搜索
[FreeCourseSite.com] Udemy - Algorithmic Trading A-Z with Python, Machine Learning & AWS
磁力链接/BT种子名称
[FreeCourseSite.com] Udemy - Algorithmic Trading A-Z with Python, Machine Learning & AWS
磁力链接/BT种子简介
种子哈希:
be5e106e5c85ba7b07d645cf25e683ff91153577
文件大小:
13.27G
已经下载:
2676
次
下载速度:
极快
收录时间:
2023-12-20
最近下载:
2024-11-09
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:BE5E106E5C85BA7B07D645CF25E683FF91153577
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
最近搜索
pr社私人玩物
cn011
小表妹 福建兄妹
韩国女团
处女
t先生系列
高中
revenge of the fallen
fc2 4563912
果哥
灵主
新・奥まで见せろ
糖心 母狗
最新极品萝莉型美少女『鸡蛋饼』
尤物
早期天花板级别【裸体钢管舞秀】各种原滋原味极品身材风情女郎劲曲热舞大尺度秒杀现在舞团
sdnm-163
chocolate
少妇白洁
2024
翔田千里
juq-905
cn010
[scatbook.com]
中国传媒大学南广学院周添琪与男友啪啪+5+连流出
4k原画
桥本香菜 cos
女外卖员强上
3061625
艾红
文件列表
28. A Machine Learning-powered Strategy A-Z (DNN)/13. Implementation (Oanda & FXCM).mp4
117.9 MB
6. Excursus How to avoid and debug Coding Errors (don´t skip!)/11. How to traceback more complex Errors.mp4
101.5 MB
7. Trading with Python and OANDAFXCM - an Introduction/10. OANDA How to place Orders and execute Trades.mp4
89.6 MB
22. Implementation and Automation with OANDA (UPDATED!)/17. Trade Monitoring and Reporting.mp4
88.7 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/56. Customization of Plots.mp4
88.2 MB
15. Defining and Backtesting SMA Strategies/4. Finding the optimal SMA Strategy.mp4
86.8 MB
11. Financial Data Analysis with Pandas - an Introduction/12. Importing Financial Data from Excel.mp4
84.6 MB
13. Object Oriented Programming (OOP) Creating a Financial Analysis Class/12. Inheritance.mp4
82.7 MB
20. Advanced Backtesting Techniques/13. Adding the Iterative Backtest Child Class for SMA (Part 2).mp4
82.2 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/34. Slicing Rows and Columns with loc (label-based indexing).mp4
81.3 MB
15. Defining and Backtesting SMA Strategies/5. Generalization with OOP An SMA Backtesting Class in action.mp4
77.2 MB
19. Trading Strategies powered by Machine Learning - Classification/7. Generalization with OOP A Classification Backtesting Class in action.mp4
77.0 MB
22. Implementation and Automation with OANDA (UPDATED!)/4. Historical Data, real-time Data and Orders (Recap).mp4
76.3 MB
10. Introduction to Time Series Data in Pandas/4. Downsampling Time Series with resample().mp4
75.7 MB
24. Cloud Deployment (AWS) Scheduling Trading Sessions Full Automation/4. How to create an EC2 Instance.mp4
75.3 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/61. Categorical Seaborn Plots.mp4
74.2 MB
17. Defining and Backtesting Mean-Reversion Strategies (Bollinger)/4. Defining a Bollinger Bands Mean-Reversion Strategy (Part 2).mp4
74.1 MB
3. Day Trading with OANDA A-Z a Deep Dive/7. Margin and Leverage.mp4
74.0 MB
3. Day Trading with OANDA A-Z a Deep Dive/6. Trading Costs and Performance Attribution.mp4
72.9 MB
27. Working with two or many Strategies (Combination)/8. Strategy Optimization.mp4
71.9 MB
12. Advanced Topics/2. Filling NA Values with bfill, ffill and interpolation.mp4
71.7 MB
23. Implementation and Automation with FXCM (Updated!)/8. Storing and resampling real-time tick data (Part 2).mp4
71.5 MB
4. FOREX Day Trading with FXCM/1. FXCM at a first glance.mp4
70.8 MB
2. +++ PART 1 Day Trading, Online Brokers and APIs +++/4. Spot Trading vs. Derivatives Trading (Part 2).mp4
70.7 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/39. Analyzing Numerical Series with unique(), nunique() and value_counts().mp4
70.4 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/62. Seaborn Regression Plots.mp4
69.8 MB
3. Day Trading with OANDA A-Z a Deep Dive/1. OANDA at a first glance.mp4
69.1 MB
23. Implementation and Automation with FXCM (Updated!)/2. Historical Data, real-time Data and Orders (Recap).mp4
69.0 MB
20. Advanced Backtesting Techniques/15. OOP Challenge Add Contrarian and Bollinger Strategies.mp4
69.0 MB
15. Defining and Backtesting SMA Strategies/7. Creating the Class (Part 2).mp4
68.7 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/30. Selecting Rows with iloc (position-based indexing).mp4
68.2 MB
23. Implementation and Automation with FXCM (Updated!)/6. Storing and resampling real-time tick data (Part 1).mp4
67.7 MB
29. Error Handling How to make your Trading Bot more stable and reliable/14. Oanda Error Handling (Part 2).mp4
67.3 MB
22. Implementation and Automation with OANDA (UPDATED!)/10. Storing and resampling real-time tick data (Part 4).mp4
67.2 MB
13. Object Oriented Programming (OOP) Creating a Financial Analysis Class/1. Introduction to OOP and examples for Classes.mp4
66.8 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/44. Changing Row Index with set_index() and reset_index().mp4
66.1 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/23. Create your very first Pandas DataFrame (from csv).mp4
65.6 MB
3. Day Trading with OANDA A-Z a Deep Dive/10. Our third Trade A-Z - Going Short EURUSD.mp4
64.9 MB
22. Implementation and Automation with OANDA (UPDATED!)/22. Machine Learning Strategies (2) - Implementation.mp4
64.6 MB
5. Installing Python and Jupyter Notebooks/2. Download and Install Anaconda.mp4
63.8 MB
3. Day Trading with OANDA A-Z a Deep Dive/11. Netting vs. Hedging.mp4
63.8 MB
16. Defining and Backtesting simple MomentumContrarian Strategies/9. Generalization with OOP A Contrarian Backtesting Class in action.mp4
63.6 MB
24. Cloud Deployment (AWS) Scheduling Trading Sessions Full Automation/6. Getting the Instance Ready for Algorithmic Trading.mp4
63.0 MB
22. Implementation and Automation with OANDA (UPDATED!)/7. Storing and resampling real-time tick data (Part 1).mp4
62.7 MB
3. Day Trading with OANDA A-Z a Deep Dive/3. FOREX Currency Exchange Rates explained.mp4
62.4 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/55. Visualization with Matplotlib (Intro).mp4
62.0 MB
16. Defining and Backtesting simple MomentumContrarian Strategies/7. Trades and Trading Costs (Part 1).mp4
61.9 MB
22. Implementation and Automation with OANDA (UPDATED!)/25. Running a Python Trader Script.mp4
61.6 MB
6. Excursus How to avoid and debug Coding Errors (don´t skip!)/2. Test your debugging skills!.mp4
61.4 MB
11. Financial Data Analysis with Pandas - an Introduction/2. Importing Stock Price Data from Yahoo Finance.mp4
61.3 MB
15. Defining and Backtesting SMA Strategies/3. Vectorized Strategy Backtesting.mp4
61.2 MB
23. Implementation and Automation with FXCM (Updated!)/14. Placing Orders and Executing Trades.mp4
61.0 MB
2. +++ PART 1 Day Trading, Online Brokers and APIs +++/3. Spot Trading vs. Derivatives Trading (Part 1).mp4
60.6 MB
22. Implementation and Automation with OANDA (UPDATED!)/16. Placing Orders and Executing Trades.mp4
60.3 MB
7. Trading with Python and OANDAFXCM - an Introduction/7. OANDA How to load Historical Price Data (Part 1).mp4
60.1 MB
20. Advanced Backtesting Techniques/11. Creating an Iterative Base Class (Part 8).mp4
59.1 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/52. Handling NA Values missing Values.mp4
59.0 MB
23. Implementation and Automation with FXCM (Updated!)/15. Trade Monitoring and Reporting.mp4
58.9 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/25. First Data Inspection.mp4
58.7 MB
24. Cloud Deployment (AWS) Scheduling Trading Sessions Full Automation/2. Demonstration AWS EC2 for Algorithmic Trading live in action.mp4
57.4 MB
19. Trading Strategies powered by Machine Learning - Classification/8. The Classification Backtesting Class explained (Part 1).mp4
57.1 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/50. Advanced Filtering with between(), isin() and ~.mp4
57.1 MB
23. Implementation and Automation with FXCM (Updated!)/5. Collecting and storing real-time tick data.mp4
56.6 MB
23. Implementation and Automation with FXCM (Updated!)/19. Machine Learning Strategies (2) - Implementation.mp4
56.5 MB
4. FOREX Day Trading with FXCM/2. How to create an Account.mp4
56.5 MB
13. Object Oriented Programming (OOP) Creating a Financial Analysis Class/13. Inheritance and the super() Function.mp4
56.5 MB
31. Appendix 1 Python (& Finance) Basics/40. Coding Exercise 3.mp4
56.4 MB
5. Installing Python and Jupyter Notebooks/4. How to work with Jupyter Notebooks.mp4
56.1 MB
20. Advanced Backtesting Techniques/12. Adding the Iterative Backtest Child Class for SMA (Part 1).mp4
55.7 MB
7. Trading with Python and OANDAFXCM - an Introduction/17. FXCM How to load Historical Price Data (Part 1).mp4
54.3 MB
22. Implementation and Automation with OANDA (UPDATED!)/15. Defining a simple Contrarian Strategy.mp4
54.2 MB
17. Defining and Backtesting Mean-Reversion Strategies (Bollinger)/1. Mean-Reversion Strategies - Overview.mp4
53.9 MB
5. Installing Python and Jupyter Notebooks/3. How to open Jupyter Notebooks.mp4
53.4 MB
23. Implementation and Automation with FXCM (Updated!)/4. Preview A Trader Class live in action.mp4
53.3 MB
17. Defining and Backtesting Mean-Reversion Strategies (Bollinger)/6. Generalization with OOP A Bollinger Bands Backtesting Class in action.mp4
53.2 MB
20. Advanced Backtesting Techniques/10. Creating an Iterative Base Class (Part 7).mp4
52.9 MB
13. Object Oriented Programming (OOP) Creating a Financial Analysis Class/14. Adding meaningful Docstrings.mp4
52.5 MB
6. Excursus How to avoid and debug Coding Errors (don´t skip!)/5. Omitting cells, changing the sequence and more.mp4
52.4 MB
28. A Machine Learning-powered Strategy A-Z (DNN)/3. Installation of Tensorflow & Keras (Part 2).mp4
52.2 MB
23. Implementation and Automation with FXCM (Updated!)/11. Working with historical data and real-time tick data (Part 2).mp4
52.0 MB
24. Cloud Deployment (AWS) Scheduling Trading Sessions Full Automation/11. How to stop Trading Sessions (OANDA).mp4
51.9 MB
22. Implementation and Automation with OANDA (UPDATED!)/12. Working with historical data and real-time tick data (Part 1).mp4
51.8 MB
20. Advanced Backtesting Techniques/7. Creating an Iterative Base Class (Part 4).mp4
51.8 MB
22. Implementation and Automation with OANDA (UPDATED!)/13. Working with historical data and real-time tick data (Part 2).mp4
51.4 MB
3. Day Trading with OANDA A-Z a Deep Dive/5. How to calculate Profit & Loss of a Trade.mp4
51.2 MB
10. Introduction to Time Series Data in Pandas/2. Converting strings to datetime objects with pd.to_datetime().mp4
51.2 MB
7. Trading with Python and OANDAFXCM - an Introduction/6. OANDA Connecting to the APIServer.mp4
50.7 MB
18. Trading Strategies powered by Machine Learning - Regression/2. Linear Regression with scikit-learn - a simple Introduction.mp4
50.6 MB
3. Day Trading with OANDA A-Z a Deep Dive/2. How to create an Account.mp4
50.6 MB
28. A Machine Learning-powered Strategy A-Z (DNN)/10. Prediction & Out-Sample Forward Testing.mp4
50.6 MB
22. Implementation and Automation with OANDA (UPDATED!)/5. Preview A Trader Class live in action.mp4
50.3 MB
7. Trading with Python and OANDAFXCM - an Introduction/19. FXCM Streaming high-frequency real-time Data.mp4
50.0 MB
23. Implementation and Automation with FXCM (Updated!)/21. Running a Python Script.mp4
50.0 MB
28. A Machine Learning-powered Strategy A-Z (DNN)/9. Creating and Fitting the DNN Model.mp4
49.9 MB
14. +++ PART 3 Defining and Testing Trading Strategies +++/2. Trading Strategies - an Overview.mp4
49.2 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/54. Summary Statistics and Accumulations.mp4
49.2 MB
