搜索
[UdemyCourseDownloader] Deep Learning with TensorFlow 2.0 [2019]
磁力链接/BT种子名称
[UdemyCourseDownloader] Deep Learning with TensorFlow 2.0 [2019]
磁力链接/BT种子简介
种子哈希:
c21e69cf7d6e2cba5fbc345eda84075b7bdbe25a
文件大小:
1.98G
已经下载:
7
次
下载速度:
极快
收录时间:
2024-10-31
最近下载:
2025-04-13
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:C21E69CF7D6E2CBA5FBC345EDA84075B7BDBE25A
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
世界之窗
小蓝俱乐部
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
51动漫
91短视频
抖音Max
TikTok成人版
PornHub
暗网Xvideo
草榴社区
哆哔涩漫
呦乐园
萝莉岛
搜同
最近搜索
东北大
撸点颜值
多体位
xchange+pdf
loveit
精选泄密视频
最新极品调
妇大秀
坐插菊花
matu-60
妹妹的屁眼
俄罗斯
谭晓彤
内射母狗
身材性感
一边一边
第一视角+
고딩
大二
91小二先生
电影
die my love
みなと
start-080
mida-341
小尺
推特美女
清纯白嫩少女『小月喵』✅+被大鸡巴爸爸当成鸡巴套子+小母狗叫床的声音真好听+小反差婊一个
大妹二妹
最新情趣酒店偷拍
文件列表
14. Appendix Linear Algebra Fundamentals/11. Why is Linear Algebra Useful.mp4
151.3 MB
01. Welcome! Course introduction/1. Meet your instructors and why you should study machine learning.mp4
110.9 MB
13. Business case/4. Preprocessing the data.mp4
96.5 MB
13. Business case/1. Exploring the dataset and identifying predictors.mp4
82.0 MB
13. Business case/9. Setting an early stopping mechanism.mp4
56.0 MB
14. Appendix Linear Algebra Fundamentals/3. Linear Algebra and Geometry.mp4
52.2 MB
14. Appendix Linear Algebra Fundamentals/10. Dot Product of Matrices.mp4
51.8 MB
12. The MNIST example/6. Preprocess the data - shuffle and batch the data.mp4
48.2 MB
12. The MNIST example/10. Learning.mp4
46.6 MB
03. Setting up the working environment/9. Installing TensorFlow 2.mp4
45.0 MB
03. Setting up the working environment/2. Why Python and why Jupyter.mp4
43.0 MB
02. Introduction to neural networks/24. N-parameter gradient descent.mp4
41.4 MB
05. TensorFlow - An introduction/1. TensorFlow outline.mp4
40.2 MB
02. Introduction to neural networks/12. The linear model. Multiple inputs and multiple outputs.mp4
40.1 MB
05. TensorFlow - An introduction/5. Model layout - inputs, outputs, targets, weights, biases, optimizer and loss.mp4
40.1 MB
14. Appendix Linear Algebra Fundamentals/8. Transpose of a Matrix.mp4
39.9 MB
13. Business case/3. Balancing the dataset.mp4
36.9 MB
03. Setting up the working environment/4. Installing Anaconda.mp4
36.6 MB
13. Business case/8. Learning and interpreting the result.mp4
36.3 MB
14. Appendix Linear Algebra Fundamentals/2. Scalars and Vectors.mp4
35.5 MB
14. Appendix Linear Algebra Fundamentals/1. What is a Matrix.mp4
35.2 MB
05. TensorFlow - An introduction/6. Interpreting the result and extracting the weights and bias.mp4
34.4 MB
14. Appendix Linear Algebra Fundamentals/6. Addition and Subtraction of Matrices.mp4
34.2 MB
12. The MNIST example/13. Testing the model.mp4
34.1 MB
12. The MNIST example/4. Preprocess the data - create a validation dataset and scale the data.mp4
33.5 MB
12. The MNIST example/8. Outline the model.mp4
32.7 MB
14. Appendix Linear Algebra Fundamentals/4. Scalars, Vectors and Matrices in Python.mp4
28.0 MB
05. TensorFlow - An introduction/2. TensorFlow 2 intro.mp4
26.3 MB
05. TensorFlow - An introduction/7. Cutomizing your model.mp4
25.9 MB
14. Appendix Linear Algebra Fundamentals/9. Dot Product of Vectors.mp4
25.2 MB
14. Appendix Linear Algebra Fundamentals/5. Tensors.mp4
23.6 MB
03. Setting up the working environment/6. The Jupyter dashboard - part 2.mp4
22.1 MB
04. Minimal example - your first machine learning algorithm/4. Minimal example - part 4.mp4
21.8 MB
12. The MNIST example/2. How to tackle the MNIST.mp4
21.4 MB
13. Business case/6. Load the preprocessed data.mp4
20.3 MB
