搜索
Udemy - MLOps Bootcamp Mastering AI Operations for Success - AIOps (7.2024)
磁力链接/BT种子名称
Udemy - MLOps Bootcamp Mastering AI Operations for Success - AIOps (7.2024)
磁力链接/BT种子简介
种子哈希:
bbf409f2ab53f92f3b88d4eaf0d0bd2c74d25bd3
文件大小:
13.84G
已经下载:
244
次
下载速度:
极快
收录时间:
2025-07-19
最近下载:
2025-09-17
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:BBF409F2AB53F92F3B88D4EAF0D0BD2C74D25BD3
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
世界之窗
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
极乐禁地
91短视频
暗网Xvideo
TikTok成人版
PornHub
听泉鉴鲍
少女日记
草榴社区
哆哔涩漫
呦乐园
萝莉岛
悠悠禁区
悠悠禁区
拔萝卜
疯马秀
最近搜索
新侄女
肉偿
路少
唯一啪啪
白皙妹妹
水龍敬 槍間
俄罗斯幼女
媚黑+巨乳
millie morgan cosplay
椎名ゆな+无码
veronica+silesto triple x
浴室偷拍
橘さん家ノ
俄罗斯美女
mj大作迷玩網紅臉
精选无码高清
性奴
留学生
momson
+海角社区乱伦大神
【本編】+口外厳禁++超シークレットのブルーナースが現れた件
老嫖客
一瓜
最大尺
俺のちんぽの虜になるオナホペット
极欲
迷
ipx368
八蜜
the.home.2025
文件列表
11 - Lnux Operating System for DevOps and Data Scientists/004 Basic Linux Commands of Linux.mp4
594.3 MB
21 - Additional Learning on Topic of MLOps/003 Kubernetes 101 Part 2.mp4
448.8 MB
21 - Additional Learning on Topic of MLOps/001 MLOps with MLFlow in 1 Hour.mp4
435.5 MB
17 - Monitor the ML System with WhyLogs/003 Whylogs - Drift Detection, Input, Output, Bias Monitoring.mp4
403.4 MB
21 - Additional Learning on Topic of MLOps/005 Bonus Understanding Transformer Architecture.mp4
402.3 MB
09 - Build MLApps using Streamlit/003 Building the ML Model with Streamlit.mp4
346.0 MB
21 - Additional Learning on Topic of MLOps/004 Generative AI and Prompt Engineering Introduction.mp4
208.0 MB
05 - Packaging the ML Models/002 Typical Experimentation with Dataset.mp4
185.4 MB
05 - Packaging the ML Models/009 Data Preprocessing part 1.mp4
175.6 MB
05 - Packaging the ML Models/007 Create Config Module.mp4
174.2 MB
21 - Additional Learning on Topic of MLOps/002 Kubernetes 101 Part 1.mp4
167.0 MB
06 - Mlflow - Manage ML experiments/008 MLFlow Project.mp4
159.5 MB
15 - Deploy Applications with Docker Compose/002 Hands On - Docker Compose with Flask Application.mp4
156.0 MB
12 - Working with CI CD Tool Jenkins/004 Deploy as API with FASTAPI.mp4
148.3 MB
06 - Mlflow - Manage ML experiments/006 Machine Learning Experiement on MLFlow.mp4
147.0 MB
07 - Docker for Machine Learning/002 Introduction to Docker.mp4
144.3 MB
01 - Introduction to Complete MLOps Bootcamp/003 The Stages of MLOps.mp4
142.9 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/024 Advanced Functions in Pandas DataFrame.mp4
142.9 MB
15 - Deploy Applications with Docker Compose/003 Hands On - Docker Compose Prometheus Grafana.mp4
140.3 MB
12 - Working with CI CD Tool Jenkins/011 Configure Github Repo - Webhook - Jenkins Credentials.mp4
140.1 MB
05 - Packaging the ML Models/026 Packagiing the ML Model & testing.mp4
138.9 MB
11 - Lnux Operating System for DevOps and Data Scientists/002 Linux Features & Bash.mp4
138.8 MB
12 - Working with CI CD Tool Jenkins/019 Create CI CT CD Pipeline - Github Dockerhub.mp4
138.2 MB
07 - Docker for Machine Learning/004 Working with Docker.mp4
136.7 MB
06 - Mlflow - Manage ML experiments/004 Basic Mlflow tutorial.mp4
135.7 MB
16 - Continuous Monitoring of Machine Learning Application/002 Hands On Monitoring of ML Application using Prometheus.mp4
132.2 MB
06 - Mlflow - Manage ML experiments/011 Log Model Metrics in MySql.mp4
130.7 MB
10 - Build MLApps using Flask/002 Hands On Learning of Flask Library.mp4
129.9 MB
08 - Build MLApps using FastAPI/004 Crash course on FastAPI.mp4
128.2 MB
05 - Packaging the ML Models/004 Challenges in Working inside the Jupyter Notebook.mp4
121.2 MB
14 - Continuous Monitoring with Prometheus/006 Installation of Prometheus.mp4
119.4 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/015 Broadcasting on Numpy Arrays.mp4
118.5 MB
09 - Build MLApps using Streamlit/002 Hands On Working with Streamlit.mp4
112.2 MB
05 - Packaging the ML Models/005 Understanding the Modular Programming.mp4
111.7 MB
14 - Continuous Monitoring with Prometheus/014 Monitor the FastAPI Application using Prometheus.mp4
109.8 MB
10 - Build MLApps using Flask/003 Build ML Model App with Flask.mp4
109.2 MB
06 - Mlflow - Manage ML experiments/009 MLFlow Models.mp4
107.7 MB
12 - Working with CI CD Tool Jenkins/017 Setup Email Notification with Gmail.mp4
106.0 MB
05 - Packaging the ML Models/006 Creating Folder Hierarchy for ML Project.mp4
105.6 MB
12 - Working with CI CD Tool Jenkins/008 Test Locally using Docker Containers.mp4
105.4 MB
14 - Continuous Monitoring with Prometheus/017 Trigger Alerts with Grafana.mp4
105.2 MB
12 - Working with CI CD Tool Jenkins/015 Test Github Webhook with Jenkins.mp4
105.1 MB
05 - Packaging the ML Models/011 sklearn pipeline.mp4
104.1 MB
12 - Working with CI CD Tool Jenkins/005 Test FastAPI App.mp4
101.5 MB
07 - Docker for Machine Learning/008 Dockerize the ML Model.mp4
100.1 MB
03 - Git and Github Fundamentals for MLOps/008 Git Branch.mp4
98.4 MB
04 - Crash Course on YAML/001 YAML Crash Course.mp4
96.3 MB
06 - Mlflow - Manage ML experiments/007 Create ML Model for Loan Prediction.mp4
95.8 MB
14 - Continuous Monitoring with Prometheus/012 Monitor the Linux Server with Node Exporter.mp4
94.6 MB
07 - Docker for Machine Learning/006 Working with Dockerfile.mp4
93.9 MB
12 - Working with CI CD Tool Jenkins/001 Introduction to Jenkins.mp4
