MuerBT磁力搜索 BT种子搜索利器 免费下载BT种子,超5000万条种子数据

Udemy - MLOps Bootcamp Mastering AI Operations for Success - AIOps (7.2024)

磁力链接/BT种子名称

Udemy - MLOps Bootcamp Mastering AI Operations for Success - AIOps (7.2024)

磁力链接/BT种子简介

种子哈希:bbf409f2ab53f92f3b88d4eaf0d0bd2c74d25bd3
文件大小: 13.84G
已经下载:244次
下载速度:极快
收录时间:2025-07-19
最近下载:2025-09-17

移花宫入口

移花宫.com邀月.com怜星.com花无缺.comyhgbt.icuyhgbt.top

磁力链接下载

magnet:?xt=urn:btih:BBF409F2AB53F92F3B88D4EAF0D0BD2C74D25BD3
推荐使用PIKPAK网盘下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看

下载BT种子文件

磁力链接 迅雷下载 PIKPAK在线播放 世界之窗 91视频 含羞草 欲漫涩 逼哩逼哩 成人快手 51品茶 抖阴破解版 极乐禁地 91短视频 暗网Xvideo TikTok成人版 PornHub 听泉鉴鲍 少女日记 草榴社区 哆哔涩漫 呦乐园 萝莉岛 悠悠禁区 悠悠禁区 拔萝卜 疯马秀

最近搜索

新侄女 肉偿 路少 唯一啪啪 白皙妹妹 水龍敬 槍間 俄罗斯幼女 媚黑+巨乳 millie morgan cosplay 椎名ゆな+无码 veronica+silesto triple x 浴室偷拍 橘さん家ノ 俄罗斯美女 mj大作迷玩網紅臉 精选无码高清 性奴 留学生 momson +海角社区乱伦大神 【本編】+口外厳禁++超シークレットのブルーナースが現れた件 老嫖客 一瓜 最大尺 俺のちんぽの虜になるオナホペット 极欲 迷 ipx368 八蜜 the.home.2025