05. TensorFlow - An introduction/4. Types of file formats in TensorFlow and data handling.mp4
19.4 MB
02. Introduction to neural networks/22. One parameter gradient descent.mp4
18.6 MB
12. The MNIST example/3. Importing the relevant packages and load the data.mp4
18.6 MB
01. Welcome! Course introduction/2. What does the course cover.mp4
17.2 MB
12. The MNIST example/1. The dataset.mp4
16.4 MB
12. The MNIST example/9. Select the loss and the optimizer.mp4
16.0 MB
15. Conclusion/1. See how much you have learned.mp4
14.6 MB
02. Introduction to neural networks/1. Introduction to neural networks.mp4
14.2 MB
06. Going deeper Introduction to deep neural networks/3. Understanding deep nets in depth.mp4
14.1 MB
02. Introduction to neural networks/5. Types of machine learning.mp4
12.8 MB
13. Business case/11. Testing the model.mp4
12.7 MB
02. Introduction to neural networks/20. Cross-entropy loss.mp4
11.9 MB
14. Appendix Linear Algebra Fundamentals/7. Errors when Adding Matrices.mp4
11.7 MB
06. Going deeper Introduction to deep neural networks/7. Backpropagation.mp4
11.6 MB
08. Overfitting/1. Underfitting and overfitting.mp4
11.6 MB
15. Conclusion/3. An overview of CNNs.mp4
11.5 MB
04. Minimal example - your first machine learning algorithm/2. Minimal example - part 2.mp4
11.2 MB
10. Gradient descent and learning rates/4. Learning rate schedules.mp4
10.8 MB
04. Minimal example - your first machine learning algorithm/3. Minimal example - part 3.mp4
10.2 MB
03. Setting up the working environment/5. The Jupyter dashboard - part 1.mp4
10.0 MB
08. Overfitting/6. Early stopping.mp4
9.9 MB
10. Gradient descent and learning rates/1. Stochastic gradient descent.mp4
9.8 MB
08. Overfitting/3. Training and validation.mp4
9.7 MB
02. Introduction to neural networks/7. The linear model.mp4
9.6 MB
06. Going deeper Introduction to deep neural networks/4. Why do we need non-linearities.mp4
9.4 MB
10. Gradient descent and learning rates/6. Adaptive learning rate schedules.mp4
9.3 MB
02. Introduction to neural networks/3. Training the model.mp4
9.3 MB
06. Going deeper Introduction to deep neural networks/5. Activation functions.mp4
9.2 MB
11. Preprocessing/1. Preprocessing introduction.mp4
8.8 MB
11. Preprocessing/3. Standardization.mp4
8.7 MB
09. Initialization/1. Initialization - Introduction.mp4
8.4 MB
13. Business case/2. Outlining the business case solution.mp4
8.3 MB
15. Conclusion/6. An overview of non-NN approaches.mp4
8.2 MB
10. Gradient descent and learning rates/7. Adaptive moment estimation.mp4
8.2 MB
02. Introduction to neural networks/10. The linear model. Multiple inputs.mp4
7.9 MB
08. Overfitting/4. Training, validation, and test.mp4
7.8 MB
06. Going deeper Introduction to deep neural networks/6. Softmax activation.mp4
7.7 MB
02. Introduction to neural networks/18. L2-norm loss.mp4
7.6 MB
03. Setting up the working environment/1. Setting up the environment - An introduction - Do not skip, please!.mp4
7.5 MB
05. TensorFlow - An introduction/3. A Note on Coding in TensorFlow.mp4
7.5 MB
08. Overfitting/5. N-fold cross validation.mp4
7.3 MB
06. Going deeper Introduction to deep neural networks/8. Backpropagation - visual representation.mp4
7.2 MB
08. Overfitting/2. Underfitting and overfitting - classification.mp4
7.1 MB
06. Going deeper Introduction to deep neural networks/2. What is a deep net.mp4
7.1 MB
04. Minimal example - your first machine learning algorithm/1. Minimal example - part 1.mp4
6.9 MB
02. Introduction to neural networks/14. Graphical representation.mp4
6.7 MB
15. Conclusion/2. What’s further out there in the machine and deep learning world.mp4