91.6 MB
05 - Packaging the ML Models/025 Create setup.py.mp4
88.6 MB
12 - Working with CI CD Tool Jenkins/009 Installation of Jenkins on AWS EC2 Instances.mp4
88.3 MB
01 - Introduction to Complete MLOps Bootcamp/001 What and Why MLOps.mp4
86.9 MB
06 - Mlflow - Manage ML experiments/012 Register the Model & Serve the Model.mp4
85.6 MB
07 - Docker for Machine Learning/005 Running the Docker Container.mp4
85.4 MB
05 - Packaging the ML Models/012 Training Pipeline.mp4
83.9 MB
06 - Mlflow - Manage ML experiments/003 Logging Functions of Mlflow Tracking.mp4
81.4 MB
14 - Continuous Monitoring with Prometheus/009 Prometheus Configuration file.mp4
78.3 MB
08 - Build MLApps using FastAPI/002 How REST API Works.mp4
76.4 MB
03 - Git and Github Fundamentals for MLOps/010 Merging.mp4
75.5 MB
08 - Build MLApps using FastAPI/006 Deploying the Machine Learning Model with FastAPI.mp4
74.3 MB
03 - Git and Github Fundamentals for MLOps/015 3 way merge.mp4
74.2 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/042 Univariate & Bivariate Plots - Continuous Data.mp4
73.0 MB
07 - Docker for Machine Learning/009 Packaging the training code in Docker Environment & Summary.mp4
71.9 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/022 Combining the DataFrames.mp4
70.2 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/028 Preliminary Analysis on DataFrame.mp4
70.0 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/041 Exploring the data.mp4
69.6 MB
12 - Working with CI CD Tool Jenkins/016 Installation of Docker Plugin & System Readiness.mp4
67.9 MB
17 - Monitor the ML System with WhyLogs/004 WhyLogs - Constraints and Drift Reports.mp4
67.8 MB
14 - Continuous Monitoring with Prometheus/004 Architecture of Prometheus.mp4
66.6 MB
14 - Continuous Monitoring with Prometheus/010 Exploring the Basic Querying Prometheus.mp4
66.3 MB
03 - Git and Github Fundamentals for MLOps/007 Git Workflow - Local Repo.mp4
65.7 MB
05 - Packaging the ML Models/008 Data Handling Module.mp4
64.4 MB
05 - Packaging the ML Models/022 Running Pytest.mp4
62.9 MB
19 - Reference Getting Started with AWS/014 Launch EC2 instance & SSH into EC2 Instances.mp4
62.8 MB
02 - Python for MLOps/012 Collection - Strings.mp4
61.5 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/023 Other Functions on Pandas DataFrame.mp4
60.9 MB
03 - Git and Github Fundamentals for MLOps/002 Getting Started with git.mp4
60.0 MB
06 - Mlflow - Manage ML experiments/001 Introduction to Mlflow.mp4
59.8 MB
14 - Continuous Monitoring with Prometheus/015 Monitor All EndPoints using Prometheus.mp4
59.6 MB
19 - Reference Getting Started with AWS/007 IAM Policy generator & attachment.mp4
58.8 MB
03 - Git and Github Fundamentals for MLOps/014 Cloning and Delete Branches.mp4
58.5 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/021 Working with Data in Pandas DataFrame.mp4
58.4 MB
03 - Git and Github Fundamentals for MLOps/009 Switching the Branches.mp4
57.7 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/031 Introduction to Data Visualization.mp4
57.5 MB
03 - Git and Github Fundamentals for MLOps/013 Working with Remote Repositories.mp4
57.1 MB
12 - Working with CI CD Tool Jenkins/020 Create CI CT CD Pipeline - Training.mp4
56.9 MB
03 - Git and Github Fundamentals for MLOps/011 Checking Out Commits.mp4
56.8 MB
02 - Python for MLOps/011 Operators in Python Programming Language.mp4
55.0 MB
12 - Working with CI CD Tool Jenkins/003 Prepare and Package ML Model.mp4
53.6 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/029 Null values in the Dataframe.mp4
53.1 MB
03 - Git and Github Fundamentals for MLOps/005 Getting Started with Local Repo.mp4
52.9 MB
19 - Reference Getting Started with AWS/004 Create IAM Account and Account Alias.mp4
52.4 MB
06 - Mlflow - Manage ML experiments/005 Exploration of mlflow.mp4
52.3 MB
13 - Monitoring and Debugging of ML System/005 Functional Level Monitoring.mp4
51.8 MB
14 - Continuous Monitoring with Prometheus/001 Introduction to Continuous Monitoring.mp4
50.3 MB
08 - Build MLApps using FastAPI/001 What is API, REST and REST API.mp4
50.1 MB
05 - Packaging the ML Models/001 Introduction to Packaging the ML Models.mp4
49.7 MB
17 - Monitor the ML System with WhyLogs/001 Introduction to ML Monitoring.mp4
49.0 MB
02 - Python for MLOps/010 Python Literals - Hands On.mp4
48.0 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/027 Loading the Large Dataset for Working.mp4
47.6 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/007 Array Creation Functions.mp4
47.3 MB
14 - Continuous Monitoring with Prometheus/016 Create Visualization with Grafana.mp4
46.4 MB
05 - Packaging the ML Models/013 Prediction Pipeline.mp4
46.2 MB
19 - Reference Getting Started with AWS/009 S3 Bucket and Storage Classes.mp4
46.0 MB
12 - Working with CI CD Tool Jenkins/022 Create CI CT CD Pipeline - Deployment.mp4
45.6 MB
12 - Working with CI CD Tool Jenkins/021 Create CI CT CD Pipeline - Testing.mp4
45.3 MB
13 - Monitoring and Debugging of ML System/003 Why Monitoring Machine Learning Models is Difficult.mp4
45.3 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/038 Scatter Plot hands on.mp4
45.2 MB
02 - Python for MLOps/027 File Handling in Python.mp4
45.1 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/018 Working with Pandas Series.mp4