文件列表

  • 11 - Lnux Operating System for DevOps and Data Scientists/004 Basic Linux Commands of Linux.mp4 594.3 MB
  • 21 - Additional Learning on Topic of MLOps/003 Kubernetes 101 Part 2.mp4 448.8 MB
  • 21 - Additional Learning on Topic of MLOps/001 MLOps with MLFlow in 1 Hour.mp4 435.5 MB
  • 17 - Monitor the ML System with WhyLogs/003 Whylogs - Drift Detection, Input, Output, Bias Monitoring.mp4 403.4 MB
  • 21 - Additional Learning on Topic of MLOps/005 Bonus Understanding Transformer Architecture.mp4 402.3 MB
  • 09 - Build MLApps using Streamlit/003 Building the ML Model with Streamlit.mp4 346.0 MB
  • 21 - Additional Learning on Topic of MLOps/004 Generative AI and Prompt Engineering Introduction.mp4 208.0 MB
  • 05 - Packaging the ML Models/002 Typical Experimentation with Dataset.mp4 185.4 MB
  • 05 - Packaging the ML Models/009 Data Preprocessing part 1.mp4 175.6 MB
  • 05 - Packaging the ML Models/007 Create Config Module.mp4 174.2 MB
  • 21 - Additional Learning on Topic of MLOps/002 Kubernetes 101 Part 1.mp4 167.0 MB
  • 06 - Mlflow - Manage ML experiments/008 MLFlow Project.mp4 159.5 MB
  • 15 - Deploy Applications with Docker Compose/002 Hands On - Docker Compose with Flask Application.mp4 156.0 MB
  • 12 - Working with CI CD Tool Jenkins/004 Deploy as API with FASTAPI.mp4 148.3 MB
  • 06 - Mlflow - Manage ML experiments/006 Machine Learning Experiement on MLFlow.mp4 147.0 MB
  • 07 - Docker for Machine Learning/002 Introduction to Docker.mp4 144.3 MB
  • 01 - Introduction to Complete MLOps Bootcamp/003 The Stages of MLOps.mp4 142.9 MB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/024 Advanced Functions in Pandas DataFrame.mp4 142.9 MB
  • 15 - Deploy Applications with Docker Compose/003 Hands On - Docker Compose Prometheus Grafana.mp4 140.3 MB
  • 12 - Working with CI CD Tool Jenkins/011 Configure Github Repo - Webhook - Jenkins Credentials.mp4 140.1 MB
  • 05 - Packaging the ML Models/026 Packagiing the ML Model & testing.mp4 138.9 MB
  • 11 - Lnux Operating System for DevOps and Data Scientists/002 Linux Features & Bash.mp4 138.8 MB
  • 12 - Working with CI CD Tool Jenkins/019 Create CI CT CD Pipeline - Github Dockerhub.mp4 138.2 MB
  • 07 - Docker for Machine Learning/004 Working with Docker.mp4 136.7 MB
  • 06 - Mlflow - Manage ML experiments/004 Basic Mlflow tutorial.mp4 135.7 MB
  • 16 - Continuous Monitoring of Machine Learning Application/002 Hands On Monitoring of ML Application using Prometheus.mp4 132.2 MB
  • 06 - Mlflow - Manage ML experiments/011 Log Model Metrics in MySql.mp4 130.7 MB
  • 10 - Build MLApps using Flask/002 Hands On Learning of Flask Library.mp4 129.9 MB
  • 08 - Build MLApps using FastAPI/004 Crash course on FastAPI.mp4 128.2 MB
  • 05 - Packaging the ML Models/004 Challenges in Working inside the Jupyter Notebook.mp4 121.2 MB
  • 14 - Continuous Monitoring with Prometheus/006 Installation of Prometheus.mp4 119.4 MB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/015 Broadcasting on Numpy Arrays.mp4 118.5 MB
  • 09 - Build MLApps using Streamlit/002 Hands On Working with Streamlit.mp4 112.2 MB
  • 05 - Packaging the ML Models/005 Understanding the Modular Programming.mp4 111.7 MB
  • 14 - Continuous Monitoring with Prometheus/014 Monitor the FastAPI Application using Prometheus.mp4 109.8 MB
  • 10 - Build MLApps using Flask/003 Build ML Model App with Flask.mp4 109.2 MB
  • 06 - Mlflow - Manage ML experiments/009 MLFlow Models.mp4 107.7 MB
  • 12 - Working with CI CD Tool Jenkins/017 Setup Email Notification with Gmail.mp4 106.0 MB
  • 05 - Packaging the ML Models/006 Creating Folder Hierarchy for ML Project.mp4 105.6 MB
  • 12 - Working with CI CD Tool Jenkins/008 Test Locally using Docker Containers.mp4 105.4 MB
  • 14 - Continuous Monitoring with Prometheus/017 Trigger Alerts with Grafana.mp4 105.2 MB
  • 12 - Working with CI CD Tool Jenkins/015 Test Github Webhook with Jenkins.mp4 105.1 MB
  • 05 - Packaging the ML Models/011 sklearn pipeline.mp4 104.1 MB
  • 12 - Working with CI CD Tool Jenkins/005 Test FastAPI App.mp4 101.5 MB
  • 07 - Docker for Machine Learning/008 Dockerize the ML Model.mp4 100.1 MB
  • 03 - Git and Github Fundamentals for MLOps/008 Git Branch.mp4 98.4 MB
  • 04 - Crash Course on YAML/001 YAML Crash Course.mp4 96.3 MB
  • 06 - Mlflow - Manage ML experiments/007 Create ML Model for Loan Prediction.mp4 95.8 MB
  • 14 - Continuous Monitoring with Prometheus/012 Monitor the Linux Server with Node Exporter.mp4 94.6 MB
  • 07 - Docker for Machine Learning/006 Working with Dockerfile.mp4 93.9 MB
  • 12 - Working with CI CD Tool Jenkins/001 Introduction to Jenkins.mp4 91.6 MB
  • 05 - Packaging the ML Models/025 Create setup.py.mp4 88.6 MB
  • 12 - Working with CI CD Tool Jenkins/009 Installation of Jenkins on AWS EC2 Instances.mp4 88.3 MB
  • 01 - Introduction to Complete MLOps Bootcamp/001 What and Why MLOps.mp4 86.9 MB
  • 06 - Mlflow - Manage ML experiments/012 Register the Model & Serve the Model.mp4 85.6 MB
  • 07 - Docker for Machine Learning/005 Running the Docker Container.mp4 85.4 MB
  • 05 - Packaging the ML Models/012 Training Pipeline.mp4 83.9 MB
  • 06 - Mlflow - Manage ML experiments/003 Logging Functions of Mlflow Tracking.mp4 81.4 MB
  • 14 - Continuous Monitoring with Prometheus/009 Prometheus Configuration file.mp4 78.3 MB
  • 08 - Build MLApps using FastAPI/002 How REST API Works.mp4 76.4 MB
  • 03 - Git and Github Fundamentals for MLOps/010 Merging.mp4 75.5 MB
  • 08 - Build MLApps using FastAPI/006 Deploying the Machine Learning Model with FastAPI.mp4 74.3 MB
  • 03 - Git and Github Fundamentals for MLOps/015 3 way merge.mp4 74.2 MB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/042 Univariate & Bivariate Plots - Continuous Data.mp4 73.0 MB
  • 07 - Docker for Machine Learning/009 Packaging the training code in Docker Environment & Summary.mp4 71.9 MB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/022 Combining the DataFrames.mp4 70.2 MB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/028 Preliminary Analysis on DataFrame.mp4 70.0 MB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/041 Exploring the data.mp4 69.6 MB
