7HUj6f4.zh-CN.vtt
7.5 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/18. ROC Curve-2Iw5TiGzJI4.zh-CN.vtt
7.5 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/05. Mini Project 1.html
7.5 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/26. Wrap Up.html
7.5 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/14. RNN- Unfolded Model.html
7.5 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/14. MDPs, Part 2-CUTtQvxKkNw.pt-BR.vtt
7.4 kB
Part 03-Module 03-Lesson 01_TensorBoard/02. TensorBoard Graphs 1-M64FWxf1yK4.pt-BR.vtt
7.4 kB
Part 03-Module 04-Lesson 02_Weight Initialization/05. Weight Initialization 4-FM6t7AsodGQ.pt-BR.vtt
7.4 kB
Part 03-Module 06-Lesson 01_Sequence to Sequence/06. Preprocessing-ktQW6p9pOS4.en.vtt
7.4 kB
Part 08-Module 01-Lesson 03_Weight Initialization/05. Weight Initialization 4-FM6t7AsodGQ.pt-BR.vtt
7.4 kB
Part 02-Module 02-Lesson 02_Intro to TFLearn/04. TFLearn-YF7S6hi4bnc.zh-CN.vtt
7.4 kB
Part 08-Module 01-Lesson 02_CNNs in TensorFlow/05. Quiz Max Pooling Layers.html
7.4 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/10. Convolutional Layers-h5R_JvdUrUI.en.vtt
7.4 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-06-at-2.05.19-pm.png
7.4 kB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/05. Mini Project MC (Parts 0 and 1).html
7.4 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/08. Iterative Policy Evaluation.html
7.4 kB
Part 04-Module 01-Lesson 02_Siraj's Video Generation/01. How to Generate Video.html
7.4 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/20. Truncated Policy Iteration.html
7.4 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/34. Backpropagation V2-1SmY3TZTyUk.en.vtt
7.4 kB
Part 04-Module 02-Lesson 03_Deep Convolutional GANs/02. Deconvolution-sX_AxtB6CHI.en.vtt
7.4 kB
Part 10-Module 01-Lesson 02_Deep Convolutional GANs/02. Deconvolution-sX_AxtB6CHI.en.vtt
7.4 kB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/08. Mini Project MC (Part 2).html
7.4 kB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/17. Mini Project MC (Part 3).html
7.4 kB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/21. Mini Project MC (Part 4).html
7.4 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/21. Mini Project 6 Solution.html
7.4 kB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/03. MC Prediction State Values-0q2wSWyuBj8.zh-CN.vtt
7.4 kB
Part 02-Module 02-Lesson 03_Preparing for Siraj's Lesson/img/encoding.png
7.4 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/22. Analysis What's Going on in the Weights.html
7.4 kB
Part 02-Module 05-Lesson 03_Siraj's Image Classification/02. How to Make an Image Classifier.html
7.4 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/05. An Iterative Method, Part 1.html
7.4 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/08. 08 Backpropagation Theory V6 Final-Xlgd8I3TWUg.zh-CN.vtt
7.4 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/34. Backpropagation V2-1SmY3TZTyUk.pt-BR.vtt
7.3 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/04. The Notebooks.html
7.3 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/01. Introducing Ortal .html
7.3 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/11. Discounted Return-opXGNPwwn7g.en.vtt
7.3 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/14. Policy Improvement.html
7.3 kB
Part 11-Module 01-Lesson 08_RL in Continuous Spaces/10. Function Approximation.html
7.3 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/11. Discounted Return.html
7.3 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/17. Policy Iteration.html
7.3 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/23. Value Iteration.html
7.3 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/20. Mini Project 6 Solution.html
7.3 kB
Part 03-Module 01-Lesson 03_Hyperparameters/04. Learning Rate.html
7.3 kB
Part 04-Module 02-Lesson 02_Hyperparameters/04. Learning Rate.html
7.3 kB
Part 09-Module 01-Lesson 04_Hyperparameters/04. Learning Rate.html
7.3 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/21. Analysis What's Going on in the Weights.html
7.3 kB
Part 01-Module 01-Lesson 01_Welcome/02. Projects You Will Build .html
7.3 kB
Part 09-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/10. Quiz.html
7.3 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/02. Meet Andrew.html
7.3 kB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/13. MC Control Policy Improvement-2RKH-BInX7s.pt-BR.vtt
7.3 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/07. Mini Project 1 Solution.html
7.3 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/10. Mini Project 2 Solution.html
7.3 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/13. Mini Project 3 Solution.html
7.3 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/18. Mini Project 5 Solution.html
7.3 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/02. Logistic Regression Quiz.html
7.3 kB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/02. LSTMs-RYbSHogZetc.en.vtt
7.2 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/01. Introducing Andrew Trask.html
7.2 kB
Part 11-Module 01-Lesson 01_Introduction to RL/03. The Setting-nh8Gwdu19nc.en.vtt
7.2 kB
Part 03-Module 05-Lesson 01_Transfer Learning in TensorFlow/05. Data Preparation-WfsDMq-b3y4.en.vtt
7.2 kB
Part 08-Module 01-Lesson 06_Transfer Learning in TensorFlow/05. Data Preparation-WfsDMq-b3y4.en.vtt
7.2 kB
Part 03-Module 08-Lesson 02_Autoencoders/04. Simple Autoencoder Solution-Nv_D6DHfEk8.en.vtt
7.2 kB
Part 08-Module 01-Lesson 05_Autoencoders/04. Simple Autoencoder Solution-Nv_D6DHfEk8.en.vtt
7.2 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/02. Meet Andrew.html
7.2 kB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/06. MC Prediction Action Values-08tLtbh0xLs.pt-BR.vtt
7.2 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/20. Image Augmentation in Keras-odStujZq3GY.zh-CN.vtt
7.2 kB
Part 02-Module 03-Lesson 01_MiniFlow/10. Cost Solution.html
7.2 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/06. Mini Project 1 Solution.html
7.2 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/09. Mini Project 2 Solution.html
7.2 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/12. Mini Project 3 Solution.html
7.2 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/17. Mini Project 5 Solution.html
7.2 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/06. Build a GAN.html
7.2 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/06. Build a GAN.html
7.2 kB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/01. Introduction.html
7.2 kB
Part 04-Module 02-Lesson 03_Deep Convolutional GANs/02. Deconvolution-sX_AxtB6CHI.pt-BR.vtt
7.2 kB
Part 10-Module 01-Lesson 02_Deep Convolutional GANs/02. Deconvolution-sX_AxtB6CHI.pt-BR.vtt
7.2 kB
Part 11-Module 01-Lesson 03_The RL Framework The Solution/05. State-Value Functions.html
7.2 kB
Part 03-Module 03-Lesson 02_Siraj's Music Generation/01. How to Generate Music.html
7.2 kB
Part 03-Module 08-Lesson 02_Autoencoders/06. Convolutional Autoencoder Solutions-w3iPs6YnqmY.zh-CN.vtt
7.2 kB
Part 08-Module 01-Lesson 05_Autoencoders/06. Convolutional Autoencoder Solutions-w3iPs6YnqmY.zh-CN.vtt
7.2 kB
Part 11-Module 01-Lesson 01_Introduction to RL/02. Applications.html
7.2 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/08. Goals and Rewards, Part 2.html
7.2 kB
Part 01-Module 01-Lesson 02_Anaconda/07. More environment actions.html
7.1 kB
Part 06-Module 01-Lesson 03_Anaconda/07. More environment actions.html
7.1 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/16. Understanding Inefficiencies in our Network.html
7.1 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/07. Regularization-ndYnUrx8xvs.zh-CN.vtt
7.1 kB
Part 01-Module 02-Lesson 01_Regression/05. Linear Regression Warnings.html
7.1 kB
Part 03-Module 05-Lesson 01_Transfer Learning in TensorFlow/01. Transfer Learning Intro.html
7.1 kB
Part 08-Module 01-Lesson 06_Transfer Learning in TensorFlow/01. Transfer Learning Intro.html
7.1 kB
Part 02-Module 01-Lesson 01_Model Evaluation and Validation/07. Model Complexity Graph.html
7.1 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/02. Cool Things To Do With GANs-bo-ToTdhgew.zh-CN.vtt
7.1 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/02. Cool Things To Do With GANs-bo-ToTdhgew.zh-CN.vtt
7.1 kB
Part 03-Module 05-Lesson 01_Transfer Learning in TensorFlow/02. Transfer Learning--WmQwYr0DYjY.en.vtt
7.1 kB
Part 08-Module 01-Lesson 06_Transfer Learning in TensorFlow/02. Transfer Learning--WmQwYr0DYjY.en.vtt
7.1 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/06. Regularization.html
7.1 kB
Part 11-Module 01-Lesson 08_RL in Continuous Spaces/11. Linear Function Approximation-OJ5wrB7o-pI.en.vtt
7.1 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/14. Policy Improvement-4_adUEK0IHg.zh-CN.vtt
7.1 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/15. Understanding Inefficiencies in our Network.html
7.1 kB
Part 02-Module 01-Lesson 01_Model Evaluation and Validation/06. 04 L Types Of Errors-Twf1qnPZeSY.en-US.vtt
7.1 kB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/13. MC Control Policy Improvement.html
7.1 kB
Part 11-Module 01-Lesson 06_Temporal-Difference Methods/11. Implementation.html
7.1 kB
Part 01-Module 01-Lesson 02_Anaconda/09. On Python versions at Udacity.html
7.0 kB
Part 06-Module 01-Lesson 03_Anaconda/09. On Python versions at Udacity.html
7.0 kB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/12. MC Control Policy Evaluation.html
7.0 kB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/09. Generalized Policy Iteration.html
7.0 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/08. Transforming Text into Numbers.html
7.0 kB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/18. MC Control Constant-alpha, Part 1.html
7.0 kB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/06. MC Prediction Action Values.html
7.0 kB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/10. MC Control Incremental Mean.html
7.0 kB
Part 01-Module 03-Lesson 01_Matrix Math and NumPy Refresher/07. Matrix Multiplication Part 2.html
7.0 kB
Part 06-Module 01-Lesson 05_Matrix Math and NumPy Refresher/07. Matrix Multiplication Part 2.html
7.0 kB
Part 03-Module 03-Lesson 01_TensorBoard/03. TensorBoard Graphs 2-REmz7HUj6f4.pt-BR.vtt
7.0 kB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/03. MC Prediction State Values.html
7.0 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/02. Cool Things To Do With GANs-bo-ToTdhgew.pt-BR.vtt
7.0 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/02. Cool Things To Do With GANs-bo-ToTdhgew.pt-BR.vtt
7.0 kB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/14. Build The Network And Results-hu8iMMqajmQ.zh-CN.vtt
7.0 kB
Part 09-Module 01-Lesson 03_Implementation of RNN and LSTM/13. Build The Network And Results-hu8iMMqajmQ.zh-CN.vtt
7.0 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/14. Understanding Neural Noise.html
7.0 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/10. 12 Backpropagation Example B V6 Final-yiSwuMP2UIA.zh-CN.vtt
7.0 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/11. Building a Neural Network.html
7.0 kB
Part 11-Module 01-Lesson 08_RL in Continuous Spaces/04. Quiz Space Representations.html
7.0 kB
Part 01-Module 01-Lesson 03_Jupyter Notebooks/10. Converting notebooks.html
7.0 kB
Part 06-Module 01-Lesson 04_Jupyter Notebooks/10. Converting notebooks.html
7.0 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/01. Introducing Andrew Trask.html
7.0 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/19. Further Noise Reduction.html
7.0 kB
assets/css/fonts/KaTeX_Size1-Regular.woff
7.0 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/14. MDPs, Part 2-CUTtQvxKkNw.en.vtt
7.0 kB
Part 03-Module 06-Lesson 01_Sequence to Sequence/06. Preprocessing-ktQW6p9pOS4.pt-BR.vtt
7.0 kB
Part 11-Module 01-Lesson 01_Introduction to RL/04. OpenAI Gym.html
7.0 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/07. Transforming Text into Numbers.html
7.0 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/05. Framing the Problem.html
7.0 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/23. Conclusion.html
7.0 kB
Part 03-Module 04-Lesson 02_Weight Initialization/05. Weight Initialization 4-FM6t7AsodGQ.zh-CN.vtt
7.0 kB
Part 08-Module 01-Lesson 03_Weight Initialization/05. Weight Initialization 4-FM6t7AsodGQ.zh-CN.vtt
7.0 kB
Part 01-Module 01-Lesson 01_Welcome/04. The First Week.html
6.9 kB
Part 04-Module 02-Lesson 05_Semi-Supervised Learning/10. Model Loss Solution-r3DtohmychE.en.vtt
6.9 kB
Part 10-Module 01-Lesson 03_Semi-Supervised Learning/10. Model Loss Solution-r3DtohmychE.en.vtt
6.9 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/13. Understanding Neural Noise.html
6.9 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/26. Transfer Learning in Keras-HsIAznMM1LA.pt-BR.vtt
6.9 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/10. Building a Neural Network.html
6.9 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.pt-BR.vtt
6.9 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/18. Further Noise Reduction.html
6.9 kB
Part 04-Module 02-Lesson 05_Semi-Supervised Learning/10. Model Loss Solution-r3DtohmychE.pt-BR.vtt
6.9 kB
Part 10-Module 01-Lesson 03_Semi-Supervised Learning/10. Model Loss Solution-r3DtohmychE.pt-BR.vtt
6.9 kB
Part 01-Module 01-Lesson 02_Anaconda/08. Best practices.html
6.9 kB
Part 02-Module 01-Lesson 01_Model Evaluation and Validation/02. Testing-gmxGRJSKEb0.zh-CN.vtt
6.9 kB
Part 04-Module 02-Lesson 05_Semi-Supervised Learning/01. Semi-supervised Learning.html
6.9 kB
Part 06-Module 01-Lesson 03_Anaconda/08. Best practices.html
6.9 kB
Part 10-Module 01-Lesson 03_Semi-Supervised Learning/01. Semi-supervised Learning.html
6.9 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/08. Generator Network-btHVXnICmzQ.en.vtt
6.9 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/08. Generator Network-btHVXnICmzQ.en.vtt
6.9 kB
Part 02-Module 05-Lesson 01_Deep Neural Networks/10. Regularization Quiz.html
6.9 kB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/13. MC Control Policy Improvement-2RKH-BInX7s.en.vtt
6.9 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/04. Framing the Problem.html
6.9 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/22. Conclusion.html
6.9 kB
Part 03-Module 02-Lesson 01_Embeddings and Word2vec/01. Embeddings Intro.html
6.9 kB
Part 03-Module 08-Lesson 01_Siraj's Image Generation/01. How to Generate Images.html
6.9 kB
Part 09-Module 01-Lesson 05_Embeddings and Word2vec/01. Embeddings Intro.html
6.9 kB
Part 11-Module 01-Lesson 09_Deep Q-Learning/11. Implementing Deep Q-Learning.html
6.9 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/06. 07 FeedForward B V3-kTYbTVh1d0k.zh-CN.vtt
6.9 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/21. CrossEntropy V1-1BnhC6e0TFw.zh-CN.vtt
6.8 kB
Part 11-Module 01-Lesson 09_Deep Q-Learning/10. DQN Improvements.html
6.8 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/25. 23 From RNNs To LSTMs V4 Final-MsqybcWmzGY.pt-BR.vtt
6.8 kB
Part 03-Module 07-Lesson 02_Siraj's Reinforcement Learning/01. How to Win Slot Machines.html
6.8 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/03. How GANs work.html
6.8 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/03. How GANs work.html
6.8 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/img/diagonal-line-2.png
6.8 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/img/diagonal-line-2.png
6.8 kB
Part 11-Module 01-Lesson 03_The RL Framework The Solution/10. Quiz Action-Value Functions.html
6.8 kB
Part 07-Module 01-Lesson 06_TensorFlow/10. Lab NotMNIST in TensorFlow.html
6.7 kB
Part 01-Module 01-Lesson 04_Applying Deep Learning/04. Flappy Bird.html
6.7 kB
Part 06-Module 01-Lesson 02_Applying Deep Learning/04. Flappy Bird.html
6.7 kB
Part 11-Module 01-Lesson 06_Temporal-Difference Methods/05. Mini Project TD (Parts 0 and 1).html
6.7 kB
Part 02-Module 02-Lesson 02_Intro to TFLearn/07. Handwritten Digit Recognition Solution.html
6.7 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/01. Introduction.html
6.7 kB
Part 11-Module 01-Lesson 06_Temporal-Difference Methods/09. Mini Project TD (Part 2).html
6.7 kB
Part 11-Module 01-Lesson 06_Temporal-Difference Methods/12. Mini Project TD (Part 3).html
6.7 kB
Part 11-Module 01-Lesson 06_Temporal-Difference Methods/15. Mini Project TD (Part 4).html
6.7 kB
Part 08-Module 01-Lesson 02_CNNs in TensorFlow/03. Solution Convolutional Layers.html
6.7 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/11. Gradient Descent The Math.html
6.7 kB
Part 11-Module 01-Lesson 08_RL in Continuous Spaces/03. Discrete vs. Continuous Spaces-uHstLeRzaE8.en.vtt
6.7 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/04. Underfitting And Overfitting-xj4PlXMsN-Y.zh-CN.vtt
6.7 kB
Part 11-Module 01-Lesson 03_The RL Framework The Solution/09. Action-Value Functions.html
6.7 kB
assets/css/fonts/KaTeX_Size2-Regular.woff
6.7 kB
Part 02-Module 01-Lesson 01_Model Evaluation and Validation/03. Confusion Matrix.html
6.7 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/25. Transfer Learning-LHG5FltaR6I.pt-BR.vtt
6.7 kB
Part 02-Module 02-Lesson 02_Intro to TFLearn/05. Sentiment Analysis Solution SC-s7FKYC5Zcm8.pt-BR.vtt
6.7 kB
Part 04-Module 02-Lesson 03_Deep Convolutional GANs/01. Deep Convolutional GANs.html
6.7 kB
Part 10-Module 01-Lesson 02_Deep Convolutional GANs/01. Deep Convolutional GANs.html
6.7 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.pt-BR.vtt
6.7 kB
Part 03-Module 06-Lesson 02_Siraj's Chatbot/01. How to Make a Chatbot.html
6.6 kB
Part 04-Module 02-Lesson 03_Deep Convolutional GANs/02. Deconvolution-sX_AxtB6CHI.zh-CN.vtt
6.6 kB
Part 10-Module 01-Lesson 02_Deep Convolutional GANs/02. Deconvolution-sX_AxtB6CHI.zh-CN.vtt
6.6 kB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/02. LSTMs-RYbSHogZetc.zh-CN.vtt
6.6 kB
Part 03-Module 02-Lesson 02_Siraj's Style Transfer/01. How to Generate Art.html
6.6 kB
Part 11-Module 01-Lesson 08_RL in Continuous Spaces/01. Deep Reinforcement Learning-GPjK124RU5g.en.vtt
6.6 kB
Part 02-Module 04-Lesson 01_Cloud Computing/04. Apply Credits.html
6.6 kB
Part 08-Module 01-Lesson 01_Cloud Computing/04. Apply Credits.html
6.6 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/03. Episodic vs. Continuing Tasks.html
6.6 kB
Part 03-Module 08-Lesson 02_Autoencoders/04. Simple Autoencoder Solution-Nv_D6DHfEk8.pt-BR.vtt
6.6 kB
Part 08-Module 01-Lesson 05_Autoencoders/04. Simple Autoencoder Solution-Nv_D6DHfEk8.pt-BR.vtt
6.6 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/15. Training Losses and Optimizers Solution.html
6.6 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/15. Training Losses and Optimizers Solution.html
6.6 kB
Part 03-Module 04-Lesson 01_Siraj's Text Summarization/01. How to Make a Text Summarizer.html
6.6 kB
Part 03-Module 05-Lesson 01_Transfer Learning in TensorFlow/02. Transfer Learning--WmQwYr0DYjY.zh-CN.vtt
6.6 kB
Part 08-Module 01-Lesson 06_Transfer Learning in TensorFlow/02. Transfer Learning--WmQwYr0DYjY.zh-CN.vtt
6.6 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/03. Other Generative Models, How GANs Work-MF0QCP1OC9I.zh-CN.vtt
6.6 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/03. Other Generative Models, How GANs Work-MF0QCP1OC9I.zh-CN.vtt
6.6 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/07. Goals and Rewards, Part 1.html
6.6 kB
Part 11-Module 01-Lesson 06_Temporal-Difference Methods/06. TD Prediction Action Values.html
6.6 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/10. Generator and Discriminator Solutions.html
6.6 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/10. Generator and Discriminator Solutions.html
6.6 kB
Part 02-Module 02-Lesson 02_Intro to TFLearn/img/z93yz2vrgdaacqjowbaabie8yaaackcwmaaadshdeaaabpwhgaaia0yqwaaecamayaacbngamaajamjaeaaegtxgaaakqjywaaan
6.6 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/img/z93yz2vrgdaacqjowbaabie8yaaackcwmaaadshdeaaabpwhgaaia0yqwaaecamayaacbngamaajamjaeaaegtxgaaakqjywaaan
6.6 kB
Part 03-Module 06-Lesson 01_Sequence to Sequence/06. Preprocessing-ktQW6p9pOS4.zh-CN.vtt
6.6 kB
Part 03-Module 01-Lesson 03_Hyperparameters/10. Sources References.html
6.6 kB
Part 04-Module 02-Lesson 02_Hyperparameters/10. Sources References.html
6.6 kB
Part 09-Module 01-Lesson 04_Hyperparameters/10. Sources References.html
6.6 kB
Part 04-Module 02-Lesson 03_Deep Convolutional GANs/03. Batch Normalization.html
6.5 kB
Part 10-Module 01-Lesson 02_Deep Convolutional GANs/03. Batch Normalization.html
6.5 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/34. Backpropagation V2-1SmY3TZTyUk.zh-CN.vtt
6.5 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/02. The Setting, Revisited.html
6.5 kB
Part 03-Module 04-Lesson 04_Generate TV Scripts/Project Description - Generate TV Scripts.html
6.5 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/04. Games and Equilibria.html
6.5 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/04. Games and Equilibria.html
6.5 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/17. Further Reading.html
6.5 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/06. The Reward Hypothesis.html
6.5 kB
Part 03-Module 04-Lesson 03_Sentiment Prediction RNN/06. Training The Network-nknJ3Xu3ld0.en.vtt
6.5 kB
Part 09-Module 01-Lesson 06_Sentiment Prediction RNN/06. Training The Network-nknJ3Xu3ld0.en.vtt
6.5 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/01. Introducing Ian Goodfellow.html
6.5 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/01. Introducing Ian Goodfellow.html
6.5 kB
Part 11-Module 01-Lesson 06_Temporal-Difference Methods/10. TD Control Sarsamax.html
6.5 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/10. Cumulative Reward.html
6.5 kB
Part 11-Module 01-Lesson 06_Temporal-Difference Methods/13. TD Control Expected Sarsa.html
6.5 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/12. Building the Network Solution.html
6.5 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/12. Building the Network Solution.html
6.5 kB
Part 03-Module 01-Lesson 03_Hyperparameters/09. RNN Hyperparameters.html
6.5 kB
Part 04-Module 02-Lesson 02_Hyperparameters/09. RNN Hyperparameters.html
6.5 kB
Part 09-Module 01-Lesson 04_Hyperparameters/09. RNN Hyperparameters.html
6.5 kB
Part 03-Module 05-Lesson 01_Transfer Learning in TensorFlow/05. Data Preparation-WfsDMq-b3y4.zh-CN.vtt
6.5 kB
Part 08-Module 01-Lesson 06_Transfer Learning in TensorFlow/05. Data Preparation-WfsDMq-b3y4.zh-CN.vtt
6.5 kB
Part 11-Module 01-Lesson 09_Deep Q-Learning/06. Deep Q Network-GgtR_d1OB-M.pt-BR.vtt
6.5 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/12. Other Activation Functions.html
6.5 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/02. What can you do with GANs.html
6.5 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/02. What can you do with GANs.html
6.5 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/05. Practical tips and tricks for training GANs.html
6.5 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/05. Practical tips and tricks for training GANs.html
6.5 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/08. Goals and Rewards, Part 2-pVIFc72VYH8.pt-BR.vtt
6.5 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/14. MDPs, Part 2.html
6.5 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/17. MDPs, Part 3.html
6.5 kB
Part 11-Module 01-Lesson 08_RL in Continuous Spaces/01. Deep Reinforcement Learning.html
6.5 kB
Part 03-Module 01-Lesson 03_Hyperparameters/07. Number of Hidden Units Layers.html
6.5 kB