45.1 MB
05 - Packaging the ML Models/019 Requirements txt file.mp4
44.7 MB
05 - Packaging the ML Models/021 Create Python tests.mp4
44.5 MB
06 - Mlflow - Manage ML experiments/010 Setting Up MySql Database Locally.mp4
43.6 MB
02 - Python for MLOps/024 Functions.mp4
42.9 MB
05 - Packaging the ML Models/027 Summary.mp4
42.7 MB
12 - Working with CI CD Tool Jenkins/010 Installation of Docker in EC2 Instance.mp4
42.6 MB
19 - Reference Getting Started with AWS/002 Create AWS Account.mp4
40.8 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/011 Shape Modification of Arrays.mp4
40.8 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/043 Plot - Categorical Data.mp4
40.7 MB
14 - Continuous Monitoring with Prometheus/008 Installation of Grafana.mp4
39.8 MB
02 - Python for MLOps/014 Data Structures - List.mp4
38.5 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/034 Line Plots Hands On.mp4
38.4 MB
03 - Git and Github Fundamentals for MLOps/001 Introduction to Version Control Systems.mp4
36.4 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/001 Introduction to Numpy Library.mp4
36.3 MB
02 - Python for MLOps/022 Control Statements - Looping Statements.mp4
36.2 MB
06 - Mlflow - Manage ML experiments/002 Getting System Ready with mlflow.mp4
36.1 MB
03 - Git and Github Fundamentals for MLOps/012 Git Hosting Services.mp4
35.7 MB
19 - Reference Getting Started with AWS/012 Version Enablement in S3.mp4
35.3 MB
13 - Monitoring and Debugging of ML System/006 Model Drift.mp4
35.3 MB
08 - Build MLApps using FastAPI/003 What is FastAPI.mp4
33.7 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/036 Plot Adjustment Hands On.mp4
33.6 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/020 Dataframes in Pandas.mp4
33.6 MB
19 - Reference Getting Started with AWS/013 Introduction EC2 instances.mp4
33.5 MB
16 - Continuous Monitoring of Machine Learning Application/001 Architecture of ML Application Monitoring.mp4
33.0 MB
02 - Python for MLOps/005 Hello World - Python.mp4
32.6 MB
12 - Working with CI CD Tool Jenkins/024 Summary.mp4
32.5 MB
19 - Reference Getting Started with AWS/003 Setting up MFA on Root Account.mp4
32.2 MB
05 - Packaging the ML Models/023 Create Manifest file.mp4
31.5 MB
19 - Reference Getting Started with AWS/005 Setup CLI with Credentials.mp4
31.4 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/044 Advanced Plots in Seaborn.mp4
31.1 MB
07 - Docker for Machine Learning/003 Installation of Docker Desktop.mp4
31.0 MB
02 - Python for MLOps/026 Classes in Python.mp4
30.7 MB
13 - Monitoring and Debugging of ML System/001 Why Monitoring Machine Learning Models is Important.mp4
29.9 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/032 Matplotlib Basics.mp4
29.5 MB
05 - Packaging the ML Models/018 Perform Training and Predictions.mp4
29.2 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/013 Relational Operators & Aggregation Functions on Numpy Arrays.mp4
29.1 MB
19 - Reference Getting Started with AWS/011 Creation of S3 Bucket from CLI.mp4
29.1 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/006 Array Indexing and Slicing.mp4
28.6 MB
02 - Python for MLOps/009 Variables - Comments - Markdown Cells - Hands On.mp4
28.3 MB
03 - Git and Github Fundamentals for MLOps/003 Local Repo vs Remote Repo.mp4
28.1 MB
11 - Lnux Operating System for DevOps and Data Scientists/003 How to Launch EC2 Instances (Quick Refresh).mp4
28.0 MB
19 - Reference Getting Started with AWS/010 Creation of S3 Bucket from Console.mp4
27.8 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/035 Adjusting the Plots.mp4
27.8 MB
03 - Git and Github Fundamentals for MLOps/006 Concept of Working Directory - Staging Area - Commit.mp4
27.2 MB
03 - Git and Github Fundamentals for MLOps/004 Git Configurations.mp4
27.2 MB
02 - Python for MLOps/013 Python String - Builtin Functions - Hands On.mp4
26.2 MB
05 - Packaging the ML Models/014 Fixes on Python Scripts.mp4
26.2 MB
13 - Monitoring and Debugging of ML System/004 Challenge - Who Owns what.mp4
26.0 MB
14 - Continuous Monitoring with Prometheus/013 Monitor the Client Application using Prometheus.mp4
25.9 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/030 Data Cleaning.mp4
25.5 MB
05 - Packaging the ML Models/010 Data Preprocessing part 2.mp4
24.3 MB
12 - Working with CI CD Tool Jenkins/023 Perform Test of Pipeline.mp4
24.3 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/045 Which Plot to use.mp4
23.6 MB
07 - Docker for Machine Learning/007 Push the Docker Image to DockerHub.mp4
23.2 MB
02 - Python for MLOps/006 Jupyter Lab Quick Tour.mp4
22.8 MB
02 - Python for MLOps/015 Data Structures - Tuples.mp4
22.8 MB
12 - Working with CI CD Tool Jenkins/006 Create Dockerfile.mp4
22.4 MB
14 - Continuous Monitoring with Prometheus/011 Monitor the Infrastructure with Prometheus.mp4
21.3 MB
02 - Python for MLOps/017 Data Structures - Sets.mp4
20.9 MB
02 - Python for MLOps/021 Control Statements - Conditional Statements in Python.mp4
20.8 MB
09 - Build MLApps using Streamlit/001 Introduction to Streamit.mp4
19.6 MB
08 - Build MLApps using FastAPI/005 Data Validation with Pydantic.mp4
19.5 MB
05 - Packaging the ML Models/017 No module named prediction_model - fix.mp4
19.5 MB