  • 12 - Working with CI CD Tool Jenkins/016 Installation of Docker Plugin & System Readiness.mp4 67.9 MB
  • 17 - Monitor the ML System with WhyLogs/004 WhyLogs - Constraints and Drift Reports.mp4 67.8 MB
  • 14 - Continuous Monitoring with Prometheus/004 Architecture of Prometheus.mp4 66.6 MB
  • 14 - Continuous Monitoring with Prometheus/010 Exploring the Basic Querying Prometheus.mp4 66.3 MB
  • 03 - Git and Github Fundamentals for MLOps/007 Git Workflow - Local Repo.mp4 65.7 MB
  • 05 - Packaging the ML Models/008 Data Handling Module.mp4 64.4 MB
  • 05 - Packaging the ML Models/022 Running Pytest.mp4 62.9 MB
  • 19 - Reference Getting Started with AWS/014 Launch EC2 instance & SSH into EC2 Instances.mp4 62.8 MB
  • 02 - Python for MLOps/012 Collection - Strings.mp4 61.5 MB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/023 Other Functions on Pandas DataFrame.mp4 60.9 MB
  • 03 - Git and Github Fundamentals for MLOps/002 Getting Started with git.mp4 60.0 MB
  • 06 - Mlflow - Manage ML experiments/001 Introduction to Mlflow.mp4 59.8 MB
  • 14 - Continuous Monitoring with Prometheus/015 Monitor All EndPoints using Prometheus.mp4 59.6 MB
  • 19 - Reference Getting Started with AWS/007 IAM Policy generator & attachment.mp4 58.8 MB
  • 03 - Git and Github Fundamentals for MLOps/014 Cloning and Delete Branches.mp4 58.5 MB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/021 Working with Data in Pandas DataFrame.mp4 58.4 MB
  • 03 - Git and Github Fundamentals for MLOps/009 Switching the Branches.mp4 57.7 MB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/031 Introduction to Data Visualization.mp4 57.5 MB
  • 03 - Git and Github Fundamentals for MLOps/013 Working with Remote Repositories.mp4 57.1 MB
  • 12 - Working with CI CD Tool Jenkins/020 Create CI CT CD Pipeline - Training.mp4 56.9 MB
  • 03 - Git and Github Fundamentals for MLOps/011 Checking Out Commits.mp4 56.8 MB
  • 02 - Python for MLOps/011 Operators in Python Programming Language.mp4 55.0 MB
  • 12 - Working with CI CD Tool Jenkins/003 Prepare and Package ML Model.mp4 53.6 MB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/029 Null values in the Dataframe.mp4 53.1 MB
  • 03 - Git and Github Fundamentals for MLOps/005 Getting Started with Local Repo.mp4 52.9 MB
  • 19 - Reference Getting Started with AWS/004 Create IAM Account and Account Alias.mp4 52.4 MB
  • 06 - Mlflow - Manage ML experiments/005 Exploration of mlflow.mp4 52.3 MB
  • 13 - Monitoring and Debugging of ML System/005 Functional Level Monitoring.mp4 51.8 MB
  • 14 - Continuous Monitoring with Prometheus/001 Introduction to Continuous Monitoring.mp4 50.3 MB
  • 08 - Build MLApps using FastAPI/001 What is API, REST and REST API.mp4 50.1 MB
  • 05 - Packaging the ML Models/001 Introduction to Packaging the ML Models.mp4 49.7 MB
  • 17 - Monitor the ML System with WhyLogs/001 Introduction to ML Monitoring.mp4 49.0 MB
  • 02 - Python for MLOps/010 Python Literals - Hands On.mp4 48.0 MB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/027 Loading the Large Dataset for Working.mp4 47.6 MB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/007 Array Creation Functions.mp4 47.3 MB
  • 14 - Continuous Monitoring with Prometheus/016 Create Visualization with Grafana.mp4 46.4 MB
  • 05 - Packaging the ML Models/013 Prediction Pipeline.mp4 46.2 MB
  • 19 - Reference Getting Started with AWS/009 S3 Bucket and Storage Classes.mp4 46.0 MB
  • 12 - Working with CI CD Tool Jenkins/022 Create CI CT CD Pipeline - Deployment.mp4 45.6 MB
  • 12 - Working with CI CD Tool Jenkins/021 Create CI CT CD Pipeline - Testing.mp4 45.3 MB
  • 13 - Monitoring and Debugging of ML System/003 Why Monitoring Machine Learning Models is Difficult.mp4 45.3 MB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/038 Scatter Plot hands on.mp4 45.2 MB
  • 02 - Python for MLOps/027 File Handling in Python.mp4 45.1 MB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/018 Working with Pandas Series.mp4 45.1 MB
  • 05 - Packaging the ML Models/019 Requirements txt file.mp4 44.7 MB
  • 05 - Packaging the ML Models/021 Create Python tests.mp4 44.5 MB
  • 06 - Mlflow - Manage ML experiments/010 Setting Up MySql Database Locally.mp4 43.6 MB
  • 02 - Python for MLOps/024 Functions.mp4 42.9 MB
  • 05 - Packaging the ML Models/027 Summary.mp4 42.7 MB
  • 12 - Working with CI CD Tool Jenkins/010 Installation of Docker in EC2 Instance.mp4 42.6 MB
  • 19 - Reference Getting Started with AWS/002 Create AWS Account.mp4 40.8 MB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/011 Shape Modification of Arrays.mp4 40.8 MB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/043 Plot - Categorical Data.mp4 40.7 MB
  • 14 - Continuous Monitoring with Prometheus/008 Installation of Grafana.mp4 39.8 MB
  • 02 - Python for MLOps/014 Data Structures - List.mp4 38.5 MB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/034 Line Plots Hands On.mp4 38.4 MB
  • 03 - Git and Github Fundamentals for MLOps/001 Introduction to Version Control Systems.mp4 36.4 MB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/001 Introduction to Numpy Library.mp4 36.3 MB
  • 02 - Python for MLOps/022 Control Statements - Looping Statements.mp4 36.2 MB
  • 06 - Mlflow - Manage ML experiments/002 Getting System Ready with mlflow.mp4 36.1 MB
  • 03 - Git and Github Fundamentals for MLOps/012 Git Hosting Services.mp4 35.7 MB
  • 19 - Reference Getting Started with AWS/012 Version Enablement in S3.mp4 35.3 MB
  • 13 - Monitoring and Debugging of ML System/006 Model Drift.mp4 35.3 MB
  • 08 - Build MLApps using FastAPI/003 What is FastAPI.mp4 33.7 MB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/036 Plot Adjustment Hands On.mp4 33.6 MB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/020 Dataframes in Pandas.mp4 33.6 MB
  • 19 - Reference Getting Started with AWS/013 Introduction EC2 instances.mp4 33.5 MB
  • 16 - Continuous Monitoring of Machine Learning Application/001 Architecture of ML Application Monitoring.mp4 33.0 MB
  • 02 - Python for MLOps/005 Hello World - Python.mp4 32.6 MB
  • 12 - Working with CI CD Tool Jenkins/024 Summary.mp4 32.5 MB