31. Appendix 1 Python (& Finance) Basics/13. Coding Exercise 1.mp4
49.0 MB
22. Implementation and Automation with OANDA (UPDATED!)/8. Storing and resampling real-time tick data (Part 2).mp4
48.2 MB
7. Trading with Python and OANDAFXCM - an Introduction/20. FXCM How to place Orders and execute Trades.mp4
48.2 MB
24. Cloud Deployment (AWS) Scheduling Trading Sessions Full Automation/12. How to stop Trading Sessions (FXCM).mp4
48.1 MB
13. Object Oriented Programming (OOP) Creating a Financial Analysis Class/11. Adding more methods and performance metrics.mp4
47.6 MB
11. Financial Data Analysis with Pandas - an Introduction/8. Financial Time Series - Return and Risk.mp4
47.1 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/47. Filtering DataFrames (one Condition).mp4
47.0 MB
29. Error Handling How to make your Trading Bot more stable and reliable/13. Oanda Error Handling (Part 1).mp4
46.7 MB
15. Defining and Backtesting SMA Strategies/1. SMA Crossover Strategies - Overview.mp4
46.1 MB
15. Defining and Backtesting SMA Strategies/2. Defining an SMA Crossover Strategy.mp4
45.8 MB
7. Trading with Python and OANDAFXCM - an Introduction/18. FXCM How to load Historical Price Data (Part 2).mp4
45.4 MB
3. Day Trading with OANDA A-Z a Deep Dive/4. Our second Trade - EURUSD FOREX Trading.mp4
45.0 MB
7. Trading with Python and OANDAFXCM - an Introduction/15. FXCM Connecting to the APIServer.mp4
44.9 MB
18. Trading Strategies powered by Machine Learning - Regression/8. A simple Linear Model to predict Financial Returns (Part 2).mp4
44.8 MB
13. Object Oriented Programming (OOP) Creating a Financial Analysis Class/5. The method get_data().mp4
44.8 MB
18. Trading Strategies powered by Machine Learning - Regression/1. Machine Learning - an Overview.mp4
44.6 MB
31. Appendix 1 Python (& Finance) Basics/48. Coding Exercise 4.mp4
44.4 MB
23. Implementation and Automation with FXCM (Updated!)/13. Defining a Simple Contrarian Trading Strategy.mp4
44.3 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/67. Splitting with many Keys.mp4
44.3 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/36. Summary, Best Practices and Outlook.mp4
44.1 MB
29. Error Handling How to make your Trading Bot more stable and reliable/17. FXCM Error Handling (Part 1).mp4
43.9 MB
23. Implementation and Automation with FXCM (Updated!)/17. SMA Crossover and Bollinger Bands (Solution).mp4
43.8 MB
14. +++ PART 3 Defining and Testing Trading Strategies +++/1. Introduction to Part 3.mp4
43.3 MB
3. Day Trading with OANDA A-Z a Deep Dive/8. Margin Closeout and more.mp4
43.3 MB
11. Financial Data Analysis with Pandas - an Introduction/13. Simple Moving Averages (SMA) with rolling().mp4
43.0 MB
31. Appendix 1 Python (& Finance) Basics/43. Intro to Strings.mp4
42.8 MB
10. Introduction to Time Series Data in Pandas/3. Indexing and Slicing Time Series.mp4
42.6 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/24. Pandas Display Options and the methods head() & tail().mp4
42.5 MB
22. Implementation and Automation with OANDA (UPDATED!)/6. How to collect and store real-time tick data.mp4
42.4 MB
17. Defining and Backtesting Mean-Reversion Strategies (Bollinger)/5. Vectorized Strategy Backtesting.mp4
42.2 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/68. split-apply-combine.mp4
42.0 MB
3. Day Trading with OANDA A-Z a Deep Dive/9. Introduction to Charting.mp4
41.6 MB
6. Excursus How to avoid and debug Coding Errors (don´t skip!)/10. Getting help on StackOverflow.com.mp4
41.4 MB
23. Implementation and Automation with FXCM (Updated!)/7. A Trader Class.mp4
41.4 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/66. Understanding the GroupBy Object.mp4
41.3 MB
31. Appendix 1 Python (& Finance) Basics/50. Keywords pass, continue and break.mp4
41.3 MB
15. Defining and Backtesting SMA Strategies/8. Creating the Class (Part 3).mp4
41.3 MB
20. Advanced Backtesting Techniques/8. Creating an Iterative Base Class (Part 5).mp4
41.3 MB
3. Day Trading with OANDA A-Z a Deep Dive/12. Market, Limit and Stop Orders.mp4
41.2 MB
1. Getting Started/3. Did you know... (what Data can tell us about Day Trading).mp4
41.1 MB
24. Cloud Deployment (AWS) Scheduling Trading Sessions Full Automation/10. How to schedule Trading sessions with the Task Scheduler.mp4
41.1 MB
16. Defining and Backtesting simple MomentumContrarian Strategies/6. Changing the Window Parameter.mp4
41.1 MB
20. Advanced Backtesting Techniques/14. Using Modules and adding Docstrings.mp4
40.8 MB
31. Appendix 1 Python (& Finance) Basics/49. Conditional Statements.mp4
40.5 MB
31. Appendix 1 Python (& Finance) Basics/37. Adding and removing Elements fromto Lists.mp4
40.4 MB
15. Defining and Backtesting SMA Strategies/9. Creating the Class (Part 4).mp4
40.3 MB
18. Trading Strategies powered by Machine Learning - Regression/4. Overfitting.mp4
40.3 MB
1. Getting Started/1. What is Algorithmic Trading Course Overview.mp4
40.1 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/51. Intro to NA Values missing Values.mp4
40.0 MB
29. Error Handling How to make your Trading Bot more stable and reliable/18. FXCM Error Handling (Part 2).mp4
40.0 MB
14. +++ PART 3 Defining and Testing Trading Strategies +++/6. Performance Metrics.mp4
39.9 MB
20. Advanced Backtesting Techniques/3. A first Intuition on Iterative Backtesting (Part 2).mp4
39.9 MB
31. Appendix 1 Python (& Finance) Basics/23. Coding Exercise 2.mp4
39.8 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/13. Creating Numpy Arrays from Scratch.mp4
39.7 MB
28. A Machine Learning-powered Strategy A-Z (DNN)/5. Adding LabelsFeatures.mp4
39.6 MB
16. Defining and Backtesting simple MomentumContrarian Strategies/10. OOP Challenge Create the Contrarian Backtesting Class (incl. Solution).mp4
39.5 MB
1. Getting Started/2. How to get the best out of this course.mp4
39.4 MB
27. Working with two or many Strategies (Combination)/4. Combining both Strategies - Alternative 1.mp4
39.3 MB
12. Advanced Topics/1. Helpful DatetimeIndex Attributes and Methods.mp4
39.2 MB
11. Financial Data Analysis with Pandas - an Introduction/4. Normalizing Time Series to a Base Value (100).mp4
39.2 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/43. First Steps with Pandas Index Objects.mp4
38.9 MB
13. Object Oriented Programming (OOP) Creating a Financial Analysis Class/16. Coding Exercise 3 Create your own Class.mp4
38.8 MB
22. Implementation and Automation with OANDA (UPDATED!)/19. Implementing an SMA Crossover Strategy (Solution).mp4
38.8 MB
12. Advanced Topics/4. Timezones and Converting (Part 2).mp4
38.7 MB
26. Trading Hours, Spreads and Granularity - control and limit Trading Costs!/1. Introduction and Preparing the Data.mp4
38.6 MB
18. Trading Strategies powered by Machine Learning - Regression/9. A Multiple Regression Model to predict Financial Returns.mp4
38.5 MB
15. Defining and Backtesting SMA Strategies/11. Creating the Class (Part 6).mp4
38.1 MB
11. Financial Data Analysis with Pandas - an Introduction/3. Initial Inspection and Visualization.mp4
38.1 MB
32. Appendix 2 User-defined Functions (required for OOP)/3. What´s the difference between Positional Arguments vs. Keyword Arguments.mp4
38.1 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/40. Analyzing non-numerical Series with unique(), nunique(), value_counts().mp4
37.9 MB
29. Error Handling How to make your Trading Bot more stable and reliable/12. Implementation with Oanda V20 Connection Issues.mp4
37.9 MB
10. Introduction to Time Series Data in Pandas/5. Coding Exercise 1.mp4
37.6 MB
19. Trading Strategies powered by Machine Learning - Classification/2. Logistic Regression with scikit-learn - a simple Introduction (Part 2).mp4
37.5 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/63. Seaborn Heatmaps.mp4
37.4 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/3. Numpy Arrays.mp4
37.4 MB
31. Appendix 1 Python (& Finance) Basics/52. Introduction to while loops.mp4
37.4 MB
31. Appendix 1 Python (& Finance) Basics/47. Comparison, Logical and Membership Operators in Action.mp4
37.3 MB
6. Excursus How to avoid and debug Coding Errors (don´t skip!)/4. The most commonly made Errors at a glance.mp4
37.2 MB
17. Defining and Backtesting Mean-Reversion Strategies (Bollinger)/7. OOP Challenge Create the Bollinger Bands Backtesting Class (incl. Solution).mp4
37.0 MB
32. Appendix 2 User-defined Functions (required for OOP)/9. Scope - easily explained.mp4
37.0 MB
19. Trading Strategies powered by Machine Learning - Classification/9. The Classification Backtesting Class explained (Part 2).mp4
36.9 MB
13. Object Oriented Programming (OOP) Creating a Financial Analysis Class/4. The special method __init__().mp4
36.7 MB
11. Financial Data Analysis with Pandas - an Introduction/7. Measuring Stock Performance with MEAN Returns and STD of Returns.mp4
36.6 MB
20. Advanced Backtesting Techniques/2. A first Intuition on Iterative Backtesting (Part 1).mp4
36.5 MB
29. Error Handling How to make your Trading Bot more stable and reliable/15. Oanda Error Handling (Part 3).mp4
36.2 MB
23. Implementation and Automation with FXCM (Updated!)/10. Working with historical data and real-time tick data (Part 1).mp4
36.2 MB
31. Appendix 1 Python (& Finance) Basics/38. Mutable vs. immutable Objects (Part 1).mp4
36.2 MB
10. Introduction to Time Series Data in Pandas/1. Importing Time Series Data from csv-files.mp4
36.1 MB
13. Object Oriented Programming (OOP) Creating a Financial Analysis Class/8. The methods plot_prices() and plot_returns().mp4
35.8 MB
6. Excursus How to avoid and debug Coding Errors (don´t skip!)/12. Problems with the Python Installation.mp4
35.7 MB
23. Implementation and Automation with FXCM (Updated!)/18. Machine Learning Strategies (1) - Model Fitting.mp4
35.5 MB
20. Advanced Backtesting Techniques/9. Creating an Iterative Base Class (Part 6).mp4
35.4 MB
22. Implementation and Automation with OANDA (UPDATED!)/21. Machine Learning Strategies (1) - Model Fitting.mp4
35.4 MB
31. Appendix 1 Python (& Finance) Basics/20. Calculate FV and PV for many Cashflows.mp4
35.1 MB
7. Trading with Python and OANDAFXCM - an Introduction/8. OANDA How to load Historical Price Data (Part 2).mp4
35.1 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/42. Sorting of Series and Introduction to the inplace - parameter.mp4
35.0 MB
31. Appendix 1 Python (& Finance) Basics/21. The Net Present Value - NPV (Theory).mp4
34.9 MB
24. Cloud Deployment (AWS) Scheduling Trading Sessions Full Automation/5. How to connect to your EC2 Instance.mp4
34.7 MB
11. Financial Data Analysis with Pandas - an Introduction/14. Momentum Trading Strategies with SMAs.mp4
34.6 MB
15. Defining and Backtesting SMA Strategies/13. Creating the Class (Part 8).mp4
34.3 MB
11. Financial Data Analysis with Pandas - an Introduction/6. The methods diff() and pct_change().mp4
34.3 MB
11. Financial Data Analysis with Pandas - an Introduction/11. Simple Returns vs. Log Returns.mp4
34.2 MB
7. Trading with Python and OANDAFXCM - an Introduction/13. FXCM How to install the FXCM API Wrapper.mp4
34.1 MB
22. Implementation and Automation with OANDA (UPDATED!)/9. Storing and resampling real-time tick data (Part 3).mp4
33.7 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/2. Modules, Packages and Libraries - No need to reinvent the Wheel.mp4
33.6 MB
24. Cloud Deployment (AWS) Scheduling Trading Sessions Full Automation/9. How to start Trading sessions with Batch (.bat) Files.mp4