07 - Docker for Machine Learning/001 Docker for Machine Learning.mp4
19.0 MB
05 - Packaging the ML Models/016 Add Python Path to Windows.mp4
18.9 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/026 Accessing Google Colab.mp4
18.9 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/016 Summary of Numpy Library Journey.mp4
18.4 MB
12 - Working with CI CD Tool Jenkins/014 Create your first First Jenkins Project.mp4
18.3 MB
05 - Packaging the ML Models/003 Model fit and generate Predictions.mp4
17.9 MB
18 - Post Productionizing ML Models/008 AB Testing.mp4
17.8 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/008 Copy Arrays.mp4
17.7 MB
12 - Working with CI CD Tool Jenkins/012 Introduction to Jenkins FreeStyle Projects and Pipeline Jobs.mp4
17.2 MB
02 - Python for MLOps/019 Reading the Input from Keyboard.mp4
17.1 MB
19 - Reference Getting Started with AWS/006 IAM Policy.mp4
16.4 MB
02 - Python for MLOps/016 Data Structures - Dictionary.mp4
15.8 MB
02 - Python for MLOps/020 String Formatting.mp4
15.6 MB
02 - Python for MLOps/003 Introduction to Python Programming.mp4
15.6 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/009 Mathematical Operation on Numpy Arrays.mp4
15.5 MB
02 - Python for MLOps/023 List comprehension.mp4
15.2 MB
05 - Packaging the ML Models/020 Testing the New Virtual Environments.mp4
15.1 MB
05 - Packaging the ML Models/015 Add Python Path to MacOS.mp4
15.0 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/040 Introduction to Seaborn.mp4
14.5 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/004 Creation of Array Object - np.array().mp4
14.4 MB
02 - Python for MLOps/025 Modules in Python.mp4
14.3 MB
15 - Deploy Applications with Docker Compose/001 Introduction to Docker Compose.mp4
13.9 MB
14 - Continuous Monitoring with Prometheus/005 Metric Types of Prometheus.mp4
13.8 MB
02 - Python for MLOps/004 Install Anaconda.mp4
13.8 MB
17 - Monitor the ML System with WhyLogs/005 Summary.mp4
12.9 MB
02 - Python for MLOps/018 Explicit and Implicit Casting in Python Programming.mp4
12.9 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/003 Import Numpy & Access help.mp4
12.7 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/002 Basics of numpy array object.mp4
12.5 MB
13 - Monitoring and Debugging of ML System/007 Operational Level Monitoring.mp4
12.3 MB
17 - Monitor the ML System with WhyLogs/002 Setting Up WhyLabs.mp4
12.2 MB
18 - Post Productionizing ML Models/001 Post-Productionalizing ML Models - What Next.mp4
12.0 MB
03 - Git and Github Fundamentals for MLOps/016 Summary.mp4
11.8 MB
14 - Continuous Monitoring with Prometheus/002 Use case on Continuous Monitoring.mp4
11.5 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/012 np.arange().mp4
11.4 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/039 Historgram Plot.mp4
11.4 MB
13 - Monitoring and Debugging of ML System/002 What is Monitoring of ML models & When to Update Model in Production.mp4
11.1 MB
18 - Post Productionizing ML Models/007 How to Mitigate Risk of Model Attacks.mp4
10.9 MB
05 - Packaging the ML Models/024 Create Version File.mp4
10.7 MB
14 - Continuous Monitoring with Prometheus/003 Introduction to Prometheus.mp4
10.7 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/005 Attributes of Numpy Array.mp4
9.5 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/025 Introduction to EDA.mp4
9.5 MB
06 - Mlflow - Manage ML experiments/013 Summary.mp4
9.0 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/010 Linear Algebra Functions in Numpy.mp4
8.9 MB
02 - Python for MLOps/029 Libraries in Python.mp4
8.9 MB
13 - Monitoring and Debugging of ML System/008 Tools and Best Practices of Machine Learning Model Monitoring.mp4
8.7 MB
12 - Working with CI CD Tool Jenkins/002 How do we Use Jenkins in MLOps.mp4
8.6 MB
10 - Build MLApps using Flask/001 What is Flask.mp4
8.6 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/017 Introduction to Pandas.mp4
8.5 MB
02 - Python for MLOps/028 Working with Python Scripts.mp4
7.8 MB
12 - Working with CI CD Tool Jenkins/007 Exposing the Application Port as per Dockerfile.mp4
7.8 MB
12 - Working with CI CD Tool Jenkins/018 Introduction to CI CT CD Pipeline.mp4
7.5 MB
12 - Working with CI CD Tool Jenkins/013 Exploration of Jenkins UI.mp4
7.5 MB
18 - Post Productionizing ML Models/003 Adversarial Attack.mp4
7.4 MB
18 - Post Productionizing ML Models/009 Future of MLOps.mp4
7.4 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/037 Scatter Plot.mp4
7.3 MB
19 - Reference Getting Started with AWS/015 Clean Up Activity.mp4
7.3 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/019 Mathematical Operation on Pandas Series.mp4
7.2 MB
02 - Python for MLOps/007 Variables in Python.mp4
6.4 MB
18 - Post Productionizing ML Models/002 Model Security.mp4
6.2 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/014 Boolean Masking.mp4
5.7 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/033 Types of Plot - Line plot.mp4
5.7 MB
02 - Python for MLOps/001 About the Section.mp4
5.4 MB
19 - Reference Getting Started with AWS/001 What do we cover in this section.mp4
4.4 MB
18 - Post Productionizing ML Models/005 Distributed Denial of Service Attack (DDOS).mp4
4.3 MB
14 - Continuous Monitoring with Prometheus/007 Introduction Grafana.mp4
4.1 MB