  • 19 - Reference Getting Started with AWS/003 Setting up MFA on Root Account.mp4 32.2 MB
  • 05 - Packaging the ML Models/023 Create Manifest file.mp4 31.5 MB
  • 19 - Reference Getting Started with AWS/005 Setup CLI with Credentials.mp4 31.4 MB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/044 Advanced Plots in Seaborn.mp4 31.1 MB
  • 07 - Docker for Machine Learning/003 Installation of Docker Desktop.mp4 31.0 MB
  • 02 - Python for MLOps/026 Classes in Python.mp4 30.7 MB
  • 13 - Monitoring and Debugging of ML System/001 Why Monitoring Machine Learning Models is Important.mp4 29.9 MB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/032 Matplotlib Basics.mp4 29.5 MB
  • 05 - Packaging the ML Models/018 Perform Training and Predictions.mp4 29.2 MB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/013 Relational Operators & Aggregation Functions on Numpy Arrays.mp4 29.1 MB
  • 19 - Reference Getting Started with AWS/011 Creation of S3 Bucket from CLI.mp4 29.1 MB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/006 Array Indexing and Slicing.mp4 28.6 MB
  • 02 - Python for MLOps/009 Variables - Comments - Markdown Cells - Hands On.mp4 28.3 MB
  • 03 - Git and Github Fundamentals for MLOps/003 Local Repo vs Remote Repo.mp4 28.1 MB
  • 11 - Lnux Operating System for DevOps and Data Scientists/003 How to Launch EC2 Instances (Quick Refresh).mp4 28.0 MB
  • 19 - Reference Getting Started with AWS/010 Creation of S3 Bucket from Console.mp4 27.8 MB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/035 Adjusting the Plots.mp4 27.8 MB
  • 03 - Git and Github Fundamentals for MLOps/006 Concept of Working Directory - Staging Area - Commit.mp4 27.2 MB
  • 03 - Git and Github Fundamentals for MLOps/004 Git Configurations.mp4 27.2 MB
  • 02 - Python for MLOps/013 Python String - Builtin Functions - Hands On.mp4 26.2 MB
  • 05 - Packaging the ML Models/014 Fixes on Python Scripts.mp4 26.2 MB
  • 13 - Monitoring and Debugging of ML System/004 Challenge - Who Owns what.mp4 26.0 MB
  • 14 - Continuous Monitoring with Prometheus/013 Monitor the Client Application using Prometheus.mp4 25.9 MB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/030 Data Cleaning.mp4 25.5 MB
  • 05 - Packaging the ML Models/010 Data Preprocessing part 2.mp4 24.3 MB
  • 12 - Working with CI CD Tool Jenkins/023 Perform Test of Pipeline.mp4 24.3 MB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/045 Which Plot to use.mp4 23.6 MB
  • 07 - Docker for Machine Learning/007 Push the Docker Image to DockerHub.mp4 23.2 MB
  • 02 - Python for MLOps/006 Jupyter Lab Quick Tour.mp4 22.8 MB
  • 02 - Python for MLOps/015 Data Structures - Tuples.mp4 22.8 MB
  • 12 - Working with CI CD Tool Jenkins/006 Create Dockerfile.mp4 22.4 MB
  • 14 - Continuous Monitoring with Prometheus/011 Monitor the Infrastructure with Prometheus.mp4 21.3 MB
  • 02 - Python for MLOps/017 Data Structures - Sets.mp4 20.9 MB
  • 02 - Python for MLOps/021 Control Statements - Conditional Statements in Python.mp4 20.8 MB
  • 09 - Build MLApps using Streamlit/001 Introduction to Streamit.mp4 19.6 MB
  • 08 - Build MLApps using FastAPI/005 Data Validation with Pydantic.mp4 19.5 MB
  • 05 - Packaging the ML Models/017 No module named prediction_model - fix.mp4 19.5 MB
  • 07 - Docker for Machine Learning/001 Docker for Machine Learning.mp4 19.0 MB
  • 05 - Packaging the ML Models/016 Add Python Path to Windows.mp4 18.9 MB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/026 Accessing Google Colab.mp4 18.9 MB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/016 Summary of Numpy Library Journey.mp4 18.4 MB
  • 12 - Working with CI CD Tool Jenkins/014 Create your first First Jenkins Project.mp4 18.3 MB
  • 05 - Packaging the ML Models/003 Model fit and generate Predictions.mp4 17.9 MB
  • 18 - Post Productionizing ML Models/008 AB Testing.mp4 17.8 MB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/008 Copy Arrays.mp4 17.7 MB
  • 12 - Working with CI CD Tool Jenkins/012 Introduction to Jenkins FreeStyle Projects and Pipeline Jobs.mp4 17.2 MB
  • 02 - Python for MLOps/019 Reading the Input from Keyboard.mp4 17.1 MB
  • 19 - Reference Getting Started with AWS/006 IAM Policy.mp4 16.4 MB
  • 02 - Python for MLOps/016 Data Structures - Dictionary.mp4 15.8 MB
  • 02 - Python for MLOps/020 String Formatting.mp4 15.6 MB
  • 02 - Python for MLOps/003 Introduction to Python Programming.mp4 15.6 MB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/009 Mathematical Operation on Numpy Arrays.mp4 15.5 MB
  • 02 - Python for MLOps/023 List comprehension.mp4 15.2 MB
  • 05 - Packaging the ML Models/020 Testing the New Virtual Environments.mp4 15.1 MB
  • 05 - Packaging the ML Models/015 Add Python Path to MacOS.mp4 15.0 MB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/040 Introduction to Seaborn.mp4 14.5 MB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/004 Creation of Array Object - np.array().mp4 14.4 MB
  • 02 - Python for MLOps/025 Modules in Python.mp4 14.3 MB
  • 15 - Deploy Applications with Docker Compose/001 Introduction to Docker Compose.mp4 13.9 MB
  • 14 - Continuous Monitoring with Prometheus/005 Metric Types of Prometheus.mp4 13.8 MB
  • 02 - Python for MLOps/004 Install Anaconda.mp4 13.8 MB
  • 17 - Monitor the ML System with WhyLogs/005 Summary.mp4 12.9 MB
  • 02 - Python for MLOps/018 Explicit and Implicit Casting in Python Programming.mp4 12.9 MB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/003 Import Numpy & Access help.mp4 12.7 MB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/002 Basics of numpy array object.mp4 12.5 MB
  • 13 - Monitoring and Debugging of ML System/007 Operational Level Monitoring.mp4 12.3 MB
  • 17 - Monitor the ML System with WhyLogs/002 Setting Up WhyLabs.mp4 12.2 MB
  • 18 - Post Productionizing ML Models/001 Post-Productionalizing ML Models - What Next.mp4 12.0 MB
  • 03 - Git and Github Fundamentals for MLOps/016 Summary.mp4 11.8 MB
  • 14 - Continuous Monitoring with Prometheus/002 Use case on Continuous Monitoring.mp4 11.5 MB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/012 np.arange().mp4 11.4 MB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/039 Historgram Plot.mp4 11.4 MB