Part 04-Module 02-Lesson 02_Hyperparameters/07. Number of Hidden Units Layers.html
6.5 kB
Part 09-Module 01-Lesson 04_Hyperparameters/07. Number of Hidden Units Layers.html
6.5 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/07. Get started with a GAN.html
6.5 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/07. Get started with a GAN.html
6.5 kB
Part 11-Module 01-Lesson 09_Deep Q-Learning/09. Deep Q-Learning Algorithm.html
6.5 kB
Part 03-Module 08-Lesson 02_Autoencoders/01. Autoencoder Lesson Intro.html
6.5 kB
Part 08-Module 01-Lesson 05_Autoencoders/01. Autoencoder Lesson Intro.html
6.5 kB
assets/css/fonts/KaTeX_Size4-Regular.woff
6.5 kB
Part 02-Module 04-Lesson 01_Cloud Computing/01. Overview.html
6.5 kB
Part 08-Module 01-Lesson 01_Cloud Computing/01. Overview.html
6.5 kB
Part 08-Module 02-Lesson 01_CNN Project Dog Breed Classifier/01. Project Description.html
6.5 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/09. Discriminator Network.html
6.4 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/09. Discriminator Network.html
6.4 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/11. Building the Network.html
6.4 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/11. Building the Network.html
6.4 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/14. Training Optimizers.html
6.4 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/14. Training Optimizers.html
6.4 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/03. Logistic Regression Answer.html
6.4 kB
Part 03-Module 02-Lesson 01_Embeddings and Word2vec/03. Subsampling Solution-MAUM_mV_lj8.pt-BR.vtt
6.4 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/08. Generator Network.html
6.4 kB
Part 09-Module 01-Lesson 05_Embeddings and Word2vec/03. Subsampling Solution-MAUM_mV_lj8.pt-BR.vtt
6.4 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/08. Generator Network.html
6.4 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/05. An Iterative Method-AX-hG3KvwzY.zh-CN.vtt
6.4 kB
Part 11-Module 01-Lesson 10_Policy-Based Methods/05. M2L3 05 V1-eZxxNNIZuwA.zh-CN.vtt
6.4 kB
Part 09-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/01. Intro to LSTM.html
6.4 kB
Part 03-Module 05-Lesson 01_Transfer Learning in TensorFlow/03. Building VGGNet-615SslQiGvo.zh-CN.vtt
6.4 kB
Part 08-Module 01-Lesson 06_Transfer Learning in TensorFlow/03. Building VGGNet-615SslQiGvo.zh-CN.vtt
6.4 kB
Part 03-Module 05-Lesson 01_Transfer Learning in TensorFlow/03. Building VGGNet-615SslQiGvo.pt-BR.vtt
6.4 kB
Part 08-Module 01-Lesson 06_Transfer Learning in TensorFlow/03. Building VGGNet-615SslQiGvo.pt-BR.vtt
6.4 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/13. Training Losses.html
6.4 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/13. Training Losses.html
6.4 kB
Part 11-Module 01-Lesson 06_Temporal-Difference Methods/01. Introduction.html
6.4 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/16. A Trained GAN.html
6.4 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/16. A Trained GAN.html
6.4 kB
Part 02-Module 01-Lesson 01_Model Evaluation and Validation/06. 04 L Types Of Errors-Twf1qnPZeSY.pt-BR.vtt
6.4 kB
Part 02-Module 05-Lesson 01_Deep Neural Networks/02. Two-Layer Neural Network.html
6.4 kB
Part 02-Module 02-Lesson 02_Intro to TFLearn/05. Sentiment Analysis Solution SC-s7FKYC5Zcm8.en.vtt
6.4 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/index.html
6.4 kB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/08. LSTM Cell-ajC-5uWB8S4.pt-BR.vtt
6.4 kB
Part 09-Module 01-Lesson 03_Implementation of RNN and LSTM/07. LSTM Cell-ajC-5uWB8S4.pt-BR.vtt
6.4 kB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/05. Character-wise RNN Notebook.html
6.4 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/01. Introducing Luis.html
6.3 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/24. RNN Summary-nXP0oGGRrO8.pt-BR.vtt
6.3 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/index.html
6.3 kB
Part 03-Module 04-Lesson 03_Sentiment Prediction RNN/01. Intro.html
6.3 kB
Part 09-Module 01-Lesson 06_Sentiment Prediction RNN/01. Intro.html
6.3 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/04. Neural Networks.html
6.3 kB
Part 01-Module 01-Lesson 04_Applying Deep Learning/03. DeepTraffic.html
6.3 kB
Part 06-Module 01-Lesson 02_Applying Deep Learning/03. DeepTraffic.html
6.3 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.en.vtt
6.3 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.en.vtt
6.3 kB
Part 03-Module 05-Lesson 01_Transfer Learning in TensorFlow/05. Data Preparation-WfsDMq-b3y4.pt-BR.vtt
6.3 kB
Part 08-Module 01-Lesson 06_Transfer Learning in TensorFlow/05. Data Preparation-WfsDMq-b3y4.pt-BR.vtt
6.3 kB
Part 11-Module 01-Lesson 09_Deep Q-Learning/12. TensorFlow Implementation.html
6.3 kB
Part 11-Module 01-Lesson 08_RL in Continuous Spaces/06. Exercise Discretization.html
6.3 kB
Part 02-Module 02-Lesson 02_Intro to TFLearn/05. Sentiment Analysis Solution.html
6.3 kB
Part 03-Module 01-Lesson 02_Siraj's Stock Prediction/01. How to Predict Stock Prices Easily.html
6.3 kB
Part 04-Module 02-Lesson 03_Deep Convolutional GANs/09. Building And Training The Network-nXKk9GI4X14.en.vtt
6.3 kB
Part 10-Module 01-Lesson 02_Deep Convolutional GANs/09. Building And Training The Network-nXKk9GI4X14.en.vtt
6.3 kB
Part 01-Module 02-Lesson 01_Regression/02. Preparing for Siraj's video.html
6.3 kB
Part 11-Module 01-Lesson 08_RL in Continuous Spaces/08. Exercise Tile Coding.html
6.3 kB
Part 02-Module 05-Lesson 04_Image Classification/Project Description - Image Classification.html
6.3 kB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/15. RNN Resources.html
6.3 kB
Part 07-Module 01-Lesson 06_TensorFlow/17. Outro.html
6.3 kB
Part 08-Module 01-Lesson 02_CNNs in TensorFlow/06. Solution Max Pooling Layers.html
6.3 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/18. CNNs in Keras Practical Example-faFvmGDwXX0.pt-BR.vtt
6.3 kB
Part 09-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/08. The Use Gate.html
6.3 kB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/01. Intro to RNNs.html
6.3 kB
Part 02-Module 01-Lesson 01_Model Evaluation and Validation/07. Model-Complexity-Graph Solution 2-5pWHGkNyRhA.en-US.vtt
6.3 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/26. Transfer Learning in Keras-HsIAznMM1LA.en.vtt
6.3 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/13. Batch vs Stochastic Gradient Descent.html
6.3 kB
Part 03-Module 06-Lesson 01_Sequence to Sequence/01. Introducing Jay Alammar.html
6.2 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/10. Convolutional Layers-h5R_JvdUrUI.zh-CN.vtt
6.2 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/16. Error Functions Around the World.html
6.2 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/20. 21 L Measuring Performance-byP0DJImOSk.pt-BR.vtt
6.2 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/08. Generator Network-btHVXnICmzQ.zh-CN.vtt
6.2 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/08. Generator Network-btHVXnICmzQ.zh-CN.vtt
6.2 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/img/perceptron-equation-2.gif
6.2 kB
Part 02-Module 02-Lesson 02_Intro to TFLearn/01. Welcome to this lesson!.html
6.2 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/06. Model Validation in Keras-002jNXSM6CU.pt-BR.vtt
6.2 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/05. 04 RNN FFNN Reminder A V7 Final-_vrp2lZjXf0.pt-BR.vtt
6.2 kB
Part 09-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/05. The Learn Gate.html
6.2 kB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/06. MC Prediction Action Values-08tLtbh0xLs.en.vtt
6.2 kB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/08. LSTM Cell-ajC-5uWB8S4.en.vtt
6.2 kB
Part 09-Module 01-Lesson 03_Implementation of RNN and LSTM/07. LSTM Cell-ajC-5uWB8S4.en.vtt
6.2 kB
Part 11-Module 01-Lesson 09_Deep Q-Learning/07. Experience Replay.html
6.2 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/04. Overfitting and Underfitting.html
6.2 kB
Part 02-Module 05-Lesson 01_Deep Neural Networks/08. Regularization Intro.html
6.2 kB
Part 11-Module 01-Lesson 06_Temporal-Difference Methods/03. TD Prediction TD(0).html
6.2 kB
Part 11-Module 01-Lesson 06_Temporal-Difference Methods/07. TD Control Sarsa(0).html
6.2 kB
Part 11-Module 01-Lesson 01_Introduction to RL/03. The Setting-nh8Gwdu19nc.zh-CN.vtt
6.2 kB
Part 02-Module 03-Lesson 01_MiniFlow/img/dcdw1-grad-fixed.gif
6.2 kB
Part 09-Module 01-Lesson 03_Implementation of RNN and LSTM/04. Character-wise RNN Notebook.html
6.2 kB
Part 11-Module 01-Lesson 09_Deep Q-Learning/06. Deep Q Network.html
6.2 kB
Part 04-Module 02-Lesson 03_Deep Convolutional GANs/04. DCGAN Implementation.html
6.2 kB
Part 10-Module 01-Lesson 02_Deep Convolutional GANs/04. DCGAN Implementation.html
6.2 kB
Part 02-Module 01-Lesson 01_Model Evaluation and Validation/06. 04 L Types Of Errors-Twf1qnPZeSY.zh-CN.vtt
6.2 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/08. Iterative Policy Evaluation-eDXIL_oOJHI.zh-CN.vtt
6.2 kB
Part 11-Module 01-Lesson 09_Deep Q-Learning/03. Monte Carlo Learning.html
6.2 kB
Part 03-Module 05-Lesson 01_Transfer Learning in TensorFlow/02. Transfer Learning--WmQwYr0DYjY.pt-BR.vtt
6.2 kB
Part 08-Module 01-Lesson 06_Transfer Learning in TensorFlow/02. Transfer Learning--WmQwYr0DYjY.pt-BR.vtt
6.2 kB
Part 07-Module 01-Lesson 05_Keras/05. Optimizers in Keras.html
6.2 kB
Part 02-Module 03-Lesson 01_MiniFlow/15. Outro.html
6.2 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/02. Training Optimization.html
6.2 kB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/06. Implementing a Character-wise RNN.html
6.2 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/08. Generator Network-btHVXnICmzQ.pt-BR.vtt
6.2 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/08. Generator Network-btHVXnICmzQ.pt-BR.vtt
6.2 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/05. Early Stopping.html
6.1 kB
Part 09-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/06. The Forget Gate.html
6.1 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/25. Transfer Learning-LHG5FltaR6I.en.vtt
6.1 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/10. Cumulative Reward-ysriH65lV9o.pt-BR.vtt
6.1 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/03. Logistic Regression - Solution-1iNylA3fJDs.pt-BR.vtt
6.1 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/01. Instructor.html
6.1 kB
Part 03-Module 02-Lesson 01_Embeddings and Word2vec/03. Subsampling Solution-MAUM_mV_lj8.en.vtt
6.1 kB
Part 09-Module 01-Lesson 05_Embeddings and Word2vec/03. Subsampling Solution-MAUM_mV_lj8.en.vtt
6.1 kB
Part 11-Module 01-Lesson 10_Policy-Based Methods/03. M2L3 03 V2-TePX-0Bs23E.en.vtt
6.1 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/11. Vanishing Gradient.html
6.1 kB
Part 11-Module 01-Lesson 09_Deep Q-Learning/05. Q-Learning.html
6.1 kB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/14. Build the Network Solution.html
6.1 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/03. Logistic Regression - Solution-1iNylA3fJDs.en-US.vtt
6.1 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/11. Discounted Return-opXGNPwwn7g.zh-CN.vtt
6.1 kB
Part 04-Module 02-Lesson 05_Semi-Supervised Learning/12. Trained Semi-Supervised GAN-9yWYZDX8-O8.en.vtt
6.1 kB
Part 10-Module 01-Lesson 03_Semi-Supervised Learning/12. Trained Semi-Supervised GAN-9yWYZDX8-O8.en.vtt
6.1 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/14. Learning Rate Decay.html
6.1 kB
Part 11-Module 01-Lesson 08_RL in Continuous Spaces/13. Non-Linear Function Approximation.html
6.1 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/07. Regularization 2.html
6.1 kB
Part 11-Module 01-Lesson 09_Deep Q-Learning/08. Fixed Q Targets.html
6.1 kB
Part 03-Module 06-Lesson 01_Sequence to Sequence/06. Preprocessing.html
6.1 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/10. Random Restart.html
6.1 kB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/12. Output and Loss Solutions.html
6.1 kB
Part 01-Module 01-Lesson 02_Anaconda/02. Introduction.html
6.1 kB
Part 06-Module 01-Lesson 03_Anaconda/02. Introduction.html
6.1 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/09. Local Minima.html
6.1 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/03. How Computers Interpret Images-V4f6p6uRhu8.pt-BR.vtt
6.1 kB
Part 03-Module 01-Lesson 03_Hyperparameters/03. Learning Rate.html
6.1 kB
Part 04-Module 02-Lesson 02_Hyperparameters/03. Learning Rate.html
6.1 kB
Part 09-Module 01-Lesson 04_Hyperparameters/03. Learning Rate.html
6.1 kB
Part 11-Module 01-Lesson 08_RL in Continuous Spaces/03. Discrete vs. Continuous Spaces.html
6.1 kB
Part 04-Module 02-Lesson 05_Semi-Supervised Learning/05. Building The Generator And Discriminator.html
6.1 kB
Part 10-Module 01-Lesson 03_Semi-Supervised Learning/05. Building The Generator And Discriminator.html
6.1 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/10. Generator and Discriminator Solutions-9By2pAck044.en.vtt
6.1 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/10. Generator and Discriminator Solutions-9By2pAck044.en.vtt
6.1 kB
Part 09-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/11. Other architectures.html
6.1 kB
Part 11-Module 01-Lesson 08_RL in Continuous Spaces/11. Linear Function Approximation.html
6.1 kB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/07. Batching Data Solution.html
6.1 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/13. 16 RNN B V4 Final-wsif3p5t7CI.pt-BR.vtt
6.1 kB
Part 11-Module 01-Lesson 09_Deep Q-Learning/08. Fixed Q Targets-SWpyiEezfp4.pt-BR.vtt
6.1 kB
Part 06-Module 01-Lesson 01_Welcome to Deep Learning/09. Prerequisites.html
6.1 kB
Part 03-Module 07-Lesson 01_Reinforcement Learning/01. Reinforcement Learning Lesson.html
6.1 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/15. Momentum.html
6.1 kB
Part 11-Module 01-Lesson 03_The RL Framework The Solution/01. Introduction.html
6.1 kB
Part 04-Module 02-Lesson 05_Semi-Supervised Learning/03. Introducing Semi-Supervised Learning.html
6.1 kB
Part 10-Module 01-Lesson 03_Semi-Supervised Learning/03. Introducing Semi-Supervised Learning.html
6.1 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/03. Testing.html
6.1 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/08. Dropout.html
6.1 kB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/03. Character-wise RNNs.html
6.0 kB
Part 03-Module 06-Lesson 01_Sequence to Sequence/09. Further Reading.html
6.0 kB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/09. LSTM Cell Solution.html
6.0 kB
Part 02-Module 02-Lesson 03_Preparing for Siraj's Lesson/05. RNNs and LSTMs.html
6.0 kB
Part 07-Module 01-Lesson 02_Implementing Gradient Descent/01. Mean Squared Error Function.html
6.0 kB
Part 01-Module 01-Lesson 03_Jupyter Notebooks/06. Code cells.html
6.0 kB
Part 06-Module 01-Lesson 04_Jupyter Notebooks/06. Code cells.html
6.0 kB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/04. Sequence Batching.html
6.0 kB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/13. Build the Network.html
6.0 kB
Part 09-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/07. The Remember Gate.html
6.0 kB
Part 01-Module 03-Lesson 01_Matrix Math and NumPy Refresher/06. Matrix Multiplication Part 1.html
6.0 kB
Part 02-Module 05-Lesson 01_Deep Neural Networks/05. Training a Deep Learning Network.html
6.0 kB
Part 06-Module 01-Lesson 05_Matrix Math and NumPy Refresher/06. Matrix Multiplication Part 1.html
6.0 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.en.vtt
6.0 kB
Part 07-Module 01-Lesson 05_Keras/01. Intro.html
6.0 kB
Part 03-Module 03-Lesson 01_TensorBoard/01. TensorBoard Intro.html
6.0 kB
Part 03-Module 08-Lesson 02_Autoencoders/04. Simple Autoencoder Solution-Nv_D6DHfEk8.zh-CN.vtt
6.0 kB
Part 08-Module 01-Lesson 05_Autoencoders/04. Simple Autoencoder Solution-Nv_D6DHfEk8.zh-CN.vtt
6.0 kB
Part 06-Module 01-Lesson 01_Welcome to Deep Learning/05. Projects You Will Build.html
6.0 kB
Part 02-Module 01-Lesson 01_Model Evaluation and Validation/01. Introduction.html
6.0 kB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/11. Network Loss.html
6.0 kB
Part 04-Module 02-Lesson 05_Semi-Supervised Learning/02. Semi-Supervised Classification with GANs.html
6.0 kB
Part 10-Module 01-Lesson 03_Semi-Supervised Learning/02. Semi-Supervised Classification with GANs.html
6.0 kB
Part 01-Module 02-Lesson 01_Regression/07. Siraj's Live Session.html
6.0 kB
Part 04-Module 02-Lesson 05_Semi-Supervised Learning/07. Model Optimization Exercise.html
6.0 kB
Part 04-Module 02-Lesson 05_Semi-Supervised Learning/12. Trained Semi-Supervised GAN.html
6.0 kB
Part 10-Module 01-Lesson 03_Semi-Supervised Learning/07. Model Optimization Exercise.html
6.0 kB
Part 10-Module 01-Lesson 03_Semi-Supervised Learning/12. Trained Semi-Supervised GAN.html
6.0 kB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/10. RNN Output.html
6.0 kB
Part 11-Module 01-Lesson 08_RL in Continuous Spaces/12. Kernel Functions.html
6.0 kB
Part 11-Module 01-Lesson 09_Deep Q-Learning/06. Deep Q Network-GgtR_d1OB-M.en.vtt
6.0 kB
Part 03-Module 07-Lesson 01_Reinforcement Learning/04. Deep Q-Learning.html
6.0 kB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/08. LSTM Cell.html
6.0 kB
Part 01-Module 01-Lesson 01_Welcome/03. Meet Your Instructors.html
6.0 kB
Part 02-Module 03-Lesson 01_MiniFlow/01. Welcome to MiniFlow.html
6.0 kB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/10. MC Control Incremental Mean-E2RITH-2NUE.pt-BR.vtt
6.0 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/index.html
6.0 kB
Part 01-Module 01-Lesson 01_Welcome/05. Prerequisites.html
6.0 kB
Part 11-Module 01-Lesson 08_RL in Continuous Spaces/05. Discretization.html
6.0 kB
Part 03-Module 05-Lesson 01_Transfer Learning in TensorFlow/10. Training And Testing-NLPtmQjGYCA.en.vtt
6.0 kB
Part 04-Module 02-Lesson 05_Semi-Supervised Learning/11. Model Optimizer Solution.html
6.0 kB
Part 08-Module 01-Lesson 06_Transfer Learning in TensorFlow/10. Training And Testing-NLPtmQjGYCA.en.vtt
6.0 kB
Part 10-Module 01-Lesson 03_Semi-Supervised Learning/11. Model Optimizer Solution.html
6.0 kB
Part 11-Module 01-Lesson 09_Deep Q-Learning/02. Neural Nets as Value Functions.html
6.0 kB
Part 09-Module 01-Lesson 03_Implementation of RNN and LSTM/05. Implementing a Character-wise RNN.html
6.0 kB
Part 11-Module 01-Lesson 08_RL in Continuous Spaces/09. Coarse Coding.html
6.0 kB
Part 11-Module 02-Lesson 01_Teach a Quadcopter How to Fly/01. Project Description.html
6.0 kB
Part 04-Module 02-Lesson 05_Semi-Supervised Learning/09. Discriminator Solution.html
6.0 kB
Part 10-Module 01-Lesson 03_Semi-Supervised Learning/09. Discriminator Solution.html
6.0 kB
Part 11-Module 01-Lesson 09_Deep Q-Learning/04. Temporal Difference Learning.html
6.0 kB
Part 06-Module 01-Lesson 01_Welcome to Deep Learning/10. Getting Set Up.html
6.0 kB
Part 02-Module 01-Lesson 01_Model Evaluation and Validation/04. Accuracy.html
6.0 kB
Part 04-Module 02-Lesson 04_Generate Faces/Project Description - Generate Faces.html
6.0 kB
Part 11-Module 01-Lesson 08_RL in Continuous Spaces/07. Tile Coding.html
6.0 kB
Part 09-Module 01-Lesson 03_Implementation of RNN and LSTM/01. Intro.html
6.0 kB
Part 11-Module 01-Lesson 09_Deep Q-Learning/05. Q-Learning-AI5gLgYMSq8.pt-BR.vtt
6.0 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/20. 21 L Measuring Performance-byP0DJImOSk.en-US.vtt
5.9 kB
Part 04-Module 02-Lesson 05_Semi-Supervised Learning/08. Training The Network.html
5.9 kB
Part 10-Module 01-Lesson 03_Semi-Supervised Learning/08. Training The Network.html
5.9 kB
Part 11-Module 01-Lesson 08_RL in Continuous Spaces/11. Linear Function Approximation-OJ5wrB7o-pI.zh-CN.vtt
5.9 kB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/02. LSTMs.html
5.9 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/15. Pooling Layers-OkkIZNs7Cyc.pt-BR.vtt
5.9 kB
Part 03-Module 07-Lesson 03_Translation Project/Project Description - Translation Project.html
5.9 kB
Part 04-Module 02-Lesson 01_Siraj's One-Shot Learning/01. How to Learn from Little Data.html
5.9 kB
Part 08-Module 01-Lesson 02_CNNs in TensorFlow/08. CNNs - Additional Resources.html
5.9 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/12. 14 RNN A V4 Final-ofbnDxGSUcg.pt-BR.vtt
5.9 kB
Part 04-Module 02-Lesson 05_Semi-Supervised Learning/06. Model Loss Exercise.html
5.9 kB
Part 04-Module 02-Lesson 05_Semi-Supervised Learning/10. Model Loss Solution.html
5.9 kB
Part 10-Module 01-Lesson 03_Semi-Supervised Learning/06. Model Loss Exercise.html
5.9 kB
Part 10-Module 01-Lesson 03_Semi-Supervised Learning/10. Model Loss Solution.html
5.9 kB
Part 09-Module 01-Lesson 03_Implementation of RNN and LSTM/13. Build the Network Solution.html
5.9 kB
Part 11-Module 01-Lesson 09_Deep Q-Learning/01. Intro to Deep Q-Learning.html
5.9 kB
Part 11-Module 01-Lesson 08_RL in Continuous Spaces/14. Summary.html
5.9 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/02. The Setting, Revisited-V6Q1uF8a6kA.pt-BR.vtt
5.9 kB
Part 09-Module 01-Lesson 03_Implementation of RNN and LSTM/11. Output and Loss Solutions.html
5.9 kB
Part 04-Module 02-Lesson 05_Semi-Supervised Learning/10. Model Loss Solution-r3DtohmychE.zh-CN.vtt
5.9 kB
Part 10-Module 01-Lesson 03_Semi-Supervised Learning/10. Model Loss Solution-r3DtohmychE.zh-CN.vtt
5.9 kB
Part 02-Module 05-Lesson 01_Deep Neural Networks/12. Dropout Pt. 2.html
5.9 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/img/perceptron-formula.gif
5.9 kB
Part 02-Module 05-Lesson 01_Deep Neural Networks/09. Regularization.html
5.9 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/25. 23 From RNNs To LSTMs V4 Final-MsqybcWmzGY.en.vtt
5.9 kB
Part 02-Module 05-Lesson 01_Deep Neural Networks/11. Dropout.html
5.9 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/img/diagonal-line-1.png
5.9 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/img/diagonal-line-1.png
5.9 kB
Part 07-Module 01-Lesson 02_Implementing Gradient Descent/03. Gradient Descent The Math.html
5.9 kB
Part 09-Module 01-Lesson 03_Implementation of RNN and LSTM/06. Batching Data Solution.html
5.9 kB
Part 01-Module 03-Lesson 01_Matrix Math and NumPy Refresher/01. Introduction.html
5.9 kB
Part 06-Module 01-Lesson 05_Matrix Math and NumPy Refresher/01. Introduction.html
5.9 kB
Part 01-Module 01-Lesson 03_Jupyter Notebooks/08. Keyboard shortcuts.html
5.9 kB
Part 06-Module 01-Lesson 04_Jupyter Notebooks/08. Keyboard shortcuts.html
5.9 kB
Part 01-Module 01-Lesson 04_Applying Deep Learning/05. Books to Read.html
5.9 kB
Part 06-Module 01-Lesson 02_Applying Deep Learning/05. Books to Read.html
5.9 kB
Part 02-Module 01-Lesson 01_Model Evaluation and Validation/07. Model-Complexity-Graph Solution 2-5pWHGkNyRhA.pt-BR.vtt
5.9 kB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/10. RNN Output-RkanDkcrTxs.en.vtt
5.9 kB
Part 09-Module 01-Lesson 03_Implementation of RNN and LSTM/09. RNN Output-RkanDkcrTxs.en.vtt
5.9 kB
Part 04-Module 02-Lesson 05_Semi-Supervised Learning/04. Data Prep.html
5.9 kB
Part 09-Module 01-Lesson 03_Implementation of RNN and LSTM/02. Character-wise RNNs.html
5.9 kB
Part 10-Module 01-Lesson 03_Semi-Supervised Learning/04. Data Prep.html
5.9 kB
Part 09-Module 01-Lesson 03_Implementation of RNN and LSTM/08. LSTM Cell Solution.html
5.9 kB
Part 11-Module 01-Lesson 08_RL in Continuous Spaces/03. Discrete vs. Continuous Spaces-uHstLeRzaE8.zh-CN.vtt
5.9 kB
Part 01-Module 01-Lesson 01_Welcome/09. Getting Set Up.html
5.9 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/08. Goals and Rewards, Part 2-pVIFc72VYH8.en.vtt
5.9 kB
Part 03-Module 06-Lesson 01_Sequence to Sequence/02. Jay's Introduction-HPOzAlXhuxQ.en.vtt
5.9 kB