33.2 MB
7. Trading with Python and OANDAFXCM - an Introduction/5. OANDA Getting the API Key & other Preparations.mp4
33.0 MB
16. Defining and Backtesting simple MomentumContrarian Strategies/3. Excursus Your FAQs answered.mp4
32.7 MB
6. Excursus How to avoid and debug Coding Errors (don´t skip!)/6. IndexErrors.mp4
32.6 MB
31. Appendix 1 Python (& Finance) Basics/42. Dictionaries.mp4
32.5 MB
2. +++ PART 1 Day Trading, Online Brokers and APIs +++/2. Long Term Investing vs. (Algorithmic) Day Trading.mp4
32.4 MB
22. Implementation and Automation with OANDA (UPDATED!)/11. Storing and resampling real-time tick data (Part 5).mp4
32.4 MB
3. Day Trading with OANDA A-Z a Deep Dive/14. A more general Example.mp4
32.3 MB
18. Trading Strategies powered by Machine Learning - Regression/11. Out-Sample Forward Testing.mp4
31.9 MB
22. Implementation and Automation with OANDA (UPDATED!)/20. Implementing a Bollinger Bands Strategy (Solution).mp4
31.9 MB
2. +++ PART 1 Day Trading, Online Brokers and APIs +++/5. Overview & the Brokers OANDA and FXCM.mp4
31.7 MB
20. Advanced Backtesting Techniques/1. Introduction to Iterative Backtesting (event-driven).mp4
31.6 MB
22. Implementation and Automation with OANDA (UPDATED!)/14. Working with historical data and real-time tick data (Part 3).mp4
31.5 MB
24. Cloud Deployment (AWS) Scheduling Trading Sessions Full Automation/8. How to run Python Scripts in a Windows Command Prompt.mp4
31.4 MB
23. Implementation and Automation with FXCM (Updated!)/12. Working with historical data and real-time tick data (Part 3).mp4
31.4 MB
31. Appendix 1 Python (& Finance) Basics/18. For Loops - Iterating over Lists.mp4
31.4 MB
17. Defining and Backtesting Mean-Reversion Strategies (Bollinger)/3. Defining a Bollinger Bands Mean-Reversion Strategy (Part 1).mp4
31.2 MB
31. Appendix 1 Python (& Finance) Basics/41. Tuples.mp4
31.2 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/64. Removing Columns.mp4
31.1 MB
11. Financial Data Analysis with Pandas - an Introduction/5. The shift() method.mp4
30.9 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/59. Scatterplots.mp4
30.9 MB
12. Advanced Topics/3. Timezones and Converting (Part 1).mp4
30.8 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/17. How to slice 2-dim Numpy Arrays (Part 1).mp4
30.3 MB
16. Defining and Backtesting simple MomentumContrarian Strategies/5. Vectorized Strategy Backtesting.mp4
30.3 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/58. Histogramms (Part 2).mp4
30.3 MB
32. Appendix 2 User-defined Functions (required for OOP)/4. How to work with Default Arguments.mp4
29.9 MB
7. Trading with Python and OANDAFXCM - an Introduction/4. OANDA How to install the OANDA API Wrapper.mp4
29.8 MB
26. Trading Hours, Spreads and Granularity - control and limit Trading Costs!/5. The Impact of Granularity.mp4
29.6 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/11. Advanced Filtering & Bitwise Operators.mp4
29.5 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/46. Renaming Index & Column Labels with rename().mp4
29.3 MB
19. Trading Strategies powered by Machine Learning - Classification/1. Logistic Regression with scikit-learn - a simple Introduction (Part 1).mp4
29.3 MB
4. FOREX Day Trading with FXCM/7. Order Types at a glance.mp4
28.9 MB
19. Trading Strategies powered by Machine Learning - Classification/4. Predicting Market Direction with Logistic Regression.mp4
28.8 MB
32. Appendix 2 User-defined Functions (required for OOP)/2. Defining your first user-defined Function.mp4
28.7 MB
13. Object Oriented Programming (OOP) Creating a Financial Analysis Class/2. The Financial Analysis Class live in action (Part 1).mp4
28.6 MB
20. Advanced Backtesting Techniques/4. Creating an Iterative Base Class (Part 1).mp4
28.5 MB
32. Appendix 2 User-defined Functions (required for OOP)/5. The Default Argument None.mp4
28.1 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/27. Selecting Columns.mp4
27.9 MB
28. A Machine Learning-powered Strategy A-Z (DNN)/8. Feature ScalingEngineering.mp4
27.7 MB
6. Excursus How to avoid and debug Coding Errors (don´t skip!)/15. Summary and Debugging Flow-Chart.mp4
27.6 MB
32. Appendix 2 User-defined Functions (required for OOP)/7. Sequences as arguments and args.mp4
27.6 MB
14. +++ PART 3 Defining and Testing Trading Strategies +++/5. A simple Buy and Hold Strategy.mp4
27.4 MB
11. Financial Data Analysis with Pandas - an Introduction/16. Merging Aligning Financial Time Series (hands-on).mp4
27.2 MB
29. Error Handling How to make your Trading Bot more stable and reliable/11. Waiting periods between re-tries.mp4
27.1 MB
7. Trading with Python and OANDAFXCM - an Introduction/9. OANDA Streaming high-frequency real-time Data.mp4
27.1 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/49. Filtering DataFrames by many Conditions (OR).mp4
27.0 MB
22. Implementation and Automation with OANDA (UPDATED!)/2. Updating the Wrapper Package (Part 2).mp4
26.6 MB
31. Appendix 1 Python (& Finance) Basics/27. Build-in Functions.mp4
26.6 MB
23. Implementation and Automation with FXCM (Updated!)/9. Storing and resampling real-time tick data (Part 3).mp4
26.5 MB
29. Error Handling How to make your Trading Bot more stable and reliable/7. try, except, else.mp4
26.4 MB
13. Object Oriented Programming (OOP) Creating a Financial Analysis Class/10. The method set_ticker().mp4
26.4 MB
15. Defining and Backtesting SMA Strategies/12. Creating the Class (Part 7).mp4
26.3 MB
31. Appendix 1 Python (& Finance) Basics/31. More on Lists.mp4
25.8 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/6. Changing Elements in Numpy Arrays & Mutability.mp4
25.7 MB
3. Day Trading with OANDA A-Z a Deep Dive/13. Take-Profit and Stop-Loss Orders.mp4
25.6 MB
4. FOREX Day Trading with FXCM/3. Example Trade Buying EURUSD.mp4
25.6 MB
31. Appendix 1 Python (& Finance) Basics/29. Floats.mp4
25.5 MB
31. Appendix 1 Python (& Finance) Basics/24. Data Types in Action.mp4
25.5 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/31. Slicing Rows and Columns with iloc (position-based indexing).mp4
25.5 MB
13. Object Oriented Programming (OOP) Creating a Financial Analysis Class/9. Encapsulation and protected Attributes.mp4
25.2 MB
28. A Machine Learning-powered Strategy A-Z (DNN)/1. Project Overview.mp4
24.9 MB
11. Financial Data Analysis with Pandas - an Introduction/15. Exponentially-weighted Moving Averages (EWMA).mp4
24.9 MB
18. Trading Strategies powered by Machine Learning - Regression/5. Underfitting.mp4
24.7 MB
13. Object Oriented Programming (OOP) Creating a Financial Analysis Class/6. The method log_returns().mp4
24.1 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/12. Determining a Project´s Payback Period with np.where().mp4
23.6 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/20. How to perform row-wise and column-wise Operations.mp4
23.6 MB
31. Appendix 1 Python (& Finance) Basics/10. More on Variables and Memory.mp4
23.3 MB
27. Working with two or many Strategies (Combination)/7. Combining both Strategies - Alternative 2.mp4
23.2 MB
13. Object Oriented Programming (OOP) Creating a Financial Analysis Class/7. String representation and the special method __repr__().mp4
23.2 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/8. Numpy Array Methods and Attributes.mp4
23.0 MB
16. Defining and Backtesting simple MomentumContrarian Strategies/8. Trades and Trading Costs (Part 2).mp4
23.0 MB
31. Appendix 1 Python (& Finance) Basics/51. Calculate a Project´s Payback Period.mp4
22.9 MB
31. Appendix 1 Python (& Finance) Basics/39. Mutable vs. immutable Objects (Part 2).mp4
22.9 MB
16. Defining and Backtesting simple MomentumContrarian Strategies/4. Defining a simple Contrarian Strategy.mp4
22.5 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/33. Selecting Rows with loc (label-based indexing).mp4
22.4 MB
29. Error Handling How to make your Trading Bot more stable and reliable/9. Try again (...until it works).mp4
22.3 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/48. Filtering DataFrames by many Conditions (AND).mp4
22.3 MB
15. Defining and Backtesting SMA Strategies/10. Creating the Class (Part 5).mp4
22.1 MB
7. Trading with Python and OANDAFXCM - an Introduction/14. FXCM Getting the Access Token & other Preparations.mp4
22.1 MB
11. Financial Data Analysis with Pandas - an Introduction/9. Financial Time Series - Covariance and Correlation.mp4
22.1 MB
31. Appendix 1 Python (& Finance) Basics/30. How to round Floats (and Integers) with round().mp4
21.9 MB
29. Error Handling How to make your Trading Bot more stable and reliable/16. Implementation with FXCM APIServer Issues.mp4
21.8 MB
13. Object Oriented Programming (OOP) Creating a Financial Analysis Class/15. Creating and Importing Python Modules (.py).mp4
21.8 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/41. The copy() method.mp4
21.8 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/57. Histogramms (Part 1).mp4
21.5 MB
15. Defining and Backtesting SMA Strategies/6. Creating the Class (Part 1).mp4
21.2 MB
14. +++ PART 3 Defining and Testing Trading Strategies +++/4. Getting the Data.mp4
21.2 MB
24. Cloud Deployment (AWS) Scheduling Trading Sessions Full Automation/1. Introduction and Motivation.mp4
21.2 MB
18. Trading Strategies powered by Machine Learning - Regression/10. In-Sample Backtesting and the Look-ahead-bias.mp4
21.2 MB
31. Appendix 1 Python (& Finance) Basics/33. Slicing Lists.mp4
21.1 MB
29. Error Handling How to make your Trading Bot more stable and reliable/8. finally.mp4
21.1 MB
19. Trading Strategies powered by Machine Learning - Classification/6. Out-Sample Forward Testing.mp4
21.1 MB
16. Defining and Backtesting simple MomentumContrarian Strategies/1. Simple ContrarianMomentum Strategies - Overview.mp4
20.9 MB
13. Object Oriented Programming (OOP) Creating a Financial Analysis Class/3. The Financial Analysis Class live in action (Part 2).mp4
20.7 MB
29. Error Handling How to make your Trading Bot more stable and reliable/1. Introduction.mp4
20.5 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/7. View vs. copy - potential Pitfalls when slicing Numpy Arrays.mp4
20.2 MB
31. Appendix 1 Python (& Finance) Basics/6. Calculate Interest Rates and Returns with Python.mp4
20.2 MB
28. A Machine Learning-powered Strategy A-Z (DNN)/6. Adding lags.mp4
20.2 MB
22. Implementation and Automation with OANDA (UPDATED!)/23. Importing a Trader Module Class.mp4
20.1 MB
26. Trading Hours, Spreads and Granularity - control and limit Trading Costs!/3. The best time to trade (Part 2).mp4
20.0 MB
26. Trading Hours, Spreads and Granularity - control and limit Trading Costs!/2. The best time to trade (Part 1).mp4
20.0 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/38. First Steps with Pandas Series.mp4
19.9 MB
4. FOREX Day Trading with FXCM/4. Trade Analysis.mp4
19.7 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/5. Vectorized Operations with Numpy Arrays.mp4
19.6 MB
32. Appendix 2 User-defined Functions (required for OOP)/6. How to unpack Iterables.mp4
19.5 MB
4. FOREX Day Trading with FXCM/6. Closing Positions vs. Hedging Positions.mp4
19.4 MB
11. Financial Data Analysis with Pandas - an Introduction/1. Getting Ready (Installing required library).mp4
19.2 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/60. First Steps with Seaborn.mp4