19 - Reference Getting Started with AWS/008 Delete the IAM User.mp4
4.0 MB
18 - Post Productionizing ML Models/006 Data Privacy Attack.mp4
4.0 MB
11 - Lnux Operating System for DevOps and Data Scientists/001 Agenda of this section.mp4
3.5 MB
18 - Post Productionizing ML Models/004 Data Poisoning Attack.mp4
2.2 MB
11 - Lnux Operating System for DevOps and Data Scientists/004 Basic Linux Commands of Linux.srt
142.3 kB
21 - Additional Learning on Topic of MLOps/004 Generative AI and Prompt Engineering Introduction.srt
100.4 kB
21 - Additional Learning on Topic of MLOps/005 Bonus Understanding Transformer Architecture.srt
72.7 kB
21 - Additional Learning on Topic of MLOps/001 MLOps with MLFlow in 1 Hour.srt
71.1 kB
17 - Monitor the ML System with WhyLogs/003 Whylogs - Drift Detection, Input, Output, Bias Monitoring.srt
66.3 kB
21 - Additional Learning on Topic of MLOps/002 Kubernetes 101 Part 1.srt
65.9 kB
21 - Additional Learning on Topic of MLOps/003 Kubernetes 101 Part 2.srt
49.0 kB
09 - Build MLApps using Streamlit/003 Building the ML Model with Streamlit.srt
49.0 kB
05 - Packaging the ML Models/002 Typical Experimentation with Dataset.srt
38.8 kB
07 - Docker for Machine Learning/002 Introduction to Docker.srt
35.0 kB
05 - Packaging the ML Models/009 Data Preprocessing part 1.srt
34.2 kB
05 - Packaging the ML Models/004 Challenges in Working inside the Jupyter Notebook.srt
32.4 kB
08 - Build MLApps using FastAPI/004 Crash course on FastAPI.srt
32.2 kB
04 - Crash Course on YAML/001 YAML Crash Course.srt
30.8 kB
05 - Packaging the ML Models/007 Create Config Module.srt
30.4 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/024 Advanced Functions in Pandas DataFrame.srt
30.3 kB
10 - Build MLApps using Flask/002 Hands On Learning of Flask Library.srt
29.6 kB
15 - Deploy Applications with Docker Compose/002 Hands On - Docker Compose with Flask Application.srt
29.5 kB
06 - Mlflow - Manage ML experiments/008 MLFlow Project.srt
29.1 kB
11 - Lnux Operating System for DevOps and Data Scientists/002 Linux Features & Bash.srt
27.6 kB
12 - Working with CI CD Tool Jenkins/011 Configure Github Repo - Webhook - Jenkins Credentials.srt
27.2 kB
06 - Mlflow - Manage ML experiments/006 Machine Learning Experiement on MLFlow.srt
27.0 kB
12 - Working with CI CD Tool Jenkins/004 Deploy as API with FASTAPI.srt
26.8 kB
09 - Build MLApps using Streamlit/002 Hands On Working with Streamlit.srt
26.7 kB
06 - Mlflow - Manage ML experiments/004 Basic Mlflow tutorial.srt
26.0 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/015 Broadcasting on Numpy Arrays.srt
25.9 kB
05 - Packaging the ML Models/005 Understanding the Modular Programming.srt
25.2 kB
06 - Mlflow - Manage ML experiments/012 Register the Model & Serve the Model.srt
25.2 kB
07 - Docker for Machine Learning/004 Working with Docker.srt
25.1 kB
06 - Mlflow - Manage ML experiments/011 Log Model Metrics in MySql.srt
24.1 kB
05 - Packaging the ML Models/006 Creating Folder Hierarchy for ML Project.srt
23.7 kB
14 - Continuous Monitoring with Prometheus/016 Create Visualization with Grafana.srt
23.6 kB
05 - Packaging the ML Models/026 Packagiing the ML Model & testing.srt
23.0 kB
06 - Mlflow - Manage ML experiments/009 MLFlow Models.srt
22.5 kB
12 - Working with CI CD Tool Jenkins/019 Create CI CT CD Pipeline - Github Dockerhub.srt
21.6 kB
15 - Deploy Applications with Docker Compose/003 Hands On - Docker Compose Prometheus Grafana.srt
21.6 kB
12 - Working with CI CD Tool Jenkins/015 Test Github Webhook with Jenkins.srt
21.4 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/028 Preliminary Analysis on DataFrame.srt
21.0 kB
12 - Working with CI CD Tool Jenkins/001 Introduction to Jenkins.srt
20.7 kB
14 - Continuous Monitoring with Prometheus/006 Installation of Prometheus.srt
20.6 kB
16 - Continuous Monitoring of Machine Learning Application/002 Hands On Monitoring of ML Application using Prometheus.srt
20.6 kB
02 - Python for MLOps/002 Python Quiz.html
20.0 kB
05 - Packaging the ML Models/021 Create Python tests.srt
19.4 kB
19 - Reference Getting Started with AWS/009 S3 Bucket and Storage Classes.srt
19.0 kB
14 - Continuous Monitoring with Prometheus/017 Trigger Alerts with Grafana.srt
18.5 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/020 Dataframes in Pandas.srt
18.4 kB
12 - Working with CI CD Tool Jenkins/017 Setup Email Notification with Gmail.srt
17.9 kB
03 - Git and Github Fundamentals for MLOps/008 Git Branch.srt
17.4 kB
13 - Monitoring and Debugging of ML System/005 Functional Level Monitoring.srt
17.4 kB
08 - Build MLApps using FastAPI/002 How REST API Works.srt
17.3 kB
10 - Build MLApps using Flask/003 Build ML Model App with Flask.srt
17.2 kB
02 - Python for MLOps/022 Control Statements - Looping Statements.srt
17.2 kB
17 - Monitor the ML System with WhyLogs/001 Introduction to ML Monitoring.srt
17.0 kB
03 - Git and Github Fundamentals for MLOps/013 Working with Remote Repositories.srt
16.9 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/042 Univariate & Bivariate Plots - Continuous Data.srt
16.7 kB
05 - Packaging the ML Models/011 sklearn pipeline.srt
16.7 kB
02 - Python for MLOps/012 Collection - Strings.srt
16.1 kB
12 - Working with CI CD Tool Jenkins/009 Installation of Jenkins on AWS EC2 Instances.srt
16.1 kB