Part 09-Module 01-Lesson 03_Implementation of RNN and LSTM/03. Sequence Batching.html
5.9 kB
Part 09-Module 01-Lesson 03_Implementation of RNN and LSTM/12. Build the Network.html
5.9 kB
Part 02-Module 04-Lesson 01_Cloud Computing/02. Create an AWS Account.html
5.9 kB
Part 08-Module 01-Lesson 01_Cloud Computing/02. Create an AWS Account.html
5.9 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/14. MDPs, Part 2-CUTtQvxKkNw.zh-CN.vtt
5.8 kB
Part 02-Module 01-Lesson 01_Model Evaluation and Validation/03. Confusion Matrix-Question-9GLNjmMUB_4.en.vtt
5.8 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/24. Confusion Matrix-Question 1-9GLNjmMUB_4.en.vtt
5.8 kB
Part 01-Module 01-Lesson 01_Welcome/08. We Value Your Feedback.html
5.8 kB
Part 11-Module 01-Lesson 03_The RL Framework The Solution/04. Gridworld Example.html
5.8 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs. Continuous-Rm2KxFaPiJg.en.vtt
5.8 kB
Part 03-Module 04-Lesson 03_Sentiment Prediction RNN/06. Training The Network-nknJ3Xu3ld0.pt-BR.vtt
5.8 kB
Part 09-Module 01-Lesson 06_Sentiment Prediction RNN/06. Training The Network-nknJ3Xu3ld0.pt-BR.vtt
5.8 kB
Part 11-Module 01-Lesson 03_The RL Framework The Solution/11. Optimal Policies.html
5.8 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/index.html
5.8 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/26. Transfer Learning in Keras-HsIAznMM1LA.zh-CN.vtt
5.8 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/06. 06 FeedForward A V7 Final-4rCfnWbx8-0.pt-BR.vtt
5.8 kB
Part 01-Module 01-Lesson 03_Jupyter Notebooks/01. Instructor.html
5.8 kB
Part 06-Module 01-Lesson 04_Jupyter Notebooks/01. Instructor.html
5.8 kB
assets/css/fonts/KaTeX_Size1-Regular.woff2
5.8 kB
Part 02-Module 02-Lesson 02_Intro to TFLearn/05. Sentiment Analysis Solution SC-s7FKYC5Zcm8.zh-CN.vtt
5.8 kB
Part 09-Module 01-Lesson 03_Implementation of RNN and LSTM/10. Network Loss.html
5.8 kB
Part 11-Module 01-Lesson 01_Introduction to RL/05. Resources.html
5.8 kB
Part 11-Module 01-Lesson 09_Deep Q-Learning/13. Wrap Up.html
5.8 kB
Part 09-Module 01-Lesson 03_Implementation of RNN and LSTM/09. RNN Output.html
5.8 kB
Part 01-Module 03-Lesson 01_Matrix Math and NumPy Refresher/04. Element-wise Matrix Operations.html
5.8 kB
Part 04-Module 02-Lesson 05_Semi-Supervised Learning/12. Trained Semi-Supervised GAN-9yWYZDX8-O8.pt-BR.vtt
5.8 kB
Part 06-Module 01-Lesson 05_Matrix Math and NumPy Refresher/04. Element-wise Matrix Operations.html
5.8 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs. Continuous-Rm2KxFaPiJg.pt-BR.vtt
5.8 kB
Part 10-Module 01-Lesson 03_Semi-Supervised Learning/12. Trained Semi-Supervised GAN-9yWYZDX8-O8.pt-BR.vtt
5.8 kB
Part 03-Module 01-Lesson 03_Hyperparameters/05. Minibatch Size.html
5.8 kB
Part 04-Module 02-Lesson 02_Hyperparameters/05. Minibatch Size.html
5.8 kB
Part 09-Module 01-Lesson 04_Hyperparameters/05. Minibatch Size.html
5.8 kB
Part 09-Module 01-Lesson 03_Implementation of RNN and LSTM/07. LSTM Cell.html
5.8 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/02. Applications of CNNs-HrYNL_1SV2Y.pt-BR.vtt
5.8 kB
Part 02-Module 05-Lesson 01_Deep Neural Networks/01. Intro to Deep Neural Networks.html
5.8 kB
Part 07-Module 01-Lesson 05_Keras/04. Lab Student Admissions in Keras.html
5.8 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/index.html
5.8 kB
Part 11-Module 01-Lesson 03_The RL Framework The Solution/08. Optimality.html
5.8 kB
Part 03-Module 01-Lesson 03_Hyperparameters/01. Introducing Jay.html
5.8 kB
Part 04-Module 02-Lesson 02_Hyperparameters/01. Introducing Jay.html
5.8 kB
Part 09-Module 01-Lesson 04_Hyperparameters/01. Introducing Jay.html
5.8 kB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/10. RNN Output-RkanDkcrTxs.pt-BR.vtt
5.8 kB
Part 09-Module 01-Lesson 03_Implementation of RNN and LSTM/09. RNN Output-RkanDkcrTxs.pt-BR.vtt
5.8 kB
Part 11-Module 01-Lesson 03_The RL Framework The Solution/02. Policies.html
5.8 kB
Part 07-Module 01-Lesson 05_Keras/08. Lab IMDB Data in Keras.html
5.8 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/12. 14 RNN A V4 Final-ofbnDxGSUcg.en.vtt
5.8 kB
Part 01-Module 01-Lesson 03_Jupyter Notebooks/03. Installing Jupyter Notebook.html
5.8 kB
Part 06-Module 01-Lesson 04_Jupyter Notebooks/03. Installing Jupyter Notebook.html
5.8 kB
Part 03-Module 06-Lesson 01_Sequence to Sequence/10. Sequence to Sequence in TensorFlow.html
5.8 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/05. 04 RNN FFNN Reminder A V7 Final-_vrp2lZjXf0.en.vtt
5.8 kB
Part 11-Module 01-Lesson 08_RL in Continuous Spaces/01. Deep Reinforcement Learning-GPjK124RU5g.zh-CN.vtt
5.8 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/img/inputs-matrix.png
5.7 kB
Part 07-Module 01-Lesson 02_Implementing Gradient Descent/img/inputs-matrix.png
5.7 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/24. RNN Summary-nXP0oGGRrO8.en.vtt
5.7 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.pt-BR.vtt
5.7 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/02. The Setting, Revisited-V6Q1uF8a6kA.en.vtt
5.7 kB
Part 07-Module 01-Lesson 02_Implementing Gradient Descent/09. Further Reading.html
5.7 kB
Part 01-Module 03-Lesson 01_Matrix Math and NumPy Refresher/09. Matrix Transposes.html
5.7 kB
Part 06-Module 01-Lesson 05_Matrix Math and NumPy Refresher/09. Matrix Transposes.html
5.7 kB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/13. MC Control Policy Improvement-2RKH-BInX7s.zh-CN.vtt
5.7 kB
Part 01-Module 01-Lesson 03_Jupyter Notebooks/12. Finishing up.html
5.7 kB
Part 01-Module 03-Lesson 01_Matrix Math and NumPy Refresher/02. Data Dimensions.html
5.7 kB
Part 06-Module 01-Lesson 04_Jupyter Notebooks/12. Finishing up.html
5.7 kB
Part 06-Module 01-Lesson 05_Matrix Math and NumPy Refresher/02. Data Dimensions.html
5.7 kB
Part 04-Module 02-Lesson 03_Deep Convolutional GANs/09. Building and Training the Network.html
5.7 kB
Part 10-Module 01-Lesson 02_Deep Convolutional GANs/09. Building and Training the Network.html
5.7 kB
Part 03-Module 06-Lesson 01_Sequence to Sequence/02. Jay's Introduction-HPOzAlXhuxQ.pt-BR.vtt
5.7 kB
Part 09-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/09. Putting it All Together.html
5.7 kB
Part 09-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/04. Architecture of LSTM.html
5.7 kB
Part 01-Module 01-Lesson 02_Anaconda/01. Instructor.html
5.7 kB
Part 06-Module 01-Lesson 03_Anaconda/01. Instructor.html
5.7 kB
Part 01-Module 02-Lesson 01_Regression/03. Siraj's Intro to Deep Learning.html
5.7 kB
Part 04-Module 02-Lesson 03_Deep Convolutional GANs/10. Hyperparameter Solutions.html
5.7 kB
Part 10-Module 01-Lesson 02_Deep Convolutional GANs/10. Hyperparameter Solutions.html
5.7 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/03. How Computers Interpret Images-V4f6p6uRhu8.en.vtt
5.7 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/05. Model Complexity Graph-NnS0FJyVcDQ.pt-BR.vtt
5.7 kB
Part 02-Module 01-Lesson 01_Model Evaluation and Validation/03. Confusion Matrix-Question-9GLNjmMUB_4.en-US.vtt
5.6 kB
Part 04-Module 02-Lesson 03_Deep Convolutional GANs/05. DCGAN and the Generator.html
5.6 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/24. Confusion Matrix-Question 1-9GLNjmMUB_4.en-US.vtt
5.6 kB
Part 10-Module 01-Lesson 02_Deep Convolutional GANs/05. DCGAN and the Generator.html
5.6 kB
Part 04-Module 02-Lesson 03_Deep Convolutional GANs/08. Discriminator Solution.html
5.6 kB
Part 10-Module 01-Lesson 02_Deep Convolutional GANs/08. Discriminator Solution.html
5.6 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/06. Model Validation in Keras-002jNXSM6CU.en.vtt
5.6 kB
Part 09-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/03. Basics of LSTM.html
5.6 kB
Part 03-Module 06-Lesson 01_Sequence to Sequence/05. Architectures in More Depth.html
5.6 kB
Part 09-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/02. RNN vs LSTM.html
5.6 kB
Part 03-Module 04-Lesson 02_Weight Initialization/01. Weight Initialization Intro.html
5.6 kB
Part 08-Module 01-Lesson 03_Weight Initialization/01. Weight Initialization Intro.html
5.6 kB
Part 04-Module 02-Lesson 03_Deep Convolutional GANs/06. Generator Solution.html
5.6 kB
Part 10-Module 01-Lesson 02_Deep Convolutional GANs/06. Generator Solution.html
5.6 kB
Part 03-Module 06-Lesson 01_Sequence to Sequence/04. Architectures.html
5.6 kB
Part 06-Module 01-Lesson 01_Welcome to Deep Learning/02. Meet Your Instructors.html
5.6 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/16. 18 RNN Example V5 Final-MDLk3fhpTx0.pt-BR.vtt
5.6 kB
Part 09-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/12. Outro LSTM.html
5.6 kB
Part 04-Module 02-Lesson 03_Deep Convolutional GANs/02. DCGAN Architecture.html
5.6 kB
Part 10-Module 01-Lesson 02_Deep Convolutional GANs/02. DCGAN Architecture.html
5.6 kB
Part 03-Module 06-Lesson 01_Sequence to Sequence/02. Jay Introduction.html
5.6 kB
Part 04-Module 02-Lesson 03_Deep Convolutional GANs/07. Discriminator.html
5.6 kB
Part 10-Module 01-Lesson 02_Deep Convolutional GANs/07. Discriminator.html
5.6 kB
Part 03-Module 06-Lesson 01_Sequence to Sequence/04. Architecture encoder decoder-dkHdEAJnV_w.en.vtt
5.6 kB
Part 03-Module 06-Lesson 01_Sequence to Sequence/03. Applications.html
5.6 kB
Part 11-Module 01-Lesson 03_The RL Framework The Solution/02. Policies-hc3LrvaC13U.pt-BR.vtt
5.6 kB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/10. MC Control Incremental Mean-E2RITH-2NUE.en.vtt
5.6 kB
assets/css/fonts/KaTeX_Size2-Regular.woff2
5.6 kB
Part 03-Module 05-Lesson 01_Transfer Learning in TensorFlow/08. Classifier Solution.html
5.6 kB
Part 08-Module 01-Lesson 06_Transfer Learning in TensorFlow/08. Classifier Solution.html
5.6 kB
Part 03-Module 05-Lesson 01_Transfer Learning in TensorFlow/02. Transfer Learning with VGGNet.html
5.6 kB
Part 08-Module 01-Lesson 06_Transfer Learning in TensorFlow/02. Transfer Learning with VGGNet.html
5.6 kB
Part 03-Module 04-Lesson 03_Sentiment Prediction RNN/06. Training The Network-nknJ3Xu3ld0.zh-CN.vtt
5.6 kB
Part 09-Module 01-Lesson 06_Sentiment Prediction RNN/06. Training The Network-nknJ3Xu3ld0.zh-CN.vtt
5.6 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/02. Andrew Trask - Intro-da1I0mea1jQ.en-US.vtt
5.6 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/02. Andrew Trask - Intro-da1I0mea1jQ.en-US.vtt
5.6 kB
Part 11-Module 01-Lesson 09_Deep Q-Learning/08. Fixed Q Targets-SWpyiEezfp4.en.vtt
5.6 kB
Part 03-Module 04-Lesson 03_Sentiment Prediction RNN/04. Creating Testing Sets.html
5.5 kB
Part 09-Module 01-Lesson 06_Sentiment Prediction RNN/04. Creating Testing Sets.html
5.5 kB
Part 03-Module 05-Lesson 01_Transfer Learning in TensorFlow/07. Classifier.html
5.5 kB
Part 08-Module 01-Lesson 06_Transfer Learning in TensorFlow/07. Classifier.html
5.5 kB
Part 03-Module 02-Lesson 01_Embeddings and Word2vec/08. Building the Network Solution.html
5.5 kB
Part 03-Module 05-Lesson 01_Transfer Learning in TensorFlow/10. Training solution.html
5.5 kB
Part 08-Module 01-Lesson 06_Transfer Learning in TensorFlow/10. Training solution.html
5.5 kB
Part 09-Module 01-Lesson 05_Embeddings and Word2vec/08. Building the Network Solution.html
5.5 kB
Part 03-Module 05-Lesson 01_Transfer Learning in TensorFlow/09. Training.html
5.5 kB
Part 08-Module 01-Lesson 06_Transfer Learning in TensorFlow/09. Training.html
5.5 kB
Part 03-Module 05-Lesson 01_Transfer Learning in TensorFlow/06. Data Preparation Solution.html
5.5 kB
Part 08-Module 01-Lesson 06_Transfer Learning in TensorFlow/06. Data Preparation Solution.html
5.5 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/index.html
5.5 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/15. Pooling Layers-OkkIZNs7Cyc.en.vtt
5.5 kB
Part 03-Module 01-Lesson 03_Hyperparameters/02. Introduction.html
5.5 kB
Part 04-Module 02-Lesson 02_Hyperparameters/02. Introduction.html
5.5 kB
Part 09-Module 01-Lesson 04_Hyperparameters/02. Introduction.html
5.5 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/18. CNNs in Keras Practical Example-faFvmGDwXX0.en.vtt
5.5 kB
Part 03-Module 05-Lesson 01_Transfer Learning in TensorFlow/04. VGGNet Solution.html
5.5 kB
Part 08-Module 01-Lesson 06_Transfer Learning in TensorFlow/04. VGGNet Solution.html
5.5 kB
Part 03-Module 05-Lesson 01_Transfer Learning in TensorFlow/05. Data Preparation.html
5.5 kB
Part 08-Module 01-Lesson 06_Transfer Learning in TensorFlow/05. Data Preparation.html
5.5 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/25. Transfer Learning-LHG5FltaR6I.zh-CN.vtt
5.5 kB
Part 04-Module 02-Lesson 04_Generate Faces/03. Face Generation Workspace.html
5.5 kB
Part 01-Module 01-Lesson 01_Welcome/01. Welcome to the Deep Learning Nanodegree Foundations.html
5.5 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/02. Applications of CNNs-HrYNL_1SV2Y.en.vtt
5.5 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 Q Softmax V2-RC_A9Tu99y4.en.vtt
5.5 kB
Part 03-Module 05-Lesson 01_Transfer Learning in TensorFlow/03. VGGNet.html
5.5 kB
Part 08-Module 01-Lesson 06_Transfer Learning in TensorFlow/03. VGGNet.html
5.5 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/10. Cumulative Reward-ysriH65lV9o.en.vtt
5.5 kB
Part 03-Module 01-Lesson 03_Hyperparameters/05. Minibatch Size-GrrO1NFxaW8.en.vtt
5.5 kB
Part 04-Module 02-Lesson 02_Hyperparameters/05. Minibatch Size-GrrO1NFxaW8.en.vtt
5.5 kB
Part 09-Module 01-Lesson 04_Hyperparameters/05. Minibatch Size-GrrO1NFxaW8.en.vtt
5.5 kB
Part 03-Module 02-Lesson 01_Embeddings and Word2vec/02. Implementing Word2Vec.html
5.5 kB
Part 09-Module 01-Lesson 05_Embeddings and Word2vec/02. Implementing Word2Vec.html
5.5 kB
Part 11-Module 01-Lesson 09_Deep Q-Learning/09. Deep Q-Learning Algorithm-MqTXoCxQ_eY.pt-BR.vtt
5.5 kB
Part 03-Module 02-Lesson 01_Embeddings and Word2vec/03. Subsampling Solution.html
5.5 kB
Part 03-Module 02-Lesson 01_Embeddings and Word2vec/06. Building the Network.html
5.5 kB
Part 09-Module 01-Lesson 05_Embeddings and Word2vec/03. Subsampling Solution.html
5.5 kB
Part 09-Module 01-Lesson 05_Embeddings and Word2vec/06. Building the Network.html
5.5 kB
Part 11-Module 01-Lesson 10_Policy-Based Methods/04. M2L3 04 V1-QicxmyE5vTo.en.vtt
5.5 kB
Part 04-Module 02-Lesson 05_Semi-Supervised Learning/04. Data Prep-P5hOx09mwaM.en.vtt
5.5 kB
Part 10-Module 01-Lesson 03_Semi-Supervised Learning/04. Data Prep-P5hOx09mwaM.en.vtt
5.5 kB
Part 11-Module 01-Lesson 11_Actor-Critic Methods/06. Actor-Critic with Advantage.html
5.5 kB
Part 02-Module 03-Lesson 01_MiniFlow/img/dsdl1.png
5.5 kB
Part 03-Module 04-Lesson 03_Sentiment Prediction RNN/03. Data Preprocessing-h4-LwZU9_k8.en.vtt
5.5 kB
Part 09-Module 01-Lesson 06_Sentiment Prediction RNN/03. Data Preprocessing-h4-LwZU9_k8.en.vtt
5.5 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.zh-CN.vtt
5.5 kB
Part 03-Module 02-Lesson 01_Embeddings and Word2vec/07. Negative Sampling.html
5.5 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/index.html
5.5 kB
Part 09-Module 01-Lesson 05_Embeddings and Word2vec/07. Negative Sampling.html
5.5 kB
Part 11-Module 01-Lesson 01_Introduction to RL/06. Reference Guide.html
5.5 kB
Part 03-Module 02-Lesson 01_Embeddings and Word2vec/05. Batches Solution.html
5.4 kB
Part 03-Module 02-Lesson 01_Embeddings and Word2vec/09. Training Results.html
5.4 kB
Part 09-Module 01-Lesson 05_Embeddings and Word2vec/05. Batches Solution.html
5.4 kB
Part 09-Module 01-Lesson 05_Embeddings and Word2vec/09. Training Results.html
5.4 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/05. Model Complexity Graph-NnS0FJyVcDQ.en.vtt
5.4 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/25. 23 From RNNs To LSTMs V4 Final-MsqybcWmzGY.zh-CN.vtt
5.4 kB
Part 11-Module 01-Lesson 03_The RL Framework The Solution/09. Action-Value Functions-KJLaRfOOPGA.pt-BR.vtt
5.4 kB
Part 03-Module 02-Lesson 01_Embeddings and Word2vec/04. Making Batches.html
5.4 kB
Part 09-Module 01-Lesson 05_Embeddings and Word2vec/04. Making Batches.html
5.4 kB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/08. LSTM Cell-ajC-5uWB8S4.zh-CN.vtt
5.4 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/13. 16 RNN B V4 Final-wsif3p5t7CI.en.vtt
5.4 kB
Part 09-Module 01-Lesson 03_Implementation of RNN and LSTM/07. LSTM Cell-ajC-5uWB8S4.zh-CN.vtt
5.4 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/10. Generator and Discriminator Solutions-9By2pAck044.zh-CN.vtt
5.4 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/10. Generator and Discriminator Solutions-9By2pAck044.zh-CN.vtt
5.4 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/32. Combinando modelos-Boy3zHVrWB4.pt-BR.vtt
5.4 kB
Part 11-Module 01-Lesson 11_Actor-Critic Methods/01. Actor-Critic Methods.html
5.4 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/32. Combinando modelos-Boy3zHVrWB4.en.vtt
5.4 kB
Part 11-Module 01-Lesson 11_Actor-Critic Methods/03. Two Function Approximators.html
5.4 kB
Part 03-Module 04-Lesson 02_Weight Initialization/06. Additional Material.html
5.4 kB
Part 08-Module 01-Lesson 03_Weight Initialization/06. Additional Material.html
5.4 kB
Part 04-Module 02-Lesson 05_Semi-Supervised Learning/12. Trained Semi-Supervised GAN-9yWYZDX8-O8.zh-CN.vtt
5.4 kB
Part 10-Module 01-Lesson 03_Semi-Supervised Learning/12. Trained Semi-Supervised GAN-9yWYZDX8-O8.zh-CN.vtt
5.4 kB
Part 11-Module 01-Lesson 11_Actor-Critic Methods/05. Advantage Function.html
5.4 kB
Part 03-Module 04-Lesson 04_Generate TV Scripts/02. TV Script Workspace.html
5.4 kB
Part 11-Module 01-Lesson 01_Introduction to RL/01. Introduction.html
5.4 kB
Part 11-Module 01-Lesson 11_Actor-Critic Methods/04. The Actor and The Critic.html
5.4 kB
Part 11-Module 01-Lesson 09_Deep Q-Learning/05. Q-Learning-AI5gLgYMSq8.en.vtt
5.4 kB
Part 03-Module 04-Lesson 03_Sentiment Prediction RNN/05. Building the RNN.html
5.4 kB
Part 09-Module 01-Lesson 06_Sentiment Prediction RNN/05. Building the RNN.html
5.4 kB
Part 11-Module 01-Lesson 11_Actor-Critic Methods/02. A Better Score Function.html
5.4 kB
Part 11-Module 01-Lesson 09_Deep Q-Learning/06. Deep Q Network-GgtR_d1OB-M.zh-CN.vtt
5.4 kB
Part 11-Module 01-Lesson 03_The RL Framework The Solution/05. State-Value Functions-llakAjwox_8.pt-BR.vtt
5.4 kB
Part 11-Module 01-Lesson 10_Policy-Based Methods/03. M2L3 03 V2-TePX-0Bs23E.zh-CN.vtt
5.4 kB
Part 01-Module 02-Lesson 01_Regression/01. Welcome to Week One.html
5.4 kB
Part 02-Module 04-Lesson 01_Cloud Computing/07. More Resources.html
5.4 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/10. Generator and Discriminator Solutions-9By2pAck044.pt-BR.vtt
5.4 kB
Part 08-Module 01-Lesson 01_Cloud Computing/07. More Resources.html
5.4 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/10. Generator and Discriminator Solutions-9By2pAck044.pt-BR.vtt
5.4 kB
Part 02-Module 01-Lesson 01_Model Evaluation and Validation/07. Model-Complexity-Graph Solution 2-5pWHGkNyRhA.zh-CN.vtt
5.4 kB
Part 02-Module 01-Lesson 01_Model Evaluation and Validation/08. K-Fold Cross Validation.html
5.4 kB
Part 11-Module 01-Lesson 07_Solve OpenAI Gym's Taxi-v2 Task/03. Mini Project.html
5.3 kB
Part 09-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/03. LSTM Basics-gjb68a4XsqE.en.vtt
5.3 kB
Part 03-Module 08-Lesson 02_Autoencoders/06. Convolutional Autoencoders Solution.html
5.3 kB
Part 08-Module 01-Lesson 05_Autoencoders/06. Convolutional Autoencoders Solution.html
5.3 kB
Part 01-Module 01-Lesson 04_Applying Deep Learning/01. Introduction.html
5.3 kB
Part 06-Module 01-Lesson 02_Applying Deep Learning/01. Introduction.html
5.3 kB
Part 02-Module 01-Lesson 01_Model Evaluation and Validation/06. Types of Errors.html
5.3 kB
Part 07-Module 01-Lesson 05_Keras/06. Mini Project Intro.html
5.3 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/03. Logistic Regression - Solution-1iNylA3fJDs.zh-CN.vtt
5.3 kB
Part 06-Module 01-Lesson 01_Welcome to Deep Learning/01. Welcome to the Deep Learning Nanodegree Program.html
5.3 kB
Part 02-Module 01-Lesson 01_Model Evaluation and Validation/05. Regression Metrics.html
5.3 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/23. Error Function-V5kkHldUlVU.pt-BR.vtt
5.3 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/20. 21 L Measuring Performance-byP0DJImOSk.zh-CN.vtt
5.3 kB
Part 03-Module 06-Lesson 01_Sequence to Sequence/05. Architecture in More Depth-rdAo4MqLbEk.en.vtt
5.3 kB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/index.html
5.3 kB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/06. MC Prediction Action Values-08tLtbh0xLs.zh-CN.vtt
5.3 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/06. 06 FeedForward A V7 Final-4rCfnWbx8-0.en.vtt
5.3 kB
Part 02-Module 02-Lesson 03_Preparing for Siraj's Lesson/01. Introduction.html
5.3 kB
Part 03-Module 08-Lesson 02_Autoencoders/04. Simple Autoencoder Solution.html
5.3 kB
Part 08-Module 01-Lesson 05_Autoencoders/04. Simple Autoencoder Solution.html
5.3 kB
Part 11-Module 01-Lesson 10_Policy-Based Methods/03. Policy Function Approximation.html
5.3 kB
Part 03-Module 06-Lesson 01_Sequence to Sequence/02. Jay's Introduction-HPOzAlXhuxQ.zh-CN.vtt
5.3 kB
Part 11-Module 01-Lesson 10_Policy-Based Methods/06. Monte Carlo Policy Gradients.html
5.3 kB
Part 11-Module 01-Lesson 10_Policy-Based Methods/07. Constrained Policy Gradients.html
5.3 kB
Part 03-Module 08-Lesson 02_Autoencoders/05. Convolutional Autoencoders.html
5.3 kB
Part 08-Module 01-Lesson 05_Autoencoders/05. Convolutional Autoencoders.html
5.3 kB
Part 11-Module 01-Lesson 10_Policy-Based Methods/02. Why Policy-Based Methods.html
5.3 kB
Part 03-Module 02-Lesson 01_Embeddings and Word2vec/06. Building The Network-fhSb5c6UX6M.en.vtt
5.3 kB
Part 09-Module 01-Lesson 05_Embeddings and Word2vec/06. Building The Network-fhSb5c6UX6M.en.vtt
5.3 kB
Part 11-Module 01-Lesson 10_Policy-Based Methods/04. Stochastic Policy Search.html
5.3 kB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/10. RNN Output-RkanDkcrTxs.zh-CN.vtt
5.3 kB
Part 09-Module 01-Lesson 03_Implementation of RNN and LSTM/09. RNN Output-RkanDkcrTxs.zh-CN.vtt
5.3 kB
Part 11-Module 01-Lesson 10_Policy-Based Methods/01. Policy-Based Methods.html
5.3 kB
Part 11-Module 01-Lesson 08_RL in Continuous Spaces/05. Discretization-j2eZyUpy--E.pt-BR.vtt
5.3 kB
Part 04-Module 02-Lesson 03_Deep Convolutional GANs/09. Building And Training The Network-nXKk9GI4X14.zh-CN.vtt
5.2 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/index.html
5.2 kB
Part 10-Module 01-Lesson 02_Deep Convolutional GANs/09. Building And Training The Network-nXKk9GI4X14.zh-CN.vtt
5.2 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/05. Categorical Cross-Entropy-3sDYifgjFck.pt-BR.vtt
5.2 kB
Part 11-Module 01-Lesson 10_Policy-Based Methods/05. Policy Gradients.html
5.2 kB
Part 02-Module 01-Lesson 01_Model Evaluation and Validation/02. Testing.html
5.2 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/09. Mini Project 2 Solution-45ihpPaeO8E.en.vtt
5.2 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/10. Mini Project 2 Solution-45ihpPaeO8E.en.vtt
5.2 kB
Part 11-Module 01-Lesson 10_Policy-Based Methods/08. Recap.html
5.2 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/index.html
5.2 kB
Part 03-Module 04-Lesson 03_Sentiment Prediction RNN/06. Training the Network.html
5.2 kB
Part 09-Module 01-Lesson 06_Sentiment Prediction RNN/06. Training the Network.html
5.2 kB
Part 11-Module 01-Lesson 11_Actor-Critic Methods/07. Summary.html
5.2 kB
Part 04-Module 02-Lesson 05_Semi-Supervised Learning/09. Discriminator Solution-_X8ssUzu_Bo.en.vtt
5.2 kB
Part 10-Module 01-Lesson 03_Semi-Supervised Learning/09. Discriminator Solution-_X8ssUzu_Bo.en.vtt
5.2 kB
Part 03-Module 04-Lesson 03_Sentiment Prediction RNN/02. Sentiment RNN.html
5.2 kB
Part 03-Module 04-Lesson 03_Sentiment Prediction RNN/03. Data Preprocessing.html