19.1 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/15. How to work with nested Lists.mp4
19.1 MB
28. A Machine Learning-powered Strategy A-Z (DNN)/11. Saving Model and Parameters.mp4
19.1 MB
24. Cloud Deployment (AWS) Scheduling Trading Sessions Full Automation/3. Amazon Web Services (AWS) - Overview and how to create a Free Trial Account.mp4
19.1 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/10. Boolean Arrays and Conditional Filtering.mp4
19.0 MB
31. Appendix 1 Python (& Finance) Basics/7. Introduction to Variables.mp4
19.0 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/22. Intro to Tabular Data Pandas.mp4
19.0 MB
26. Trading Hours, Spreads and Granularity - control and limit Trading Costs!/6. Conclusions.mp4
18.9 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/45. Changing Column Labels.mp4
18.8 MB
9. +++ PART 2 Pandas for Financial Data Analysis and Introduction to OOP +++/1. Introduction and Downloads Part 2.mp4
18.8 MB
18. Trading Strategies powered by Machine Learning - Regression/7. A simple Linear Model to predict Financial Returns (Part 1).mp4
18.7 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/9. Numpy Universal Functions.mp4
18.6 MB
31. Appendix 1 Python (& Finance) Basics/32. Lists and Element-wise Operations.mp4
18.4 MB
6. Excursus How to avoid and debug Coding Errors (don´t skip!)/13. External Factors and Issues.mp4
18.3 MB
31. Appendix 1 Python (& Finance) Basics/12. The print() Function.mp4
18.3 MB
31. Appendix 1 Python (& Finance) Basics/44. String Replacement.mp4
18.2 MB
6. Excursus How to avoid and debug Coding Errors (don´t skip!)/1. Introduction.mp4
18.0 MB
31. Appendix 1 Python (& Finance) Basics/19. The range Object - another Iterable.mp4
17.9 MB
31. Appendix 1 Python (& Finance) Basics/11. Variables - Dos, Don´ts and Conventions.mp4
17.9 MB
19. Trading Strategies powered by Machine Learning - Classification/3. Getting and Preparing the Data.mp4
17.9 MB
20. Advanced Backtesting Techniques/5. Creating an Iterative Base Class (Part 2).mp4
17.7 MB
6. Excursus How to avoid and debug Coding Errors (don´t skip!)/9. TypeErrors and ValueErrors.mp4
17.6 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/19. Recap Changing Elements in a Numpy Array slice.mp4
17.3 MB
31. Appendix 1 Python (& Finance) Basics/2. Intro to the Time Value of Money (TVM) Concept (Theory).mp4
17.3 MB
6. Excursus How to avoid and debug Coding Errors (don´t skip!)/14. Errors related to the course content (Transcription Errors).mp4
17.2 MB
18. Trading Strategies powered by Machine Learning - Regression/3. Making Predictions with Linear Regression.mp4
17.0 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/16. 2-dimensional Numpy Arrays.mp4
16.9 MB
16. Defining and Backtesting simple MomentumContrarian Strategies/2. Getting the Data.mp4
16.1 MB
27. Working with two or many Strategies (Combination)/5. Taking into account busy Trading Hours.mp4
15.9 MB
20. Advanced Backtesting Techniques/6. Creating an Iterative Base Class (Part 3).mp4
15.9 MB
27. Working with two or many Strategies (Combination)/3. Strategy 2 Mean Reversion.mp4
15.3 MB
31. Appendix 1 Python (& Finance) Basics/22. Calculate an Investment Project´s NPV.mp4
15.0 MB
31. Appendix 1 Python (& Finance) Basics/5. Interest Rates and Returns (Theory).mp4
14.9 MB
19. Trading Strategies powered by Machine Learning - Classification/5. In-Sample Backtesting and the Look-ahead-bias.mp4
14.9 MB
23. Implementation and Automation with FXCM (Updated!)/16. Trading other Strategies - Coding Challenge.mp4
14.8 MB
2. +++ PART 1 Day Trading, Online Brokers and APIs +++/1. Our very first Trade.mp4
14.6 MB
31. Appendix 1 Python (& Finance) Basics/17. Indexing Lists.mp4
14.5 MB
4. FOREX Day Trading with FXCM/5. Charting.mp4
14.4 MB
29. Error Handling How to make your Trading Bot more stable and reliable/10. How to limit the number of retries.mp4
14.3 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/4. Indexing and Slicing Numpy Arrays.mp4
14.3 MB
32. Appendix 2 User-defined Functions (required for OOP)/8. How to return many results.mp4
14.1 MB
27. Working with two or many Strategies (Combination)/2. Strategy 1 SMA.mp4
13.9 MB
26. Trading Hours, Spreads and Granularity - control and limit Trading Costs!/4. Spreads during the busy hours.mp4
13.9 MB
31. Appendix 1 Python (& Finance) Basics/36. Sorting and Reversing Lists.mp4
13.8 MB
31. Appendix 1 Python (& Finance) Basics/3. Calculate Future Values (FV) with Python Compounding.mp4
13.4 MB
22. Implementation and Automation with OANDA (UPDATED!)/18. Trading other Strategies - Coding Challenge.mp4
13.2 MB
6. Excursus How to avoid and debug Coding Errors (don´t skip!)/8. Misuse of function names and keywords.mp4
13.0 MB
6. Excursus How to avoid and debug Coding Errors (don´t skip!)/7. Indentation Errors.mp4
12.8 MB
31. Appendix 1 Python (& Finance) Basics/46. Operators (Theory).mp4
12.3 MB
17. Defining and Backtesting Mean-Reversion Strategies (Bollinger)/2. Getting the Data.mp4
12.2 MB
27. Working with two or many Strategies (Combination)/1. Introduction.mp4
12.0 MB
31. Appendix 1 Python (& Finance) Basics/8. Excursus How to add inline comments.mp4
11.8 MB
31. Appendix 1 Python (& Finance) Basics/28. Integers.mp4
11.5 MB
27. Working with two or many Strategies (Combination)/6. Strategy Backtesting.mp4
11.4 MB
31. Appendix 1 Python (& Finance) Basics/25. The Data Type Hierarchy (Theory).mp4
11.3 MB
21. +++ PART 4 Real-time Implementation and Automation of Strategies +++/1. Introduction and Overview.mp4
11.3 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/53. Exporting DataFrames to csv.mp4
11.1 MB
31. Appendix 1 Python (& Finance) Basics/14. TVM Problems with many Cashflows.mp4
11.0 MB
25. +++ PART 5 Expert Tips & Tricks, Case Studies and more +++/1. Overview.mp4
10.7 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/29. Zero-based Indexing and Negative Indexing.mp4
10.7 MB
31. Appendix 1 Python (& Finance) Basics/35. Changing Elements in Lists.mp4
10.6 MB
31. Appendix 1 Python (& Finance) Basics/4. Calculate Present Values (FV) with Python Discounting.mp4
10.5 MB
28. A Machine Learning-powered Strategy A-Z (DNN)/7. Splitting into Train and Test Set.mp4
10.3 MB
18. Trading Strategies powered by Machine Learning - Regression/6. Getting the Data.mp4
10.0 MB
5. Installing Python and Jupyter Notebooks/1. Introduction.mp4
9.3 MB
31. Appendix 1 Python (& Finance) Basics/45. Booleans.mp4
9.3 MB
29. Error Handling How to make your Trading Bot more stable and reliable/4. try and except.mp4
9.3 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/18. How to slice 2-dim Numpy Arrays (Part 2).mp4
9.2 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/28. Selecting one Column with the dot notation.mp4
9.0 MB
28. A Machine Learning-powered Strategy A-Z (DNN)/4. Getting and Preparing the Data.mp4
8.8 MB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/65. Introduction to GroupBy Operations.mp4
8.5 MB
31. Appendix 1 Python (& Finance) Basics/15. Intro to Python Lists.mp4
8.1 MB
29. Error Handling How to make your Trading Bot more stable and reliable/5. Catching specific Errors.mp4
7.9 MB
31. Appendix 1 Python (& Finance) Basics/16. Zero-based Indexing and negative Indexing in Python (Theory).mp4
7.8 MB
30. +++ APPENDIX Python Crash Course +++/1. Overview.mp4
7.2 MB
29. Error Handling How to make your Trading Bot more stable and reliable/3. Python Errors (Exceptions).mp4
7.2 MB
5. Installing Python and Jupyter Notebooks/5. Tips for Python Beginners.mp4
6.5 MB
29. Error Handling How to make your Trading Bot more stable and reliable/6. The Exception class.mp4
5.9 MB
31. Appendix 1 Python (& Finance) Basics/9. Variables and Memory (Theory).mp4
5.7 MB
6. Excursus How to avoid and debug Coding Errors (don´t skip!)/3. Major reasons for Coding Errors.mp4
5.7 MB
31. Appendix 1 Python (& Finance) Basics/26. Excursus Dynamic Typing in Python.mp4
5.5 MB
7. Trading with Python and OANDAFXCM - an Introduction/2. Overview.mp4
4.7 MB
8. Conclusion and Outlook/1. Conclusion and Outlook.mp4
4.1 MB
14. +++ PART 3 Defining and Testing Trading Strategies +++/3.1 Part3_Materials.zip
2.3 MB
9. +++ PART 2 Pandas for Financial Data Analysis and Introduction to OOP +++/1.1 Part2_Materials.zip
1.9 MB
25. +++ PART 5 Expert Tips & Tricks, Case Studies and more +++/2.1 Part5_Materials.zip
1.9 MB
21. +++ PART 4 Real-time Implementation and Automation of Strategies +++/2.1 Part4_Materials.zip
754.1 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/1.1 Appendix3_Materials.zip
672.0 kB
2. +++ PART 1 Day Trading, Online Brokers and APIs +++/5.1 Brokers.pdf
567.0 kB
2. +++ PART 1 Day Trading, Online Brokers and APIs +++/2.1 Trading_vs_investing.pdf
542.5 kB
18. Trading Strategies powered by Machine Learning - Regression/1.1 ML.pdf
504.1 kB
13. Object Oriented Programming (OOP) Creating a Financial Analysis Class/1.1 OOP.pdf
491.0 kB
1. Getting Started/1.1 Overview.pdf
488.2 kB
28. A Machine Learning-powered Strategy A-Z (DNN)/1.1 DNN.pdf
441.4 kB
1. Getting Started/3.1 did_you_know.pdf
439.6 kB
14. +++ PART 3 Defining and Testing Trading Strategies +++/2.1 strategy_overview.pdf
410.7 kB
20. Advanced Backtesting Techniques/1.1 Event_Driven_BT.pdf
394.9 kB
24. Cloud Deployment (AWS) Scheduling Trading Sessions Full Automation/1.1 cloud.pdf
375.2 kB
2. +++ PART 1 Day Trading, Online Brokers and APIs +++/3.1 Spot_vs_Futures.pdf
259.8 kB
31. Appendix 1 Python (& Finance) Basics/21.1 NPV.pdf
251.6 kB
31. Appendix 1 Python (& Finance) Basics/5.1 Interest_Rates.pdf
202.6 kB
31. Appendix 1 Python (& Finance) Basics/2.1 TVM.pdf
200.5 kB
31. Appendix 1 Python (& Finance) Basics/20.1 PV_FV_many.pdf
199.2 kB
31. Appendix 1 Python (& Finance) Basics/14.1 FV_many.pdf
190.4 kB
31. Appendix 1 Python (& Finance) Basics/39.1 Python_for_Finance_Mutability.pdf
170.7 kB
31. Appendix 1 Python (& Finance) Basics/25.1 Type_Hierarchy.pdf
166.3 kB
31. Appendix 1 Python (& Finance) Basics/46.1 Operators.pdf
149.1 kB
31. Appendix 1 Python (& Finance) Basics/9.1 Variables.pdf
146.4 kB
31. Appendix 1 Python (& Finance) Basics/16.1 Indexing.pdf
125.8 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/7.1 Slicing_arrays.pdf
125.5 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/6.1 Mutability_arrays.pdf
124.7 kB
3. Day Trading with OANDA A-Z a Deep Dive/3.1 Currency.pdf
116.4 kB
3. Day Trading with OANDA A-Z a Deep Dive/6.1 spread.pdf
114.9 kB
31. Appendix 1 Python (& Finance) Basics/34.1 Slicing_cheatsheet.pdf
107.8 kB
31. Appendix 1 Python (& Finance) Basics/27.1 Built_in_func.pdf
94.8 kB
3. Day Trading with OANDA A-Z a Deep Dive/9.1 Candlestick.pdf
94.8 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/32.1 pandas_iloc.pdf
73.7 kB
31. Appendix 1 Python (& Finance) Basics/11.1 keywords.pdf
71.1 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/35.1 Pandas_loc.pdf
69.4 kB
3. Day Trading with OANDA A-Z a Deep Dive/5.1 Long_EUR.xlsx
41.0 kB
3. Day Trading with OANDA A-Z a Deep Dive/10.1 Short_EUR.xlsx
36.3 kB
4. FOREX Day Trading with FXCM/4.1 Long_EUR_fxcm.xlsx
27.0 kB
31. Appendix 1 Python (& Finance) Basics/1.1 Appendix1_Materials.zip
19.4 kB
5. Installing Python and Jupyter Notebooks/4. How to work with Jupyter Notebooks.srt
18.0 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/61. Categorical Seaborn Plots.srt
17.2 kB