  • 13 - Monitoring and Debugging of ML System/002 What is Monitoring of ML models & When to Update Model in Production.mp4 11.1 MB
  • 18 - Post Productionizing ML Models/007 How to Mitigate Risk of Model Attacks.mp4 10.9 MB
  • 05 - Packaging the ML Models/024 Create Version File.mp4 10.7 MB
  • 14 - Continuous Monitoring with Prometheus/003 Introduction to Prometheus.mp4 10.7 MB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/005 Attributes of Numpy Array.mp4 9.5 MB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/025 Introduction to EDA.mp4 9.5 MB
  • 06 - Mlflow - Manage ML experiments/013 Summary.mp4 9.0 MB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/010 Linear Algebra Functions in Numpy.mp4 8.9 MB
  • 02 - Python for MLOps/029 Libraries in Python.mp4 8.9 MB
  • 13 - Monitoring and Debugging of ML System/008 Tools and Best Practices of Machine Learning Model Monitoring.mp4 8.7 MB
  • 12 - Working with CI CD Tool Jenkins/002 How do we Use Jenkins in MLOps.mp4 8.6 MB
  • 10 - Build MLApps using Flask/001 What is Flask.mp4 8.6 MB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/017 Introduction to Pandas.mp4 8.5 MB
  • 02 - Python for MLOps/028 Working with Python Scripts.mp4 7.8 MB
  • 12 - Working with CI CD Tool Jenkins/007 Exposing the Application Port as per Dockerfile.mp4 7.8 MB
  • 12 - Working with CI CD Tool Jenkins/018 Introduction to CI CT CD Pipeline.mp4 7.5 MB
  • 12 - Working with CI CD Tool Jenkins/013 Exploration of Jenkins UI.mp4 7.5 MB
  • 18 - Post Productionizing ML Models/003 Adversarial Attack.mp4 7.4 MB
  • 18 - Post Productionizing ML Models/009 Future of MLOps.mp4 7.4 MB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/037 Scatter Plot.mp4 7.3 MB
  • 19 - Reference Getting Started with AWS/015 Clean Up Activity.mp4 7.3 MB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/019 Mathematical Operation on Pandas Series.mp4 7.2 MB
  • 02 - Python for MLOps/007 Variables in Python.mp4 6.4 MB
  • 18 - Post Productionizing ML Models/002 Model Security.mp4 6.2 MB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/014 Boolean Masking.mp4 5.7 MB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/033 Types of Plot - Line plot.mp4 5.7 MB
  • 02 - Python for MLOps/001 About the Section.mp4 5.4 MB
  • 19 - Reference Getting Started with AWS/001 What do we cover in this section.mp4 4.4 MB
  • 18 - Post Productionizing ML Models/005 Distributed Denial of Service Attack (DDOS).mp4 4.3 MB
  • 14 - Continuous Monitoring with Prometheus/007 Introduction Grafana.mp4 4.1 MB
  • 19 - Reference Getting Started with AWS/008 Delete the IAM User.mp4 4.0 MB
  • 18 - Post Productionizing ML Models/006 Data Privacy Attack.mp4 4.0 MB
  • 11 - Lnux Operating System for DevOps and Data Scientists/001 Agenda of this section.mp4 3.5 MB
  • 18 - Post Productionizing ML Models/004 Data Poisoning Attack.mp4 2.2 MB
  • 11 - Lnux Operating System for DevOps and Data Scientists/004 Basic Linux Commands of Linux.srt 142.3 kB
  • 21 - Additional Learning on Topic of MLOps/004 Generative AI and Prompt Engineering Introduction.srt 100.4 kB
  • 21 - Additional Learning on Topic of MLOps/005 Bonus Understanding Transformer Architecture.srt 72.7 kB
  • 21 - Additional Learning on Topic of MLOps/001 MLOps with MLFlow in 1 Hour.srt 71.1 kB
  • 17 - Monitor the ML System with WhyLogs/003 Whylogs - Drift Detection, Input, Output, Bias Monitoring.srt 66.3 kB
  • 21 - Additional Learning on Topic of MLOps/002 Kubernetes 101 Part 1.srt 65.9 kB
  • 21 - Additional Learning on Topic of MLOps/003 Kubernetes 101 Part 2.srt 49.0 kB
  • 09 - Build MLApps using Streamlit/003 Building the ML Model with Streamlit.srt 49.0 kB
  • 05 - Packaging the ML Models/002 Typical Experimentation with Dataset.srt 38.8 kB
  • 07 - Docker for Machine Learning/002 Introduction to Docker.srt 35.0 kB
  • 05 - Packaging the ML Models/009 Data Preprocessing part 1.srt 34.2 kB
  • 05 - Packaging the ML Models/004 Challenges in Working inside the Jupyter Notebook.srt 32.4 kB
  • 08 - Build MLApps using FastAPI/004 Crash course on FastAPI.srt 32.2 kB
  • 04 - Crash Course on YAML/001 YAML Crash Course.srt 30.8 kB
  • 05 - Packaging the ML Models/007 Create Config Module.srt 30.4 kB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/024 Advanced Functions in Pandas DataFrame.srt 30.3 kB
  • 10 - Build MLApps using Flask/002 Hands On Learning of Flask Library.srt 29.6 kB
  • 15 - Deploy Applications with Docker Compose/002 Hands On - Docker Compose with Flask Application.srt 29.5 kB
  • 06 - Mlflow - Manage ML experiments/008 MLFlow Project.srt 29.1 kB
  • 11 - Lnux Operating System for DevOps and Data Scientists/002 Linux Features & Bash.srt 27.6 kB
  • 12 - Working with CI CD Tool Jenkins/011 Configure Github Repo - Webhook - Jenkins Credentials.srt 27.2 kB
  • 06 - Mlflow - Manage ML experiments/006 Machine Learning Experiement on MLFlow.srt 27.0 kB
  • 12 - Working with CI CD Tool Jenkins/004 Deploy as API with FASTAPI.srt 26.8 kB
  • 09 - Build MLApps using Streamlit/002 Hands On Working with Streamlit.srt 26.7 kB
  • 06 - Mlflow - Manage ML experiments/004 Basic Mlflow tutorial.srt 26.0 kB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/015 Broadcasting on Numpy Arrays.srt 25.9 kB
  • 05 - Packaging the ML Models/005 Understanding the Modular Programming.srt 25.2 kB
  • 06 - Mlflow - Manage ML experiments/012 Register the Model & Serve the Model.srt 25.2 kB
  • 07 - Docker for Machine Learning/004 Working with Docker.srt 25.1 kB
  • 06 - Mlflow - Manage ML experiments/011 Log Model Metrics in MySql.srt 24.1 kB
  • 05 - Packaging the ML Models/006 Creating Folder Hierarchy for ML Project.srt 23.7 kB
  • 14 - Continuous Monitoring with Prometheus/016 Create Visualization with Grafana.srt 23.6 kB
  • 05 - Packaging the ML Models/026 Packagiing the ML Model & testing.srt 23.0 kB
  • 06 - Mlflow - Manage ML experiments/009 MLFlow Models.srt 22.5 kB
  • 12 - Working with CI CD Tool Jenkins/019 Create CI CT CD Pipeline - Github Dockerhub.srt 21.6 kB
  • 15 - Deploy Applications with Docker Compose/003 Hands On - Docker Compose Prometheus Grafana.srt 21.6 kB