5.2 kB
Part 09-Module 01-Lesson 06_Sentiment Prediction RNN/02. Sentiment RNN.html
5.2 kB
Part 09-Module 01-Lesson 06_Sentiment Prediction RNN/03. Data Preprocessing.html
5.2 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/15. Training Losses and Optimizers Solutions-HlABZ9Q7xEo.en.vtt
5.2 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/15. Training Losses and Optimizers Solutions-HlABZ9Q7xEo.en.vtt
5.2 kB
Part 11-Module 01-Lesson 03_The RL Framework The Solution/08. Optimality-j231aRV74QM.pt-BR.vtt
5.2 kB
assets/css/fonts/KaTeX_Size4-Regular.woff2
5.2 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 Q Softmax V2-RC_A9Tu99y4.pt-BR.vtt
5.2 kB
Part 03-Module 05-Lesson 01_Transfer Learning in TensorFlow/10. Training And Testing-NLPtmQjGYCA.pt-BR.vtt
5.2 kB
Part 08-Module 01-Lesson 06_Transfer Learning in TensorFlow/10. Training And Testing-NLPtmQjGYCA.pt-BR.vtt
5.2 kB
Part 03-Module 04-Lesson 02_Weight Initialization/03. Uniform Distribution.html
5.2 kB
Part 08-Module 01-Lesson 03_Weight Initialization/03. Uniform Distribution.html
5.2 kB
Part 09-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/03. LSTM Basics-gjb68a4XsqE.pt-BR.vtt
5.2 kB
Part 03-Module 04-Lesson 02_Weight Initialization/05. Normal Distribution.html
5.2 kB
Part 08-Module 01-Lesson 03_Weight Initialization/05. Normal Distribution.html
5.2 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/12. 14 RNN A V4 Final-ofbnDxGSUcg.zh-CN.vtt
5.2 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/16. 18 RNN Example V5 Final-MDLk3fhpTx0.en.vtt
5.2 kB
Part 03-Module 04-Lesson 03_Sentiment Prediction RNN/07. Solutions.html
5.2 kB
Part 03-Module 08-Lesson 02_Autoencoders/02. Autoencoders.html
5.2 kB
Part 08-Module 01-Lesson 05_Autoencoders/02. Autoencoders.html
5.2 kB
Part 09-Module 01-Lesson 06_Sentiment Prediction RNN/07. Solutions.html
5.2 kB
Part 03-Module 04-Lesson 02_Weight Initialization/02. Ones and Zeros.html
5.2 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.zh-CN.vtt
5.2 kB
Part 08-Module 01-Lesson 03_Weight Initialization/02. Ones and Zeros.html
5.2 kB
Part 03-Module 02-Lesson 01_Embeddings and Word2vec/03. Subsampling Solution-MAUM_mV_lj8.zh-CN.vtt
5.2 kB
Part 09-Module 01-Lesson 05_Embeddings and Word2vec/03. Subsampling Solution-MAUM_mV_lj8.zh-CN.vtt
5.2 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/07. Transforming Text into Numbers-7rHBU5cbePE.en.vtt
5.2 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/08. Transforming Text into Numbers-7rHBU5cbePE.en.vtt
5.2 kB
Part 03-Module 04-Lesson 02_Weight Initialization/04. Too Small.html
5.2 kB
Part 08-Module 01-Lesson 03_Weight Initialization/04. Too Small.html
5.2 kB
Part 03-Module 06-Lesson 01_Sequence to Sequence/05. Architecture in More Depth-rdAo4MqLbEk.pt-BR.vtt
5.1 kB
Part 02-Module 05-Lesson 03_Siraj's Image Classification/01. On Keras.html
5.1 kB
Part 04-Module 02-Lesson 04_Generate Faces/01. One Project Away!.html
5.1 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/20. Cross Entropy 1-iREoPUrpXvE.pt-BR.vtt
5.1 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/15. Training Losses and Optimizers Solutions-HlABZ9Q7xEo.pt-BR.vtt
5.1 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/15. Training Losses and Optimizers Solutions-HlABZ9Q7xEo.pt-BR.vtt
5.1 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/08. Goals and Rewards, Part 2-pVIFc72VYH8.zh-CN.vtt
5.1 kB
Part 03-Module 04-Lesson 04_Generate TV Scripts/01. Introduction.html
5.1 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.zh-CN.vtt
5.1 kB
Part 03-Module 03-Lesson 01_TensorBoard/05. Choosing Hyperparameters.html
5.1 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/05. 04 RNN FFNN Reminder A V7 Final-_vrp2lZjXf0.zh-CN.vtt
5.1 kB
Part 02-Module 01-Lesson 01_Model Evaluation and Validation/03. Confusion Matrix-Question-9GLNjmMUB_4.zh-CN.vtt
5.1 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/24. Confusion Matrix-Question 1-9GLNjmMUB_4.zh-CN.vtt
5.1 kB
Part 01-Module 01-Lesson 02_Anaconda/02. Why Anaconda-VXukXZv7SCQ.ar.vtt
5.1 kB
Part 06-Module 01-Lesson 03_Anaconda/02. Why Anaconda-VXukXZv7SCQ.ar.vtt
5.1 kB
Part 03-Module 03-Lesson 01_TensorBoard/04. Inspecting Variables.html
5.1 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/02. Andrew Trask - Intro-da1I0mea1jQ.zh-CN.vtt
5.1 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/02. Andrew Trask - Intro-da1I0mea1jQ.zh-CN.vtt
5.1 kB
Part 04-Module 02-Lesson 04_Generate Faces/02. Project Introduction.html
5.1 kB
Part 03-Module 06-Lesson 01_Sequence to Sequence/04. Architecture encoder decoder-dkHdEAJnV_w.pt-BR.vtt
5.0 kB
Part 03-Module 03-Lesson 01_TensorBoard/02. Viewing Graphs.html
5.0 kB
Part 03-Module 03-Lesson 01_TensorBoard/03. Name Scopes.html
5.0 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/03. How Computers Interpret Images-V4f6p6uRhu8.zh-CN.vtt
5.0 kB
Part 01-Module 03-Lesson 03_Your first neural network/01. Introduction to the Project.html
5.0 kB
Part 11-Module 01-Lesson 01_Introduction to RL/03. The Setting.html
5.0 kB
Part 04-Module 02-Lesson 05_Semi-Supervised Learning/03. Introducing Semi-Supervised Learning-tnCClNy5z5c.en.vtt
5.0 kB
Part 10-Module 01-Lesson 03_Semi-Supervised Learning/03. Introducing Semi-Supervised Learning-tnCClNy5z5c.en.vtt
5.0 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/24. RNN Summary-nXP0oGGRrO8.zh-CN.vtt
5.0 kB
Part 03-Module 02-Lesson 01_Embeddings and Word2vec/06. Building The Network-fhSb5c6UX6M.pt-BR.vtt
5.0 kB
Part 09-Module 01-Lesson 05_Embeddings and Word2vec/06. Building The Network-fhSb5c6UX6M.pt-BR.vtt
5.0 kB
Part 03-Module 08-Lesson 02_Autoencoders/03. A Simple Autoencoder.html
5.0 kB
Part 08-Module 01-Lesson 05_Autoencoders/03. A Simple Autoencoder.html
5.0 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/23. Error Function-V5kkHldUlVU.en.vtt
5.0 kB
Part 03-Module 03-Lesson 02_Siraj's Music Generation/02. How to Succeed in any Programming Interview.html
5.0 kB
Part 04-Module 02-Lesson 05_Semi-Supervised Learning/09. Discriminator Solution-_X8ssUzu_Bo.pt-BR.vtt
5.0 kB
Part 10-Module 01-Lesson 03_Semi-Supervised Learning/09. Discriminator Solution-_X8ssUzu_Bo.pt-BR.vtt
5.0 kB
Part 03-Module 07-Lesson 01_Reinforcement Learning/02. Reinforcement Learning.html
4.9 kB
Part 02-Module 05-Lesson 04_Image Classification/01. Introduction to the Project.html
4.9 kB
Part 03-Module 06-Lesson 01_Sequence to Sequence/04. Architecture encoder decoder-dkHdEAJnV_w.zh-CN.vtt
4.9 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/05. Categorical Cross-Entropy-3sDYifgjFck.en.vtt
4.9 kB
Part 03-Module 07-Lesson 03_Translation Project/01. Introduction.html
4.9 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/20. Cross Entropy 1-iREoPUrpXvE.en.vtt
4.9 kB
Part 03-Module 07-Lesson 01_Reinforcement Learning/03. Q-Learning.html
4.9 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/index.html
4.9 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/02. The Setting, Revisited-V6Q1uF8a6kA.zh-CN.vtt
4.9 kB
Part 11-Module 01-Lesson 03_The RL Framework The Solution/02. Policies-hc3LrvaC13U.en.vtt
4.9 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/18. CNNs in Keras Practical Example-faFvmGDwXX0.zh-CN.vtt
4.9 kB
Part 03-Module 01-Lesson 03_Hyperparameters/05. Minibatch Size-GrrO1NFxaW8.pt-BR.vtt
4.9 kB
Part 04-Module 02-Lesson 02_Hyperparameters/05. Minibatch Size-GrrO1NFxaW8.pt-BR.vtt
4.9 kB
Part 09-Module 01-Lesson 04_Hyperparameters/05. Minibatch Size-GrrO1NFxaW8.pt-BR.vtt
4.9 kB
Part 11-Module 01-Lesson 09_Deep Q-Learning/08. Fixed Q Targets-SWpyiEezfp4.zh-CN.vtt
4.9 kB
Part 03-Module 01-Lesson 03_Hyperparameters/05. Minibatch Size-GrrO1NFxaW8.zh-CN.vtt
4.9 kB
Part 04-Module 02-Lesson 02_Hyperparameters/05. Minibatch Size-GrrO1NFxaW8.zh-CN.vtt
4.9 kB
Part 09-Module 01-Lesson 04_Hyperparameters/05. Minibatch Size-GrrO1NFxaW8.zh-CN.vtt
4.9 kB
Part 02-Module 01-Lesson 01_Model Evaluation and Validation/03. Confusion Matrix-Question-9GLNjmMUB_4.pt-BR.vtt
4.9 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/24. Confusion Matrix-Question 1-9GLNjmMUB_4.pt-BR.vtt
4.9 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/index.html
4.9 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/index.html
4.9 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/02. 01 RNN Intro V6 Final-AIQEqg6F38A.pt-BR.vtt
4.9 kB
Part 04-Module 02-Lesson 05_Semi-Supervised Learning/04. Data Prep-P5hOx09mwaM.zh-CN.vtt
4.9 kB
Part 10-Module 01-Lesson 03_Semi-Supervised Learning/04. Data Prep-P5hOx09mwaM.zh-CN.vtt
4.9 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/06. Model Validation in Keras-002jNXSM6CU.zh-CN.vtt
4.9 kB
Part 03-Module 05-Lesson 01_Transfer Learning in TensorFlow/10. Training And Testing-NLPtmQjGYCA.zh-CN.vtt
4.8 kB
Part 08-Module 01-Lesson 06_Transfer Learning in TensorFlow/10. Training And Testing-NLPtmQjGYCA.zh-CN.vtt
4.8 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.en.vtt
4.8 kB
Part 09-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/02. RNN Vs LSTM-70MgF-IwAr8.en.vtt
4.8 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/08. Dropout-Ty6K6YiGdBs.en.vtt
4.8 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/18. 20 RNN BPTT B V5 Final-bUU9BEQw0IA.pt-BR.vtt
4.8 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/02. Applications of CNNs-HrYNL_1SV2Y.zh-CN.vtt
4.8 kB
Part 04-Module 02-Lesson 05_Semi-Supervised Learning/08. Training The Network -P-LXQPVXl4A.en.vtt
4.8 kB
Part 10-Module 01-Lesson 03_Semi-Supervised Learning/08. Training The Network -P-LXQPVXl4A.en.vtt
4.8 kB
Part 11-Module 01-Lesson 03_The RL Framework The Solution/05. State-Value Functions-llakAjwox_8.en.vtt
4.8 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/index.html
4.8 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs. Continuous-Rm2KxFaPiJg.zh-CN.vtt
4.8 kB
assets/css/fonts/KaTeX_Size3-Regular.woff
4.8 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/08. Dropout-Ty6K6YiGdBs.pt-BR.vtt
4.8 kB
Part 11-Module 01-Lesson 09_Deep Q-Learning/05. Q-Learning-AI5gLgYMSq8.zh-CN.vtt
4.8 kB
Part 11-Module 01-Lesson 03_The RL Framework The Solution/09. Action-Value Functions-KJLaRfOOPGA.en.vtt
4.8 kB
Part 07-Module 01-Lesson 06_TensorFlow/index.html
4.8 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/05. 05 RNN FFNN Reminder B V6 Final-FfPjaGcZODc.pt-BR.vtt
4.8 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/05. Model Complexity Graph-NnS0FJyVcDQ.zh-CN.vtt
4.8 kB
Part 11-Module 01-Lesson 06_Temporal-Difference Methods/index.html
4.8 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/13. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.en.vtt
4.8 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/15. Pooling Layers-OkkIZNs7Cyc.zh-CN.vtt
4.7 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/16. 18 RNN Example V5 Final-MDLk3fhpTx0.zh-CN.vtt
4.7 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/13. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.pt-BR.vtt
4.7 kB
Part 04-Module 02-Lesson 03_Deep Convolutional GANs/09. Building And Training The Network-nXKk9GI4X14.pt-BR.vtt
4.7 kB
Part 10-Module 01-Lesson 02_Deep Convolutional GANs/09. Building And Training The Network-nXKk9GI4X14.pt-BR.vtt
4.7 kB
Part 11-Module 01-Lesson 10_Policy-Based Methods/04. M2L3 04 V1-QicxmyE5vTo.zh-CN.vtt
4.7 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/13. 16 RNN B V4 Final-wsif3p5t7CI.zh-CN.vtt
4.7 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/32. Combinando modelos-Boy3zHVrWB4.zh-CN.vtt
4.7 kB
Part 04-Module 02-Lesson 05_Semi-Supervised Learning/03. Introducing Semi-Supervised Learning-tnCClNy5z5c.zh-CN.vtt
4.7 kB
Part 10-Module 01-Lesson 03_Semi-Supervised Learning/03. Introducing Semi-Supervised Learning-tnCClNy5z5c.zh-CN.vtt
4.7 kB
Part 11-Module 01-Lesson 03_The RL Framework The Solution/08. Optimality-j231aRV74QM.en.vtt
4.7 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/15. Training Losses and Optimizers Solutions-HlABZ9Q7xEo.zh-CN.vtt
4.7 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/15. Training Losses and Optimizers Solutions-HlABZ9Q7xEo.zh-CN.vtt
4.7 kB
Part 09-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/03. LSTM Basics-gjb68a4XsqE.zh-CN.vtt
4.7 kB
Part 11-Module 01-Lesson 08_RL in Continuous Spaces/10. Function Approximation-UTGWVY6jEdg.pt-BR.vtt
4.7 kB
Part 11-Module 01-Lesson 06_Temporal-Difference Methods/10. TD Control Sarsamax-4DxoYuR7aZ4.en.vtt
4.7 kB
Part 11-Module 01-Lesson 08_RL in Continuous Spaces/05. Discretization-j2eZyUpy--E.en.vtt
4.7 kB
Part 04-Module 02-Lesson 05_Semi-Supervised Learning/04. Data Prep-P5hOx09mwaM.pt-BR.vtt
4.7 kB
Part 10-Module 01-Lesson 03_Semi-Supervised Learning/04. Data Prep-P5hOx09mwaM.pt-BR.vtt
4.7 kB
Part 04-Module 02-Lesson 05_Semi-Supervised Learning/03. Introducing Semi-Supervised Learning-tnCClNy5z5c.pt-BR.vtt
4.7 kB
Part 10-Module 01-Lesson 03_Semi-Supervised Learning/03. Introducing Semi-Supervised Learning-tnCClNy5z5c.pt-BR.vtt
4.7 kB
Part 03-Module 04-Lesson 03_Sentiment Prediction RNN/03. Data Preprocessing-h4-LwZU9_k8.pt-BR.vtt
4.7 kB
Part 09-Module 01-Lesson 06_Sentiment Prediction RNN/03. Data Preprocessing-h4-LwZU9_k8.pt-BR.vtt
4.7 kB
Part 03-Module 06-Lesson 01_Sequence to Sequence/05. Architecture in More Depth-rdAo4MqLbEk.zh-CN.vtt
4.7 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/09. 10 Backpropagation Example A V3 Final-3k72z_WaeXg.pt-BR.vtt
4.7 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/09. Mini Project 2 Solution-45ihpPaeO8E.zh-CN.vtt
4.7 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/10. Mini Project 2 Solution-45ihpPaeO8E.zh-CN.vtt
4.7 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/12. Stride and Padding-0r9o8hprDXQ.pt-BR.vtt
4.7 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.pt-BR.vtt
4.7 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/05. 05 RNN FFNN Reminder B V6 Final-FfPjaGcZODc.en.vtt
4.6 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/06. 06 FeedForward A V7 Final-4rCfnWbx8-0.zh-CN.vtt
4.6 kB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/10. MC Control Incremental Mean-E2RITH-2NUE.zh-CN.vtt
4.6 kB
Part 03-Module 02-Lesson 01_Embeddings and Word2vec/04. Making Batches-jx7qwdw-94k.pt-BR.vtt
4.6 kB
Part 09-Module 01-Lesson 05_Embeddings and Word2vec/04. Making Batches-jx7qwdw-94k.pt-BR.vtt
4.6 kB
Part 03-Module 02-Lesson 01_Embeddings and Word2vec/04. Making Batches-jx7qwdw-94k.en.vtt
4.6 kB
Part 09-Module 01-Lesson 05_Embeddings and Word2vec/04. Making Batches-jx7qwdw-94k.en.vtt
4.6 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 2-6nUUeQ9AeUA.pt-BR.vtt
4.6 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/index.html
4.6 kB
Part 11-Module 01-Lesson 09_Deep Q-Learning/09. Deep Q-Learning Algorithm-MqTXoCxQ_eY.en.vtt
4.6 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/23. Value Iteration-XNeQn8N36y8.pt-BR.vtt
4.6 kB
Part 11-Module 01-Lesson 09_Deep Q-Learning/04. Temporal Difference Learning-lpmDi0QeUm8.pt-BR.vtt
4.6 kB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/01. Intro To RNNs-64HSG6HAfEI.en-US.vtt
4.6 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/02. 01 RNN Intro V6 Final-AIQEqg6F38A.en.vtt
4.6 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/04. Convolutional Networks-ISHGyvsT0QY.pt-BR.vtt
4.6 kB
Part 03-Module 04-Lesson 03_Sentiment Prediction RNN/03. Data Preprocessing-h4-LwZU9_k8.zh-CN.vtt
4.6 kB
Part 09-Module 01-Lesson 06_Sentiment Prediction RNN/03. Data Preprocessing-h4-LwZU9_k8.zh-CN.vtt
4.6 kB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/index.html
4.5 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 2-6nUUeQ9AeUA.en.vtt
4.5 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/12. Stride and Padding-0r9o8hprDXQ.en.vtt
4.5 kB
Part 11-Module 01-Lesson 08_RL in Continuous Spaces/index.html
4.5 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/10. Cumulative Reward-ysriH65lV9o.zh-CN.vtt
4.5 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/18. 20 RNN BPTT B V5 Final-bUU9BEQw0IA.en.vtt
4.5 kB
Part 03-Module 02-Lesson 03_Q&A with FloydHub Founders/01. FloydHub QA.html
4.5 kB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/01. Intro To RNNs-64HSG6HAfEI.pt.vtt
4.5 kB
Part 03-Module 02-Lesson 01_Embeddings and Word2vec/09. Training Results-uISA5ns47s8.pt-BR.vtt
4.5 kB
Part 09-Module 01-Lesson 05_Embeddings and Word2vec/09. Training Results-uISA5ns47s8.pt-BR.vtt
4.5 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/04. Convolutional Networks-ISHGyvsT0QY.en.vtt
4.5 kB
Part 04-Module 02-Lesson 05_Semi-Supervised Learning/index.html
4.5 kB
Part 10-Module 01-Lesson 03_Semi-Supervised Learning/index.html
4.5 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 Q Softmax V2-RC_A9Tu99y4.zh-CN.vtt
4.5 kB
Part 03-Module 02-Lesson 01_Embeddings and Word2vec/09. Training Results-uISA5ns47s8.en.vtt
4.5 kB
Part 09-Module 01-Lesson 05_Embeddings and Word2vec/09. Training Results-uISA5ns47s8.en.vtt
4.5 kB
Part 02-Module 05-Lesson 01_Deep Neural Networks/index.html
4.5 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/09. 10 Backpropagation Example A V3 Final-3k72z_WaeXg.en.vtt
4.5 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/07. Transforming Text into Numbers-7rHBU5cbePE.zh-CN.vtt
4.4 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/08. Transforming Text into Numbers-7rHBU5cbePE.zh-CN.vtt
4.4 kB
Part 04-Module 02-Lesson 05_Semi-Supervised Learning/09. Discriminator Solution-_X8ssUzu_Bo.zh-CN.vtt
4.4 kB
Part 10-Module 01-Lesson 03_Semi-Supervised Learning/09. Discriminator Solution-_X8ssUzu_Bo.zh-CN.vtt
4.4 kB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/07. Batching Data Solution-o3nBxHJLQcc.pt-BR.vtt
4.4 kB
Part 09-Module 01-Lesson 03_Implementation of RNN and LSTM/06. Batching Data Solution-o3nBxHJLQcc.pt-BR.vtt
4.4 kB
Part 01-Module 03-Lesson 01_Matrix Math and NumPy Refresher/04. Element-wise Matrix Operations-vjUykZyzko4.pt-BR.vtt
4.4 kB
Part 06-Module 01-Lesson 05_Matrix Math and NumPy Refresher/04. Element-wise Matrix Operations-vjUykZyzko4.pt-BR.vtt
4.4 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/17. 19 RNN BPTT A V6 Final-eE2L3-2wKac.pt-BR.vtt
4.4 kB
Part 02-Module 03-Lesson 01_MiniFlow/index.html
4.4 kB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/07. Batching Data Solution-o3nBxHJLQcc.en.vtt
4.4 kB
Part 09-Module 01-Lesson 03_Implementation of RNN and LSTM/06. Batching Data Solution-o3nBxHJLQcc.en.vtt
4.4 kB
Part 11-Module 01-Lesson 09_Deep Q-Learning/index.html
4.4 kB
Part 09-Module 01-Lesson 03_Implementation of RNN and LSTM/index.html
4.4 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/13. MDPs, Part 1-NBWbluSbxPg.pt-BR.vtt
4.4 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/19. Normalized Inputs And Initial Weights-WaHQ9-UXIIg.pt-BR.vtt
4.4 kB
Part 11-Module 01-Lesson 03_The RL Framework The Solution/index.html
4.4 kB
Part 11-Module 01-Lesson 11_Actor-Critic Methods/05. RL M2L4 05 Advantage Function RENDER V1 V2-vpLmzKqcgfc.pt-BR.vtt
4.4 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.en.vtt
4.4 kB
Part 02-Module 02-Lesson 02_Intro to TFLearn/img/softmax-math.png
4.4 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/img/softmax-math.png
4.4 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/22. Groundbreaking CNN Architectures-ddrB-mhMfkY.pt-BR.vtt
4.4 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/19. Normalized Inputs And Initial Weights-WaHQ9-UXIIg.en.vtt
4.4 kB
Part 01-Module 03-Lesson 01_Matrix Math and NumPy Refresher/04. Element-wise Matrix Operations-vjUykZyzko4.en.vtt
4.3 kB
Part 03-Module 04-Lesson 02_Weight Initialization/04. Weight Initialization 3-JIQl0jMpdsI.en.vtt
4.3 kB
Part 06-Module 01-Lesson 05_Matrix Math and NumPy Refresher/04. Element-wise Matrix Operations-vjUykZyzko4.en.vtt
4.3 kB
Part 08-Module 01-Lesson 03_Weight Initialization/04. Weight Initialization 3-JIQl0jMpdsI.en.vtt
4.3 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/07. Transforming Text into Numbers-7rHBU5cbePE.pt-BR.vtt
4.3 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.pt-BR.vtt
4.3 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/08. Transforming Text into Numbers-7rHBU5cbePE.pt-BR.vtt
4.3 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/05. Categorical Cross-Entropy-3sDYifgjFck.zh-CN.vtt
4.3 kB
Part 09-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/02. RNN Vs LSTM-70MgF-IwAr8.pt-BR.vtt
4.3 kB
Part 02-Module 01-Lesson 01_Model Evaluation and Validation/05. Regression-Metrics-906P4BPnl9A.en-US.vtt
4.3 kB
Part 09-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/02. RNN Vs LSTM-70MgF-IwAr8.zh-CN.vtt
4.3 kB
Part 04-Module 02-Lesson 03_Deep Convolutional GANs/10. Hyperparameters Solution-Rt8MlVDtpi8.en.vtt
4.3 kB
Part 10-Module 01-Lesson 02_Deep Convolutional GANs/10. Hyperparameters Solution-Rt8MlVDtpi8.en.vtt
4.3 kB
Part 01-Module 03-Lesson 01_Matrix Math and NumPy Refresher/index.html
4.3 kB
Part 06-Module 01-Lesson 05_Matrix Math and NumPy Refresher/index.html
4.3 kB
Part 11-Module 01-Lesson 03_The RL Framework The Solution/11. Optimal Policies-2rguYpVyCto.pt-BR.vtt
4.3 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/img/maze.png
4.3 kB
Part 11-Module 01-Lesson 08_RL in Continuous Spaces/07. Tile Coding-BRs7AnTZ_8k.pt-BR.vtt
4.3 kB
Part 01-Module 01-Lesson 03_Jupyter Notebooks/index.html
4.3 kB
Part 06-Module 01-Lesson 04_Jupyter Notebooks/index.html
4.3 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/23. Value Iteration-XNeQn8N36y8.en.vtt
4.3 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.pt-BR.vtt
4.3 kB
Part 04-Module 02-Lesson 05_Semi-Supervised Learning/08. Training The Network -P-LXQPVXl4A.zh-CN.vtt
4.3 kB
Part 10-Module 01-Lesson 03_Semi-Supervised Learning/08. Training The Network -P-LXQPVXl4A.zh-CN.vtt
4.3 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/23. Error Function-V5kkHldUlVU.zh-CN.vtt
4.2 kB
Part 09-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/index.html
4.2 kB
Part 03-Module 02-Lesson 01_Embeddings and Word2vec/06. Building The Network-fhSb5c6UX6M.zh-CN.vtt
4.2 kB
Part 09-Module 01-Lesson 05_Embeddings and Word2vec/06. Building The Network-fhSb5c6UX6M.zh-CN.vtt
4.2 kB
Part 11-Module 01-Lesson 09_Deep Q-Learning/04. Temporal Difference Learning-lpmDi0QeUm8.en.vtt
4.2 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/22. 30 L Stochastic Gradient Descent-U9iEGUd9kJ0.en.vtt
4.2 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.en.vtt
4.2 kB
Part 04-Module 02-Lesson 03_Deep Convolutional GANs/index.html
4.2 kB
Part 10-Module 01-Lesson 02_Deep Convolutional GANs/index.html
4.2 kB
Part 11-Module 01-Lesson 08_RL in Continuous Spaces/10. Function Approximation-UTGWVY6jEdg.en.vtt
4.2 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/20. Cross Entropy 1-iREoPUrpXvE.zh-CN.vtt
4.2 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/13. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.zh-CN.vtt
4.2 kB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/13. Build The Network-RVNjDlWTBQU.en.vtt
4.2 kB
Part 09-Module 01-Lesson 03_Implementation of RNN and LSTM/12. Build The Network-RVNjDlWTBQU.en.vtt
4.2 kB
Part 06-Module 01-Lesson 01_Welcome to Deep Learning/index.html
4.2 kB
Part 03-Module 06-Lesson 01_Sequence to Sequence/index.html
4.2 kB
Part 07-Module 01-Lesson 02_Implementing Gradient Descent/index.html
4.2 kB
Part 11-Module 01-Lesson 08_RL in Continuous Spaces/05. Discretization-j2eZyUpy--E.zh-CN.vtt
4.2 kB
Part 03-Module 01-Lesson 03_Hyperparameters/index.html
4.2 kB
Part 04-Module 02-Lesson 02_Hyperparameters/index.html
4.2 kB
Part 09-Module 01-Lesson 04_Hyperparameters/index.html