10. Introduction to Time Series Data in Pandas/4. Downsampling Time Series with resample().srt
17.1 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/39. Analyzing Numerical Series with unique(), nunique() and value_counts().srt
16.5 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/25. First Data Inspection.srt
14.8 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/56. Customization of Plots.srt
14.8 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/62. Seaborn Regression Plots.srt
14.6 kB
11. Financial Data Analysis with Pandas - an Introduction/12. Importing Financial Data from Excel.srt
14.2 kB
28. A Machine Learning-powered Strategy A-Z (DNN)/13. Implementation (Oanda & FXCM).srt
13.8 kB
31. Appendix 1 Python (& Finance) Basics/40. Coding Exercise 3.srt
13.5 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/52. Handling NA Values missing Values.srt
13.3 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/47. Filtering DataFrames (one Condition).srt
13.1 kB
15. Defining and Backtesting SMA Strategies/4. Finding the optimal SMA Strategy.srt
12.9 kB
3. Day Trading with OANDA A-Z a Deep Dive/6. Trading Costs and Performance Attribution.srt
12.8 kB
13. Object Oriented Programming (OOP) Creating a Financial Analysis Class/1. Introduction to OOP and examples for Classes.srt
12.6 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/68. split-apply-combine.srt
12.5 kB
34. What´s next (outlook and additional resources)/1. Bonus Lecture.html
12.3 kB
12. Advanced Topics/2. Filling NA Values with bfill, ffill and interpolation.srt
12.3 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/44. Changing Row Index with set_index() and reset_index().srt
12.1 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/54. Summary Statistics and Accumulations.srt
12.0 kB
6. Excursus How to avoid and debug Coding Errors (don´t skip!)/2. Test your debugging skills!.srt
11.9 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/34. Slicing Rows and Columns with loc (label-based indexing).srt
11.9 kB
19. Trading Strategies powered by Machine Learning - Classification/7. Generalization with OOP A Classification Backtesting Class in action.srt
11.9 kB
31. Appendix 1 Python (& Finance) Basics/50. Keywords pass, continue and break.srt
11.9 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/30. Selecting Rows with iloc (position-based indexing).srt
11.8 kB
31. Appendix 1 Python (& Finance) Basics/13. Coding Exercise 1.srt
11.8 kB
6. Excursus How to avoid and debug Coding Errors (don´t skip!)/11. How to traceback more complex Errors.srt
11.8 kB
31. Appendix 1 Python (& Finance) Basics/37. Adding and removing Elements fromto Lists.srt
11.7 kB
15. Defining and Backtesting SMA Strategies/5. Generalization with OOP An SMA Backtesting Class in action.srt
11.6 kB
5. Installing Python and Jupyter Notebooks/3. How to open Jupyter Notebooks.srt
11.4 kB
10. Introduction to Time Series Data in Pandas/2. Converting strings to datetime objects with pd.to_datetime().srt
11.4 kB
11. Financial Data Analysis with Pandas - an Introduction/11. Simple Returns vs. Log Returns.srt
11.4 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/42. Sorting of Series and Introduction to the inplace - parameter.srt
11.3 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/51. Intro to NA Values missing Values.srt
11.3 kB
31. Appendix 1 Python (& Finance) Basics/48. Coding Exercise 4.srt
11.2 kB
11. Financial Data Analysis with Pandas - an Introduction/13. Simple Moving Averages (SMA) with rolling().srt
11.2 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/55. Visualization with Matplotlib (Intro).srt
11.0 kB
11. Financial Data Analysis with Pandas - an Introduction/7. Measuring Stock Performance with MEAN Returns and STD of Returns.srt
11.0 kB
31. Appendix 1 Python (& Finance) Basics/49. Conditional Statements.srt
10.8 kB
23. Implementation and Automation with FXCM (Updated!)/2. Historical Data, real-time Data and Orders (Recap).srt
10.7 kB
7. Trading with Python and OANDAFXCM - an Introduction/10. OANDA How to place Orders and execute Trades.srt
10.7 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/23. Create your very first Pandas DataFrame (from csv).srt
10.6 kB
11. Financial Data Analysis with Pandas - an Introduction/8. Financial Time Series - Return and Risk.srt
10.6 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/63. Seaborn Heatmaps.srt
10.6 kB
31. Appendix 1 Python (& Finance) Basics/38. Mutable vs. immutable Objects (Part 1).srt
10.6 kB
11. Financial Data Analysis with Pandas - an Introduction/2. Importing Stock Price Data from Yahoo Finance.srt
10.4 kB
2. +++ PART 1 Day Trading, Online Brokers and APIs +++/4. Spot Trading vs. Derivatives Trading (Part 2).srt
10.4 kB
17. Defining and Backtesting Mean-Reversion Strategies (Bollinger)/4. Defining a Bollinger Bands Mean-Reversion Strategy (Part 2).srt
10.3 kB
1. Getting Started/5. Student FAQ.html
10.3 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/66. Understanding the GroupBy Object.srt
10.3 kB
16. Defining and Backtesting simple MomentumContrarian Strategies/7. Trades and Trading Costs (Part 1).srt
10.3 kB
31. Appendix 1 Python (& Finance) Basics/23. Coding Exercise 2.srt
10.3 kB
27. Working with two or many Strategies (Combination)/8. Strategy Optimization.srt
10.3 kB
32. Appendix 2 User-defined Functions (required for OOP)/9. Scope - easily explained.srt
10.2 kB
2. +++ PART 1 Day Trading, Online Brokers and APIs +++/3. Spot Trading vs. Derivatives Trading (Part 1).srt
10.2 kB
10. Introduction to Time Series Data in Pandas/1. Importing Time Series Data from csv-files.srt
10.2 kB
22. Implementation and Automation with OANDA (UPDATED!)/4. Historical Data, real-time Data and Orders (Recap).srt
10.2 kB
20. Advanced Backtesting Techniques/13. Adding the Iterative Backtest Child Class for SMA (Part 2).srt
10.2 kB
31. Appendix 1 Python (& Finance) Basics/43. Intro to Strings.srt
10.1 kB
3. Day Trading with OANDA A-Z a Deep Dive/3. FOREX Currency Exchange Rates explained.srt
10.0 kB
31. Appendix 1 Python (& Finance) Basics/18. For Loops - Iterating over Lists.srt
10.0 kB
31. Appendix 1 Python (& Finance) Basics/21. The Net Present Value - NPV (Theory).srt
10.0 kB
15. Defining and Backtesting SMA Strategies/3. Vectorized Strategy Backtesting.srt
9.8 kB
31. Appendix 1 Python (& Finance) Basics/47. Comparison, Logical and Membership Operators in Action.srt
9.7 kB
13. Object Oriented Programming (OOP) Creating a Financial Analysis Class/12. Inheritance.srt
9.6 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/3. Numpy Arrays.srt
9.5 kB
22. Implementation and Automation with OANDA (UPDATED!)/12. Working with historical data and real-time tick data (Part 1).srt
9.5 kB
22. Implementation and Automation with OANDA (UPDATED!)/17. Trade Monitoring and Reporting.srt
9.4 kB
18. Trading Strategies powered by Machine Learning - Regression/2. Linear Regression with scikit-learn - a simple Introduction.srt
9.4 kB
3. Day Trading with OANDA A-Z a Deep Dive/1. OANDA at a first glance.srt
9.4 kB
23. Implementation and Automation with FXCM (Updated!)/8. Storing and resampling real-time tick data (Part 2).srt
9.4 kB
31. Appendix 1 Python (& Finance) Basics/20. Calculate FV and PV for many Cashflows.srt
9.3 kB
23. Implementation and Automation with FXCM (Updated!)/6. Storing and resampling real-time tick data (Part 1).srt
9.3 kB
5. Installing Python and Jupyter Notebooks/2. Download and Install Anaconda.srt
9.3 kB
13. Object Oriented Programming (OOP) Creating a Financial Analysis Class/4. The special method __init__().srt
9.2 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/2. Modules, Packages and Libraries - No need to reinvent the Wheel.srt
9.2 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/50. Advanced Filtering with between(), isin() and ~.srt
9.2 kB
24. Cloud Deployment (AWS) Scheduling Trading Sessions Full Automation/4. How to create an EC2 Instance.srt
9.2 kB
16. Defining and Backtesting simple MomentumContrarian Strategies/9. Generalization with OOP A Contrarian Backtesting Class in action.srt
9.1 kB
29. Error Handling How to make your Trading Bot more stable and reliable/14. Oanda Error Handling (Part 2).srt
9.0 kB
22. Implementation and Automation with OANDA (UPDATED!)/10. Storing and resampling real-time tick data (Part 4).srt
9.0 kB
6. Excursus How to avoid and debug Coding Errors (don´t skip!)/15. Summary and Debugging Flow-Chart.srt
8.9 kB
11. Financial Data Analysis with Pandas - an Introduction/14. Momentum Trading Strategies with SMAs.srt
8.9 kB
11. Financial Data Analysis with Pandas - an Introduction/5. The shift() method.srt
8.9 kB
31. Appendix 1 Python (& Finance) Basics/52. Introduction to while loops.srt
8.9 kB
28. A Machine Learning-powered Strategy A-Z (DNN)/9. Creating and Fitting the DNN Model.srt
8.8 kB
22. Implementation and Automation with OANDA (UPDATED!)/7. Storing and resampling real-time tick data (Part 1).srt
8.8 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/40. Analyzing non-numerical Series with unique(), nunique(), value_counts().srt
8.7 kB
11. Financial Data Analysis with Pandas - an Introduction/6. The methods diff() and pct_change().srt
8.6 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/59. Scatterplots.srt
8.5 kB
31. Appendix 1 Python (& Finance) Basics/41. Tuples.srt
8.5 kB
23. Implementation and Automation with FXCM (Updated!)/14. Placing Orders and Executing Trades.srt
8.5 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/67. Splitting with many Keys.srt
8.5 kB
7. Trading with Python and OANDAFXCM - an Introduction/7. OANDA How to load Historical Price Data (Part 1).srt
8.5 kB
15. Defining and Backtesting SMA Strategies/7. Creating the Class (Part 2).srt
8.5 kB
3. Day Trading with OANDA A-Z a Deep Dive/8. Margin Closeout and more.srt
8.4 kB
7. Trading with Python and OANDAFXCM - an Introduction/6. OANDA Connecting to the APIServer.srt
8.4 kB
3. Day Trading with OANDA A-Z a Deep Dive/7. Margin and Leverage.srt
8.4 kB
10. Introduction to Time Series Data in Pandas/3. Indexing and Slicing Time Series.srt
8.3 kB
19. Trading Strategies powered by Machine Learning - Classification/8. The Classification Backtesting Class explained (Part 1).srt
8.3 kB
13. Object Oriented Programming (OOP) Creating a Financial Analysis Class/16. Coding Exercise 3 Create your own Class.srt
8.3 kB
6. Excursus How to avoid and debug Coding Errors (don´t skip!)/5. Omitting cells, changing the sequence and more.srt
8.3 kB
28. A Machine Learning-powered Strategy A-Z (DNN)/10. Prediction & Out-Sample Forward Testing.srt
8.3 kB
7. Trading with Python and OANDAFXCM - an Introduction/15. FXCM Connecting to the APIServer.srt
8.3 kB
20. Advanced Backtesting Techniques/7. Creating an Iterative Base Class (Part 4).srt
8.2 kB
31. Appendix 1 Python (& Finance) Basics/10. More on Variables and Memory.srt
8.2 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/58. Histogramms (Part 2).srt
8.2 kB
14. +++ PART 3 Defining and Testing Trading Strategies +++/1. Introduction to Part 3.srt
8.2 kB
3. Day Trading with OANDA A-Z a Deep Dive/2. How to create an Account.srt
8.1 kB
3. Day Trading with OANDA A-Z a Deep Dive/10. Our third Trade A-Z - Going Short EURUSD.srt
8.1 kB
20. Advanced Backtesting Techniques/15. OOP Challenge Add Contrarian and Bollinger Strategies.srt
8.1 kB