06 - Mlflow - Manage ML experiments/007 Create ML Model for Loan Prediction.srt
15.9 kB
14 - Continuous Monitoring with Prometheus/004 Architecture of Prometheus.srt
15.9 kB
06 - Mlflow - Manage ML experiments/003 Logging Functions of Mlflow Tracking.srt
15.8 kB
12 - Working with CI CD Tool Jenkins/008 Test Locally using Docker Containers.srt
15.7 kB
07 - Docker for Machine Learning/008 Dockerize the ML Model.srt
15.6 kB
13 - Monitoring and Debugging of ML System/003 Why Monitoring Machine Learning Models is Difficult.srt
15.6 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/007 Array Creation Functions.srt
15.5 kB
07 - Docker for Machine Learning/006 Working with Dockerfile.srt
15.3 kB
06 - Mlflow - Manage ML experiments/001 Introduction to Mlflow.srt
15.2 kB
03 - Git and Github Fundamentals for MLOps/007 Git Workflow - Local Repo.srt
15.0 kB
12 - Working with CI CD Tool Jenkins/016 Installation of Docker Plugin & System Readiness.srt
15.0 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/041 Exploring the data.srt
14.9 kB
12 - Working with CI CD Tool Jenkins/005 Test FastAPI App.srt
14.9 kB
02 - Python for MLOps/009 Variables - Comments - Markdown Cells - Hands On.srt
14.8 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/023 Other Functions on Pandas DataFrame.srt
14.8 kB
17 - Monitor the ML System with WhyLogs/004 WhyLogs - Constraints and Drift Reports.srt
14.7 kB
14 - Continuous Monitoring with Prometheus/014 Monitor the FastAPI Application using Prometheus.srt
14.4 kB
05 - Packaging the ML Models/012 Training Pipeline.srt
14.4 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/038 Scatter Plot hands on.srt
14.4 kB
14 - Continuous Monitoring with Prometheus/012 Monitor the Linux Server with Node Exporter.srt
14.1 kB
02 - Python for MLOps/024 Functions.srt
14.0 kB
03 - Git and Github Fundamentals for MLOps/015 3 way merge.srt
14.0 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/030 Data Cleaning.srt
13.9 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/032 Matplotlib Basics.srt
13.8 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/011 Shape Modification of Arrays.srt
13.8 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/043 Plot - Categorical Data.srt
13.7 kB
13 - Monitoring and Debugging of ML System/006 Model Drift.srt
13.7 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/022 Combining the DataFrames.srt
13.5 kB
02 - Python for MLOps/011 Operators in Python Programming Language.srt
13.4 kB
02 - Python for MLOps/010 Python Literals - Hands On.srt
13.3 kB
03 - Git and Github Fundamentals for MLOps/001 Introduction to Version Control Systems.srt
13.3 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/034 Line Plots Hands On.srt
13.2 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/006 Array Indexing and Slicing.srt
13.2 kB
08 - Build MLApps using FastAPI/006 Deploying the Machine Learning Model with FastAPI.srt
12.9 kB
07 - Docker for Machine Learning/005 Running the Docker Container.srt
12.9 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/035 Adjusting the Plots.srt
12.8 kB
05 - Packaging the ML Models/025 Create setup.py.srt
12.6 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/021 Working with Data in Pandas DataFrame.srt
12.6 kB
19 - Reference Getting Started with AWS/014 Launch EC2 instance & SSH into EC2 Instances.srt
12.5 kB
19 - Reference Getting Started with AWS/003 Setting up MFA on Root Account.srt
12.1 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/018 Working with Pandas Series.srt
12.1 kB
12 - Working with CI CD Tool Jenkins/003 Prepare and Package ML Model.srt
12.1 kB
05 - Packaging the ML Models/013 Prediction Pipeline.srt
12.0 kB
03 - Git and Github Fundamentals for MLOps/011 Checking Out Commits.srt
11.6 kB
03 - Git and Github Fundamentals for MLOps/009 Switching the Branches.srt
11.5 kB
06 - Mlflow - Manage ML experiments/010 Setting Up MySql Database Locally.srt
11.4 kB
03 - Git and Github Fundamentals for MLOps/010 Merging.srt
11.4 kB
12 - Working with CI CD Tool Jenkins/020 Create CI CT CD Pipeline - Training.srt
11.4 kB
14 - Continuous Monitoring with Prometheus/015 Monitor All EndPoints using Prometheus.srt
11.2 kB
19 - Reference Getting Started with AWS/010 Creation of S3 Bucket from Console.srt
11.2 kB
07 - Docker for Machine Learning/009 Packaging the training code in Docker Environment & Summary.srt
11.2 kB
14 - Continuous Monitoring with Prometheus/001 Introduction to Continuous Monitoring.srt
11.2 kB
02 - Python for MLOps/014 Data Structures - List.srt
11.0 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/036 Plot Adjustment Hands On.srt
11.0 kB
06 - Mlflow - Manage ML experiments/005 Exploration of mlflow.srt
11.0 kB
05 - Packaging the ML Models/008 Data Handling Module.srt
10.8 kB
14 - Continuous Monitoring with Prometheus/010 Exploring the Basic Querying Prometheus.srt
10.7 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/027 Loading the Large Dataset for Working.srt
10.7 kB
03 - Git and Github Fundamentals for MLOps/005 Getting Started with Local Repo.srt
10.5 kB
02 - Python for MLOps/027 File Handling in Python.srt
10.2 kB
14 - Continuous Monitoring with Prometheus/009 Prometheus Configuration file.srt
10.1 kB
03 - Git and Github Fundamentals for MLOps/014 Cloning and Delete Branches.srt