  • 12 - Working with CI CD Tool Jenkins/015 Test Github Webhook with Jenkins.srt 21.4 kB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/028 Preliminary Analysis on DataFrame.srt 21.0 kB
  • 12 - Working with CI CD Tool Jenkins/001 Introduction to Jenkins.srt 20.7 kB
  • 14 - Continuous Monitoring with Prometheus/006 Installation of Prometheus.srt 20.6 kB
  • 16 - Continuous Monitoring of Machine Learning Application/002 Hands On Monitoring of ML Application using Prometheus.srt 20.6 kB
  • 02 - Python for MLOps/002 Python Quiz.html 20.0 kB
  • 05 - Packaging the ML Models/021 Create Python tests.srt 19.4 kB
  • 19 - Reference Getting Started with AWS/009 S3 Bucket and Storage Classes.srt 19.0 kB
  • 14 - Continuous Monitoring with Prometheus/017 Trigger Alerts with Grafana.srt 18.5 kB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/020 Dataframes in Pandas.srt 18.4 kB
  • 12 - Working with CI CD Tool Jenkins/017 Setup Email Notification with Gmail.srt 17.9 kB
  • 03 - Git and Github Fundamentals for MLOps/008 Git Branch.srt 17.4 kB
  • 13 - Monitoring and Debugging of ML System/005 Functional Level Monitoring.srt 17.4 kB
  • 08 - Build MLApps using FastAPI/002 How REST API Works.srt 17.3 kB
  • 10 - Build MLApps using Flask/003 Build ML Model App with Flask.srt 17.2 kB
  • 02 - Python for MLOps/022 Control Statements - Looping Statements.srt 17.2 kB
  • 17 - Monitor the ML System with WhyLogs/001 Introduction to ML Monitoring.srt 17.0 kB
  • 03 - Git and Github Fundamentals for MLOps/013 Working with Remote Repositories.srt 16.9 kB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/042 Univariate & Bivariate Plots - Continuous Data.srt 16.7 kB
  • 05 - Packaging the ML Models/011 sklearn pipeline.srt 16.7 kB
  • 02 - Python for MLOps/012 Collection - Strings.srt 16.1 kB
  • 12 - Working with CI CD Tool Jenkins/009 Installation of Jenkins on AWS EC2 Instances.srt 16.1 kB
  • 06 - Mlflow - Manage ML experiments/007 Create ML Model for Loan Prediction.srt 15.9 kB
  • 14 - Continuous Monitoring with Prometheus/004 Architecture of Prometheus.srt 15.9 kB
  • 06 - Mlflow - Manage ML experiments/003 Logging Functions of Mlflow Tracking.srt 15.8 kB
  • 12 - Working with CI CD Tool Jenkins/008 Test Locally using Docker Containers.srt 15.7 kB
  • 07 - Docker for Machine Learning/008 Dockerize the ML Model.srt 15.6 kB
  • 13 - Monitoring and Debugging of ML System/003 Why Monitoring Machine Learning Models is Difficult.srt 15.6 kB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/007 Array Creation Functions.srt 15.5 kB
  • 07 - Docker for Machine Learning/006 Working with Dockerfile.srt 15.3 kB
  • 06 - Mlflow - Manage ML experiments/001 Introduction to Mlflow.srt 15.2 kB
  • 03 - Git and Github Fundamentals for MLOps/007 Git Workflow - Local Repo.srt 15.0 kB
  • 12 - Working with CI CD Tool Jenkins/016 Installation of Docker Plugin & System Readiness.srt 15.0 kB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/041 Exploring the data.srt 14.9 kB
  • 12 - Working with CI CD Tool Jenkins/005 Test FastAPI App.srt 14.9 kB
  • 02 - Python for MLOps/009 Variables - Comments - Markdown Cells - Hands On.srt 14.8 kB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/023 Other Functions on Pandas DataFrame.srt 14.8 kB
  • 17 - Monitor the ML System with WhyLogs/004 WhyLogs - Constraints and Drift Reports.srt 14.7 kB
  • 14 - Continuous Monitoring with Prometheus/014 Monitor the FastAPI Application using Prometheus.srt 14.4 kB
  • 05 - Packaging the ML Models/012 Training Pipeline.srt 14.4 kB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/038 Scatter Plot hands on.srt 14.4 kB
  • 14 - Continuous Monitoring with Prometheus/012 Monitor the Linux Server with Node Exporter.srt 14.1 kB
  • 02 - Python for MLOps/024 Functions.srt 14.0 kB
  • 03 - Git and Github Fundamentals for MLOps/015 3 way merge.srt 14.0 kB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/030 Data Cleaning.srt 13.9 kB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/032 Matplotlib Basics.srt 13.8 kB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/011 Shape Modification of Arrays.srt 13.8 kB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/043 Plot - Categorical Data.srt 13.7 kB
  • 13 - Monitoring and Debugging of ML System/006 Model Drift.srt 13.7 kB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/022 Combining the DataFrames.srt 13.5 kB
  • 02 - Python for MLOps/011 Operators in Python Programming Language.srt 13.4 kB
  • 02 - Python for MLOps/010 Python Literals - Hands On.srt 13.3 kB
  • 03 - Git and Github Fundamentals for MLOps/001 Introduction to Version Control Systems.srt 13.3 kB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/034 Line Plots Hands On.srt 13.2 kB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/006 Array Indexing and Slicing.srt 13.2 kB
  • 08 - Build MLApps using FastAPI/006 Deploying the Machine Learning Model with FastAPI.srt 12.9 kB
  • 07 - Docker for Machine Learning/005 Running the Docker Container.srt 12.9 kB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/035 Adjusting the Plots.srt 12.8 kB
  • 05 - Packaging the ML Models/025 Create setup.py.srt 12.6 kB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/021 Working with Data in Pandas DataFrame.srt 12.6 kB
  • 19 - Reference Getting Started with AWS/014 Launch EC2 instance & SSH into EC2 Instances.srt 12.5 kB
  • 19 - Reference Getting Started with AWS/003 Setting up MFA on Root Account.srt 12.1 kB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/018 Working with Pandas Series.srt 12.1 kB
  • 12 - Working with CI CD Tool Jenkins/003 Prepare and Package ML Model.srt 12.1 kB
  • 05 - Packaging the ML Models/013 Prediction Pipeline.srt 12.0 kB
  • 03 - Git and Github Fundamentals for MLOps/011 Checking Out Commits.srt 11.6 kB
  • 03 - Git and Github Fundamentals for MLOps/009 Switching the Branches.srt 11.5 kB
  • 06 - Mlflow - Manage ML experiments/010 Setting Up MySql Database Locally.srt 11.4 kB
  • 03 - Git and Github Fundamentals for MLOps/010 Merging.srt 11.4 kB