4.2 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/03. 02 RNN History V4 Final-HbxAnYUfRnc.pt-BR.vtt
4.2 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/04. MLPs For Image Classification-TIFStebu530.pt-BR.vtt
4.2 kB
Part 03-Module 02-Lesson 01_Embeddings and Word2vec/08. Building The Network Solution-pkBAhQ2Ki-8.en.vtt
4.2 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/08. Dropout-Ty6K6YiGdBs.zh-CN.vtt
4.2 kB
Part 09-Module 01-Lesson 05_Embeddings and Word2vec/08. Building The Network Solution-pkBAhQ2Ki-8.en.vtt
4.2 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/02. 01 RNN Intro V6 Final-AIQEqg6F38A.zh-CN.vtt
4.2 kB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/18. MC Control Constant-alpha-QFV1nI9Zpoo.pt-BR.vtt
4.1 kB
Part 03-Module 05-Lesson 01_Transfer Learning in TensorFlow/index.html
4.1 kB
Part 08-Module 01-Lesson 06_Transfer Learning in TensorFlow/index.html
4.1 kB
Part 03-Module 02-Lesson 01_Embeddings and Word2vec/08. Building The Network Solution-pkBAhQ2Ki-8.pt-BR.vtt
4.1 kB
Part 09-Module 01-Lesson 05_Embeddings and Word2vec/08. Building The Network Solution-pkBAhQ2Ki-8.pt-BR.vtt
4.1 kB
Part 11-Module 01-Lesson 03_The RL Framework The Solution/02. Policies-hc3LrvaC13U.zh-CN.vtt
4.1 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/05. 05 RNN FFNN Reminder B V6 Final-FfPjaGcZODc.zh-CN.vtt
4.1 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/17. 19 RNN BPTT A V6 Final-eE2L3-2wKac.en.vtt
4.1 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.zh-CN.vtt
4.1 kB
Part 01-Module 01-Lesson 01_Welcome/index.html
4.1 kB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/13. Build The Network-RVNjDlWTBQU.pt-BR.vtt
4.1 kB
Part 09-Module 01-Lesson 03_Implementation of RNN and LSTM/12. Build The Network-RVNjDlWTBQU.pt-BR.vtt
4.1 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/13. MDPs, Part 1-NBWbluSbxPg.en.vtt
4.1 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/07. Getting Started with GANs-QA2ntKUha4g.en.vtt
4.1 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/07. Getting Started with GANs-QA2ntKUha4g.en.vtt
4.1 kB
Part 03-Module 02-Lesson 01_Embeddings and Word2vec/index.html
4.1 kB
Part 09-Module 01-Lesson 05_Embeddings and Word2vec/index.html
4.1 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/24. Gradient Descent-rhVIF-nigrY.pt-BR.vtt
4.1 kB
Part 08-Module 01-Lesson 02_CNNs in TensorFlow/index.html
4.1 kB
Part 02-Module 02-Lesson 02_Intro to TFLearn/index.html
4.1 kB
Part 01-Module 03-Lesson 01_Matrix Math and NumPy Refresher/04. Element-wise Matrix Operations-vjUykZyzko4.zh-CN.vtt
4.1 kB
Part 06-Module 01-Lesson 05_Matrix Math and NumPy Refresher/04. Element-wise Matrix Operations-vjUykZyzko4.zh-CN.vtt
4.1 kB
Part 11-Module 01-Lesson 10_Policy-Based Methods/index.html
4.0 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/09. Mini Project 2 Solution-45ihpPaeO8E.pt-BR.vtt
4.0 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/10. Mini Project 2 Solution-45ihpPaeO8E.pt-BR.vtt
4.0 kB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/18. MC Control Constant-alpha-QFV1nI9Zpoo.en.vtt
4.0 kB
Part 01-Module 01-Lesson 02_Anaconda/index.html
4.0 kB
Part 06-Module 01-Lesson 03_Anaconda/index.html
4.0 kB
Part 11-Module 01-Lesson 03_The RL Framework The Solution/09. Action-Value Functions-KJLaRfOOPGA.zh-CN.vtt
4.0 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/22. Groundbreaking CNN Architectures-ddrB-mhMfkY.en.vtt
4.0 kB
Part 02-Module 01-Lesson 01_Model Evaluation and Validation/05. Regression-Metrics-906P4BPnl9A.pt-BR.vtt
4.0 kB
Part 11-Module 01-Lesson 09_Deep Q-Learning/02. Neural Nets as Value Functions-cBi7vLrk8QQ.pt-BR.vtt
4.0 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/22. 30 L Stochastic Gradient Descent-U9iEGUd9kJ0.pt-BR.vtt
4.0 kB
Part 02-Module 03-Lesson 01_MiniFlow/img/dcdw1-chain.png
4.0 kB
Part 11-Module 01-Lesson 03_The RL Framework The Solution/11. Optimal Policies-2rguYpVyCto.en.vtt
4.0 kB
Part 01-Module 02-Lesson 01_Regression/index.html
4.0 kB
Part 02-Module 03-Lesson 01_MiniFlow/img/dcdw2-grad-fixed.gif
4.0 kB
Part 07-Module 01-Lesson 05_Keras/index.html
4.0 kB
Part 11-Module 01-Lesson 11_Actor-Critic Methods/05. RL M2L4 05 Advantage Function RENDER V1 V2-vpLmzKqcgfc.en.vtt
4.0 kB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/01. Intro To RNNs-64HSG6HAfEI.zh-CN.vtt
4.0 kB
Part 03-Module 01-Lesson 03_Hyperparameters/08. RNN Hyperparameters-yQvnv7l_aUo.en.vtt
4.0 kB
Part 04-Module 02-Lesson 02_Hyperparameters/08. RNN Hyperparameters-yQvnv7l_aUo.en.vtt
4.0 kB
Part 09-Module 01-Lesson 04_Hyperparameters/08. RNN Hyperparameters-yQvnv7l_aUo.en.vtt
4.0 kB
Part 02-Module 01-Lesson 01_Model Evaluation and Validation/index.html
4.0 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/23. Visualizing CNNs-mnqS_EhEZVg.en.vtt
4.0 kB
Part 11-Module 01-Lesson 03_The RL Framework The Solution/05. State-Value Functions-llakAjwox_8.zh-CN.vtt
4.0 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/22. 30 L Stochastic Gradient Descent-U9iEGUd9kJ0.zh-CN.vtt
4.0 kB
Part 11-Module 01-Lesson 03_The RL Framework The Solution/06. Bellman Equations-UgIaDMvSdUo.pt-BR.vtt
4.0 kB
Part 11-Module 01-Lesson 11_Actor-Critic Methods/index.html
4.0 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/05. Linear Boundaries-X-uMlsBi07k.en.vtt
3.9 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/24. Gradient Descent-rhVIF-nigrY.en.vtt
3.9 kB
Part 11-Module 01-Lesson 03_The RL Framework The Solution/08. Optimality-j231aRV74QM.zh-CN.vtt
3.9 kB
Part 11-Module 01-Lesson 09_Deep Q-Learning/09. Deep Q-Learning Algorithm-MqTXoCxQ_eY.zh-CN.vtt
3.9 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/07. When do MLPs (not) work well-deMeuLdZN3Q.pt-BR.vtt
3.9 kB
Part 11-Module 01-Lesson 06_Temporal-Difference Methods/10. TD Control Sarsamax-4DxoYuR7aZ4.zh-CN.vtt
3.9 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/23. Visualizing CNNs-mnqS_EhEZVg.pt-BR.vtt
3.9 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/11. Building the Network-5sZkRSHfiAE.en.vtt
3.9 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/11. Building the Network-5sZkRSHfiAE.en.vtt
3.9 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2018-01-02-at-2.44.44-pm.png
3.9 kB
Part 03-Module 02-Lesson 01_Embeddings and Word2vec/09. Training Results-uISA5ns47s8.zh-CN.vtt
3.9 kB
Part 09-Module 01-Lesson 05_Embeddings and Word2vec/09. Training Results-uISA5ns47s8.zh-CN.vtt
3.9 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/04. MLPs For Image Classification-TIFStebu530.en.vtt
3.9 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/07. Getting Started with GANs-QA2ntKUha4g.pt-BR.vtt
3.9 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/07. Getting Started with GANs-QA2ntKUha4g.pt-BR.vtt
3.9 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/04. Convolutional Networks-ISHGyvsT0QY.zh-CN.vtt
3.9 kB
Part 02-Module 04-Lesson 01_Cloud Computing/index.html
3.9 kB
Part 08-Module 01-Lesson 01_Cloud Computing/index.html
3.9 kB
Part 03-Module 08-Lesson 02_Autoencoders/index.html
3.9 kB
Part 08-Module 01-Lesson 05_Autoencoders/index.html
3.9 kB
Part 04-Module 02-Lesson 03_Deep Convolutional GANs/06. Generator Solution-jyPwUEZg05Q.en.vtt
3.9 kB
Part 10-Module 01-Lesson 02_Deep Convolutional GANs/06. Generator Solution-jyPwUEZg05Q.en.vtt
3.9 kB
Part 03-Module 04-Lesson 03_Sentiment Prediction RNN/index.html
3.9 kB
Part 09-Module 01-Lesson 06_Sentiment Prediction RNN/index.html
3.9 kB
Part 11-Module 01-Lesson 03_The RL Framework The Solution/06. Bellman Equations-UgIaDMvSdUo.en.vtt
3.9 kB
Part 03-Module 02-Lesson 01_Embeddings and Word2vec/04. Making Batches-jx7qwdw-94k.zh-CN.vtt
3.9 kB
Part 09-Module 01-Lesson 05_Embeddings and Word2vec/04. Making Batches-jx7qwdw-94k.zh-CN.vtt
3.9 kB
assets/css/fonts/KaTeX_Size3-Regular.woff2
3.9 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/13. Training Losses-IaAeDrXMEcU.en.vtt
3.9 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/13. Training Losses-IaAeDrXMEcU.en.vtt
3.9 kB
Part 11-Module 01-Lesson 08_RL in Continuous Spaces/07. Tile Coding-BRs7AnTZ_8k.en.vtt
3.9 kB
assets/css/styles.css
3.9 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/09. 10 Backpropagation Example A V3 Final-3k72z_WaeXg.zh-CN.vtt
3.8 kB
Part 03-Module 04-Lesson 02_Weight Initialization/index.html
3.8 kB
Part 08-Module 01-Lesson 03_Weight Initialization/index.html
3.8 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/12. Stride and Padding-0r9o8hprDXQ.zh-CN.vtt
3.8 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/20. Truncated Policy Iteration-a-RvCxlPMho.pt-BR.vtt
3.8 kB
Part 11-Module 01-Lesson 09_Deep Q-Learning/02. Neural Nets as Value Functions-cBi7vLrk8QQ.en.vtt
3.8 kB
Part 04-Module 02-Lesson 04_Generate Faces/index.html
3.8 kB
Part 02-Module 03-Lesson 01_MiniFlow/img/dl2dw2-grad.png
3.8 kB
Part 03-Module 01-Lesson 03_Hyperparameters/08. RNN Hyperparameters-yQvnv7l_aUo.pt-BR.vtt
3.8 kB
Part 04-Module 02-Lesson 02_Hyperparameters/08. RNN Hyperparameters-yQvnv7l_aUo.pt-BR.vtt
3.8 kB
Part 09-Module 01-Lesson 04_Hyperparameters/08. RNN Hyperparameters-yQvnv7l_aUo.pt-BR.vtt
3.8 kB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/07. Batching Data Solution-o3nBxHJLQcc.zh-CN.vtt
3.8 kB
Part 09-Module 01-Lesson 03_Implementation of RNN and LSTM/06. Batching Data Solution-o3nBxHJLQcc.zh-CN.vtt
3.8 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/06. The Reward Hypothesis-uAqNwgZ49JE.pt-BR.vtt
3.8 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/18. 20 RNN BPTT B V5 Final-bUU9BEQw0IA.zh-CN.vtt
3.8 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/02. Andrew Trask - Intro-da1I0mea1jQ.pt-BR.vtt
3.8 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/02. Andrew Trask - Intro-da1I0mea1jQ.pt-BR.vtt
3.8 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 2-6nUUeQ9AeUA.zh-CN.vtt
3.8 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/05. Linear Boundaries-X-uMlsBi07k.pt-BR.vtt
3.8 kB
Part 02-Module 02-Lesson 03_Preparing for Siraj's Lesson/index.html
3.8 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/03. 02 RNN History V4 Final-HbxAnYUfRnc.en.vtt
3.8 kB
Part 11-Module 01-Lesson 01_Introduction to RL/index.html
3.8 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/19. 21 RNN BPTT C V7 Final-uBy_eIJDD1M.pt-BR.vtt
3.8 kB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/03. Character-Wise RNN-dXl3eWCGLdU.pt-BR.vtt
3.7 kB
Part 09-Module 01-Lesson 03_Implementation of RNN and LSTM/02. Character-Wise RNN-dXl3eWCGLdU.pt-BR.vtt
3.7 kB
Part 03-Module 04-Lesson 02_Weight Initialization/04. Weight Initialization 3-JIQl0jMpdsI.pt-BR.vtt
3.7 kB
Part 08-Module 01-Lesson 03_Weight Initialization/04. Weight Initialization 3-JIQl0jMpdsI.pt-BR.vtt
3.7 kB
Part 11-Module 01-Lesson 08_RL in Continuous Spaces/10. Function Approximation-UTGWVY6jEdg.zh-CN.vtt
3.7 kB
Part 03-Module 04-Lesson 04_Generate TV Scripts/index.html
3.7 kB
Part 03-Module 03-Lesson 01_TensorBoard/index.html
3.7 kB
Part 01-Module 03-Lesson 03_Your first neural network/index.html
3.7 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/26. Conclusion-WhpE_8sTt-0.en.vtt
3.7 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/18. Explore the Design Space-FG7M9tWH2nQ.pt-BR.vtt
3.7 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/07. Getting Started with GANs-QA2ntKUha4g.zh-CN.vtt
3.7 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/07. Getting Started with GANs-QA2ntKUha4g.zh-CN.vtt
3.7 kB
Part 01-Module 01-Lesson 04_Applying Deep Learning/index.html
3.7 kB
Part 03-Module 01-Lesson 03_Hyperparameters/08. RNN Hyperparameters-yQvnv7l_aUo.zh-CN.vtt
3.7 kB
Part 04-Module 02-Lesson 02_Hyperparameters/08. RNN Hyperparameters-yQvnv7l_aUo.zh-CN.vtt
3.7 kB
Part 04-Module 02-Lesson 03_Deep Convolutional GANs/10. Hyperparameters Solution-Rt8MlVDtpi8.zh-CN.vtt
3.7 kB
Part 06-Module 01-Lesson 02_Applying Deep Learning/index.html
3.7 kB
Part 09-Module 01-Lesson 04_Hyperparameters/08. RNN Hyperparameters-yQvnv7l_aUo.zh-CN.vtt
3.7 kB
Part 10-Module 01-Lesson 02_Deep Convolutional GANs/10. Hyperparameters Solution-Rt8MlVDtpi8.zh-CN.vtt
3.7 kB
Part 02-Module 01-Lesson 01_Model Evaluation and Validation/05. Regression-Metrics-906P4BPnl9A.zh-CN.vtt
3.7 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/07. When do MLPs (not) work well-deMeuLdZN3Q.en.vtt
3.7 kB
Part 02-Module 05-Lesson 04_Image Classification/index.html
3.7 kB
Part 03-Module 07-Lesson 01_Reinforcement Learning/index.html
3.7 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/07. Goals and Rewards, Part 1-XPnj3Ya3EuM.pt-BR.vtt
3.7 kB
Part 03-Module 05-Lesson 01_Transfer Learning in TensorFlow/08. Building The Classifier-6ifxRQ_gL7w.en.vtt
3.7 kB
Part 08-Module 01-Lesson 06_Transfer Learning in TensorFlow/08. Building The Classifier-6ifxRQ_gL7w.en.vtt
3.7 kB
Part 11-Module 01-Lesson 09_Deep Q-Learning/04. Temporal Difference Learning-lpmDi0QeUm8.zh-CN.vtt
3.7 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.zh-CN.vtt
3.7 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/13. Training Losses-IaAeDrXMEcU.pt-BR.vtt
3.7 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/13. Training Losses-IaAeDrXMEcU.pt-BR.vtt
3.7 kB
Part 03-Module 07-Lesson 03_Translation Project/index.html
3.7 kB
Part 03-Module 04-Lesson 02_Weight Initialization/04. Weight Initialization 3-JIQl0jMpdsI.zh-CN.vtt
3.7 kB
Part 08-Module 01-Lesson 03_Weight Initialization/04. Weight Initialization 3-JIQl0jMpdsI.zh-CN.vtt
3.7 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/19. Normalized Inputs And Initial Weights-WaHQ9-UXIIg.zh-CN.vtt
3.6 kB
Part 02-Module 03-Lesson 01_MiniFlow/img/dl1dw1-grad.png
3.6 kB
Part 01-Module 01-Lesson 02_Anaconda/02. Why Anaconda-VXukXZv7SCQ.zh-CN.vtt
3.6 kB
Part 06-Module 01-Lesson 03_Anaconda/02. Why Anaconda-VXukXZv7SCQ.zh-CN.vtt
3.6 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/22. Groundbreaking CNN Architectures-ddrB-mhMfkY.zh-CN.vtt
3.6 kB
Part 03-Module 05-Lesson 01_Transfer Learning in TensorFlow/06. Data Preparation-WEtKkHlhhZA.en.vtt
3.6 kB
Part 08-Module 01-Lesson 06_Transfer Learning in TensorFlow/06. Data Preparation-WEtKkHlhhZA.en.vtt
3.6 kB
Part 03-Module 03-Lesson 02_Siraj's Music Generation/index.html
3.6 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/17. 19 RNN BPTT A V6 Final-eE2L3-2wKac.zh-CN.vtt
3.6 kB
Part 04-Module 02-Lesson 03_Deep Convolutional GANs/10. Hyperparameters Solution-Rt8MlVDtpi8.pt-BR.vtt
3.6 kB
Part 10-Module 01-Lesson 02_Deep Convolutional GANs/10. Hyperparameters Solution-Rt8MlVDtpi8.pt-BR.vtt
3.6 kB
Part 11-Module 01-Lesson 07_Solve OpenAI Gym's Taxi-v2 Task/index.html
3.6 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.zh-CN.vtt
3.6 kB
Part 02-Module 05-Lesson 03_Siraj's Image Classification/index.html
3.6 kB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/12. Output And Loss Solutions-CT8hcU7FmGc.en.vtt
3.5 kB
Part 09-Module 01-Lesson 03_Implementation of RNN and LSTM/11. Output And Loss Solutions-CT8hcU7FmGc.en.vtt
3.5 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/11. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.en.vtt
3.5 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/06. The Reward Hypothesis-uAqNwgZ49JE.en.vtt
3.5 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/11. Building the Network-5sZkRSHfiAE.zh-CN.vtt
3.5 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/11. Building the Network-5sZkRSHfiAE.zh-CN.vtt
3.5 kB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/13. Build The Network-RVNjDlWTBQU.zh-CN.vtt
3.5 kB
Part 09-Module 01-Lesson 03_Implementation of RNN and LSTM/12. Build The Network-RVNjDlWTBQU.zh-CN.vtt
3.5 kB
Part 01-Module 01-Lesson 02_Anaconda/02. Why Anaconda-VXukXZv7SCQ.en.vtt
3.5 kB
Part 06-Module 01-Lesson 03_Anaconda/02. Why Anaconda-VXukXZv7SCQ.en.vtt
3.5 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/34. Calculating The Gradient 1 -tVuZDbUrzzI.pt-BR.vtt
3.5 kB
Part 05-Module 01-Lesson 01_Enroll in your next Nanodegree program/index.html
3.5 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/12. Building the Network Solution-Ikp3rVzG970.en.vtt
3.5 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/12. Building the Network Solution-Ikp3rVzG970.en.vtt
3.5 kB
Part 03-Module 05-Lesson 02_Siraj's Language Translation/index.html
3.5 kB
Part 11-Module 01-Lesson 01_Introduction to RL/02. Applications-CV6B84mKRNM.pt-BR.vtt
3.5 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/23. Value Iteration-XNeQn8N36y8.zh-CN.vtt
3.5 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/04. MLPs For Image Classification-TIFStebu530.zh-CN.vtt
3.5 kB
Part 03-Module 01-Lesson 02_Siraj's Stock Prediction/index.html
3.5 kB
Part 03-Module 04-Lesson 01_Siraj's Text Summarization/index.html
3.5 kB
Part 11-Module 01-Lesson 08_RL in Continuous Spaces/09. Coarse Coding-Uu1J5KLAfTU.pt-BR.vtt
3.5 kB
Part 03-Module 07-Lesson 02_Siraj's Reinforcement Learning/index.html
3.5 kB
Part 04-Module 02-Lesson 01_Siraj's One-Shot Learning/index.html
3.5 kB
Part 01-Module 01-Lesson 03_Jupyter Notebooks/02. Jupyter-qiYDWFLyXvg.ar.vtt
3.5 kB
Part 06-Module 01-Lesson 04_Jupyter Notebooks/02. Jupyter-qiYDWFLyXvg.ar.vtt
3.5 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/34. Calculating The Gradient 1 -tVuZDbUrzzI.en.vtt
3.5 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/32. Layers-pg99FkXYK0M.en.vtt
3.5 kB
Part 08-Module 02-Lesson 01_CNN Project Dog Breed Classifier/index.html
3.5 kB
Part 03-Module 08-Lesson 01_Siraj's Image Generation/index.html
3.5 kB
Part 11-Module 02-Lesson 01_Teach a Quadcopter How to Fly/index.html
3.5 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/18. Explore the Design Space-FG7M9tWH2nQ.en.vtt
3.5 kB
Part 04-Module 01-Lesson 02_Siraj's Video Generation/index.html
3.5 kB
Part 02-Module 03-Lesson 01_MiniFlow/img/cost.png
3.5 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/20. Truncated Policy Iteration-a-RvCxlPMho.en.vtt
3.5 kB
Part 03-Module 02-Lesson 02_Siraj's Style Transfer/index.html
3.5 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/13. MDPs, Part 1-NBWbluSbxPg.zh-CN.vtt
3.5 kB
Part 03-Module 02-Lesson 03_Q&A with FloydHub Founders/index.html
3.5 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/17. MDPs, Part 3-UlXHFbla3QI.pt-BR.vtt
3.5 kB
Part 03-Module 06-Lesson 02_Siraj's Chatbot/index.html
3.5 kB
Part 04-Module 02-Lesson 05_Semi-Supervised Learning/11. Model Optimizer Solution-_Qhz9SbR7xY.pt-BR.vtt
3.5 kB
Part 10-Module 01-Lesson 03_Semi-Supervised Learning/11. Model Optimizer Solution-_Qhz9SbR7xY.pt-BR.vtt
3.5 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/11. Building the Network-5sZkRSHfiAE.pt-BR.vtt
3.4 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/11. Building the Network-5sZkRSHfiAE.pt-BR.vtt
3.4 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/05. Linear Boundaries-X-uMlsBi07k.zh-CN.vtt
3.4 kB
Part 04-Module 02-Lesson 05_Semi-Supervised Learning/11. Model Optimizer Solution-_Qhz9SbR7xY.en.vtt
3.4 kB
Part 10-Module 01-Lesson 03_Semi-Supervised Learning/11. Model Optimizer Solution-_Qhz9SbR7xY.en.vtt
3.4 kB
Part 11-Module 01-Lesson 08_RL in Continuous Spaces/07. Tile Coding-BRs7AnTZ_8k.zh-CN.vtt
3.4 kB
Part 03-Module 02-Lesson 01_Embeddings and Word2vec/08. Building The Network Solution-pkBAhQ2Ki-8.zh-CN.vtt
3.4 kB
Part 09-Module 01-Lesson 05_Embeddings and Word2vec/08. Building The Network Solution-pkBAhQ2Ki-8.zh-CN.vtt
3.4 kB
Part 03-Module 05-Lesson 01_Transfer Learning in TensorFlow/09. Training The Classifier-b7Fy3cIoJ1Y.en.vtt
3.4 kB
Part 04-Module 02-Lesson 03_Deep Convolutional GANs/08. Discriminator Solution-ffPWI2yJscw.en.vtt
3.4 kB
Part 08-Module 01-Lesson 06_Transfer Learning in TensorFlow/09. Training The Classifier-b7Fy3cIoJ1Y.en.vtt
3.4 kB
Part 10-Module 01-Lesson 02_Deep Convolutional GANs/08. Discriminator Solution-ffPWI2yJscw.en.vtt
3.4 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.pt-BR.vtt
3.4 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/13. Training Losses-IaAeDrXMEcU.zh-CN.vtt
3.4 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/23. Visualizing CNNs-mnqS_EhEZVg.zh-CN.vtt
3.4 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/13. Training Losses-IaAeDrXMEcU.zh-CN.vtt
3.4 kB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/03. Character-Wise RNN-dXl3eWCGLdU.en.vtt
3.4 kB
Part 09-Module 01-Lesson 03_Implementation of RNN and LSTM/02. Character-Wise RNN-dXl3eWCGLdU.en.vtt
3.4 kB
Part 02-Module 03-Lesson 01_MiniFlow/img/19.png
3.4 kB
Part 02-Module 01-Lesson 01_Model Evaluation and Validation/07. Model Complexity Graph-Question-YS5OQCA5cLY.en-US.vtt
3.4 kB
Part 11-Module 01-Lesson 03_The RL Framework The Solution/11. Optimal Policies-2rguYpVyCto.zh-CN.vtt
3.4 kB
Part 11-Module 01-Lesson 11_Actor-Critic Methods/05. RL M2L4 05 Advantage Function RENDER V1 V2-vpLmzKqcgfc.zh-CN.vtt
3.4 kB
Part 03-Module 05-Lesson 01_Transfer Learning in TensorFlow/06. Data Preparation-WEtKkHlhhZA.zh-CN.vtt
3.4 kB
Part 04-Module 02-Lesson 03_Deep Convolutional GANs/06. Generator Solution-jyPwUEZg05Q.zh-CN.vtt
3.4 kB
Part 08-Module 01-Lesson 06_Transfer Learning in TensorFlow/06. Data Preparation-WEtKkHlhhZA.zh-CN.vtt
3.4 kB
Part 10-Module 01-Lesson 02_Deep Convolutional GANs/06. Generator Solution-jyPwUEZg05Q.zh-CN.vtt
3.4 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/10. Building a Neural Network-aM2k7RTjjJI.en.vtt
3.4 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/11. Building a Neural Network-aM2k7RTjjJI.en.vtt
3.4 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/img/heaviside-step-function-2.gif
3.4 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/03. 02 RNN History V4 Final-HbxAnYUfRnc.zh-CN.vtt
3.4 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/32. Layers-pg99FkXYK0M.pt-BR.vtt
3.4 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/19. 21 RNN BPTT C V7 Final-uBy_eIJDD1M.en.vtt
3.4 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/02. Introduction-tn-CrUTkCUc.en.vtt
3.4 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/26. Conclusion-WhpE_8sTt-0.pt-BR.vtt
3.4 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/11. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.pt-BR.vtt
3.4 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/26. Conclusion-WhpE_8sTt-0.zh-CN.vtt
3.3 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/07. Goals and Rewards, Part 1-XPnj3Ya3EuM.en.vtt
3.3 kB
Part 03-Module 01-Lesson 03_Hyperparameters/07. Number Of Hidden Units Layers-IkGAIQH5wH8.en.vtt
3.3 kB
Part 04-Module 02-Lesson 02_Hyperparameters/07. Number Of Hidden Units Layers-IkGAIQH5wH8.en.vtt
3.3 kB
Part 09-Module 01-Lesson 04_Hyperparameters/07. Number Of Hidden Units Layers-IkGAIQH5wH8.en.vtt
3.3 kB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/18. MC Control Constant-alpha-QFV1nI9Zpoo.zh-CN.vtt
3.3 kB
Part 01-Module 01-Lesson 02_Anaconda/02. Why Anaconda-VXukXZv7SCQ.pt-BR.vtt
3.3 kB
Part 06-Module 01-Lesson 03_Anaconda/02. Why Anaconda-VXukXZv7SCQ.pt-BR.vtt
3.3 kB
Part 11-Module 01-Lesson 01_Introduction to RL/02. Applications-CV6B84mKRNM.en.vtt
3.3 kB
Part 11-Module 01-Lesson 09_Deep Q-Learning/02. Neural Nets as Value Functions-cBi7vLrk8QQ.zh-CN.vtt
3.3 kB
Part 02-Module 03-Lesson 01_MiniFlow/img/dl2ds-grad.png
3.3 kB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/12. Output And Loss Solutions-CT8hcU7FmGc.pt-BR.vtt
3.3 kB
Part 09-Module 01-Lesson 03_Implementation of RNN and LSTM/11. Output And Loss Solutions-CT8hcU7FmGc.pt-BR.vtt
3.3 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/img/mse.png
3.3 kB
Part 07-Module 01-Lesson 02_Implementing Gradient Descent/img/mse.png