10.0 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/029 Null values in the Dataframe.srt
9.8 kB
19 - Reference Getting Started with AWS/004 Create IAM Account and Account Alias.srt
9.7 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/044 Advanced Plots in Seaborn.srt
9.7 kB
05 - Packaging the ML Models/022 Running Pytest.srt
9.6 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/001 Introduction to Numpy Library.srt
9.6 kB
01 - Introduction to Complete MLOps Bootcamp/002 What and Why MLOps.html
9.6 kB
01 - Introduction to Complete MLOps Bootcamp/004 Stages of MLOps.html
9.5 kB
01 - Introduction to Complete MLOps Bootcamp/003 The Stages of MLOps.srt
9.3 kB
03 - Git and Github Fundamentals for MLOps/006 Concept of Working Directory - Staging Area - Commit.srt
9.3 kB
08 - Build MLApps using FastAPI/005 Data Validation with Pydantic.srt
9.2 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/013 Relational Operators & Aggregation Functions on Numpy Arrays.srt
9.2 kB
02 - Python for MLOps/026 Classes in Python.srt
9.1 kB
11 - Lnux Operating System for DevOps and Data Scientists/003 How to Launch EC2 Instances (Quick Refresh).srt
9.0 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/031 Introduction to Data Visualization.srt
9.0 kB
02 - Python for MLOps/008 Variables in Python.html
8.9 kB
08 - Build MLApps using FastAPI/001 What is API, REST and REST API.srt
8.8 kB
19 - Reference Getting Started with AWS/012 Version Enablement in S3.srt
8.7 kB
12 - Working with CI CD Tool Jenkins/024 Summary.srt
8.5 kB
06 - Mlflow - Manage ML experiments/002 Getting System Ready with mlflow.srt
8.5 kB
03 - Git and Github Fundamentals for MLOps/002 Getting Started with git.srt
8.5 kB
02 - Python for MLOps/006 Jupyter Lab Quick Tour.srt
8.2 kB
12 - Working with CI CD Tool Jenkins/022 Create CI CT CD Pipeline - Deployment.srt
8.1 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/039 Historgram Plot.srt
8.1 kB
12 - Working with CI CD Tool Jenkins/006 Create Dockerfile.srt
8.1 kB
03 - Git and Github Fundamentals for MLOps/004 Git Configurations.srt
8.1 kB
02 - Python for MLOps/021 Control Statements - Conditional Statements in Python.srt
8.1 kB
05 - Packaging the ML Models/019 Requirements txt file.srt
8.0 kB
05 - Packaging the ML Models/001 Introduction to Packaging the ML Models.srt
7.9 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/026 Accessing Google Colab.srt
7.7 kB
12 - Working with CI CD Tool Jenkins/021 Create CI CT CD Pipeline - Testing.srt
7.7 kB
12 - Working with CI CD Tool Jenkins/014 Create your first First Jenkins Project.srt
7.6 kB
12 - Working with CI CD Tool Jenkins/010 Installation of Docker in EC2 Instance.srt
7.6 kB
05 - Packaging the ML Models/020 Testing the New Virtual Environments.srt
7.5 kB
05 - Packaging the ML Models/027 Summary.srt
7.5 kB
05 - Packaging the ML Models/023 Create Manifest file.srt
7.4 kB
03 - Git and Github Fundamentals for MLOps/012 Git Hosting Services.srt
7.4 kB
02 - Python for MLOps/003 Introduction to Python Programming.srt
7.3 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/045 Which Plot to use.srt
7.2 kB
14 - Continuous Monitoring with Prometheus/008 Installation of Grafana.srt
7.0 kB
16 - Continuous Monitoring of Machine Learning Application/001 Architecture of ML Application Monitoring.srt
7.0 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/003 Import Numpy & Access help.srt
6.9 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/008 Copy Arrays.srt
6.9 kB
19 - Reference Getting Started with AWS/005 Setup CLI with Credentials.srt
6.9 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/004 Creation of Array Object - np.array().srt
6.8 kB
13 - Monitoring and Debugging of ML System/004 Challenge - Who Owns what.srt
6.7 kB
02 - Python for MLOps/020 String Formatting.srt
6.5 kB
19 - Reference Getting Started with AWS/011 Creation of S3 Bucket from CLI.srt
6.5 kB
02 - Python for MLOps/018 Explicit and Implicit Casting in Python Programming.srt
6.5 kB
02 - Python for MLOps/025 Modules in Python.srt
6.5 kB
08 - Build MLApps using FastAPI/003 What is FastAPI.srt
6.5 kB
12 - Working with CI CD Tool Jenkins/002 How do we Use Jenkins in MLOps.srt
6.5 kB
18 - Post Productionizing ML Models/001 Post-Productionalizing ML Models - What Next.srt
6.4 kB
02 - Python for MLOps/016 Data Structures - Dictionary.srt
6.4 kB
19 - Reference Getting Started with AWS/002 Create AWS Account.srt
6.4 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/009 Mathematical Operation on Numpy Arrays.srt
6.4 kB
03 - Git and Github Fundamentals for MLOps/003 Local Repo vs Remote Repo.srt
6.1 kB
05 - Packaging the ML Models/003 Model fit and generate Predictions.srt
6.0 kB
14 - Continuous Monitoring with Prometheus/003 Introduction to Prometheus.srt
5.9 kB
14 - Continuous Monitoring with Prometheus/013 Monitor the Client Application using Prometheus.srt
5.9 kB
02 - Python for MLOps/023 List comprehension.srt
5.8 kB
07 - Docker for Machine Learning/001 Docker for Machine Learning.srt
5.7 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/002 Basics of numpy array object.srt
5.6 kB
12 - Working with CI CD Tool Jenkins/012 Introduction to Jenkins FreeStyle Projects and Pipeline Jobs.srt