6.6 MB
11. Preprocessing/5. One-hot and binary encoding.mp4
6.5 MB
10. Gradient descent and learning rates/3. Momentum.mp4
6.4 MB
11. Preprocessing/4. Dealing with categorical data.mp4
6.4 MB
09. Initialization/3. Xavier initialization.mp4
6.1 MB
02. Introduction to neural networks/16. The objective function.mp4
6.0 MB
09. Initialization/2. Types of simple initializations.mp4
5.9 MB
15. Conclusion/5. An overview of RNNs.mp4
5.1 MB
06. Going deeper Introduction to deep neural networks/1. Layers.mp4
5.0 MB
10. Gradient descent and learning rates/2. Gradient descent pitfalls.mp4
4.5 MB
11. Preprocessing/2. Basic preprocessing.mp4
3.8 MB
10. Gradient descent and learning rates/5. Learning rate schedules. A picture.mp4
3.3 MB
06. Going deeper Introduction to deep neural networks/1.1 Course Notes - Section 6.pdf.pdf
958.9 kB
06. Going deeper Introduction to deep neural networks/2.1 Course Notes - Section 6.pdf.pdf
958.9 kB
02. Introduction to neural networks/1.1 Course Notes - Section 2.pdf.pdf
949.9 kB
02. Introduction to neural networks/3.1 Course Notes - Section 2.pdf.pdf
949.9 kB
02. Introduction to neural networks/5.1 Course Notes - Section 2.pdf.pdf
949.9 kB
02. Introduction to neural networks/7.1 Course Notes - Section 2.pdf.pdf
949.9 kB
02. Introduction to neural networks/10.1 Course Notes - Section 2.pdf.pdf
949.9 kB
02. Introduction to neural networks/12.1 Course Notes - Section 2.pdf.pdf
949.9 kB
02. Introduction to neural networks/14.1 Course Notes - Section 2.pdf.pdf
949.9 kB
02. Introduction to neural networks/16.1 Course Notes - Section 2.pdf.pdf
949.9 kB
02. Introduction to neural networks/18.1 Course Notes - Section 2.pdf.pdf
949.9 kB
02. Introduction to neural networks/20.1 Course Notes - Section 2.pdf.pdf
949.9 kB
02. Introduction to neural networks/22.1 Course Notes - Section 2.pdf.pdf
949.9 kB
02. Introduction to neural networks/24.1 Course Notes - Section 2.pdf.pdf
949.9 kB
13. Business case/1.1 Audiobooks_data.csv.csv
640.2 kB
13. Business case/4.3 Audiobooks_data.csv.csv
640.2 kB
13. Business case/5.2 Audiobooks_data.csv.csv
640.2 kB
03. Setting up the working environment/7.1 Shortcuts for Jupyter.pdf.pdf
634.0 kB
07. Backpropagation. A peek into the Mathematics of Optimization/1.1 Backpropagation-a-peek-into-the-Mathematics-of-Optimization.pdf.pdf
186.7 kB
02. Introduction to neural networks/22.2 GD-function-example.xlsx.xlsx
43.4 kB
13. Business case/4. Preprocessing the data.vtt
11.2 kB
14. Appendix Linear Algebra Fundamentals/11. Why is Linear Algebra Useful.vtt
10.6 kB
04. Minimal example - your first machine learning algorithm/4. Minimal example - part 4.vtt
9.7 kB
13. Business case/1. Exploring the dataset and identifying predictors.vtt
9.5 kB
01. Welcome! Course introduction/1. Meet your instructors and why you should study machine learning.vtt
9.0 kB
14. Appendix Linear Algebra Fundamentals/10. Dot Product of Matrices.vtt
8.4 kB
12. The MNIST example/6. Preprocess the data - shuffle and batch the data.vtt
8.3 kB
02. Introduction to neural networks/22. One parameter gradient descent.vtt
7.6 kB
12. The MNIST example/10. Learning.vtt
7.1 kB
13. Business case/9. Setting an early stopping mechanism.vtt
7.1 kB
05. TensorFlow - An introduction/5. Model layout - inputs, outputs, targets, weights, biases, optimizer and loss.vtt
7.0 kB
02. Introduction to neural networks/24. N-parameter gradient descent.vtt
6.8 kB
12. The MNIST example/8. Outline the model.vtt
6.4 kB
03. Setting up the working environment/9. Installing TensorFlow 2.vtt
6.3 kB
08. Overfitting/6. Early stopping.vtt
6.2 kB