3.3 kB
Part 11-Module 01-Lesson 08_RL in Continuous Spaces/12. Kernel Functions-RdkPVYyVOvU.pt-BR.vtt
3.2 kB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/11. Network Loss-itu-uNK4brc.pt-BR.vtt
3.2 kB
Part 09-Module 01-Lesson 03_Implementation of RNN and LSTM/10. Network Loss-itu-uNK4brc.pt-BR.vtt
3.2 kB
Part 04-Module 02-Lesson 03_Deep Convolutional GANs/06. Generator Solution-jyPwUEZg05Q.pt-BR.vtt
3.2 kB
Part 10-Module 01-Lesson 02_Deep Convolutional GANs/06. Generator Solution-jyPwUEZg05Q.pt-BR.vtt
3.2 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/09. AND And OR Perceptrons-45K5N0P9wJk.pt-BR.vtt
3.2 kB
Part 11-Module 01-Lesson 09_Deep Q-Learning/03. Monte Carlo Learning-qOviWYwcvsg.pt-BR.vtt
3.2 kB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/09. LSTM Cell Solution-X4uA0dq_4jA.en.vtt
3.2 kB
Part 09-Module 01-Lesson 03_Implementation of RNN and LSTM/08. LSTM Cell Solution-X4uA0dq_4jA.en.vtt
3.2 kB
Part 03-Module 05-Lesson 01_Transfer Learning in TensorFlow/08. Building The Classifier-6ifxRQ_gL7w.pt-BR.vtt
3.2 kB
Part 08-Module 01-Lesson 06_Transfer Learning in TensorFlow/08. Building The Classifier-6ifxRQ_gL7w.pt-BR.vtt
3.2 kB
Part 02-Module 01-Lesson 01_Model Evaluation and Validation/07. Model Complexity Graph-Question-YS5OQCA5cLY.pt-BR.vtt
3.2 kB
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/07. When do MLPs (not) work well-deMeuLdZN3Q.zh-CN.vtt
3.2 kB
Part 11-Module 01-Lesson 11_Actor-Critic Methods/02. RL M2L4 02 A Better Score Function V2-_HBJ3l10-OE.pt-BR.vtt
3.2 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/02. Introduction-tn-CrUTkCUc.pt-BR.vtt
3.2 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/12. Building the Network Solution-Ikp3rVzG970.zh-CN.vtt
3.2 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/12. Building the Network Solution-Ikp3rVzG970.zh-CN.vtt
3.2 kB
Part 04-Module 02-Lesson 03_Deep Convolutional GANs/07. Discriminator-XRqOUbf96eI.en.vtt
3.2 kB
Part 10-Module 01-Lesson 02_Deep Convolutional GANs/07. Discriminator-XRqOUbf96eI.en.vtt
3.2 kB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/11. Network Loss-itu-uNK4brc.en.vtt
3.1 kB
Part 09-Module 01-Lesson 03_Implementation of RNN and LSTM/10. Network Loss-itu-uNK4brc.en.vtt
3.1 kB
Part 11-Module 01-Lesson 08_RL in Continuous Spaces/09. Coarse Coding-Uu1J5KLAfTU.en.vtt
3.1 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/16. 16 L Minimizing Cross-Entropy-YrDMXFhvh9E.pt-BR.vtt
3.1 kB
Part 04-Module 02-Lesson 05_Semi-Supervised Learning/11. Model Optimizer Solution-_Qhz9SbR7xY.zh-CN.vtt
3.1 kB
Part 10-Module 01-Lesson 03_Semi-Supervised Learning/11. Model Optimizer Solution-_Qhz9SbR7xY.zh-CN.vtt
3.1 kB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/09. LSTM Cell Solution-X4uA0dq_4jA.pt-BR.vtt
3.1 kB
Part 09-Module 01-Lesson 03_Implementation of RNN and LSTM/08. LSTM Cell Solution-X4uA0dq_4jA.pt-BR.vtt
3.1 kB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/12. Output And Loss Solutions-CT8hcU7FmGc.zh-CN.vtt
3.1 kB
Part 09-Module 01-Lesson 03_Implementation of RNN and LSTM/11. Output And Loss Solutions-CT8hcU7FmGc.zh-CN.vtt
3.1 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/32. Layers-pg99FkXYK0M.zh-CN.vtt
3.1 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/21. ROC Curve-fWwe_JlpnlQ.en.vtt
3.1 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/03. Episodic vs. Continuing Tasks-E1I-BPanSM8.pt-BR.vtt
3.1 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/14. Training Optimizers-AU5gH7LS57E.en.vtt
3.1 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/14. Training Optimizers-AU5gH7LS57E.en.vtt
3.1 kB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/03. Character-Wise RNN-dXl3eWCGLdU.zh-CN.vtt
3.1 kB
Part 09-Module 01-Lesson 03_Implementation of RNN and LSTM/02. Character-Wise RNN-dXl3eWCGLdU.zh-CN.vtt
3.1 kB
Part 02-Module 01-Lesson 01_Model Evaluation and Validation/07. Model Complexity Graph-Question-YS5OQCA5cLY.zh-CN.vtt
3.1 kB
Part 11-Module 01-Lesson 11_Actor-Critic Methods/04. RL M2L4 04 The Actor And The Critic V1-bvbE9F7urd4.pt-BR.vtt
3.1 kB
Part 03-Module 01-Lesson 03_Hyperparameters/07. Number Of Hidden Units Layers-IkGAIQH5wH8.pt-BR.vtt
3.1 kB
Part 04-Module 02-Lesson 02_Hyperparameters/07. Number Of Hidden Units Layers-IkGAIQH5wH8.pt-BR.vtt
3.1 kB
Part 09-Module 01-Lesson 04_Hyperparameters/07. Number Of Hidden Units Layers-IkGAIQH5wH8.pt-BR.vtt
3.1 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/04. 03 RNN Applications V3 Final-6JbTNARuKII.pt-BR.vtt
3.1 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.en.vtt
3.1 kB
Part 03-Module 05-Lesson 01_Transfer Learning in TensorFlow/06. Data Preparation-WEtKkHlhhZA.pt-BR.vtt
3.1 kB
Part 08-Module 01-Lesson 06_Transfer Learning in TensorFlow/06. Data Preparation-WEtKkHlhhZA.pt-BR.vtt
3.1 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/06. The Reward Hypothesis-uAqNwgZ49JE.zh-CN.vtt
3.1 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/16. 16 L Minimizing Cross-Entropy-YrDMXFhvh9E.en-US.vtt
3.1 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/09. AND And OR Perceptrons-45K5N0P9wJk.en.vtt
3.1 kB
Part 11-Module 01-Lesson 03_The RL Framework The Solution/06. Bellman Equations-UgIaDMvSdUo.zh-CN.vtt
3.1 kB
Part 04-Module 02-Lesson 03_Deep Convolutional GANs/08. Discriminator Solution-ffPWI2yJscw.zh-CN.vtt
3.1 kB
Part 10-Module 01-Lesson 02_Deep Convolutional GANs/08. Discriminator Solution-ffPWI2yJscw.zh-CN.vtt
3.1 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/17. MDPs, Part 3-UlXHFbla3QI.en.vtt
3.0 kB
Part 03-Module 05-Lesson 01_Transfer Learning in TensorFlow/08. Building The Classifier-6ifxRQ_gL7w.zh-CN.vtt
3.0 kB
Part 08-Module 01-Lesson 06_Transfer Learning in TensorFlow/08. Building The Classifier-6ifxRQ_gL7w.zh-CN.vtt
3.0 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/06. 09 Higher Dimensions-eBHunImDmWw.en.vtt
3.0 kB
Part 11-Module 01-Lesson 08_RL in Continuous Spaces/12. Kernel Functions-RdkPVYyVOvU.en.vtt
3.0 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/img/backprop-error.gif
3.0 kB
Part 07-Module 01-Lesson 02_Implementing Gradient Descent/img/backprop-error.gif
3.0 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/18. Explore the Design Space-FG7M9tWH2nQ.zh-CN.vtt
3.0 kB
Part 11-Module 01-Lesson 01_Introduction to RL/02. Applications-CV6B84mKRNM.zh-CN.vtt
3.0 kB
Part 11-Module 01-Lesson 06_Temporal-Difference Methods/01. Introduction-yXErXQulI_o.en.vtt
3.0 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/20. Truncated Policy Iteration-a-RvCxlPMho.zh-CN.vtt
3.0 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/12. Building the Network Solution-Ikp3rVzG970.pt-BR.vtt
3.0 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/12. Building the Network Solution-Ikp3rVzG970.pt-BR.vtt
3.0 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/16. 16 L Minimizing Cross-Entropy-YrDMXFhvh9E.zh-CN.vtt
3.0 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/10. Building a Neural Network-aM2k7RTjjJI.zh-CN.vtt
3.0 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/11. Building a Neural Network-aM2k7RTjjJI.zh-CN.vtt
3.0 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/34. Calculating The Gradient 1 -tVuZDbUrzzI.zh-CN.vtt
3.0 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/10. Building a Neural Network-aM2k7RTjjJI.pt-BR.vtt
2.9 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/11. Building a Neural Network-aM2k7RTjjJI.pt-BR.vtt
2.9 kB
Part 11-Module 01-Lesson 09_Deep Q-Learning/03. Monte Carlo Learning-qOviWYwcvsg.en.vtt
2.9 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/02. Introduction-tn-CrUTkCUc.zh-CN.vtt
2.9 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/img/weight-label-reference.gif
2.9 kB
Part 07-Module 01-Lesson 02_Implementing Gradient Descent/img/weight-label-reference.gif
2.9 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/03. Episodic vs. Continuing Tasks-E1I-BPanSM8.en.vtt
2.9 kB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/09. LSTM Cell Solution-X4uA0dq_4jA.zh-CN.vtt
2.9 kB
Part 09-Module 01-Lesson 03_Implementation of RNN and LSTM/08. LSTM Cell Solution-X4uA0dq_4jA.zh-CN.vtt
2.9 kB
Part 03-Module 01-Lesson 03_Hyperparameters/07. Number Of Hidden Units Layers-IkGAIQH5wH8.zh-CN.vtt
2.9 kB
Part 04-Module 02-Lesson 02_Hyperparameters/07. Number Of Hidden Units Layers-IkGAIQH5wH8.zh-CN.vtt
2.9 kB
Part 09-Module 01-Lesson 04_Hyperparameters/07. Number Of Hidden Units Layers-IkGAIQH5wH8.zh-CN.vtt
2.9 kB
Part 11-Module 01-Lesson 03_The RL Framework The Solution/04. Gridworld Example-XeHBmPFqTsE.pt-BR.vtt
2.9 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/07. Goals and Rewards, Part 1-XPnj3Ya3EuM.zh-CN.vtt
2.9 kB
Part 03-Module 07-Lesson 01_Reinforcement Learning/02. 01 Q-Learning-Npu9gyD6-4o.en.vtt
2.9 kB
Part 03-Module 05-Lesson 01_Transfer Learning in TensorFlow/09. Training The Classifier-b7Fy3cIoJ1Y.zh-CN.vtt
2.9 kB
Part 08-Module 01-Lesson 06_Transfer Learning in TensorFlow/09. Training The Classifier-b7Fy3cIoJ1Y.zh-CN.vtt
2.9 kB
Part 06-Module 01-Lesson 01_Welcome to Deep Learning/05. Projects You will Build-PqpdX7YxTlU.pt-BR.vtt
2.9 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/img/hidden-errors.gif
2.9 kB
Part 07-Module 01-Lesson 02_Implementing Gradient Descent/img/hidden-errors.gif
2.9 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/19. 21 RNN BPTT C V7 Final-uBy_eIJDD1M.zh-CN.vtt
2.9 kB
Part 11-Module 01-Lesson 11_Actor-Critic Methods/07. Summary-hvYQ_3LgCYs.pt-BR.vtt
2.9 kB
Part 03-Module 07-Lesson 01_Reinforcement Learning/02. 01 Q-Learning-Npu9gyD6-4o.pt-BR.vtt
2.8 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.zh-CN.vtt
2.8 kB
Part 11-Module 01-Lesson 08_RL in Continuous Spaces/09. Coarse Coding-Uu1J5KLAfTU.zh-CN.vtt
2.8 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/14. 17 RNN Unfolded V3 Final-xLIA_PTWXog.pt-BR.vtt
2.8 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/22. Andrew Trask - Outro-nIF0GLOQglQ.en-US.vtt
2.8 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/23. Andrew Trask - Outro-nIF0GLOQglQ.en-US.vtt
2.8 kB
Part 04-Module 02-Lesson 03_Deep Convolutional GANs/08. Discriminator Solution-ffPWI2yJscw.pt-BR.vtt
2.8 kB
Part 10-Module 01-Lesson 02_Deep Convolutional GANs/08. Discriminator Solution-ffPWI2yJscw.pt-BR.vtt
2.8 kB
Part 11-Module 01-Lesson 11_Actor-Critic Methods/04. RL M2L4 04 The Actor And The Critic V1-bvbE9F7urd4.en.vtt
2.8 kB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/11. Network Loss-itu-uNK4brc.zh-CN.vtt
2.8 kB
Part 09-Module 01-Lesson 03_Implementation of RNN and LSTM/10. Network Loss-itu-uNK4brc.zh-CN.vtt
2.8 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/04. 03 RNN Applications V3 Final-6JbTNARuKII.en.vtt
2.8 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/03. Classsification Example-Dh625piH7Z0.en.vtt
2.8 kB
Part 01-Module 01-Lesson 03_Jupyter Notebooks/02. Jupyter-qiYDWFLyXvg.en.vtt
2.8 kB
Part 06-Module 01-Lesson 04_Jupyter Notebooks/02. Jupyter-qiYDWFLyXvg.en.vtt
2.8 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/14. Training Optimizers-AU5gH7LS57E.pt-BR.vtt
2.8 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/14. Training Optimizers-AU5gH7LS57E.pt-BR.vtt
2.8 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/15. Momentum-r-rYz_PEWC8.pt-BR.vtt
2.8 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/08. 13 Overfitting Intro V4 Final-rmBLnVbFfFY.pt-BR.vtt
2.8 kB
Part 11-Module 01-Lesson 06_Temporal-Difference Methods/06. TD Prediction Action Values-1c029-7_9GA.en.vtt
2.7 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/12. Other Activation Functions-kA-1vUt6cvQ.en.vtt
2.7 kB
Part 02-Module 03-Lesson 01_MiniFlow/img/dcdw2-chain.png
2.7 kB
Part 02-Module 05-Lesson 01_Deep Neural Networks/11. Dropout RENDER-6DcImJS8uV8.pt-BR.vtt
2.7 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/14. Training Optimizers-AU5gH7LS57E.zh-CN.vtt
2.7 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/14. Training Optimizers-AU5gH7LS57E.zh-CN.vtt
2.7 kB
Part 09-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/05. Learn Gate-aVHVI7ovbHY.pt-BR.vtt
2.7 kB
Part 04-Module 02-Lesson 03_Deep Convolutional GANs/07. Discriminator-XRqOUbf96eI.zh-CN.vtt
2.7 kB
Part 10-Module 01-Lesson 02_Deep Convolutional GANs/07. Discriminator-XRqOUbf96eI.zh-CN.vtt
2.7 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/06. 09 Higher Dimensions-eBHunImDmWw.pt-BR.vtt
2.7 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/12. Validating The Training-Oxm9ofvov3I.en.vtt
2.7 kB
Part 03-Module 02-Lesson 01_Embeddings and Word2vec/05. Batches Solution-DdfR0RjSC-Q.en.vtt
2.7 kB
Part 09-Module 01-Lesson 05_Embeddings and Word2vec/05. Batches Solution-DdfR0RjSC-Q.en.vtt
2.7 kB
Part 11-Module 01-Lesson 11_Actor-Critic Methods/02. RL M2L4 02 A Better Score Function V2-_HBJ3l10-OE.en.vtt
2.7 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/10. Perceptron Algorithm--zhTROHtscQ.en.vtt
2.7 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/25. Gradient Descent Algorithm-snxmBgi_GeU.pt-BR.vtt
2.7 kB
Part 02-Module 05-Lesson 01_Deep Neural Networks/11. Dropout RENDER-6DcImJS8uV8.en-US.vtt
2.7 kB
Part 01-Module 01-Lesson 03_Jupyter Notebooks/02. Jupyter-qiYDWFLyXvg.zh-CN.vtt
2.7 kB
Part 06-Module 01-Lesson 04_Jupyter Notebooks/02. Jupyter-qiYDWFLyXvg.zh-CN.vtt
2.7 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/21. ROC Curve-fWwe_JlpnlQ.pt-BR.vtt
2.7 kB
Part 09-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/05. Learn Gate-aVHVI7ovbHY.en.vtt
2.7 kB
Part 03-Module 05-Lesson 01_Transfer Learning in TensorFlow/09. Training The Classifier-b7Fy3cIoJ1Y.pt-BR.vtt
2.7 kB
Part 08-Module 01-Lesson 06_Transfer Learning in TensorFlow/09. Training The Classifier-b7Fy3cIoJ1Y.pt-BR.vtt
2.7 kB
Part 03-Module 06-Lesson 01_Sequence to Sequence/03. Applications seq2seq-tDJBDwriJYQ.en.vtt
2.7 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 S Softmax-n8S-v_LCTms.en.vtt
2.7 kB
Part 01-Module 01-Lesson 01_Welcome/02. Projects You Will Build-yDPuDuCMST8.en.vtt
2.7 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/21. ROC Curve-fWwe_JlpnlQ.zh-CN.vtt
2.6 kB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/09. Generalized Policy Iteration-XRmz4nolEsw.pt-BR.vtt
2.6 kB
Part 04-Module 02-Lesson 03_Deep Convolutional GANs/07. Discriminator-XRqOUbf96eI.pt-BR.vtt
2.6 kB
Part 10-Module 01-Lesson 02_Deep Convolutional GANs/07. Discriminator-XRqOUbf96eI.pt-BR.vtt
2.6 kB
Part 03-Module 07-Lesson 01_Reinforcement Learning/02. 01 Q-Learning-Npu9gyD6-4o.zh-CN.vtt
2.6 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/04. 03 RNN Applications V3 Final-6JbTNARuKII.zh-CN.vtt
2.6 kB
Part 02-Module 03-Lesson 01_MiniFlow/img/neww.png
2.6 kB
Part 11-Module 01-Lesson 03_The RL Framework The Solution/04. Gridworld Example-XeHBmPFqTsE.en.vtt
2.6 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/14. 17 RNN Unfolded V3 Final-xLIA_PTWXog.en.vtt
2.6 kB
Part 03-Module 02-Lesson 01_Embeddings and Word2vec/07. Negative Sampling-gW17AHBKbHY.en.vtt
2.6 kB
Part 09-Module 01-Lesson 05_Embeddings and Word2vec/07. Negative Sampling-gW17AHBKbHY.en.vtt
2.6 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/12. Other Activation Functions-kA-1vUt6cvQ.pt-BR.vtt
2.6 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/25. Gradient Descent Algorithm-snxmBgi_GeU.en.vtt
2.6 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 S Softmax-n8S-v_LCTms.pt-BR.vtt
2.6 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/03. Classsification Example-Dh625piH7Z0.pt-BR.vtt
2.6 kB
Part 09-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/05. Learn Gate-aVHVI7ovbHY.zh-CN.vtt
2.6 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/08. 13 Overfitting Intro V4 Final-rmBLnVbFfFY.en.vtt
2.6 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/24. 32 L Parameter Hyperspace!-5a3-iIhdguc.pt-BR.vtt
2.6 kB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/12. MC Control Policy Evaluation-3_opwMzpEEI.pt-BR.vtt
2.6 kB
Part 03-Module 06-Lesson 01_Sequence to Sequence/03. Applications seq2seq-tDJBDwriJYQ.pt-BR.vtt
2.6 kB
Part 11-Module 01-Lesson 09_Deep Q-Learning/03. Monte Carlo Learning-qOviWYwcvsg.zh-CN.vtt
2.6 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/15. Momentum-r-rYz_PEWC8.en.vtt
2.6 kB
Part 03-Module 02-Lesson 01_Embeddings and Word2vec/05. Batches Solution-DdfR0RjSC-Q.pt-BR.vtt
2.6 kB
Part 09-Module 01-Lesson 05_Embeddings and Word2vec/05. Batches Solution-DdfR0RjSC-Q.pt-BR.vtt
2.6 kB
Part 11-Module 01-Lesson 08_RL in Continuous Spaces/12. Kernel Functions-RdkPVYyVOvU.zh-CN.vtt
2.6 kB
Part 11-Module 01-Lesson 01_Introduction to RL/04. OpenAI Gym-MktEOWp3QLg.pt-BR.vtt
2.5 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/09. AND And OR Perceptrons-45K5N0P9wJk.zh-CN.vtt
2.5 kB
Part 11-Module 01-Lesson 06_Temporal-Difference Methods/01. Introduction-yXErXQulI_o.zh-CN.vtt
2.5 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/22. Andrew Trask - Outro-nIF0GLOQglQ.zh-CN.vtt
2.5 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/23. Andrew Trask - Outro-nIF0GLOQglQ.zh-CN.vtt
2.5 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/03. Solving Problems - Big And Small-WHcRQMGSbqg.en.vtt
2.5 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/03. Episodic vs. Continuing Tasks-E1I-BPanSM8.zh-CN.vtt
2.5 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/09. Training Your Logistic Classifier-WQsdr1EJgz8.en.vtt
2.5 kB
Part 09-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/11. Other Architectures-MsxFDuYlTuQ.pt-BR.vtt
2.5 kB
Part 06-Module 01-Lesson 01_Welcome to Deep Learning/05. Projects You will Build-PqpdX7YxTlU.en.vtt
2.5 kB
Part 11-Module 01-Lesson 01_Introduction to RL/01. Introduction-6jSFl5kxIBs.pt-BR.vtt
2.5 kB
Part 11-Module 01-Lesson 02_The RL Framework The Problem/17. MDPs, Part 3-UlXHFbla3QI.zh-CN.vtt
2.5 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/15. Backpropagation-MZL97-2joxQ.en-US.vtt
2.5 kB
Part 07-Module 01-Lesson 02_Implementing Gradient Descent/07. Backpropagation-MZL97-2joxQ.en-US.vtt
2.5 kB
Part 09-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/09. Putting It All Together-IF8FlKW-Zo0.en.vtt
2.5 kB
Part 03-Module 06-Lesson 01_Sequence to Sequence/03. Applications seq2seq-tDJBDwriJYQ.zh-CN.vtt
2.5 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/10. Perceptron Algorithm--zhTROHtscQ.pt-BR.vtt
2.5 kB
Part 01-Module 01-Lesson 03_Jupyter Notebooks/02. Jupyter-qiYDWFLyXvg.pt-BR.vtt
2.5 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/09. Training Your Logistic Classifier-WQsdr1EJgz8.pt-BR.vtt
2.5 kB
Part 06-Module 01-Lesson 04_Jupyter Notebooks/02. Jupyter-qiYDWFLyXvg.pt-BR.vtt
2.5 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/03. Testing-EeBZpb-PSac.en.vtt
2.5 kB
Part 11-Module 01-Lesson 01_Introduction to RL/01. Introduction-6jSFl5kxIBs.en.vtt
2.5 kB
Part 11-Module 01-Lesson 11_Actor-Critic Methods/04. RL M2L4 04 The Actor And The Critic V1-bvbE9F7urd4.zh-CN.vtt
2.5 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/03. Statistical Invariance-0Hr5YwUUhr0.en.vtt
2.5 kB
Part 03-Module 08-Lesson 02_Autoencoders/02. Autoencoders-ar5Iyx68cWc.en.vtt
2.5 kB
Part 08-Module 01-Lesson 05_Autoencoders/02. Autoencoders-ar5Iyx68cWc.en.vtt
2.5 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/15. Backpropagation-MZL97-2joxQ.pt-BR.vtt
2.5 kB
Part 07-Module 01-Lesson 02_Implementing Gradient Descent/07. Backpropagation-MZL97-2joxQ.pt-BR.vtt
2.5 kB
Part 03-Module 02-Lesson 01_Embeddings and Word2vec/05. Batches Solution-DdfR0RjSC-Q.zh-CN.vtt
2.5 kB
Part 09-Module 01-Lesson 05_Embeddings and Word2vec/05. Batches Solution-DdfR0RjSC-Q.zh-CN.vtt
2.5 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/23. 31 L Momentum And Learning Rate Decay-O3QYdmQjXds.pt-BR.vtt
2.5 kB
Part 11-Module 01-Lesson 01_Introduction to RL/05. Resources-_YPqfAnCqtk.pt-BR.vtt
2.4 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/06. 09 Higher Dimensions-eBHunImDmWw.zh-CN.vtt
2.4 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/03. Testing-EeBZpb-PSac.pt-BR.vtt
2.4 kB
Part 01-Module 01-Lesson 01_Welcome/01. Welcome-PdPdogFHnvE.en.vtt
2.4 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/17. Policy Iteration-gqv7o1kBDc0.pt-BR.vtt
2.4 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/03. Classsification Example-Dh625piH7Z0.zh-CN.vtt
2.4 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/03. Solving Problems - Big And Small-WHcRQMGSbqg.pt-BR.vtt
2.4 kB
Part 09-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/09. Putting It All Together-IF8FlKW-Zo0.pt-BR.vtt
2.4 kB
Part 03-Module 02-Lesson 01_Embeddings and Word2vec/07. Negative Sampling-gW17AHBKbHY.pt-BR.vtt
2.4 kB
Part 09-Module 01-Lesson 05_Embeddings and Word2vec/07. Negative Sampling-gW17AHBKbHY.pt-BR.vtt
2.4 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/23. 31 L Momentum And Learning Rate Decay-O3QYdmQjXds.en.vtt
2.4 kB
Part 03-Module 08-Lesson 02_Autoencoders/02. Autoencoders-ar5Iyx68cWc.pt-BR.vtt
2.4 kB
Part 08-Module 01-Lesson 05_Autoencoders/02. Autoencoders-ar5Iyx68cWc.pt-BR.vtt
2.4 kB
Part 01-Module 03-Lesson 03_Your first neural network/01. Introduction to the Project-dOwEDeJp8yw.en.vtt
2.4 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/10. Perceptron Algorithm--zhTROHtscQ.zh-CN.vtt
2.4 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/12. Other Activation Functions-kA-1vUt6cvQ.zh-CN.vtt
2.4 kB
Part 11-Module 01-Lesson 11_Actor-Critic Methods/02. RL M2L4 02 A Better Score Function V2-_HBJ3l10-OE.zh-CN.vtt
2.4 kB
Part 03-Module 01-Lesson 03_Hyperparameters/02. Introduction-erwnzFD7AeE.en.vtt
2.4 kB
Part 04-Module 02-Lesson 02_Hyperparameters/02. Introduction-erwnzFD7AeE.en.vtt
2.4 kB
Part 09-Module 01-Lesson 04_Hyperparameters/02. Introduction-erwnzFD7AeE.en.vtt
2.4 kB
Part 11-Module 01-Lesson 11_Actor-Critic Methods/07. Summary-hvYQ_3LgCYs.en.vtt
2.4 kB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/04. Sequence-Batching-Z4OiyU0Cldg.pt-BR.vtt
2.4 kB
Part 09-Module 01-Lesson 03_Implementation of RNN and LSTM/03. Sequence-Batching-Z4OiyU0Cldg.pt-BR.vtt
2.4 kB
Part 01-Module 03-Lesson 03_Your first neural network/01. Introduction to the Project-dOwEDeJp8yw.zh-CN.vtt
2.4 kB
Part 09-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/11. Other Architectures-MsxFDuYlTuQ.en.vtt
2.4 kB
Part 02-Module 05-Lesson 01_Deep Neural Networks/11. Dropout RENDER-6DcImJS8uV8.zh-CN.vtt
2.4 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/12. Validating The Training-Oxm9ofvov3I.zh-CN.vtt
2.4 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 S Softmax-n8S-v_LCTms.zh-CN.vtt
2.4 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/24. 32 L Parameter Hyperspace!-5a3-iIhdguc.en.vtt
2.4 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz Cross Entropy-njq6bYrPqSU.en.vtt
2.4 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/02. Logistic Regression - Question-kSs6O3R7JUI.en-US.vtt
2.3 kB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/09. Generalized Policy Iteration-XRmz4nolEsw.en.vtt
2.3 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz Cross Entropy-njq6bYrPqSU.pt-BR.vtt
2.3 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/12. Validating The Training-Oxm9ofvov3I.pt-BR.vtt
2.3 kB
Part 02-Module 03-Lesson 01_MiniFlow/img/newx-1n.png
2.3 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/img/codecogseqn-2.png
2.3 kB
Part 07-Module 01-Lesson 02_Implementing Gradient Descent/img/codecogseqn-2.png
2.3 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/03. Statistical Invariance-0Hr5YwUUhr0.pt-BR.vtt