23. Implementation and Automation with FXCM (Updated!)/5. Collecting and storing real-time tick data.srt
8.1 kB
18. Trading Strategies powered by Machine Learning - Regression/1. Machine Learning - an Overview.srt
8.1 kB
14. +++ PART 3 Defining and Testing Trading Strategies +++/2. Trading Strategies - an Overview.srt
8.1 kB
31. Appendix 1 Python (& Finance) Basics/42. Dictionaries.srt
8.1 kB
7. Trading with Python and OANDAFXCM - an Introduction/20. FXCM How to place Orders and execute Trades.srt
8.0 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/24. Pandas Display Options and the methods head() & tail().srt
8.0 kB
31. Appendix 1 Python (& Finance) Basics/27. Build-in Functions.srt
7.9 kB
17. Defining and Backtesting Mean-Reversion Strategies (Bollinger)/6. Generalization with OOP A Bollinger Bands Backtesting Class in action.srt
7.9 kB
15. Defining and Backtesting SMA Strategies/2. Defining an SMA Crossover Strategy.srt
7.9 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/36. Summary, Best Practices and Outlook.srt
7.9 kB
11. Financial Data Analysis with Pandas - an Introduction/4. Normalizing Time Series to a Base Value (100).srt
7.8 kB
31. Appendix 1 Python (& Finance) Basics/24. Data Types in Action.srt
7.7 kB
28. A Machine Learning-powered Strategy A-Z (DNN)/3. Installation of Tensorflow & Keras (Part 2).srt
7.7 kB
3. Day Trading with OANDA A-Z a Deep Dive/11. Netting vs. Hedging.srt
7.7 kB
31. Appendix 1 Python (& Finance) Basics/2. Intro to the Time Value of Money (TVM) Concept (Theory).srt
7.7 kB
20. Advanced Backtesting Techniques/10. Creating an Iterative Base Class (Part 7).srt
7.7 kB
32. Appendix 2 User-defined Functions (required for OOP)/3. What´s the difference between Positional Arguments vs. Keyword Arguments.srt
7.7 kB
3. Day Trading with OANDA A-Z a Deep Dive/5. How to calculate Profit & Loss of a Trade.srt
7.6 kB
4. FOREX Day Trading with FXCM/2. How to create an Account.srt
7.6 kB
32. Appendix 2 User-defined Functions (required for OOP)/5. The Default Argument None.srt
7.6 kB
6. Excursus How to avoid and debug Coding Errors (don´t skip!)/12. Problems with the Python Installation.srt
7.6 kB
18. Trading Strategies powered by Machine Learning - Regression/8. A simple Linear Model to predict Financial Returns (Part 2).srt
7.6 kB
6. Excursus How to avoid and debug Coding Errors (don´t skip!)/10. Getting help on StackOverflow.com.srt
7.6 kB
13. Object Oriented Programming (OOP) Creating a Financial Analysis Class/14. Adding meaningful Docstrings.srt
7.6 kB
14. +++ PART 3 Defining and Testing Trading Strategies +++/6. Performance Metrics.srt
7.5 kB
32. Appendix 2 User-defined Functions (required for OOP)/2. Defining your first user-defined Function.srt
7.5 kB
15. Defining and Backtesting SMA Strategies/8. Creating the Class (Part 3).srt
7.5 kB
18. Trading Strategies powered by Machine Learning - Regression/4. Overfitting.srt
7.5 kB
22. Implementation and Automation with OANDA (UPDATED!)/22. Machine Learning Strategies (2) - Implementation.srt
7.5 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/11. Advanced Filtering & Bitwise Operators.srt
7.4 kB
12. Advanced Topics/1. Helpful DatetimeIndex Attributes and Methods.srt
7.4 kB
19. Trading Strategies powered by Machine Learning - Classification/2. Logistic Regression with scikit-learn - a simple Introduction (Part 2).srt
7.4 kB
7. Trading with Python and OANDAFXCM - an Introduction/19. FXCM Streaming high-frequency real-time Data.srt
7.4 kB
22. Implementation and Automation with OANDA (UPDATED!)/25. Running a Python Trader Script.srt
7.4 kB
22. Implementation and Automation with OANDA (UPDATED!)/13. Working with historical data and real-time tick data (Part 2).srt
7.4 kB
13. Object Oriented Programming (OOP) Creating a Financial Analysis Class/13. Inheritance and the super() Function.srt
7.3 kB
4. FOREX Day Trading with FXCM/1. FXCM at a first glance.srt
7.3 kB
24. Cloud Deployment (AWS) Scheduling Trading Sessions Full Automation/11. How to stop Trading Sessions (OANDA).srt
7.3 kB
28. A Machine Learning-powered Strategy A-Z (DNN)/5. Adding LabelsFeatures.srt
7.2 kB
20. Advanced Backtesting Techniques/11. Creating an Iterative Base Class (Part 8).srt
7.1 kB
29. Error Handling How to make your Trading Bot more stable and reliable/13. Oanda Error Handling (Part 1).srt
7.1 kB
24. Cloud Deployment (AWS) Scheduling Trading Sessions Full Automation/2. Demonstration AWS EC2 for Algorithmic Trading live in action.srt
7.1 kB
1. Getting Started/2. How to get the best out of this course.srt
7.1 kB
23. Implementation and Automation with FXCM (Updated!)/21. Running a Python Script.srt
7.0 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/60. First Steps with Seaborn.srt
7.0 kB
7. Trading with Python and OANDAFXCM - an Introduction/17. FXCM How to load Historical Price Data (Part 1).srt
7.0 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/43. First Steps with Pandas Index Objects.srt
7.0 kB
31. Appendix 1 Python (& Finance) Basics/29. Floats.srt
7.0 kB
32. Appendix 2 User-defined Functions (required for OOP)/4. How to work with Default Arguments.srt
7.0 kB
20. Advanced Backtesting Techniques/2. A first Intuition on Iterative Backtesting (Part 1).srt
6.9 kB
13. Object Oriented Programming (OOP) Creating a Financial Analysis Class/5. The method get_data().srt
6.9 kB
28. A Machine Learning-powered Strategy A-Z (DNN)/1. Project Overview.srt
6.9 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/17. How to slice 2-dim Numpy Arrays (Part 1).srt
6.9 kB
23. Implementation and Automation with FXCM (Updated!)/10. Working with historical data and real-time tick data (Part 1).srt
6.9 kB
23. Implementation and Automation with FXCM (Updated!)/15. Trade Monitoring and Reporting.srt
6.9 kB
6. Excursus How to avoid and debug Coding Errors (don´t skip!)/4. The most commonly made Errors at a glance.srt
6.9 kB
22. Implementation and Automation with OANDA (UPDATED!)/16. Placing Orders and Executing Trades.srt
6.8 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/6. Changing Elements in Numpy Arrays & Mutability.srt
6.8 kB
22. Implementation and Automation with OANDA (UPDATED!)/15. Defining a simple Contrarian Strategy.srt
6.8 kB
24. Cloud Deployment (AWS) Scheduling Trading Sessions Full Automation/6. Getting the Instance Ready for Algorithmic Trading.srt
6.8 kB
31. Appendix 1 Python (& Finance) Basics/30. How to round Floats (and Integers) with round().srt
6.7 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/27. Selecting Columns.srt
6.7 kB
17. Defining and Backtesting Mean-Reversion Strategies (Bollinger)/1. Mean-Reversion Strategies - Overview.srt
6.7 kB
18. Trading Strategies powered by Machine Learning - Regression/9. A Multiple Regression Model to predict Financial Returns.srt
6.7 kB
20. Advanced Backtesting Techniques/12. Adding the Iterative Backtest Child Class for SMA (Part 1).srt
6.7 kB
13. Object Oriented Programming (OOP) Creating a Financial Analysis Class/11. Adding more methods and performance metrics.srt
6.6 kB
31. Appendix 1 Python (& Finance) Basics/31. More on Lists.srt
6.6 kB
22. Implementation and Automation with OANDA (UPDATED!)/21. Machine Learning Strategies (1) - Model Fitting.srt
6.6 kB
23. Implementation and Automation with FXCM (Updated!)/18. Machine Learning Strategies (1) - Model Fitting.srt
6.6 kB
27. Working with two or many Strategies (Combination)/4. Combining both Strategies - Alternative 1.srt
6.6 kB
17. Defining and Backtesting Mean-Reversion Strategies (Bollinger)/5. Vectorized Strategy Backtesting.srt
6.5 kB
31. Appendix 1 Python (& Finance) Basics/7. Introduction to Variables.srt
6.5 kB
32. Appendix 2 User-defined Functions (required for OOP)/7. Sequences as arguments and args.srt
6.5 kB
22. Implementation and Automation with OANDA (UPDATED!)/6. How to collect and store real-time tick data.srt
6.4 kB
23. Implementation and Automation with FXCM (Updated!)/11. Working with historical data and real-time tick data (Part 2).srt
6.4 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/8. Numpy Array Methods and Attributes.srt
6.4 kB
23. Implementation and Automation with FXCM (Updated!)/7. A Trader Class.srt
6.4 kB
23. Implementation and Automation with FXCM (Updated!)/4. Preview A Trader Class live in action.srt
6.4 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/64. Removing Columns.srt
6.3 kB
29. Error Handling How to make your Trading Bot more stable and reliable/1. Introduction.srt
6.3 kB
20. Advanced Backtesting Techniques/8. Creating an Iterative Base Class (Part 5).srt
6.3 kB
23. Implementation and Automation with FXCM (Updated!)/19. Machine Learning Strategies (2) - Implementation.srt
6.3 kB
1. Getting Started/1. What is Algorithmic Trading Course Overview.srt
6.3 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/13. Creating Numpy Arrays from Scratch.srt
6.3 kB
16. Defining and Backtesting simple MomentumContrarian Strategies/6. Changing the Window Parameter.srt
6.3 kB
3. Day Trading with OANDA A-Z a Deep Dive/12. Market, Limit and Stop Orders.srt
6.2 kB
11. Financial Data Analysis with Pandas - an Introduction/3. Initial Inspection and Visualization.srt
6.2 kB
31. Appendix 1 Python (& Finance) Basics/5. Interest Rates and Returns (Theory).srt
6.2 kB
26. Trading Hours, Spreads and Granularity - control and limit Trading Costs!/1. Introduction and Preparing the Data.srt
6.2 kB
19. Trading Strategies powered by Machine Learning - Classification/1. Logistic Regression with scikit-learn - a simple Introduction (Part 1).srt
6.2 kB
11. Financial Data Analysis with Pandas - an Introduction/16. Merging Aligning Financial Time Series (hands-on).srt
6.2 kB
2. +++ PART 1 Day Trading, Online Brokers and APIs +++/5. Overview & the Brokers OANDA and FXCM.srt
6.1 kB
31. Appendix 1 Python (& Finance) Basics/19. The range Object - another Iterable.srt
6.1 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/12. Determining a Project´s Payback Period with np.where().srt
6.0 kB
14. +++ PART 3 Defining and Testing Trading Strategies +++/5. A simple Buy and Hold Strategy.srt
6.0 kB
13. Object Oriented Programming (OOP) Creating a Financial Analysis Class/8. The methods plot_prices() and plot_returns().srt
6.0 kB
31. Appendix 1 Python (& Finance) Basics/39. Mutable vs. immutable Objects (Part 2).srt
6.0 kB
29. Error Handling How to make your Trading Bot more stable and reliable/18. FXCM Error Handling (Part 2).srt
6.0 kB
10. Introduction to Time Series Data in Pandas/5. Coding Exercise 1.srt
5.9 kB
22. Implementation and Automation with OANDA (UPDATED!)/5. Preview A Trader Class live in action.srt
5.9 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/7. View vs. copy - potential Pitfalls when slicing Numpy Arrays.srt
5.9 kB
20. Advanced Backtesting Techniques/3. A first Intuition on Iterative Backtesting (Part 2).srt
5.9 kB
7. Trading with Python and OANDAFXCM - an Introduction/5. OANDA Getting the API Key & other Preparations.srt
5.9 kB
22. Implementation and Automation with OANDA (UPDATED!)/8. Storing and resampling real-time tick data (Part 2).srt
5.9 kB
3. Day Trading with OANDA A-Z a Deep Dive/9. Introduction to Charting.srt
5.8 kB
16. Defining and Backtesting simple MomentumContrarian Strategies/10. OOP Challenge Create the Contrarian Backtesting Class (incl. Solution).srt
5.8 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/49. Filtering DataFrames by many Conditions (OR).srt