03. Setting up the working environment/6. The Jupyter dashboard - part 2.vtt
6.1 kB
04. Minimal example - your first machine learning algorithm/2. Minimal example - part 2.vtt
6.1 kB
06. Going deeper Introduction to deep neural networks/3. Understanding deep nets in depth.vtt
6.0 kB
15. Conclusion/3. An overview of CNNs.vtt
5.8 kB
03. Setting up the working environment/2. Why Python and why Jupyter.vtt
5.7 kB
12. The MNIST example/4. Preprocess the data - create a validation dataset and scale the data.vtt
5.7 kB
01. Welcome! Course introduction/2. What does the course cover.vtt
5.6 kB
13. Business case/8. Learning and interpreting the result.vtt
5.6 kB
05. TensorFlow - An introduction/6. Interpreting the result and extracting the weights and bias.vtt
5.6 kB
14. Appendix Linear Algebra Fundamentals/4. Scalars, Vectors and Matrices in Python.vtt
5.4 kB
11. Preprocessing/3. Standardization.vtt
5.4 kB
10. Gradient descent and learning rates/4. Learning rate schedules.vtt
5.4 kB
12. The MNIST example/13. Testing the model.vtt
5.4 kB
02. Introduction to neural networks/1. Introduction to neural networks.vtt
5.3 kB
08. Overfitting/1. Underfitting and overfitting.vtt
5.1 kB
02. Introduction to neural networks/12. The linear model. Multiple inputs and multiple outputs.vtt
4.9 kB
14. Appendix Linear Algebra Fundamentals/8. Transpose of a Matrix.vtt
4.8 kB
02. Introduction to neural networks/5. Types of machine learning.vtt
4.8 kB
02. Introduction to neural networks/20. Cross-entropy loss.vtt
4.7 kB
05. TensorFlow - An introduction/1. TensorFlow outline.vtt
4.7 kB
15. Conclusion/1. See how much you have learned.vtt
4.7 kB
15. Conclusion/6. An overview of non-NN approaches.vtt
4.7 kB
10. Gradient descent and learning rates/6. Adaptive learning rate schedules.vtt
4.7 kB
06. Going deeper Introduction to deep neural networks/5. Activation functions.vtt
4.6 kB
08. Overfitting/3. Training and validation.vtt
4.3 kB
10. Gradient descent and learning rates/1. Stochastic gradient descent.vtt
4.3 kB
11. Preprocessing/5. One-hot and binary encoding.vtt
4.3 kB
13. Business case/6. Load the preprocessed data.vtt
4.2 kB
03. Setting up the working environment/4. Installing Anaconda.vtt
4.1 kB
13. Business case/3. Balancing the dataset.vtt
4.1 kB
04. Minimal example - your first machine learning algorithm/1. Minimal example - part 1.vtt
4.0 kB
04. Minimal example - your first machine learning algorithm/3. Minimal example - part 3.vtt
4.0 kB
06. Going deeper Introduction to deep neural networks/7. Backpropagation.vtt
4.0 kB
02. Introduction to neural networks/3. Training the model.vtt
3.9 kB
14. Appendix Linear Algebra Fundamentals/1. What is a Matrix.vtt
3.9 kB
06. Going deeper Introduction to deep neural networks/6. Softmax activation.vtt
3.9 kB
08. Overfitting/5. N-fold cross validation.vtt
3.8 kB
14. Appendix Linear Algebra Fundamentals/9. Dot Product of Vectors.vtt
3.8 kB
05. TensorFlow - An introduction/7. Cutomizing your model.vtt
3.7 kB
14. Appendix Linear Algebra Fundamentals/3. Linear Algebra and Geometry.vtt
3.6 kB
14. Appendix Linear Algebra Fundamentals/6. Addition and Subtraction of Matrices.vtt
3.6 kB
02. Introduction to neural networks/7. The linear model.vtt
3.6 kB
06. Going deeper Introduction to deep neural networks/8. Backpropagation - visual representation.vtt
3.6 kB
11. Preprocessing/1. Preprocessing introduction.vtt
3.5 kB
06. Going deeper Introduction to deep neural networks/4. Why do we need non-linearities.vtt
3.4 kB
14. Appendix Linear Algebra Fundamentals/2. Scalars and Vectors.vtt
3.4 kB