2.3 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/17. One-Hot Encoding-AePvjhyvsBo.en.vtt
2.3 kB
Part 06-Module 01-Lesson 01_Welcome to Deep Learning/05. Projects You will Build-PqpdX7YxTlU.zh-CN.vtt
2.3 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/03. Solving Problems - Big And Small-WHcRQMGSbqg.zh-CN.vtt
2.3 kB
Part 11-Module 01-Lesson 06_Temporal-Difference Methods/06. TD Prediction Action Values-1c029-7_9GA.zh-CN.vtt
2.3 kB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/12. MC Control Policy Evaluation-3_opwMzpEEI.en.vtt
2.3 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/15. Momentum-r-rYz_PEWC8.zh-CN.vtt
2.3 kB
Part 11-Module 01-Lesson 01_Introduction to RL/04. OpenAI Gym-MktEOWp3QLg.en.vtt
2.3 kB
Part 11-Module 01-Lesson 06_Temporal-Difference Methods/07. TD Control Sarsa(0)-LkFkjfsRpXc.en.vtt
2.3 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/25. Gradient Descent Algorithm-snxmBgi_GeU.zh-CN.vtt
2.3 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/14. 17 RNN Unfolded V3 Final-xLIA_PTWXog.zh-CN.vtt
2.3 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/img/backprop-general.gif
2.3 kB
Part 07-Module 01-Lesson 02_Implementing Gradient Descent/img/backprop-general.gif
2.3 kB
Part 03-Module 02-Lesson 01_Embeddings and Word2vec/07. Negative Sampling-gW17AHBKbHY.zh-CN.vtt
2.2 kB
Part 09-Module 01-Lesson 05_Embeddings and Word2vec/07. Negative Sampling-gW17AHBKbHY.zh-CN.vtt
2.2 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/22. Andrew Trask - Outro-nIF0GLOQglQ.pt-BR.vtt
2.2 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/23. Andrew Trask - Outro-nIF0GLOQglQ.pt-BR.vtt
2.2 kB
Part 03-Module 08-Lesson 02_Autoencoders/02. Autoencoders-ar5Iyx68cWc.zh-CN.vtt
2.2 kB
Part 08-Module 01-Lesson 05_Autoencoders/02. Autoencoders-ar5Iyx68cWc.zh-CN.vtt
2.2 kB
Part 02-Module 03-Lesson 01_MiniFlow/img/21.png
2.2 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/23. What Is The Neural Network Looking At-qN-rvoxPbBw.en.vtt
2.2 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/08. 13 Overfitting Intro V4 Final-rmBLnVbFfFY.zh-CN.vtt
2.2 kB
Part 03-Module 01-Lesson 03_Hyperparameters/02. Introduction-erwnzFD7AeE.pt-BR.vtt
2.2 kB
Part 04-Module 02-Lesson 02_Hyperparameters/02. Introduction-erwnzFD7AeE.pt-BR.vtt
2.2 kB
Part 09-Module 01-Lesson 04_Hyperparameters/02. Introduction-erwnzFD7AeE.pt-BR.vtt
2.2 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/04. Another Gridworld Example-n9SbomnLb-U.pt-BR.vtt
2.2 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/15. Backpropagation-MZL97-2joxQ.zh-CN.vtt
2.2 kB
Part 07-Module 01-Lesson 02_Implementing Gradient Descent/07. Backpropagation-MZL97-2joxQ.zh-CN.vtt
2.2 kB
Part 09-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/09. Putting It All Together-IF8FlKW-Zo0.zh-CN.vtt
2.2 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.pt-BR.vtt
2.2 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/09. Training Your Logistic Classifier-WQsdr1EJgz8.zh-CN.vtt
2.2 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/32. Multiclass Classification-uNTtvxwfox0.pt-BR.vtt
2.2 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/03. Statistical Invariance-0Hr5YwUUhr0.zh-CN.vtt
2.2 kB
Part 02-Module 03-Lesson 01_MiniFlow/img/neuron-output.png
2.2 kB
Part 11-Module 01-Lesson 01_Introduction to RL/01. Introduction-6jSFl5kxIBs.zh-CN.vtt
2.2 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/24. 32 L Parameter Hyperspace!-5a3-iIhdguc.zh-CN.vtt
2.1 kB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/04. Sequence-Batching-Z4OiyU0Cldg.en.vtt
2.1 kB
Part 09-Module 01-Lesson 03_Implementation of RNN and LSTM/03. Sequence-Batching-Z4OiyU0Cldg.en.vtt
2.1 kB
Part 11-Module 01-Lesson 11_Actor-Critic Methods/07. Summary-hvYQ_3LgCYs.zh-CN.vtt
2.1 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/img/codecogseqn-49.gif
2.1 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/img/sigmoid-derivative.gif
2.1 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/23. 31 L Momentum And Learning Rate Decay-O3QYdmQjXds.zh-CN.vtt
2.1 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/17. Policy Iteration-gqv7o1kBDc0.en.vtt
2.1 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/32. Multiclass Classification-uNTtvxwfox0.en.vtt
2.1 kB
Part 11-Module 01-Lesson 01_Introduction to RL/05. Resources-_YPqfAnCqtk.en.vtt
2.1 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz Cross Entropy-njq6bYrPqSU.zh-CN.vtt
2.1 kB
Part 02-Module 05-Lesson 01_Deep Neural Networks/05. Training a Deep Learning Network-CsB7yUtMJyk.en.vtt
2.1 kB
Part 11-Module 01-Lesson 03_The RL Framework The Solution/04. Gridworld Example-XeHBmPFqTsE.zh-CN.vtt
2.1 kB
Part 02-Module 05-Lesson 04_Image Classification/01. Project Intro-awEYy2Df3hg.pt-BR.vtt
2.1 kB
Part 02-Module 05-Lesson 01_Deep Neural Networks/05. Training a Deep Learning Network-CsB7yUtMJyk.pt-BR.vtt
2.1 kB
Part 03-Module 05-Lesson 01_Transfer Learning in TensorFlow/04. Pretrained VGGNet-BpzI6Svmuv8.en.vtt
2.1 kB
Part 08-Module 01-Lesson 06_Transfer Learning in TensorFlow/04. Pretrained VGGNet-BpzI6Svmuv8.en.vtt
2.1 kB
Part 09-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/11. Other Architectures-MsxFDuYlTuQ.zh-CN.vtt
2.1 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/04. Another Gridworld Example-n9SbomnLb-U.en.vtt
2.1 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/17. One-Hot Encoding-AePvjhyvsBo.pt-BR.vtt
2.1 kB
Part 03-Module 04-Lesson 03_Sentiment Prediction RNN/04. Creating Testing Sets-BRBbrNLz1ho.en.vtt
2.1 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/17. One-Hot Encoding-AePvjhyvsBo.zh-CN.vtt
2.1 kB
Part 09-Module 01-Lesson 06_Sentiment Prediction RNN/04. Creating Testing Sets-BRBbrNLz1ho.en.vtt
2.1 kB
Part 02-Module 03-Lesson 01_MiniFlow/img/b-1byk.png
2.1 kB
Part 01-Module 03-Lesson 03_Your first neural network/01. Introduction to the Project-dOwEDeJp8yw.pt-BR.vtt
2.1 kB
Part 02-Module 05-Lesson 04_Image Classification/01. Project Intro-awEYy2Df3hg.en.vtt
2.1 kB
Part 01-Module 01-Lesson 01_Welcome/03. Meet Your Instructors -EcP0U4720sA.en-US.vtt
2.1 kB
Part 11-Module 01-Lesson 01_Introduction to RL/04. OpenAI Gym-MktEOWp3QLg.zh-CN.vtt
2.1 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/02. Logistic Regression - Question-kSs6O3R7JUI.pt-BR.vtt
2.1 kB
Part 03-Module 01-Lesson 03_Hyperparameters/02. Introduction-erwnzFD7AeE.zh-CN.vtt
2.1 kB
Part 04-Module 02-Lesson 02_Hyperparameters/02. Introduction-erwnzFD7AeE.zh-CN.vtt
2.1 kB
Part 09-Module 01-Lesson 04_Hyperparameters/02. Introduction-erwnzFD7AeE.zh-CN.vtt
2.1 kB
Part 02-Module 01-Lesson 01_Model Evaluation and Validation/08. K Fold Cross Validation-dRtgSJgSt_I.en-US.vtt
2.0 kB
Part 02-Module 01-Lesson 01_Model Evaluation and Validation/08. K Fold Cross Validation-dRtgSJgSt_I.pt-BR.vtt
2.0 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/03. Testing-EeBZpb-PSac.zh-CN.vtt
2.0 kB
Part 01-Module 01-Lesson 01_Welcome/01. Welcome-PdPdogFHnvE.pt-BR.vtt
2.0 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/05. The Data-2RLbbV7MQNA.en.vtt
2.0 kB
Part 01-Module 01-Lesson 01_Welcome/03. Meet Your Instructors -EcP0U4720sA.en.vtt
2.0 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.en.vtt
2.0 kB
Part 06-Module 01-Lesson 01_Welcome to Deep Learning/02. Meet Your Instructors--UOFRxCu414.pt-BR.vtt
2.0 kB
Part 01-Module 01-Lesson 01_Welcome/03. Meet Your Instructors -EcP0U4720sA.zh-CN.vtt
2.0 kB
Part 11-Module 01-Lesson 11_Actor-Critic Methods/03. RL M2L4 03 Two Function Approximators V1-37KQEgLaLfw.pt-BR.vtt
2.0 kB
Part 01-Module 01-Lesson 01_Welcome/03. Meet Your Instructors -EcP0U4720sA.pt-BR.vtt
2.0 kB
Part 03-Module 01-Lesson 01_Intro to Recurrent Neural Networks/04. Sequence-Batching-Z4OiyU0Cldg.zh-CN.vtt
2.0 kB
Part 09-Module 01-Lesson 03_Implementation of RNN and LSTM/03. Sequence-Batching-Z4OiyU0Cldg.zh-CN.vtt
2.0 kB
Part 02-Module 05-Lesson 01_Deep Neural Networks/05. Training a Deep Learning Network-CsB7yUtMJyk.zh-CN.vtt
1.9 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/28. 1x1 Convolutions-Zmzgerm6SjA.pt-BR.vtt
1.9 kB
Part 01-Module 01-Lesson 01_Welcome/01. Welcome-PdPdogFHnvE.zh-CN.vtt
1.9 kB
Part 11-Module 01-Lesson 06_Temporal-Difference Methods/07. TD Control Sarsa(0)-LkFkjfsRpXc.zh-CN.vtt
1.9 kB
Part 11-Module 01-Lesson 08_RL in Continuous Spaces/14. Summary-MTEBk43oByU.pt-BR.vtt
1.9 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/23. What Is The Neural Network Looking At-qN-rvoxPbBw.zh-CN.vtt
1.9 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/02. 02 Skin Cancer V4-70jGZeiTNgk.en.vtt
1.9 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/22. Visualization-aGIGB4Ta3_A.en.vtt
1.9 kB
Part 02-Module 05-Lesson 01_Deep Neural Networks/08. Regularization Intro-pECnr-5F3_Q.ja-JP.vtt
1.9 kB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/09. Generalized Policy Iteration-XRmz4nolEsw.zh-CN.vtt
1.9 kB
Part 11-Module 01-Lesson 01_Introduction to RL/05. Resources-_YPqfAnCqtk.zh-CN.vtt
1.9 kB
Part 02-Module 05-Lesson 04_Image Classification/01. Project Intro-awEYy2Df3hg.zh-CN.vtt
1.9 kB
Part 02-Module 01-Lesson 01_Model Evaluation and Validation/08. K Fold Cross Validation-dRtgSJgSt_I.zh-CN.vtt
1.9 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/02. Logistic Regression - Question-kSs6O3R7JUI.zh-CN.vtt
1.9 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/32. Multiclass Classification-uNTtvxwfox0.zh-CN.vtt
1.9 kB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/12. MC Control Policy Evaluation-3_opwMzpEEI.zh-CN.vtt
1.9 kB
Part 11-Module 01-Lesson 08_RL in Continuous Spaces/13. Non-Linear Function Approximation-rITnmpD2mN8.pt-BR.vtt
1.8 kB
Part 06-Module 01-Lesson 01_Welcome to Deep Learning/02. Meet Your Instructors--UOFRxCu414.en.vtt
1.8 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/22. Visualization-aGIGB4Ta3_A.pt-BR.vtt
1.8 kB
Part 11-Module 01-Lesson 11_Actor-Critic Methods/01. RL M2L4 01 Actor Critic Methods RENDER V1 V1-FXhyxJzgt8U.pt-BR.vtt
1.8 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/12. Non-Linear Regions-B8UrWnHh1Wc.en.vtt
1.8 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/04. Classification Example-46PywnGa_cQ.en.vtt
1.8 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/17. Policy Iteration-gqv7o1kBDc0.zh-CN.vtt
1.8 kB
Part 09-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/08. LSTM 7 Use Gate-5Ifolm1jTdY.en.vtt
1.8 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/img/hidden-layer-weights.gif
1.8 kB
Part 07-Module 01-Lesson 02_Implementing Gradient Descent/img/hidden-layer-weights.gif
1.8 kB
Part 03-Module 05-Lesson 01_Transfer Learning in TensorFlow/04. Pretrained VGGNet-BpzI6Svmuv8.pt-BR.vtt
1.8 kB
Part 08-Module 01-Lesson 06_Transfer Learning in TensorFlow/04. Pretrained VGGNet-BpzI6Svmuv8.pt-BR.vtt
1.8 kB
Part 02-Module 02-Lesson 03_Preparing for Siraj's Lesson/img/old-vec.gif
1.8 kB
Part 03-Module 04-Lesson 03_Sentiment Prediction RNN/04. Creating Testing Sets-BRBbrNLz1ho.pt-BR.vtt
1.8 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/02. 02 Skin Cancer V4-70jGZeiTNgk.pt-BR.vtt
1.8 kB
Part 09-Module 01-Lesson 06_Sentiment Prediction RNN/04. Creating Testing Sets-BRBbrNLz1ho.pt-BR.vtt
1.8 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/34. Chain Rule-YAhIBOnbt54.pt-BR.vtt
1.8 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/09. Regra da cadeia-YAhIBOnbt54.pt-BR.vtt
1.8 kB
Part 09-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/08. LSTM 7 Use Gate-5Ifolm1jTdY.pt-BR.vtt
1.8 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/23. What Is The Neural Network Looking At-qN-rvoxPbBw.pt-BR.vtt
1.8 kB
Part 03-Module 05-Lesson 01_Transfer Learning in TensorFlow/04. Pretrained VGGNet-BpzI6Svmuv8.zh-CN.vtt
1.8 kB
Part 08-Module 01-Lesson 06_Transfer Learning in TensorFlow/04. Pretrained VGGNet-BpzI6Svmuv8.zh-CN.vtt
1.8 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/05. The Data-2RLbbV7MQNA.pt-BR.vtt
1.8 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/14. Multilayer perceptrons-Rs9petvTBLk.pt-BR.vtt
1.7 kB
Part 07-Module 01-Lesson 02_Implementing Gradient Descent/06. Multilayer perceptrons-Rs9petvTBLk.pt-BR.vtt
1.7 kB
Part 02-Module 01-Lesson 01_Model Evaluation and Validation/04. Accuracy Question-AmFoZTf-Hb0.en.vtt
1.7 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/28. 1x1 Convolutions-Zmzgerm6SjA.en.vtt
1.7 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.zh-CN.vtt
1.7 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/02. 02 Skin Cancer V4-70jGZeiTNgk.zh-CN.vtt
1.7 kB
Part 11-Module 01-Lesson 11_Actor-Critic Methods/03. RL M2L4 03 Two Function Approximators V1-37KQEgLaLfw.en.vtt
1.7 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/img/backprop-weight-update.gif
1.7 kB
Part 07-Module 01-Lesson 02_Implementing Gradient Descent/img/backprop-weight-update.gif
1.7 kB
Part 03-Module 04-Lesson 03_Sentiment Prediction RNN/04. Creating Testing Sets-BRBbrNLz1ho.zh-CN.vtt
1.7 kB
Part 09-Module 01-Lesson 06_Sentiment Prediction RNN/04. Creating Testing Sets-BRBbrNLz1ho.zh-CN.vtt
1.7 kB
Part 11-Module 01-Lesson 09_Deep Q-Learning/01. Intro to Deep Q-Learning-o3cmuUDhP3I.pt-BR.vtt
1.7 kB
Part 02-Module 03-Lesson 01_MiniFlow/img/12.png
1.7 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/25. Confusion Matrix-3rpN-YYlfes.en.vtt
1.7 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/14. Multilayer perceptrons-Rs9petvTBLk.en-US.vtt
1.7 kB
Part 07-Module 01-Lesson 02_Implementing Gradient Descent/06. Multilayer perceptrons-Rs9petvTBLk.en-US.vtt
1.7 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/34. Chain Rule-YAhIBOnbt54.en.vtt
1.7 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/09. Regra da cadeia-YAhIBOnbt54.en.vtt
1.7 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/04. Another Gridworld Example-n9SbomnLb-U.zh-CN.vtt
1.7 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/04. Classification Example-46PywnGa_cQ.zh-CN.vtt
1.7 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/05. The Data-2RLbbV7MQNA.zh-CN.vtt
1.7 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 1-1yJx-QtlvNI.en.vtt
1.7 kB
Part 06-Module 01-Lesson 01_Welcome to Deep Learning/02. Meet Your Instructors--UOFRxCu414.zh-CN.vtt
1.7 kB
Part 03-Module 01-Lesson 03_Hyperparameters/06. Number Of Iterations-TTdHpSb4DV8.en.vtt
1.7 kB
Part 04-Module 02-Lesson 02_Hyperparameters/06. Number Of Iterations-TTdHpSb4DV8.en.vtt
1.7 kB
Part 09-Module 01-Lesson 04_Hyperparameters/06. Number Of Iterations-TTdHpSb4DV8.en.vtt
1.7 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.en.vtt
1.7 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 1-1yJx-QtlvNI.pt-BR.vtt
1.7 kB
Part 11-Module 01-Lesson 08_RL in Continuous Spaces/14. Summary-MTEBk43oByU.en.vtt
1.7 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/01. 00 Luis Introducing Ortal Newtitle121217-oXv7GiC-jrM.pt-BR.vtt
1.7 kB
Part 03-Module 05-Lesson 01_Transfer Learning in TensorFlow/07. Building The Classifier-pPHiVddBY0Q.en.vtt
1.6 kB
Part 08-Module 01-Lesson 06_Transfer Learning in TensorFlow/07. Building The Classifier-pPHiVddBY0Q.en.vtt
1.6 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/10. Gradient Descent-29PmNG7fuuM.en.vtt
1.6 kB
Part 07-Module 01-Lesson 02_Implementing Gradient Descent/02. Gradient Descent-29PmNG7fuuM.en.vtt
1.6 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/04. Classification Example-46PywnGa_cQ.pt-BR.vtt
1.6 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/02. What Is Deep Learning-INt1nULYPak.en.vtt
1.6 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/29. Inception Module-SlTm03bEOxA.en.vtt
1.6 kB
Part 02-Module 02-Lesson 03_Preparing for Siraj's Lesson/img/cat-vec.gif
1.6 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/01. GANs Intro-F7XgI6TmaGI.en-US.vtt
1.6 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/01. GANs Intro-F7XgI6TmaGI.en-US.vtt
1.6 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/12. Non-Linear Regions-B8UrWnHh1Wc.zh-CN.vtt
1.6 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/29. Inception Module-SlTm03bEOxA.pt-BR.vtt
1.6 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/11. Vanishing Gradient-W_JJm_5syFw.pt-BR.vtt
1.6 kB
Part 11-Module 01-Lesson 08_RL in Continuous Spaces/13. Non-Linear Function Approximation-rITnmpD2mN8.en.vtt
1.6 kB
Part 02-Module 05-Lesson 01_Deep Neural Networks/01. Mat HS-9P7UPWFu8w8.en-US.vtt
1.6 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/25. Confusion Matrix-3rpN-YYlfes.pt-BR.vtt
1.6 kB
Part 11-Module 01-Lesson 11_Actor-Critic Methods/01. RL M2L4 01 Actor Critic Methods RENDER V1 V1-FXhyxJzgt8U.en.vtt
1.6 kB
Part 03-Module 05-Lesson 01_Transfer Learning in TensorFlow/07. Building The Classifier-pPHiVddBY0Q.zh-CN.vtt
1.6 kB
Part 08-Module 01-Lesson 06_Transfer Learning in TensorFlow/07. Building The Classifier-pPHiVddBY0Q.zh-CN.vtt
1.6 kB
Part 03-Module 01-Lesson 03_Hyperparameters/06. Number Of Iterations-TTdHpSb4DV8.pt-BR.vtt
1.6 kB
Part 04-Module 02-Lesson 02_Hyperparameters/06. Number Of Iterations-TTdHpSb4DV8.pt-BR.vtt
1.6 kB
Part 09-Module 01-Lesson 04_Hyperparameters/06. Number Of Iterations-TTdHpSb4DV8.pt-BR.vtt
1.6 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/10. Gradient Descent-29PmNG7fuuM.pt-BR.vtt
1.6 kB
Part 07-Module 01-Lesson 02_Implementing Gradient Descent/02. Gradient Descent-29PmNG7fuuM.pt-BR.vtt
1.6 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/01. 00 Luis Introducing Ortal Newtitle121217-oXv7GiC-jrM.en.vtt
1.5 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/12. Non-Linear Regions-B8UrWnHh1Wc.pt-BR.vtt
1.5 kB
Part 02-Module 05-Lesson 01_Deep Neural Networks/09. Regularization-QcJBhbuCl5g.pt-BR.vtt
1.5 kB
Part 03-Module 01-Lesson 03_Hyperparameters/06. Number Of Iterations-TTdHpSb4DV8.zh-CN.vtt
1.5 kB
Part 04-Module 02-Lesson 02_Hyperparameters/06. Number Of Iterations-TTdHpSb4DV8.zh-CN.vtt
1.5 kB
Part 09-Module 01-Lesson 04_Hyperparameters/06. Number Of Iterations-TTdHpSb4DV8.zh-CN.vtt
1.5 kB
Part 09-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/08. LSTM 7 Use Gate-5Ifolm1jTdY.zh-CN.vtt
1.5 kB
Part 02-Module 03-Lesson 01_MiniFlow/img/z.png
1.5 kB
Part 09-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/04. LSTM Architecture-ycwthhdx8ws.en.vtt
1.5 kB
Part 11-Module 01-Lesson 09_Deep Q-Learning/13. Wrap Up-x6JggcDTcys.pt-BR.vtt
1.5 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/28. 1x1 Convolutions-Zmzgerm6SjA.zh-CN.vtt
1.5 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/22. Visualization-aGIGB4Ta3_A.zh-CN.vtt
1.5 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/17. 16 Solution Diagnosing Cancer V3-IJYvt2ssUFk.en.vtt
1.5 kB
Part 02-Module 05-Lesson 01_Deep Neural Networks/09. Regularization-QcJBhbuCl5g.en.vtt
1.5 kB
Part 09-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/04. LSTM Architecture-ycwthhdx8ws.pt-BR.vtt
1.5 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.zh-CN.vtt
1.5 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/11. Vanishing Gradient-W_JJm_5syFw.en.vtt
1.5 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/01. GANs Intro-F7XgI6TmaGI.zh-CN.vtt
1.5 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/01. GANs Intro-F7XgI6TmaGI.zh-CN.vtt
1.5 kB
Part 11-Module 01-Lesson 11_Actor-Critic Methods/03. RL M2L4 03 Two Function Approximators V1-37KQEgLaLfw.zh-CN.vtt
1.5 kB
Part 02-Module 05-Lesson 01_Deep Neural Networks/08. Regularization Intro-pECnr-5F3_Q.en-US.vtt
1.5 kB
Part 11-Module 01-Lesson 09_Deep Q-Learning/01. Intro to Deep Q-Learning-o3cmuUDhP3I.en.vtt
1.5 kB
Part 02-Module 05-Lesson 01_Deep Neural Networks/08. Regularization Intro-pECnr-5F3_Q.en.vtt
1.5 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 1-1yJx-QtlvNI.zh-CN.vtt
1.5 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/02. What Is Deep Learning-INt1nULYPak.zh-CN.vtt
1.5 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/01. Introducing Andrew Trask-U3PqQF-8qyI.pt-BR.vtt
1.5 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.pt-BR.vtt
1.5 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/34. Chain Rule-YAhIBOnbt54.zh-CN.vtt
1.5 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/09. Regra da cadeia-YAhIBOnbt54.zh-CN.vtt
1.5 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/29. Inception Module-SlTm03bEOxA.zh-CN.vtt
1.4 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/25. Confusion Matrix-3rpN-YYlfes.zh-CN.vtt
1.4 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/10. Gradient Descent-29PmNG7fuuM.zh-CN.vtt
1.4 kB
Part 07-Module 01-Lesson 02_Implementing Gradient Descent/02. Gradient Descent-29PmNG7fuuM.zh-CN.vtt
1.4 kB
Part 03-Module 05-Lesson 01_Transfer Learning in TensorFlow/07. Building The Classifier-pPHiVddBY0Q.pt-BR.vtt
1.4 kB
Part 08-Module 01-Lesson 06_Transfer Learning in TensorFlow/07. Building The Classifier-pPHiVddBY0Q.pt-BR.vtt
1.4 kB
Part 02-Module 05-Lesson 01_Deep Neural Networks/01. Mat HS-9P7UPWFu8w8.zh-CN.vtt
1.4 kB
Part 01-Module 03-Lesson 02_Intro to Neural Networks/14. Multilayer perceptrons-Rs9petvTBLk.zh-CN.vtt
1.4 kB
Part 07-Module 01-Lesson 02_Implementing Gradient Descent/06. Multilayer perceptrons-Rs9petvTBLk.zh-CN.vtt
1.4 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/31. Non-Linear Models-HWuBKCZsCo8.pt-BR.vtt
1.4 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/08. Why Neural Networks-zAkzOZntK6Y.en.vtt
1.4 kB
Part 11-Module 01-Lesson 08_RL in Continuous Spaces/14. Summary-MTEBk43oByU.zh-CN.vtt
1.4 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/04. Medical Classification-RCOSP60dV7U.en.vtt
1.4 kB
Part 02-Module 03-Lesson 01_MiniFlow/img/l2.png
1.4 kB
Part 11-Module 01-Lesson 03_The RL Framework The Solution/01. Introduction-9Wyf5Zsska8.pt-BR.vtt
1.4 kB
Part 11-Module 01-Lesson 11_Actor-Critic Methods/01. RL M2L4 01 Actor Critic Methods RENDER V1 V1-FXhyxJzgt8U.zh-CN.vtt
1.4 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/02. What Is Deep Learning-INt1nULYPak.pt-BR.vtt
1.4 kB
Part 11-Module 01-Lesson 10_Policy-Based Methods/08. M2L3 08 V1-og3W6CXn1F0.en.vtt
1.4 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/04. Let'S Get Started-ySIDqaXLhHw.pt-BR.vtt
1.4 kB
Part 09-Module 01-Lesson 01_Recurrent Neural Networks/01. 00 Luis Introducing Ortal Newtitle121217-oXv7GiC-jrM.zh-CN.vtt
1.4 kB
Part 01-Module 01-Lesson 01_Welcome/09. Getting-Setup-1SuxTnuQkeE.en.vtt
1.4 kB
Part 06-Module 01-Lesson 01_Welcome to Deep Learning/10. Getting-Setup-1SuxTnuQkeE.en.vtt
1.4 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/17. 16 Solution Diagnosing Cancer V3-IJYvt2ssUFk.pt-BR.vtt
1.4 kB
Part 09-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/04. LSTM Architecture-ycwthhdx8ws.zh-CN.vtt
1.4 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/29. Continuous Perceptrons-07-JJ-aGEfM.en.vtt
1.4 kB
Part 09-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/06. Forget Gate-iWxpfxLUPSU.pt-BR.vtt
1.4 kB
Part 11-Module 01-Lesson 03_The RL Framework The Solution/01. Introduction-9Wyf5Zsska8.en.vtt
1.4 kB
Part 02-Module 05-Lesson 01_Deep Neural Networks/08. Regularization Intro-pECnr-5F3_Q.zh-CN.vtt
1.3 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/01. GANs Intro-F7XgI6TmaGI.en.vtt
1.3 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/01. GANs Intro-F7XgI6TmaGI.en.vtt
1.3 kB
Part 01-Module 01-Lesson 01_Welcome/09. Getting-Setup-1SuxTnuQkeE.pt-BR.vtt
1.3 kB
Part 06-Module 01-Lesson 01_Welcome to Deep Learning/10. Getting-Setup-1SuxTnuQkeE.pt-BR.vtt
1.3 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/29. Continuous Perceptrons-07-JJ-aGEfM.pt-BR.vtt
1.3 kB
Part 11-Module 01-Lesson 08_RL in Continuous Spaces/13. Non-Linear Function Approximation-rITnmpD2mN8.zh-CN.vtt