5.8 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/22. Intro to Tabular Data Pandas.srt
5.8 kB
15. Defining and Backtesting SMA Strategies/1. SMA Crossover Strategies - Overview.srt
5.8 kB
11. Financial Data Analysis with Pandas - an Introduction/15. Exponentially-weighted Moving Averages (EWMA).srt
5.8 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/10. Boolean Arrays and Conditional Filtering.srt
5.8 kB
20. Advanced Backtesting Techniques/14. Using Modules and adding Docstrings.srt
5.7 kB
32. Appendix 2 User-defined Functions (required for OOP)/6. How to unpack Iterables.srt
5.7 kB
24. Cloud Deployment (AWS) Scheduling Trading Sessions Full Automation/12. How to stop Trading Sessions (FXCM).srt
5.7 kB
31. Appendix 1 Python (& Finance) Basics/51. Calculate a Project´s Payback Period.srt
5.7 kB
2. +++ PART 1 Day Trading, Online Brokers and APIs +++/2. Long Term Investing vs. (Algorithmic) Day Trading.srt
5.7 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/20. How to perform row-wise and column-wise Operations.srt
5.7 kB
12. Advanced Topics/4. Timezones and Converting (Part 2).srt
5.7 kB
11. Financial Data Analysis with Pandas - an Introduction/9. Financial Time Series - Covariance and Correlation.srt
5.6 kB
15. Defining and Backtesting SMA Strategies/9. Creating the Class (Part 4).srt
5.6 kB
23. Implementation and Automation with FXCM (Updated!)/13. Defining a Simple Contrarian Trading Strategy.srt
5.6 kB
29. Error Handling How to make your Trading Bot more stable and reliable/17. FXCM Error Handling (Part 1).srt
5.6 kB
1. Getting Started/3. Did you know... (what Data can tell us about Day Trading).srt
5.6 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/57. Histogramms (Part 1).srt
5.5 kB
15. Defining and Backtesting SMA Strategies/11. Creating the Class (Part 6).srt
5.5 kB
31. Appendix 1 Python (& Finance) Basics/32. Lists and Element-wise Operations.srt
5.5 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/15. How to work with nested Lists.srt
5.5 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/31. Slicing Rows and Columns with iloc (position-based indexing).srt
5.5 kB
12. Advanced Topics/3. Timezones and Converting (Part 1).srt
5.5 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/48. Filtering DataFrames by many Conditions (AND).srt
5.5 kB
29. Error Handling How to make your Trading Bot more stable and reliable/9. Try again (...until it works).srt
5.4 kB
31. Appendix 1 Python (& Finance) Basics/46. Operators (Theory).srt
5.4 kB
6. Excursus How to avoid and debug Coding Errors (don´t skip!)/6. IndexErrors.srt
5.4 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/41. The copy() method.srt
5.4 kB
7. Trading with Python and OANDAFXCM - an Introduction/18. FXCM How to load Historical Price Data (Part 2).srt
5.4 kB
22. Implementation and Automation with OANDA (UPDATED!)/9. Storing and resampling real-time tick data (Part 3).srt
5.4 kB
13. Object Oriented Programming (OOP) Creating a Financial Analysis Class/2. The Financial Analysis Class live in action (Part 1).srt
5.4 kB
6. Excursus How to avoid and debug Coding Errors (don´t skip!)/13. External Factors and Issues.srt
5.3 kB
20. Advanced Backtesting Techniques/4. Creating an Iterative Base Class (Part 1).srt
5.3 kB
15. Defining and Backtesting SMA Strategies/13. Creating the Class (Part 8).srt
5.3 kB
31. Appendix 1 Python (& Finance) Basics/12. The print() Function.srt
5.3 kB
6. Excursus How to avoid and debug Coding Errors (don´t skip!)/14. Errors related to the course content (Transcription Errors).srt
5.2 kB
16. Defining and Backtesting simple MomentumContrarian Strategies/3. Excursus Your FAQs answered.srt
5.2 kB
31. Appendix 1 Python (& Finance) Basics/33. Slicing Lists.srt
5.1 kB
24. Cloud Deployment (AWS) Scheduling Trading Sessions Full Automation/10. How to schedule Trading sessions with the Task Scheduler.srt
5.1 kB
20. Advanced Backtesting Techniques/1. Introduction to Iterative Backtesting (event-driven).srt
5.1 kB
17. Defining and Backtesting Mean-Reversion Strategies (Bollinger)/3. Defining a Bollinger Bands Mean-Reversion Strategy (Part 1).srt
5.1 kB
29. Error Handling How to make your Trading Bot more stable and reliable/11. Waiting periods between re-tries.srt
5.1 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/38. First Steps with Pandas Series.srt
5.1 kB
18. Trading Strategies powered by Machine Learning - Regression/11. Out-Sample Forward Testing.srt
5.0 kB
19. Trading Strategies powered by Machine Learning - Classification/9. The Classification Backtesting Class explained (Part 2).srt
5.0 kB
31. Appendix 1 Python (& Finance) Basics/44. String Replacement.srt
5.0 kB
31. Appendix 1 Python (& Finance) Basics/6. Calculate Interest Rates and Returns with Python.srt
5.0 kB
23. Implementation and Automation with FXCM (Updated!)/17. SMA Crossover and Bollinger Bands (Solution).srt
5.0 kB
16. Defining and Backtesting simple MomentumContrarian Strategies/5. Vectorized Strategy Backtesting.srt
4.9 kB
26. Trading Hours, Spreads and Granularity - control and limit Trading Costs!/5. The Impact of Granularity.srt
4.9 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/9. Numpy Universal Functions.srt
4.9 kB
31. Appendix 1 Python (& Finance) Basics/11. Variables - Dos, Don´ts and Conventions.srt
4.9 kB
3. Day Trading with OANDA A-Z a Deep Dive/4. Our second Trade - EURUSD FOREX Trading.srt
4.9 kB
3. Day Trading with OANDA A-Z a Deep Dive/14. A more general Example.srt
4.8 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/46. Renaming Index & Column Labels with rename().srt
4.8 kB
20. Advanced Backtesting Techniques/9. Creating an Iterative Base Class (Part 6).srt
4.8 kB
17. Defining and Backtesting Mean-Reversion Strategies (Bollinger)/7. OOP Challenge Create the Bollinger Bands Backtesting Class (incl. Solution).srt
4.8 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/16. 2-dimensional Numpy Arrays.srt
4.7 kB
18. Trading Strategies powered by Machine Learning - Regression/10. In-Sample Backtesting and the Look-ahead-bias.srt
4.7 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/5. Vectorized Operations with Numpy Arrays.srt
4.7 kB
14. +++ PART 3 Defining and Testing Trading Strategies +++/4. Getting the Data.srt
4.7 kB
18. Trading Strategies powered by Machine Learning - Regression/5. Underfitting.srt
4.6 kB
31. Appendix 1 Python (& Finance) Basics/14. TVM Problems with many Cashflows.srt
4.6 kB
31. Appendix 1 Python (& Finance) Basics/36. Sorting and Reversing Lists.srt
4.6 kB
22. Implementation and Automation with OANDA (UPDATED!)/11. Storing and resampling real-time tick data (Part 5).srt
4.5 kB
24. Cloud Deployment (AWS) Scheduling Trading Sessions Full Automation/5. How to connect to your EC2 Instance.srt
4.5 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/19. Recap Changing Elements in a Numpy Array slice.srt
4.5 kB
16. Defining and Backtesting simple MomentumContrarian Strategies/1. Simple ContrarianMomentum Strategies - Overview.srt
4.5 kB
13. Object Oriented Programming (OOP) Creating a Financial Analysis Class/9. Encapsulation and protected Attributes.srt
4.5 kB
6. Excursus How to avoid and debug Coding Errors (don´t skip!)/9. TypeErrors and ValueErrors.srt
4.4 kB
31. Appendix 1 Python (& Finance) Basics/3. Calculate Future Values (FV) with Python Compounding.srt
4.4 kB
31. Appendix 1 Python (& Finance) Basics/25. The Data Type Hierarchy (Theory).srt
4.4 kB
22. Implementation and Automation with OANDA (UPDATED!)/19. Implementing an SMA Crossover Strategy (Solution).srt
4.4 kB
13. Object Oriented Programming (OOP) Creating a Financial Analysis Class/15. Creating and Importing Python Modules (.py).srt
4.3 kB
29. Error Handling How to make your Trading Bot more stable and reliable/15. Oanda Error Handling (Part 3).srt
4.3 kB
29. Error Handling How to make your Trading Bot more stable and reliable/8. finally.srt
4.3 kB
6. Excursus How to avoid and debug Coding Errors (don´t skip!)/7. Indentation Errors.srt
4.3 kB
24. Cloud Deployment (AWS) Scheduling Trading Sessions Full Automation/9. How to start Trading sessions with Batch (.bat) Files.srt
4.2 kB
22. Implementation and Automation with OANDA (UPDATED!)/14. Working with historical data and real-time tick data (Part 3).srt
4.2 kB
13. Object Oriented Programming (OOP) Creating a Financial Analysis Class/3. The Financial Analysis Class live in action (Part 2).srt
4.1 kB
29. Error Handling How to make your Trading Bot more stable and reliable/12. Implementation with Oanda V20 Connection Issues.srt
4.1 kB
23. Implementation and Automation with FXCM (Updated!)/3. Troubleshooting FXCM Server Connection Issues.html
4.1 kB
7. Trading with Python and OANDAFXCM - an Introduction/16. Troubleshooting FXCM Server Connection Issues.html
4.1 kB
7. Trading with Python and OANDAFXCM - an Introduction/8. OANDA How to load Historical Price Data (Part 2).srt
4.1 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/45. Changing Column Labels.srt
4.1 kB
7. Trading with Python and OANDAFXCM - an Introduction/9. OANDA Streaming high-frequency real-time Data.srt
4.1 kB
18. Trading Strategies powered by Machine Learning - Regression/7. A simple Linear Model to predict Financial Returns (Part 1).srt
4.1 kB
23. Implementation and Automation with FXCM (Updated!)/12. Working with historical data and real-time tick data (Part 3).srt
4.1 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/29. Zero-based Indexing and Negative Indexing.srt
4.1 kB
4. FOREX Day Trading with FXCM/7. Order Types at a glance.srt
4.1 kB
4. FOREX Day Trading with FXCM/4. Trade Analysis.srt
4.1 kB
3. Day Trading with OANDA A-Z a Deep Dive/13. Take-Profit and Stop-Loss Orders.srt
4.0 kB
31. Appendix 1 Python (& Finance) Basics/28. Integers.srt
4.0 kB
13. Object Oriented Programming (OOP) Creating a Financial Analysis Class/7. String representation and the special method __repr__().srt
4.0 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/33. Selecting Rows with loc (label-based indexing).srt
4.0 kB
15. Defining and Backtesting SMA Strategies/6. Creating the Class (Part 1).srt
3.9 kB
19. Trading Strategies powered by Machine Learning - Classification/4. Predicting Market Direction with Logistic Regression.srt
3.9 kB
16. Defining and Backtesting simple MomentumContrarian Strategies/4. Defining a simple Contrarian Strategy.srt
3.9 kB
24. Cloud Deployment (AWS) Scheduling Trading Sessions Full Automation/8. How to run Python Scripts in a Windows Command Prompt.srt
3.9 kB
18. Trading Strategies powered by Machine Learning - Regression/3. Making Predictions with Linear Regression.srt
3.9 kB
31. Appendix 1 Python (& Finance) Basics/17. Indexing Lists.srt
3.9 kB
26. Trading Hours, Spreads and Granularity - control and limit Trading Costs!/3. The best time to trade (Part 2).srt
3.8 kB
29. Error Handling How to make your Trading Bot more stable and reliable/7. try, except, else.srt
3.8 kB
6. Excursus How to avoid and debug Coding Errors (don´t skip!)/1. Introduction.srt
3.8 kB
26. Trading Hours, Spreads and Granularity - control and limit Trading Costs!/2. The best time to trade (Part 1).srt
3.8 kB
7. Trading with Python and OANDAFXCM - an Introduction/4. OANDA How to install the OANDA API Wrapper.srt
3.7 kB
31. Appendix 1 Python (& Finance) Basics/22. Calculate an Investment Project´s NPV.srt