09. Initialization/3. Xavier initialization.vtt
3.3 kB
15. Conclusion/5. An overview of RNNs.vtt
3.3 kB
09. Initialization/2. Types of simple initializations.vtt
3.3 kB
05. TensorFlow - An introduction/2. TensorFlow 2 intro.vtt
3.3 kB
14. Appendix Linear Algebra Fundamentals/5. Tensors.vtt
3.2 kB
12. The MNIST example/1. The dataset.vtt
3.2 kB
09. Initialization/1. Initialization - Introduction.vtt
3.2 kB
12. The MNIST example/2. How to tackle the MNIST.vtt
3.2 kB
10. Gradient descent and learning rates/3. Momentum.vtt
3.2 kB
08. Overfitting/4. Training, validation, and test.vtt
3.2 kB
05. TensorFlow - An introduction/4. Types of file formats in TensorFlow and data handling.vtt
3.1 kB
10. Gradient descent and learning rates/7. Adaptive moment estimation.vtt
3.0 kB
06. Going deeper Introduction to deep neural networks/2. What is a deep net.vtt
2.9 kB
03. Setting up the working environment/5. The Jupyter dashboard - part 1.vtt
2.8 kB
02. Introduction to neural networks/10. The linear model. Multiple inputs.vtt
2.8 kB
12. The MNIST example/3. Importing the relevant packages and load the data.vtt
2.7 kB
12. The MNIST example/9. Select the loss and the optimizer.vtt
2.7 kB
16. Bonus lecture/1. Bonus lecture Next steps.html
2.6 kB
10. Gradient descent and learning rates/2. Gradient descent pitfalls.vtt
2.6 kB
02. Introduction to neural networks/18. L2-norm loss.vtt
2.5 kB
11. Preprocessing/4. Dealing with categorical data.vtt
2.5 kB
08. Overfitting/2. Underfitting and overfitting - classification.vtt
2.4 kB
02. Introduction to neural networks/14. Graphical representation.vtt
2.4 kB
14. Appendix Linear Algebra Fundamentals/7. Errors when Adding Matrices.vtt
2.3 kB
15. Conclusion/2. What’s further out there in the machine and deep learning world.vtt
2.3 kB
06. Going deeper Introduction to deep neural networks/1. Layers.vtt
2.2 kB
12. The MNIST example/12. MNIST - solutions.html
2.2 kB
12. The MNIST example/11. MNIST - exercises.html
2.0 kB
10. Gradient descent and learning rates/5. Learning rate schedules. A picture.vtt
1.9 kB
02. Introduction to neural networks/16. The objective function.vtt
1.9 kB
13. Business case/11. Testing the model.vtt
1.8 kB
13. Business case/2. Outlining the business case solution.vtt
1.8 kB
04. Minimal example - your first machine learning algorithm/5. Minimal example - Exercises.html
1.6 kB
11. Preprocessing/2. Basic preprocessing.vtt
1.5 kB
15. Conclusion/4. How DeepMind uses deep learning.html
1.4 kB
05. TensorFlow - An introduction/8. Minimal example - Exercises.html
1.4 kB
05. TensorFlow - An introduction/3. A Note on Coding in TensorFlow.vtt
1.2 kB
03. Setting up the working environment/1. Setting up the environment - An introduction - Do not skip, please!.vtt
1.2 kB
02. Introduction to neural networks/9. Need Help with Linear Algebra.html
829 Bytes
07. Backpropagation. A peek into the Mathematics of Optimization/1. Backpropagation. A peek into the Mathematics of Optimization.html
539 Bytes
13. Business case/12. Final exercise.html
445 Bytes
13. Business case/5. Preprocessing exercise.html
404 Bytes
03. Setting up the working environment/11. Installing packages - solution.html
339 Bytes
03. Setting up the working environment/7. Jupyter Shortcuts.html
332 Bytes
03. Setting up the working environment/10. Installing packages - exercise.html
227 Bytes
14. Appendix Linear Algebra Fundamentals/7.1 Errors when Adding Matrices Python Notebook.html
220 Bytes
13. Business case/10. Setting an early stopping mechanism - Exercise.html
191 Bytes
14. Appendix Linear Algebra Fundamentals/4.1 Scalars, Vectors and Matrices Python Notebook.html