  • 12 - Working with CI CD Tool Jenkins/020 Create CI CT CD Pipeline - Training.srt 11.4 kB
  • 14 - Continuous Monitoring with Prometheus/015 Monitor All EndPoints using Prometheus.srt 11.2 kB
  • 19 - Reference Getting Started with AWS/010 Creation of S3 Bucket from Console.srt 11.2 kB
  • 07 - Docker for Machine Learning/009 Packaging the training code in Docker Environment & Summary.srt 11.2 kB
  • 14 - Continuous Monitoring with Prometheus/001 Introduction to Continuous Monitoring.srt 11.2 kB
  • 02 - Python for MLOps/014 Data Structures - List.srt 11.0 kB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/036 Plot Adjustment Hands On.srt 11.0 kB
  • 06 - Mlflow - Manage ML experiments/005 Exploration of mlflow.srt 11.0 kB
  • 05 - Packaging the ML Models/008 Data Handling Module.srt 10.8 kB
  • 14 - Continuous Monitoring with Prometheus/010 Exploring the Basic Querying Prometheus.srt 10.7 kB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/027 Loading the Large Dataset for Working.srt 10.7 kB
  • 03 - Git and Github Fundamentals for MLOps/005 Getting Started with Local Repo.srt 10.5 kB
  • 02 - Python for MLOps/027 File Handling in Python.srt 10.2 kB
  • 14 - Continuous Monitoring with Prometheus/009 Prometheus Configuration file.srt 10.1 kB
  • 03 - Git and Github Fundamentals for MLOps/014 Cloning and Delete Branches.srt 10.0 kB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/029 Null values in the Dataframe.srt 9.8 kB
  • 19 - Reference Getting Started with AWS/004 Create IAM Account and Account Alias.srt 9.7 kB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/044 Advanced Plots in Seaborn.srt 9.7 kB
  • 05 - Packaging the ML Models/022 Running Pytest.srt 9.6 kB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/001 Introduction to Numpy Library.srt 9.6 kB
  • 01 - Introduction to Complete MLOps Bootcamp/002 What and Why MLOps.html 9.6 kB
  • 01 - Introduction to Complete MLOps Bootcamp/004 Stages of MLOps.html 9.5 kB
  • 01 - Introduction to Complete MLOps Bootcamp/003 The Stages of MLOps.srt 9.3 kB
  • 03 - Git and Github Fundamentals for MLOps/006 Concept of Working Directory - Staging Area - Commit.srt 9.3 kB
  • 08 - Build MLApps using FastAPI/005 Data Validation with Pydantic.srt 9.2 kB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/013 Relational Operators & Aggregation Functions on Numpy Arrays.srt 9.2 kB
  • 02 - Python for MLOps/026 Classes in Python.srt 9.1 kB
  • 11 - Lnux Operating System for DevOps and Data Scientists/003 How to Launch EC2 Instances (Quick Refresh).srt 9.0 kB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/031 Introduction to Data Visualization.srt 9.0 kB
  • 02 - Python for MLOps/008 Variables in Python.html 8.9 kB
  • 08 - Build MLApps using FastAPI/001 What is API, REST and REST API.srt 8.8 kB
  • 19 - Reference Getting Started with AWS/012 Version Enablement in S3.srt 8.7 kB
  • 12 - Working with CI CD Tool Jenkins/024 Summary.srt 8.5 kB
  • 06 - Mlflow - Manage ML experiments/002 Getting System Ready with mlflow.srt 8.5 kB
  • 03 - Git and Github Fundamentals for MLOps/002 Getting Started with git.srt 8.5 kB
  • 02 - Python for MLOps/006 Jupyter Lab Quick Tour.srt 8.2 kB
  • 12 - Working with CI CD Tool Jenkins/022 Create CI CT CD Pipeline - Deployment.srt 8.1 kB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/039 Historgram Plot.srt 8.1 kB
  • 12 - Working with CI CD Tool Jenkins/006 Create Dockerfile.srt 8.1 kB
  • 03 - Git and Github Fundamentals for MLOps/004 Git Configurations.srt 8.1 kB
  • 02 - Python for MLOps/021 Control Statements - Conditional Statements in Python.srt 8.1 kB
  • 05 - Packaging the ML Models/019 Requirements txt file.srt 8.0 kB
  • 05 - Packaging the ML Models/001 Introduction to Packaging the ML Models.srt 7.9 kB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/026 Accessing Google Colab.srt 7.7 kB
  • 12 - Working with CI CD Tool Jenkins/021 Create CI CT CD Pipeline - Testing.srt 7.7 kB
  • 12 - Working with CI CD Tool Jenkins/014 Create your first First Jenkins Project.srt 7.6 kB
  • 12 - Working with CI CD Tool Jenkins/010 Installation of Docker in EC2 Instance.srt 7.6 kB
  • 05 - Packaging the ML Models/020 Testing the New Virtual Environments.srt 7.5 kB
  • 05 - Packaging the ML Models/027 Summary.srt 7.5 kB
  • 05 - Packaging the ML Models/023 Create Manifest file.srt 7.4 kB
  • 03 - Git and Github Fundamentals for MLOps/012 Git Hosting Services.srt 7.4 kB
  • 02 - Python for MLOps/003 Introduction to Python Programming.srt 7.3 kB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/045 Which Plot to use.srt 7.2 kB
  • 14 - Continuous Monitoring with Prometheus/008 Installation of Grafana.srt 7.0 kB
  • 16 - Continuous Monitoring of Machine Learning Application/001 Architecture of ML Application Monitoring.srt 7.0 kB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/003 Import Numpy & Access help.srt 6.9 kB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/008 Copy Arrays.srt 6.9 kB
  • 19 - Reference Getting Started with AWS/005 Setup CLI with Credentials.srt 6.9 kB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/004 Creation of Array Object - np.array().srt 6.8 kB
  • 13 - Monitoring and Debugging of ML System/004 Challenge - Who Owns what.srt 6.7 kB
  • 02 - Python for MLOps/020 String Formatting.srt 6.5 kB
  • 19 - Reference Getting Started with AWS/011 Creation of S3 Bucket from CLI.srt 6.5 kB
  • 02 - Python for MLOps/018 Explicit and Implicit Casting in Python Programming.srt 6.5 kB
  • 02 - Python for MLOps/025 Modules in Python.srt 6.5 kB
  • 08 - Build MLApps using FastAPI/003 What is FastAPI.srt 6.5 kB
  • 12 - Working with CI CD Tool Jenkins/002 How do we Use Jenkins in MLOps.srt 6.5 kB
  • 18 - Post Productionizing ML Models/001 Post-Productionalizing ML Models - What Next.srt 6.4 kB
  • 02 - Python for MLOps/016 Data Structures - Dictionary.srt 6.4 kB
  • 19 - Reference Getting Started with AWS/002 Create AWS Account.srt 6.4 kB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/009 Mathematical Operation on Numpy Arrays.srt 6.4 kB
  • 03 - Git and Github Fundamentals for MLOps/003 Local Repo vs Remote Repo.srt 6.1 kB