5.6 kB
02 - Python for MLOps/013 Python String - Builtin Functions - Hands On.srt
5.6 kB
05 - Packaging the ML Models/014 Fixes on Python Scripts.srt
5.6 kB
19 - Reference Getting Started with AWS/013 Introduction EC2 instances.srt
5.6 kB
02 - Python for MLOps/005 Hello World - Python.srt
5.5 kB
02 - Python for MLOps/015 Data Structures - Tuples.srt
5.5 kB
14 - Continuous Monitoring with Prometheus/005 Metric Types of Prometheus.srt
5.4 kB
13 - Monitoring and Debugging of ML System/001 Why Monitoring Machine Learning Models is Important.srt
5.4 kB
15 - Deploy Applications with Docker Compose/001 Introduction to Docker Compose.srt
5.4 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/012 np.arange().srt
5.3 kB
09 - Build MLApps using Streamlit/001 Introduction to Streamit.srt
5.3 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/005 Attributes of Numpy Array.srt
5.3 kB
18 - Post Productionizing ML Models/008 AB Testing.srt
5.2 kB
12 - Working with CI CD Tool Jenkins/013 Exploration of Jenkins UI.srt
5.2 kB
02 - Python for MLOps/007 Variables in Python.srt
5.1 kB
02 - Python for MLOps/017 Data Structures - Sets.srt
5.1 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/025 Introduction to EDA.srt
5.0 kB
05 - Packaging the ML Models/016 Add Python Path to Windows.srt
5.0 kB
02 - Python for MLOps/019 Reading the Input from Keyboard.srt
5.0 kB
01 - Introduction to Complete MLOps Bootcamp/001 What and Why MLOps.srt
5.0 kB
05 - Packaging the ML Models/018 Perform Training and Predictions.srt
4.8 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/037 Scatter Plot.srt
4.8 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/010 Linear Algebra Functions in Numpy.srt
4.8 kB
05 - Packaging the ML Models/015 Add Python Path to MacOS.srt
4.8 kB
14 - Continuous Monitoring with Prometheus/002 Use case on Continuous Monitoring.srt
4.7 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/040 Introduction to Seaborn.srt
4.7 kB
05 - Packaging the ML Models/010 Data Preprocessing part 2.srt
4.6 kB
05 - Packaging the ML Models/024 Create Version File.srt
4.5 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/033 Types of Plot - Line plot.srt
4.4 kB
07 - Docker for Machine Learning/007 Push the Docker Image to DockerHub.srt
4.4 kB
13 - Monitoring and Debugging of ML System/007 Operational Level Monitoring.srt
4.4 kB
18 - Post Productionizing ML Models/009 Future of MLOps.srt
4.3 kB
13 - Monitoring and Debugging of ML System/002 What is Monitoring of ML models & When to Update Model in Production.srt
4.1 kB
12 - Working with CI CD Tool Jenkins/023 Perform Test of Pipeline.srt
4.1 kB
13 - Monitoring and Debugging of ML System/008 Tools and Best Practices of Machine Learning Model Monitoring.srt
4.1 kB
18 - Post Productionizing ML Models/003 Adversarial Attack.srt
4.1 kB
18 - Post Productionizing ML Models/007 How to Mitigate Risk of Model Attacks.srt
4.0 kB
05 - Packaging the ML Models/017 No module named prediction_model - fix.srt
4.0 kB
17 - Monitor the ML System with WhyLogs/005 Summary.srt
3.9 kB
03 - Git and Github Fundamentals for MLOps/016 Summary.srt
3.9 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/019 Mathematical Operation on Pandas Series.srt
3.8 kB
14 - Continuous Monitoring with Prometheus/011 Monitor the Infrastructure with Prometheus.srt
3.6 kB
02 - Python for MLOps/029 Libraries in Python.srt
3.5 kB
10 - Build MLApps using Flask/001 What is Flask.srt
3.5 kB
02 - Python for MLOps/028 Working with Python Scripts.srt
3.5 kB
02 - Python for MLOps/004 Install Anaconda.srt
3.4 kB
12 - Working with CI CD Tool Jenkins/018 Introduction to CI CT CD Pipeline.srt
3.0 kB
18 - Post Productionizing ML Models/002 Model Security.srt
3.0 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/014 Boolean Masking.srt
2.9 kB
19 - Reference Getting Started with AWS/001 What do we cover in this section.srt
2.9 kB
06 - Mlflow - Manage ML experiments/013 Summary.srt
2.9 kB
14 - Continuous Monitoring with Prometheus/007 Introduction Grafana.srt
2.7 kB
11 - Lnux Operating System for DevOps and Data Scientists/001 Agenda of this section.srt
2.6 kB
17 - Monitor the ML System with WhyLogs/002 Setting Up WhyLabs.srt
2.5 kB
02 - Python for MLOps/001 About the Section.srt
2.3 kB
18 - Post Productionizing ML Models/006 Data Privacy Attack.srt
2.2 kB
12 - Working with CI CD Tool Jenkins/007 Exposing the Application Port as per Dockerfile.srt
2.1 kB
19 - Reference Getting Started with AWS/008 Delete the IAM User.srt
1.7 kB
19 - Reference Getting Started with AWS/015 Clean Up Activity.srt
1.4 kB
18 - Post Productionizing ML Models/004 Data Poisoning Attack.srt
1.3 kB
18 - Post Productionizing ML Models/005 Distributed Denial of Service Attack (DDOS).srt
1.2 kB
01 - Introduction to Complete MLOps Bootcamp/external-links.txt
167 Bytes
01 - Introduction to Complete MLOps Bootcamp/005 Source code for this course.html
114 Bytes
01 - Introduction to Complete MLOps Bootcamp/006 Slide Download Link.html
93 Bytes
01 - Introduction to Complete MLOps Bootcamp/005 Github-Link.url
85 Bytes
01 - Introduction to Complete MLOps Bootcamp/006 Slide-Download-Link.url
80 Bytes
07 - Docker for Machine Learning/003 Installation of Docker Desktop.srt
0 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!