181 Bytes
14. Appendix Linear Algebra Fundamentals/6.1 Addition and Subtraction Python Notebook.html
178 Bytes
12. The MNIST example/12.1 4. TensorFlow MNIST - Exercise 4 Solution.html
172 Bytes
12. The MNIST example/12.3 5. TensorFlow MNIST - Exercise 5 Solution.html
172 Bytes
13. Business case/7.1 TensorFlow Business Case - Machine Learning - Part 1.html
172 Bytes
13. Business case/8.1 TensorFlow Business Case - Machine Learning - Part 2.html
172 Bytes
13. Business case/9.1 TensorFlow Business Case - Machine Learning - Part 3.html
172 Bytes
14. Appendix Linear Algebra Fundamentals/10.1 Dot Product of Matrices Python Notebook.html
171 Bytes
13. Business case/5.1 TensorFlow Business Case - Preprocessing Exercise Solution.html
167 Bytes
14. Appendix Linear Algebra Fundamentals/8.1 Transpose of a Matrix Python Notebook.html
167 Bytes
13. Business case/11.1 TensorFlow Business Case - Machine Learning Complete Code with Comments.html
166 Bytes
13. Business case/12.1 TensorFlow Business Case - Machine Learning Complete Code with Comments.html
166 Bytes
12. The MNIST example/12.5 8. TensorFlow MNIST - Exercise 8 Solution.html
165 Bytes
12. The MNIST example/12.9 9. TensorFlow MNIST - Exercise 9 Solution.html
165 Bytes
05. TensorFlow - An introduction/7.1 TensorFlow Minimal Example - Complete Code with Comments.html
163 Bytes
13. Business case/4.1 TensorFlow Business Case - Preprocessing with Comments.html
163 Bytes
05. TensorFlow - An introduction/8.3 TensorFlow Minimal Example - Exercise 2_1 - Solution.html
162 Bytes
05. TensorFlow - An introduction/8.5 TensorFlow Minimal Example - Exercise 2_2 - Solution.html
162 Bytes
12. The MNIST example/12.2 7. TensorFlow MNIST - Exercise 7 Solution.html
162 Bytes
12. The MNIST example/12.8 6. TensorFlow MNIST - Exercise 6 Solution.html
162 Bytes
01. Welcome! Course introduction/3. What does the course cover - Quiz.html
161 Bytes
02. Introduction to neural networks/2. Introduction to neural networks - Quiz.html
161 Bytes
02. Introduction to neural networks/4. Training the model - Quiz.html
161 Bytes
02. Introduction to neural networks/6. Types of machine learning - Quiz.html
161 Bytes
02. Introduction to neural networks/8. The linear model - Quiz.html
161 Bytes
02. Introduction to neural networks/11. The linear model. Multiple inputs - Quiz.html
161 Bytes
02. Introduction to neural networks/13. The linear model. Multiple inputs and multiple outputs - Quiz.html
161 Bytes
02. Introduction to neural networks/15. Graphical representation - Quiz.html
161 Bytes
02. Introduction to neural networks/17. The objective function - Quiz.html
161 Bytes
02. Introduction to neural networks/19. L2-norm loss - Quiz.html
161 Bytes
02. Introduction to neural networks/21. Cross-entropy loss - Quiz.html
161 Bytes
02. Introduction to neural networks/23. One parameter gradient descent - Quiz.html
161 Bytes
02. Introduction to neural networks/25. N-parameter gradient descent - Quiz.html
161 Bytes
03. Setting up the working environment/3. Why Python and why Jupyter - Quiz.html
161 Bytes
03. Setting up the working environment/8. The Jupyter dashboard - Quiz.html
161 Bytes
05. TensorFlow - An introduction/8.1 TensorFlow Minimal Example - Exercise 3 - Solution.html
160 Bytes
05. TensorFlow - An introduction/8.2 TensorFlow Minimal Example - Exercise 1 - Solution.html
160 Bytes
12. The MNIST example/12.10 3. TensorFlow MNIST - Exercise 3 Solution.html
160 Bytes
13. Business case/5.3 TensorFlow Business Case - Preprocessing Exercise.html
158 Bytes
12. The MNIST example/12.7 10. TensorFlow MNIST - Exercise 10 Solution.html