  • 05 - Packaging the ML Models/003 Model fit and generate Predictions.srt 6.0 kB
  • 14 - Continuous Monitoring with Prometheus/003 Introduction to Prometheus.srt 5.9 kB
  • 14 - Continuous Monitoring with Prometheus/013 Monitor the Client Application using Prometheus.srt 5.9 kB
  • 02 - Python for MLOps/023 List comprehension.srt 5.8 kB
  • 07 - Docker for Machine Learning/001 Docker for Machine Learning.srt 5.7 kB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/002 Basics of numpy array object.srt 5.6 kB
  • 12 - Working with CI CD Tool Jenkins/012 Introduction to Jenkins FreeStyle Projects and Pipeline Jobs.srt 5.6 kB
  • 02 - Python for MLOps/013 Python String - Builtin Functions - Hands On.srt 5.6 kB
  • 05 - Packaging the ML Models/014 Fixes on Python Scripts.srt 5.6 kB
  • 19 - Reference Getting Started with AWS/013 Introduction EC2 instances.srt 5.6 kB
  • 02 - Python for MLOps/005 Hello World - Python.srt 5.5 kB
  • 02 - Python for MLOps/015 Data Structures - Tuples.srt 5.5 kB
  • 14 - Continuous Monitoring with Prometheus/005 Metric Types of Prometheus.srt 5.4 kB
  • 13 - Monitoring and Debugging of ML System/001 Why Monitoring Machine Learning Models is Important.srt 5.4 kB
  • 15 - Deploy Applications with Docker Compose/001 Introduction to Docker Compose.srt 5.4 kB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/012 np.arange().srt 5.3 kB
  • 09 - Build MLApps using Streamlit/001 Introduction to Streamit.srt 5.3 kB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/005 Attributes of Numpy Array.srt 5.3 kB
  • 18 - Post Productionizing ML Models/008 AB Testing.srt 5.2 kB
  • 12 - Working with CI CD Tool Jenkins/013 Exploration of Jenkins UI.srt 5.2 kB
  • 02 - Python for MLOps/007 Variables in Python.srt 5.1 kB
  • 02 - Python for MLOps/017 Data Structures - Sets.srt 5.1 kB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/025 Introduction to EDA.srt 5.0 kB
  • 05 - Packaging the ML Models/016 Add Python Path to Windows.srt 5.0 kB
  • 02 - Python for MLOps/019 Reading the Input from Keyboard.srt 5.0 kB
  • 01 - Introduction to Complete MLOps Bootcamp/001 What and Why MLOps.srt 5.0 kB
  • 05 - Packaging the ML Models/018 Perform Training and Predictions.srt 4.8 kB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/037 Scatter Plot.srt 4.8 kB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/010 Linear Algebra Functions in Numpy.srt 4.8 kB
  • 05 - Packaging the ML Models/015 Add Python Path to MacOS.srt 4.8 kB
  • 14 - Continuous Monitoring with Prometheus/002 Use case on Continuous Monitoring.srt 4.7 kB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/040 Introduction to Seaborn.srt 4.7 kB
  • 05 - Packaging the ML Models/010 Data Preprocessing part 2.srt 4.6 kB
  • 05 - Packaging the ML Models/024 Create Version File.srt 4.5 kB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/033 Types of Plot - Line plot.srt 4.4 kB
  • 07 - Docker for Machine Learning/007 Push the Docker Image to DockerHub.srt 4.4 kB
  • 13 - Monitoring and Debugging of ML System/007 Operational Level Monitoring.srt 4.4 kB
  • 18 - Post Productionizing ML Models/009 Future of MLOps.srt 4.3 kB
  • 13 - Monitoring and Debugging of ML System/002 What is Monitoring of ML models & When to Update Model in Production.srt 4.1 kB
  • 12 - Working with CI CD Tool Jenkins/023 Perform Test of Pipeline.srt 4.1 kB
  • 13 - Monitoring and Debugging of ML System/008 Tools and Best Practices of Machine Learning Model Monitoring.srt 4.1 kB
  • 18 - Post Productionizing ML Models/003 Adversarial Attack.srt 4.1 kB
  • 18 - Post Productionizing ML Models/007 How to Mitigate Risk of Model Attacks.srt 4.0 kB
  • 05 - Packaging the ML Models/017 No module named prediction_model - fix.srt 4.0 kB
  • 17 - Monitor the ML System with WhyLogs/005 Summary.srt 3.9 kB
  • 03 - Git and Github Fundamentals for MLOps/016 Summary.srt 3.9 kB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/019 Mathematical Operation on Pandas Series.srt 3.8 kB
  • 14 - Continuous Monitoring with Prometheus/011 Monitor the Infrastructure with Prometheus.srt 3.6 kB
  • 02 - Python for MLOps/029 Libraries in Python.srt 3.5 kB
  • 10 - Build MLApps using Flask/001 What is Flask.srt 3.5 kB
  • 02 - Python for MLOps/028 Working with Python Scripts.srt 3.5 kB
  • 02 - Python for MLOps/004 Install Anaconda.srt 3.4 kB
  • 12 - Working with CI CD Tool Jenkins/018 Introduction to CI CT CD Pipeline.srt 3.0 kB
  • 18 - Post Productionizing ML Models/002 Model Security.srt 3.0 kB
  • 20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/014 Boolean Masking.srt 2.9 kB
  • 19 - Reference Getting Started with AWS/001 What do we cover in this section.srt 2.9 kB
  • 06 - Mlflow - Manage ML experiments/013 Summary.srt 2.9 kB
  • 14 - Continuous Monitoring with Prometheus/007 Introduction Grafana.srt 2.7 kB
  • 11 - Lnux Operating System for DevOps and Data Scientists/001 Agenda of this section.srt 2.6 kB
  • 17 - Monitor the ML System with WhyLogs/002 Setting Up WhyLabs.srt 2.5 kB
  • 02 - Python for MLOps/001 About the Section.srt 2.3 kB
  • 18 - Post Productionizing ML Models/006 Data Privacy Attack.srt 2.2 kB
  • 12 - Working with CI CD Tool Jenkins/007 Exposing the Application Port as per Dockerfile.srt 2.1 kB
  • 19 - Reference Getting Started with AWS/008 Delete the IAM User.srt 1.7 kB
  • 19 - Reference Getting Started with AWS/015 Clean Up Activity.srt 1.4 kB
  • 18 - Post Productionizing ML Models/004 Data Poisoning Attack.srt 1.3 kB
  • 18 - Post Productionizing ML Models/005 Distributed Denial of Service Attack (DDOS).srt 1.2 kB
  • 01 - Introduction to Complete MLOps Bootcamp/external-links.txt 167 Bytes
  • 01 - Introduction to Complete MLOps Bootcamp/005 Source code for this course.html 114 Bytes
  • 01 - Introduction to Complete MLOps Bootcamp/006 Slide Download Link.html 93 Bytes
  • 01 - Introduction to Complete MLOps Bootcamp/005 Github-Link.url 85 Bytes
  • 01 - Introduction to Complete MLOps Bootcamp/006 Slide-Download-Link.url 80 Bytes
  • 07 - Docker for Machine Learning/003 Installation of Docker Desktop.srt 0 Bytes

随机展示

相关说明

本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!