3.7 kB
19. Trading Strategies powered by Machine Learning - Classification/6. Out-Sample Forward Testing.srt
3.7 kB
23. Implementation and Automation with FXCM (Updated!)/9. Storing and resampling real-time tick data (Part 3).srt
3.6 kB
28. A Machine Learning-powered Strategy A-Z (DNN)/8. Feature ScalingEngineering.srt
3.6 kB
19. Trading Strategies powered by Machine Learning - Classification/3. Getting and Preparing the Data.srt
3.6 kB
7. Trading with Python and OANDAFXCM - an Introduction/13. FXCM How to install the FXCM API Wrapper.srt
3.6 kB
31. Appendix 1 Python (& Finance) Basics/8. Excursus How to add inline comments.srt
3.6 kB
13. Object Oriented Programming (OOP) Creating a Financial Analysis Class/6. The method log_returns().srt
3.6 kB
13. Object Oriented Programming (OOP) Creating a Financial Analysis Class/10. The method set_ticker().srt
3.5 kB
16. Defining and Backtesting simple MomentumContrarian Strategies/8. Trades and Trading Costs (Part 2).srt
3.5 kB
4. FOREX Day Trading with FXCM/3. Example Trade Buying EURUSD.srt
3.5 kB
31. Appendix 1 Python (& Finance) Basics/16. Zero-based Indexing and negative Indexing in Python (Theory).srt
3.5 kB
7. Trading with Python and OANDAFXCM - an Introduction/14. FXCM Getting the Access Token & other Preparations.srt
3.4 kB
32. Appendix 2 User-defined Functions (required for OOP)/8. How to return many results.srt
3.4 kB
22. Implementation and Automation with OANDA (UPDATED!)/20. Implementing a Bollinger Bands Strategy (Solution).srt
3.4 kB
31. Appendix 1 Python (& Finance) Basics/35. Changing Elements in Lists.srt
3.4 kB
9. +++ PART 2 Pandas for Financial Data Analysis and Introduction to OOP +++/1. Introduction and Downloads Part 2.srt
3.4 kB
22. Implementation and Automation with OANDA (UPDATED!)/2. Updating the Wrapper Package (Part 2).srt
3.3 kB
24. Cloud Deployment (AWS) Scheduling Trading Sessions Full Automation/1. Introduction and Motivation.srt
3.3 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/4. Indexing and Slicing Numpy Arrays.srt
3.3 kB
6. Excursus How to avoid and debug Coding Errors (don´t skip!)/8. Misuse of function names and keywords.srt
3.2 kB
15. Defining and Backtesting SMA Strategies/10. Creating the Class (Part 5).srt
3.2 kB
32. Appendix 2 User-defined Functions (required for OOP)/1.1 Appendix2_Materials.zip
3.2 kB
15. Defining and Backtesting SMA Strategies/12. Creating the Class (Part 7).srt
3.2 kB
29. Error Handling How to make your Trading Bot more stable and reliable/4. try and except.srt
3.1 kB
31. Appendix 1 Python (& Finance) Basics/4. Calculate Present Values (FV) with Python Discounting.srt
3.1 kB
28. A Machine Learning-powered Strategy A-Z (DNN)/11. Saving Model and Parameters.srt
3.1 kB
31. Appendix 1 Python (& Finance) Basics/15. Intro to Python Lists.srt
3.1 kB
27. Working with two or many Strategies (Combination)/7. Combining both Strategies - Alternative 2.srt
3.0 kB
27. Working with two or many Strategies (Combination)/5. Taking into account busy Trading Hours.srt
3.0 kB
20. Advanced Backtesting Techniques/5. Creating an Iterative Base Class (Part 2).srt
3.0 kB
29. Error Handling How to make your Trading Bot more stable and reliable/10. How to limit the number of retries.srt
3.0 kB
16. Defining and Backtesting simple MomentumContrarian Strategies/2. Getting the Data.srt
3.0 kB
19. Trading Strategies powered by Machine Learning - Classification/5. In-Sample Backtesting and the Look-ahead-bias.srt
2.9 kB
22. Implementation and Automation with OANDA (UPDATED!)/23. Importing a Trader Module Class.srt
2.9 kB
27. Working with two or many Strategies (Combination)/3. Strategy 2 Mean Reversion.srt
2.9 kB
31. Appendix 1 Python (& Finance) Basics/45. Booleans.srt
2.9 kB
24. Cloud Deployment (AWS) Scheduling Trading Sessions Full Automation/3. Amazon Web Services (AWS) - Overview and how to create a Free Trial Account.srt
2.9 kB
29. Error Handling How to make your Trading Bot more stable and reliable/16. Implementation with FXCM APIServer Issues.srt
2.8 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/28. Selecting one Column with the dot notation.srt
2.8 kB
27. Working with two or many Strategies (Combination)/2. Strategy 1 SMA.srt
2.8 kB
20. Advanced Backtesting Techniques/6. Creating an Iterative Base Class (Part 3).srt
2.8 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/65. Introduction to GroupBy Operations.srt
2.8 kB
28. A Machine Learning-powered Strategy A-Z (DNN)/6. Adding lags.srt
2.7 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/53. Exporting DataFrames to csv.srt
2.7 kB
1. Getting Started/6. LEGAL DISCLAIMER (MUST READ!) .html
2.6 kB
4. FOREX Day Trading with FXCM/6. Closing Positions vs. Hedging Positions.srt
2.6 kB
27. Working with two or many Strategies (Combination)/1. Introduction.srt
2.6 kB
11. Financial Data Analysis with Pandas - an Introduction/1. Getting Ready (Installing required library).srt
2.6 kB
31. Appendix 1 Python (& Finance) Basics/9. Variables and Memory (Theory).srt
2.5 kB
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/18. How to slice 2-dim Numpy Arrays (Part 2).srt
2.5 kB
26. Trading Hours, Spreads and Granularity - control and limit Trading Costs!/6. Conclusions.srt
2.5 kB
28. A Machine Learning-powered Strategy A-Z (DNN)/7. Splitting into Train and Test Set.srt
2.4 kB
25. +++ PART 5 Expert Tips & Tricks, Case Studies and more +++/1. Overview.srt
2.3 kB
17. Defining and Backtesting Mean-Reversion Strategies (Bollinger)/2. Getting the Data.srt
2.3 kB
23. Implementation and Automation with FXCM (Updated!)/16. Trading other Strategies - Coding Challenge.srt
2.2 kB
21. +++ PART 4 Real-time Implementation and Automation of Strategies +++/1. Introduction and Overview.srt
2.2 kB
2. +++ PART 1 Day Trading, Online Brokers and APIs +++/1. Our very first Trade.srt
2.2 kB
22. Implementation and Automation with OANDA (UPDATED!)/18. Trading other Strategies - Coding Challenge.srt
2.1 kB
5. Installing Python and Jupyter Notebooks/1. Introduction.srt
2.1 kB
26. Trading Hours, Spreads and Granularity - control and limit Trading Costs!/4. Spreads during the busy hours.srt
2.1 kB
31. Appendix 1 Python (& Finance) Basics/26. Excursus Dynamic Typing in Python.srt
2.0 kB
27. Working with two or many Strategies (Combination)/6. Strategy Backtesting.srt
2.0 kB
29. Error Handling How to make your Trading Bot more stable and reliable/3. Python Errors (Exceptions).srt
2.0 kB
29. Error Handling How to make your Trading Bot more stable and reliable/5. Catching specific Errors.srt
1.9 kB
18. Trading Strategies powered by Machine Learning - Regression/6. Getting the Data.srt
1.9 kB
30. +++ APPENDIX Python Crash Course +++/1. Overview.srt
1.9 kB
4. FOREX Day Trading with FXCM/5. Charting.srt
1.5 kB
6. Excursus How to avoid and debug Coding Errors (don´t skip!)/3. Major reasons for Coding Errors.srt
1.5 kB
7. Trading with Python and OANDAFXCM - an Introduction/14.1 FXCM_firststeps.zip
1.5 kB
5. Installing Python and Jupyter Notebooks/5. Tips for Python Beginners.srt
1.4 kB
28. A Machine Learning-powered Strategy A-Z (DNN)/4. Getting and Preparing the Data.srt
1.4 kB
29. Error Handling How to make your Trading Bot more stable and reliable/6. The Exception class.srt
1.4 kB
7. Trading with Python and OANDAFXCM - an Introduction/2. Overview.srt
1.4 kB
7. Trading with Python and OANDAFXCM - an Introduction/5.1 Oanda_firststeps.zip
1.3 kB
8. Conclusion and Outlook/1. Conclusion and Outlook.srt
928 Bytes
28. A Machine Learning-powered Strategy A-Z (DNN)/12. Important Notices.html
822 Bytes
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/35. Label-based Indexing Cheat Sheets.html
701 Bytes
7. Trading with Python and OANDAFXCM - an Introduction/12. FXCM Commands to install required packages.html
626 Bytes
3. Day Trading with OANDA A-Z a Deep Dive/15. Trading Challenge.html
569 Bytes
28. A Machine Learning-powered Strategy A-Z (DNN)/2. Installation of Tensorflow & Keras (Part 1).html
555 Bytes
22. Implementation and Automation with OANDA (UPDATED!)/24. Excursus Printing all ticks in a Command PromptTerminal.html
533 Bytes
23. Implementation and Automation with FXCM (Updated!)/20. Excursus Printing all ticks in a Command PromptTerminal.html
533 Bytes
4. FOREX Day Trading with FXCM/8. Trading Challenge.html
511 Bytes
7. Trading with Python and OANDAFXCM - an Introduction/11. Trading Challenge.html
446 Bytes
7. Trading with Python and OANDAFXCM - an Introduction/21. Trading Challenge.html
445 Bytes
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/32. Position-based Indexing Cheat Sheets.html
440 Bytes
7. Trading with Python and OANDAFXCM - an Introduction/3. OANDA Commands to install required packages.html
409 Bytes
22. Implementation and Automation with OANDA (UPDATED!)/3. Weekend and Bank Holiday Alert.html
381 Bytes
23. Implementation and Automation with FXCM (Updated!)/1. Weekend and Bank Holiday Alert.html
381 Bytes
24. Cloud Deployment (AWS) Scheduling Trading Sessions Full Automation/7. Weekend and Bank Holiday Alert.html
381 Bytes
22. Implementation and Automation with OANDA (UPDATED!)/1. Updating the Wrapper Package (Part 1).html
359 Bytes
1. Getting Started/4. Test your knowledge.html
203 Bytes
7. Trading with Python and OANDAFXCM - an Introduction/1. How to maximize your learning experience.html
203 Bytes
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/26. Coding Exercise 9.html
159 Bytes
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/37. Coding Exercise 10.html
159 Bytes
11. Financial Data Analysis with Pandas - an Introduction/10. Coding Exercise 2.html
158 Bytes
31. Appendix 1 Python (& Finance) Basics/53. Coding Exercise 5.html
158 Bytes
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/14. Coding Exercise 7.html
158 Bytes
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/21. Coding Exercise 8.html
158 Bytes
32. Appendix 2 User-defined Functions (required for OOP)/10. Coding Exercise 6.html
156 Bytes
0. Websites you may like/[FreeCourseSite.com].url
127 Bytes
9. +++ PART 2 Pandas for Financial Data Analysis and Introduction to OOP +++/0. Websites you may like/[FreeCourseSite.com].url
127 Bytes
31. Appendix 1 Python (& Finance) Basics/1. Section Downloads.html
124 Bytes
32. Appendix 2 User-defined Functions (required for OOP)/1. Section Downloads.html
124 Bytes
33. Appendix 3 Numpy, Pandas, Matplotlib and Seaborn Crash Course/1. Downloads for this Section.html
124 Bytes
14. +++ PART 3 Defining and Testing Trading Strategies +++/3. Downloads for Part 3.html
123 Bytes
21. +++ PART 4 Real-time Implementation and Automation of Strategies +++/2. Downloads for Part 4.html
123 Bytes
25. +++ PART 5 Expert Tips & Tricks, Case Studies and more +++/2. Downloads for PART 5.html
123 Bytes
0. Websites you may like/[CourseClub.Me].url
122 Bytes
29. Error Handling How to make your Trading Bot more stable and reliable/2. Section Materials Notebooks.html
122 Bytes
9. +++ PART 2 Pandas for Financial Data Analysis and Introduction to OOP +++/0. Websites you may like/[CourseClub.Me].url
122 Bytes
31. Appendix 1 Python (& Finance) Basics/34. Slicing Cheat Sheet.html
108 Bytes
0. Websites you may like/[GigaCourse.Com].url
49 Bytes
9. +++ PART 2 Pandas for Financial Data Analysis and Introduction to OOP +++/0. Websites you may like/[GigaCourse.Com].url
49 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>