1.3 kB
Part 02-Module 05-Lesson 01_Deep Neural Networks/08. Regularization Intro-pECnr-5F3_Q.pt-BR.vtt
1.3 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/31. Non-Linear Models-HWuBKCZsCo8.en.vtt
1.3 kB
Part 01-Module 01-Lesson 01_Welcome/09. Getting-Setup-1SuxTnuQkeE.zh-CN.vtt
1.3 kB
Part 06-Module 01-Lesson 01_Welcome to Deep Learning/10. Getting-Setup-1SuxTnuQkeE.zh-CN.vtt
1.3 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/01. GANs Intro-F7XgI6TmaGI.pt-BR.vtt
1.3 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/01. GANs Intro-F7XgI6TmaGI.pt-BR.vtt
1.3 kB
Part 02-Module 03-Lesson 01_MiniFlow/img/dcdw2.png
1.3 kB
Part 02-Module 05-Lesson 01_Deep Neural Networks/09. Regularization-QcJBhbuCl5g.zh-CN.vtt
1.3 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/01. Introducing Andrew Trask-U3PqQF-8qyI.en.vtt
1.3 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/08. Why Neural Networks-zAkzOZntK6Y.pt-BR.vtt
1.3 kB
Part 11-Module 01-Lesson 09_Deep Q-Learning/01. Intro to Deep Q-Learning-o3cmuUDhP3I.zh-CN.vtt
1.3 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/04. Let'S Get Started-ySIDqaXLhHw.en.vtt
1.3 kB
Part 07-Module 01-Lesson 04_Sentiment Analysis/01. Introducing Andrew Trask-ltO71Bm8b3M.pt-BR.vtt
1.3 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/14. Learning Rate-TwJ8aSZoh2U.pt-BR.vtt
1.3 kB
Part 09-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/06. Forget Gate-iWxpfxLUPSU.en.vtt
1.3 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/17. 16 Solution Diagnosing Cancer V3-IJYvt2ssUFk.zh-CN.vtt
1.3 kB
Part 11-Module 01-Lesson 10_Policy-Based Methods/08. M2L3 08 V1-og3W6CXn1F0.zh-CN.vtt
1.3 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/11. Vanishing Gradient-W_JJm_5syFw.zh-CN.vtt
1.3 kB
Part 02-Module 05-Lesson 01_Deep Neural Networks/12. Dropout Pt. 2-8nG8zzJMbZw.en-US.vtt
1.3 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/img/linear-equation.gif
1.3 kB
Part 07-Module 01-Lesson 06_TensorFlow/img/linear-equation.gif
1.3 kB
Part 02-Module 03-Lesson 01_MiniFlow/01. Miniflow Introduction-Nqp_UifEwt0.pt-BR.vtt
1.3 kB
Part 11-Module 01-Lesson 06_Temporal-Difference Methods/13. TD Control Expected Sarsa-kEKupCyU0P0.en.vtt
1.3 kB
Part 11-Module 01-Lesson 09_Deep Q-Learning/13. Wrap Up-x6JggcDTcys.en.vtt
1.3 kB
Part 01-Module 01-Lesson 01_Welcome/04. The first week-krK-TcGoYUI.en-US.vtt
1.2 kB
Part 01-Module 01-Lesson 01_Welcome/04. The first week-krK-TcGoYUI.pt-BR.vtt
1.2 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/04. Let'S Get Started-ySIDqaXLhHw.zh-CN.vtt
1.2 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/03. Survival Rate-QPlp3NeGuSk.en.vtt
1.2 kB
Part 02-Module 03-Lesson 01_MiniFlow/01. Miniflow Introduction-Nqp_UifEwt0.en-US.vtt
1.2 kB
Part 11-Module 01-Lesson 11_Actor-Critic Methods/06. RL M2L4 06 Actor Critic With Advantage RENDER V1 V1-Bwd2OF7hJXQ.pt-BR.vtt
1.2 kB
Part 02-Module 02-Lesson 01_Sentiment Analysis with Andrew Trask/01. Introducing Andrew Trask-U3PqQF-8qyI.zh-CN.vtt
1.2 kB
Part 02-Module 03-Lesson 01_MiniFlow/img/newx.png
1.2 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/08. Why Neural Networks-zAkzOZntK6Y.zh-CN.vtt
1.2 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/04. Medical Classification-RCOSP60dV7U.pt-BR.vtt
1.2 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/04. Medical Classification-RCOSP60dV7U.zh-CN.vtt
1.2 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/16. Error Functions Around the World-34AAcTECu2A.en.vtt
1.2 kB
Part 11-Module 01-Lesson 03_The RL Framework The Solution/01. Introduction-9Wyf5Zsska8.zh-CN.vtt
1.2 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/06. DL 53 Q Regularization-KxROxcRsHL8.pt-BR.vtt
1.2 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/29. Continuous Perceptrons-07-JJ-aGEfM.zh-CN.vtt
1.2 kB
Part 02-Module 03-Lesson 01_MiniFlow/img/dcdl2.png
1.2 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/06. DL 53 Q Regularization-KxROxcRsHL8.en.vtt
1.2 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/08. Supervised Classification-XTGsutypAPE.pt-BR.vtt
1.2 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/09. Local Minima-gF_sW_nY-xw.en.vtt
1.2 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/11. Solution Random Vs Preinitialized Thoughts-sOuoRZRKDzs.en.vtt
1.2 kB
Part 09-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/06. Forget Gate-iWxpfxLUPSU.zh-CN.vtt
1.1 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/31. Non-Linear Models-HWuBKCZsCo8.zh-CN.vtt
1.1 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/14. Learning Rate-TwJ8aSZoh2U.en.vtt
1.1 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/08. Supervised Classification-XTGsutypAPE.en.vtt
1.1 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/09. Training The Neural Network-HwiI-UXUx-M.en.vtt
1.1 kB
Part 02-Module 03-Lesson 01_MiniFlow/01. Miniflow Introduction-Nqp_UifEwt0.zh-CN.vtt
1.1 kB
Part 02-Module 05-Lesson 01_Deep Neural Networks/12. Dropout Pt. 2-8nG8zzJMbZw.zh-CN.vtt
1.1 kB
Part 11-Module 01-Lesson 09_Deep Q-Learning/13. Wrap Up-x6JggcDTcys.zh-CN.vtt
1.1 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/09. Discriminator Network-nWXxT8OqCfs.en.vtt
1.1 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/09. Discriminator Network-nWXxT8OqCfs.en.vtt
1.1 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/01. Introduction-ek2PD9RDrWw.pt-BR.vtt
1.1 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/16. Error Functions Around the World-34AAcTECu2A.pt-BR.vtt
1.1 kB
Part 04-Module 02-Lesson 04_Generate Faces/02. P5 Intro-jvJtHYBX7sM.pt-BR.vtt
1.1 kB
Part 03-Module 07-Lesson 03_Translation Project/01. Machine Translation Intro-5thBwpcYoiI.en.vtt
1.1 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/03. Survival Rate-QPlp3NeGuSk.pt-BR.vtt
1.1 kB
Part 04-Module 02-Lesson 04_Generate Faces/02. P5 Intro-jvJtHYBX7sM.zh-CN.vtt
1.1 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/06. 06 Image Challenge V3-Efnoj1KNPHw.en.vtt
1.1 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/16. Error Functions Around the World-34AAcTECu2A.zh-CN.vtt
1.1 kB
Part 01-Module 01-Lesson 01_Welcome/04. The first week-krK-TcGoYUI.zh-CN.vtt
1.1 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/07. Feature-Map-Sizes-Solution-W4xtf8LTz1c.pt-BR.vtt
1.1 kB
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/09. Discriminator Network-nWXxT8OqCfs.zh-CN.vtt
1.1 kB
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/09. Discriminator Network-nWXxT8OqCfs.zh-CN.vtt
1.1 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/09. Local Minima-gF_sW_nY-xw.pt-BR.vtt
1.1 kB
Part 02-Module 05-Lesson 01_Deep Neural Networks/12. Dropout Pt. 2-8nG8zzJMbZw.pt-BR.vtt
1.1 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/07. Feature-Map-Sizes-Solution-W4xtf8LTz1c.en.vtt
1.1 kB
Part 11-Module 01-Lesson 04_Dynamic Programming/01. Introduction-ek2PD9RDrWw.en.vtt
1.1 kB
Part 04-Module 02-Lesson 04_Generate Faces/02. P5 Intro-jvJtHYBX7sM.en.vtt
1.1 kB
Part 02-Module 05-Lesson 02_Convolutional Networks/08. Convolutions Cont.-utOv-BKI_vo.en.vtt
1.1 kB
Part 07-Module 01-Lesson 06_TensorFlow/17. Conclusion-wOiUQDgGD9E.pt-BR.vtt
1.0 kB
Part 11-Module 01-Lesson 06_Temporal-Difference Methods/13. TD Control Expected Sarsa-kEKupCyU0P0.zh-CN.vtt
1.0 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/11. Solution Random Vs Preinitialized Thoughts-sOuoRZRKDzs.pt-BR.vtt
1.0 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/06. DL 53 Q Regularization-KxROxcRsHL8.zh-CN.vtt
1.0 kB
Part 11-Module 01-Lesson 05_Monte Carlo Methods/01. Introduction-W2EP3riQSus.pt-BR.vtt
1.0 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/09. Local Minima-gF_sW_nY-xw.zh-CN.vtt
1.0 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/09. XOR Perceptron-TF83GfjYLdw.en.vtt
1.0 kB
Part 11-Module 01-Lesson 11_Actor-Critic Methods/06. RL M2L4 06 Actor Critic With Advantage RENDER V1 V1-Bwd2OF7hJXQ.en.vtt
1.0 kB
Part 03-Module 07-Lesson 03_Translation Project/01. Machine Translation Intro-5thBwpcYoiI.zh-CN.vtt
1.0 kB
Part 01-Module 01-Lesson 01_Welcome/08. We Value Your Feedback-Dl23R0YCQ0U.en-US.vtt
1.0 kB
Part 02-Module 04-Lesson 02_Intro to TensorFlow/08. Supervised Classification-XTGsutypAPE.zh-CN.vtt
1.0 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/09. XOR Perceptron-TF83GfjYLdw.pt-BR.vtt
1.0 kB
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/09. XOR Perceptron-TF83GfjYLdw.zh-CN.vtt
1.0 kB
Part 07-Module 01-Lesson 03_Training Neural Networks/14. Learning Rate-TwJ8aSZoh2U.zh-CN.vtt
1.0 kB
Part 03-Module 07-Lesson 03_Translation Project/01. Machine Translation Intro-5thBwpcYoiI.pt-BR.vtt
1.0 kB
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/03. Survival Rate-QPlp3NeGuSk.zh-CN.vtt
996 Bytes
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/09. Training The Neural Network-HwiI-UXUx-M.zh-CN.vtt
995 Bytes
Part 01-Module 01-Lesson 01_Welcome/08. We Value Your Feedback-Dl23R0YCQ0U.pt-BR.vtt
985 Bytes
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/09. Training The Neural Network-HwiI-UXUx-M.pt-BR.vtt
977 Bytes
Part 02-Module 05-Lesson 02_Convolutional Networks/07. Feature-Map-Sizes-Solution-W4xtf8LTz1c.zh-CN.vtt
969 Bytes
Part 02-Module 05-Lesson 02_Convolutional Networks/08. Convolutions Cont.-utOv-BKI_vo.pt-BR.vtt
965 Bytes
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/11. Solution Random Vs Preinitialized Thoughts-sOuoRZRKDzs.zh-CN.vtt
965 Bytes
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz - Cross 1--xxrisIvD0E.pt-BR.vtt
947 Bytes
Part 02-Module 05-Lesson 02_Convolutional Networks/08. Convolutions Cont.-utOv-BKI_vo.zh-CN.vtt
944 Bytes
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/20. Solution ROC Curve-sdUUf6RRmXI.en.vtt
943 Bytes
Part 04-Module 01-Lesson 01_Generative Adversarial Networks/09. Discriminator Network-nWXxT8OqCfs.pt-BR.vtt
939 Bytes
Part 10-Module 01-Lesson 01_Generative Adversarial Networks/09. Discriminator Network-nWXxT8OqCfs.pt-BR.vtt
939 Bytes
Part 01-Module 01-Lesson 01_Welcome/08. We Value Your Feedback-Dl23R0YCQ0U.zh-CN.vtt
937 Bytes
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/06. 06 Image Challenge V3-Efnoj1KNPHw.pt-BR.vtt
937 Bytes
Part 11-Module 01-Lesson 05_Monte Carlo Methods/01. Introduction-W2EP3riQSus.en.vtt
937 Bytes
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/06. 06 Image Challenge V3-Efnoj1KNPHw.zh-CN.vtt
920 Bytes
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/img/codecogseqn-58.gif
919 Bytes
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz - Cross 1--xxrisIvD0E.en.vtt
918 Bytes
Part 11-Module 01-Lesson 10_Policy-Based Methods/06. M2L3 06 V1-RMjdQkl6CqE.en.vtt
910 Bytes
Part 11-Module 01-Lesson 11_Actor-Critic Methods/06. RL M2L4 06 Actor Critic With Advantage RENDER V1 V1-Bwd2OF7hJXQ.zh-CN.vtt
891 Bytes
Part 11-Module 01-Lesson 04_Dynamic Programming/01. Introduction-ek2PD9RDrWw.zh-CN.vtt
883 Bytes
Part 07-Module 01-Lesson 03_Training Neural Networks/02. Training Optimization-UiGKhx9pUYc.pt-BR.vtt
874 Bytes
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/01. Introduction-ZCpXvVdIdnY.en.vtt
874 Bytes
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/08. Solution Data Challenges-1z3o4niQuNg.en.vtt
867 Bytes
Part 11-Module 01-Lesson 02_The RL Framework The Problem/01. Introduction-X_9l_ZqXXBA.pt-BR.vtt
866 Bytes
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/01. Introduction-ZCpXvVdIdnY.pt-BR.vtt
857 Bytes
Part 11-Module 01-Lesson 10_Policy-Based Methods/01. M2L3 01 V1-YOSREyp04HA.en.vtt
856 Bytes
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/10. 10 Quiz Random Vs Preinitiliazed Weights V3-DRC1e4XGl2M.en.vtt
853 Bytes
Part 04-Module 02-Lesson 04_Generate Faces/01. Last Project - Congrats-UUqU8SYBZ9Q.pt-BR.vtt
850 Bytes
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/14. Solution Sensitivty And Specificity-GBZjyeMjKxc.en.vtt
850 Bytes
Part 02-Module 04-Lesson 02_Intro to TensorFlow/21. 29 L Optimizing A Logistic Classifier-U_7nO1dm2tY.en-US.vtt
845 Bytes
Part 02-Module 04-Lesson 02_Intro to TensorFlow/01. Intro to Vincent-0_M6a04ofz8.pt-BR.vtt
841 Bytes
Part 07-Module 01-Lesson 03_Training Neural Networks/02. Training Optimization-UiGKhx9pUYc.zh-CN.vtt
840 Bytes
Part 02-Module 04-Lesson 02_Intro to TensorFlow/01. Intro to Vincent-0_M6a04ofz8.en.vtt
834 Bytes
Part 11-Module 01-Lesson 02_The RL Framework The Problem/01. Introduction-X_9l_ZqXXBA.en.vtt
830 Bytes
Part 07-Module 01-Lesson 03_Training Neural Networks/02. Training Optimization-UiGKhx9pUYc.en.vtt
824 Bytes
Part 02-Module 04-Lesson 02_Intro to TensorFlow/18. Numerical Stability-_SbGcOS-jcQ.pt-BR.vtt
823 Bytes
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/20. Solution ROC Curve-sdUUf6RRmXI.zh-CN.vtt
823 Bytes
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/01. Introduction-ZCpXvVdIdnY.zh-CN.vtt
822 Bytes
Part 11-Module 01-Lesson 05_Monte Carlo Methods/01. Introduction-W2EP3riQSus.zh-CN.vtt
822 Bytes
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz - Cross 1--xxrisIvD0E.zh-CN.vtt
813 Bytes
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/08. Solution Data Challenges-1z3o4niQuNg.zh-CN.vtt
810 Bytes
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/13. Error Functions-YfUUunxWIJw.pt-BR.vtt
804 Bytes
Part 11-Module 01-Lesson 10_Policy-Based Methods/06. M2L3 06 V1-RMjdQkl6CqE.zh-CN.vtt
804 Bytes
Part 02-Module 04-Lesson 02_Intro to TensorFlow/17. 17 L Transition Into Practical Aspects Of Learning-bKqkRFOOKoA.en-US.vtt
793 Bytes
Part 04-Module 02-Lesson 04_Generate Faces/01. Last Project - Congrats-UUqU8SYBZ9Q.en.vtt
792 Bytes
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/19. 17 Quiz ROC Curve 1 PT2 V1-Xv3v59_CfEU.en.vtt
791 Bytes
Part 02-Module 04-Lesson 02_Intro to TensorFlow/01. Intro to Vincent-0_M6a04ofz8.zh-CN.vtt
790 Bytes
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/13. Error Functions-YfUUunxWIJw.en.vtt
790 Bytes
Part 11-Module 01-Lesson 10_Policy-Based Methods/01. M2L3 01 V1-YOSREyp04HA.zh-CN.vtt
787 Bytes
Part 02-Module 04-Lesson 02_Intro to TensorFlow/21. 29 L Optimizing A Logistic Classifier-U_7nO1dm2tY.zh-CN.vtt
777 Bytes
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/14. Solution Sensitivty And Specificity-GBZjyeMjKxc.pt-BR.vtt
772 Bytes
Part 02-Module 04-Lesson 02_Intro to TensorFlow/21. 29 L Optimizing A Logistic Classifier-U_7nO1dm2tY.pt-BR.vtt
769 Bytes
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/14. Solution Sensitivty And Specificity-GBZjyeMjKxc.zh-CN.vtt
766 Bytes
Part 02-Module 04-Lesson 02_Intro to TensorFlow/18. Numerical Stability-_SbGcOS-jcQ.en-US.vtt
764 Bytes
Part 04-Module 02-Lesson 04_Generate Faces/01. Last Project - Congrats-UUqU8SYBZ9Q.zh-CN.vtt
764 Bytes
Part 01-Module 02-Lesson 01_Regression/01. Welcome to Week One-10M2DnJuziE.en-US.vtt
756 Bytes
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/10. 10 Quiz Random Vs Preinitiliazed Weights V3-DRC1e4XGl2M.pt-BR.vtt
754 Bytes
Part 07-Module 01-Lesson 04_Sentiment Analysis/01. Introducing Andrew Trask-ltO71Bm8b3M.en.vtt
746 Bytes
Part 02-Module 05-Lesson 02_Convolutional Networks/02. Color-Question-BdQccpMwk80.en.vtt
739 Bytes
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/13. Error Functions-YfUUunxWIJw.zh-CN.vtt
739 Bytes
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/10. 10 Quiz Random Vs Preinitiliazed Weights V3-DRC1e4XGl2M.zh-CN.vtt
734 Bytes
Part 09-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/07. Remember Gate-0qlm86HaXuU.en.vtt
734 Bytes
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/08. Solution Data Challenges-1z3o4niQuNg.pt-BR.vtt
730 Bytes
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/19. 17 Quiz ROC Curve 1 PT2 V1-Xv3v59_CfEU.zh-CN.vtt
729 Bytes
Part 07-Module 01-Lesson 06_TensorFlow/17. Conclusion-wOiUQDgGD9E.en.vtt
725 Bytes
Part 03-Module 04-Lesson 04_Generate TV Scripts/01. Project-3-Intro-qNpv7IjQzo0.pt-BR.vtt
720 Bytes
Part 01-Module 02-Lesson 01_Regression/01. Welcome to Week One-10M2DnJuziE.pt-BR.vtt
719 Bytes
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/21. Formula For Cross 1-qvr_ego_d6w.pt-BR.vtt
719 Bytes
Part 11-Module 01-Lesson 02_The RL Framework The Problem/01. Introduction-X_9l_ZqXXBA.zh-CN.vtt
718 Bytes
Part 02-Module 04-Lesson 02_Intro to TensorFlow/17. 17 L Transition Into Practical Aspects Of Learning-bKqkRFOOKoA.zh-CN.vtt
709 Bytes
Part 02-Module 04-Lesson 02_Intro to TensorFlow/13. 13 L One Hot Encoding-phYsxqlilUk.en.vtt
707 Bytes
Part 02-Module 04-Lesson 02_Intro to TensorFlow/17. 17 L Transition Into Practical Aspects Of Learning-bKqkRFOOKoA.pt-BR.vtt
707 Bytes
Part 03-Module 04-Lesson 04_Generate TV Scripts/01. Project-3-Intro-qNpv7IjQzo0.en-US.vtt
701 Bytes
Part 09-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/07. Remember Gate-0qlm86HaXuU.pt-BR.vtt
700 Bytes
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/01. Introducing Alexis-38ExGpdyvJI.en.vtt
694 Bytes
Part 07-Module 01-Lesson 04_Sentiment Analysis/01. Introducing Andrew Trask-ltO71Bm8b3M.zh-CN.vtt
685 Bytes
Part 02-Module 05-Lesson 02_Convolutional Networks/02. Color-Question-BdQccpMwk80.pt-BR.vtt
683 Bytes
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/19. 17 Quiz ROC Curve 1 PT2 V1-Xv3v59_CfEU.pt-BR.vtt
678 Bytes
Part 01-Module 02-Lesson 01_Regression/01. Welcome to Week One-10M2DnJuziE.zh-CN.vtt
670 Bytes
Part 03-Module 04-Lesson 04_Generate TV Scripts/01. Project-3-Intro-qNpv7IjQzo0.en.vtt
667 Bytes
Part 02-Module 04-Lesson 02_Intro to TensorFlow/18. Numerical Stability-_SbGcOS-jcQ.zh-CN.vtt
663 Bytes
Part 02-Module 05-Lesson 02_Convolutional Networks/07. Feature-Map-Sizes-Question-lp1NrLZnCUM.pt-BR.vtt
663 Bytes
Part 02-Module 04-Lesson 02_Intro to TensorFlow/13. 13 L One Hot Encoding-phYsxqlilUk.pt-BR.vtt
657 Bytes
Part 07-Module 01-Lesson 06_TensorFlow/17. Conclusion-wOiUQDgGD9E.zh-CN.vtt
655 Bytes
Part 02-Module 05-Lesson 01_Deep Neural Networks/10. Regularization-Quiz-E0eEW6V0_sA.pt-BR.vtt
643 Bytes
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/20. Solution ROC Curve-sdUUf6RRmXI.pt-BR.vtt
643 Bytes
Part 03-Module 04-Lesson 04_Generate TV Scripts/01. Project-3-Intro-qNpv7IjQzo0.zh-CN.vtt
640 Bytes
Part 02-Module 05-Lesson 01_Deep Neural Networks/10. Regularization-Quiz-E0eEW6V0_sA.en-US.vtt
638 Bytes
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/30. Non-Linear Data-F7ZiE8PQiSc.en.vtt
633 Bytes
Part 09-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/07. Remember Gate-0qlm86HaXuU.zh-CN.vtt
632 Bytes
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/30. Non-Linear Data-F7ZiE8PQiSc.zh-CN.vtt
624 Bytes
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/01. Introducing Alexis-38ExGpdyvJI.zh-CN.vtt
615 Bytes
Part 02-Module 05-Lesson 02_Convolutional Networks/02. Color-Question-BdQccpMwk80.zh-CN.vtt
612 Bytes
Part 01-Module 03-Lesson 02_Intro to Neural Networks/01. Introducing Luis-nto-stLuN6M.en-US.vtt
608 Bytes
Part 02-Module 04-Lesson 02_Intro to TensorFlow/13. 13 L One Hot Encoding-phYsxqlilUk.zh-CN.vtt
607 Bytes
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/21. Formula For Cross 1-qvr_ego_d6w.en.vtt
607 Bytes
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/30. Non-Linear Data-F7ZiE8PQiSc.pt-BR.vtt
600 Bytes
Part 08-Module 01-Lesson 04_Convolutional Neural Networks/01. Introducing Alexis-38ExGpdyvJI.pt-BR.vtt
599 Bytes
Part 02-Module 05-Lesson 02_Convolutional Networks/07. Feature-Map-Sizes-Question-lp1NrLZnCUM.en.vtt
594 Bytes
Part 01-Module 03-Lesson 02_Intro to Neural Networks/01. Introducing Luis-nto-stLuN6M.pt-BR.vtt
592 Bytes
Part 07-Module 01-Lesson 05_Keras/06. Keras Lab-a50un22BsLI.en.vtt
586 Bytes
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs Continuous-rdP-RPDFkl0.pt-BR.vtt
584 Bytes
Part 07-Module 01-Lesson 05_Keras/06. Keras Lab-a50un22BsLI.pt-BR.vtt
574 Bytes
Part 02-Module 05-Lesson 01_Deep Neural Networks/10. Regularization-Quiz-E0eEW6V0_sA.zh-CN.vtt
557 Bytes
Part 02-Module 05-Lesson 02_Convolutional Networks/07. Feature-Map-Sizes-Question-lp1NrLZnCUM.zh-CN.vtt
555 Bytes
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs Continuous-rdP-RPDFkl0.en.vtt
551 Bytes
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/16. Quiz - Softmax-NNoezNnAMTY.zh-CN.vtt
548 Bytes
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/21. Formula For Cross 1-qvr_ego_d6w.zh-CN.vtt
545 Bytes
Part 07-Module 01-Lesson 05_Keras/06. Keras Lab-a50un22BsLI.zh-CN.vtt
540 Bytes
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/28. Mini Project Introduction-Rgf3YVFWl-M.pt-BR.vtt
538 Bytes
Part 01-Module 03-Lesson 02_Intro to Neural Networks/01. Introducing Luis-nto-stLuN6M.zh-CN.vtt
535 Bytes
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/07. 07 Quiz Data Challenges V1-F8yc7BlV93c.en.vtt
526 Bytes
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/28. Mini Project Introduction-Rgf3YVFWl-M.en.vtt
510 Bytes
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/16. 15 Quiz Diagnosing Cancer V3-4UzkwecBJro.en.vtt
508 Bytes
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/13. 13 Quiz Sensitivity And Specificty V3-O17MnhWBmKA.en.vtt
505 Bytes
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/16. Quiz - Softmax-NNoezNnAMTY.pt-BR.vtt
501 Bytes
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/16. Quiz - Softmax-NNoezNnAMTY.en.vtt
495 Bytes
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/13. 13 Quiz Sensitivity And Specificty V3-O17MnhWBmKA.zh-CN.vtt
487 Bytes
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/07. 07 Quiz Data Challenges V1-F8yc7BlV93c.pt-BR.vtt
482 Bytes
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs Continuous-rdP-RPDFkl0.zh-CN.vtt
481 Bytes
Part 07-Module 01-Lesson 03_Training Neural Networks/10. Random Restart-idyBBCzXiqg.pt-BR.vtt
478 Bytes
Part 02-Module 05-Lesson 02_Convolutional Networks/01. Intro to CNNs-B61jxZ4rkMs.ja-JP.vtt
477 Bytes
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/28. Mini Project Introduction-Rgf3YVFWl-M.zh-CN.vtt
475 Bytes
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/16. 15 Quiz Diagnosing Cancer V3-4UzkwecBJro.pt-BR.vtt
472 Bytes
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/07. 07 Quiz Data Challenges V1-F8yc7BlV93c.zh-CN.vtt
468 Bytes
Part 07-Module 01-Lesson 03_Training Neural Networks/10. Random Restart-idyBBCzXiqg.en.vtt
466 Bytes
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/16. 15 Quiz Diagnosing Cancer V3-4UzkwecBJro.zh-CN.vtt
456 Bytes
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.en.vtt
420 Bytes
Part 08-Module 01-Lesson 07_Deep Learning for Cancer Detection with Sebastian Thrun/13. 13 Quiz Sensitivity And Specificty V3-O17MnhWBmKA.pt-BR.vtt
420 Bytes
Part 07-Module 01-Lesson 03_Training Neural Networks/10. Random Restart-idyBBCzXiqg.zh-CN.vtt
419 Bytes
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.zh-CN.vtt
390 Bytes
Part 07-Module 01-Lesson 01_Introduction to Neural Networks/10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.pt-BR.vtt
364 Bytes
Part 02-Module 05-Lesson 02_Convolutional Networks/01. Intro to CNNs-B61jxZ4rkMs.pt-BR.vtt
324 Bytes
Part 02-Module 05-Lesson 02_Convolutional Networks/01. Intro to CNNs-B61jxZ4rkMs.en-US.vtt
309 Bytes
Part 02-Module 05-Lesson 02_Convolutional Networks/01. Intro to CNNs-B61jxZ4rkMs.en.vtt
303 Bytes
Part 02-Module 05-Lesson 02_Convolutional Networks/01. Intro to CNNs-B61jxZ4rkMs.zh-CN.vtt
301 Bytes
Part 02-Module 03-Lesson 01_MiniFlow/07. Pixels are Features!-qE5YYXtPq9U.pt-BR.vtt
91 Bytes
Part 02-Module 03-Lesson 01_MiniFlow/07. Pixels are Features!-qE5YYXtPq9U.en-US.vtt
72 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>