157 Bytes
04. Minimal example - your first machine learning algorithm/5.7 Minimal_example_Exercise_3.d. Solution.html
154 Bytes
04. Minimal example - your first machine learning algorithm/5.8 Minimal_example_Exercise_3.b. Solution.html
154 Bytes
04. Minimal example - your first machine learning algorithm/5.9 Minimal_example_Exercise_3.a. Solution.html
154 Bytes
04. Minimal example - your first machine learning algorithm/5.10 Minimal_example_Exercise_3.c. Solution.html
154 Bytes
05. TensorFlow - An introduction/8.4 TensorFlow Minimal Example - All Exercises.html
154 Bytes
14. Appendix Linear Algebra Fundamentals/9.1 Dot Product Python Notebook.html
154 Bytes
12. The MNIST example/13.1 TensorFlow MNIST - Complete Code with Comments.html
153 Bytes
12. The MNIST example/3.1 TensorFlow MNIST - Part 1 with comments.html
150 Bytes
12. The MNIST example/5.1 TensorFlow MNIST - Part 2 with comments.html
150 Bytes
12. The MNIST example/7.1 TensorFlow MNIST - Part 3 with comments.html
150 Bytes
12. The MNIST example/8.1 TensorFlow MNIST - Part 4 with comments.html
150 Bytes
12. The MNIST example/9.1 TensorFlow MNIST - Part 5 with comments.html
150 Bytes
12. The MNIST example/10.1 TensorFlow MNIST - Part 6 with comments.html
150 Bytes
12. The MNIST example/12.4 1. TensorFlow MNIST - Exercise 1 Solution.html
150 Bytes
12. The MNIST example/12.6 2. TensorFlow MNIST - Exercise 2 Solution.html
150 Bytes
04. Minimal example - your first machine learning algorithm/5.2 Minimal_example_Exercise_1_Solution.html
149 Bytes
04. Minimal example - your first machine learning algorithm/5.3 Minimal_example_Exercise_5_Solution.html
149 Bytes
04. Minimal example - your first machine learning algorithm/5.4 Minimal_example_Exercise_2_Solution.html
149 Bytes
04. Minimal example - your first machine learning algorithm/5.5 Minimal_example_Exercise_4_Solution.html
149 Bytes
04. Minimal example - your first machine learning algorithm/5.6 Minimal_example_Exercise_6_Solution.html
149 Bytes
05. TensorFlow - An introduction/7.2 TensorFlow Minimal Example - Complete Code.html
149 Bytes
13. Business case/4.2 TensorFlow Business Case - Preprocessing.html
149 Bytes
14. Appendix Linear Algebra Fundamentals/5.1 Tensors Notebook.html
148 Bytes
05. TensorFlow - An introduction/4.1 TensorFlow Minimal Example - Part 1.html
146 Bytes
05. TensorFlow - An introduction/5.1 TensorFlow Minimal Example - Part 2.html
146 Bytes
05. TensorFlow - An introduction/6.1 TensorFlow Minimal Example - Part 3.html
146 Bytes
04. Minimal example - your first machine learning algorithm/4.1 Minimal example - part 4.html
145 Bytes
12. The MNIST example/11.1 TensorFlow MNIST - All Exercises.html
144 Bytes
04. Minimal example - your first machine learning algorithm/5.1 Minimal_example_All_Exercises.html
143 Bytes
12. The MNIST example/13.2 TensorFlow MNIST - Complete Code.html
139 Bytes
04. Minimal example - your first machine learning algorithm/1.1 Minimal example Part 1.html
136 Bytes
04. Minimal example - your first machine learning algorithm/2.1 Minimal example - part 2.html
136 Bytes
04. Minimal example - your first machine learning algorithm/3.1 Minimal example - part 3.html
136 Bytes
udemycoursedownloader.com.url
132 Bytes
Udemy Course downloader.txt
94 Bytes
12. The MNIST example/5. Preprocess the data - scale the test data.html
81 Bytes
12. The MNIST example/7. Preprocess the data - shuffle and batch the data.html
81 Bytes
13. Business case/7. Load the preprocessed data - Exercise.html
79 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!