搜索
nd880-Ai-for-trading
磁力链接/BT种子名称
nd880-Ai-for-trading
磁力链接/BT种子简介
种子哈希:
c3b1b6753c01d0612bc60281c608b81be74f49d6
文件大小:
4.75G
已经下载:
1135
次
下载速度:
极快
收录时间:
2022-04-05
最近下载:
2024-12-09
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:C3B1B6753C01D0612BC60281C608B81BE74F49D6
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
最近搜索
sexandsubmission ashley lane
大瓜合集
小伙子专找阿姨玩
女子spa手法
瑶瑶今晚又失眠了
性吧传媒
ebod-630
雪天
p站网红萝莉嫩妹【苏苏】剧情演绎开裆黑丝jk服放学后闺床上被哥哥啪啪啪
russian
校花超级漂亮
豆瓣酱
秀人网+【豆瓣酱】
大神寝取ntr
penelope 2024 s01e01 1080p
说一声
seventh son2014
兔兔3p
ai写真
retro remix
白木优子无码
xxx.2160p.
幼幼同学
cisco_ftd_upgrade
快猫
母偷拍
在京
妖精騎士
利哥jk
tuesday 2023
文件列表
Part 02-Module 02-Lesson 03_Deep Learning with PyTorch/24. PyTorch - Part 8-S9F7MtJ5jls.mp4
29.7 MB
Part 01-Module 01-Lesson 06_Data Processing/14. Eddy & Deven V2-g7zJV-Ontbo.mp4
28.4 MB
Part 01-Module 04-Lesson 01_Factors/12. Zipline Pipeline SC V1-DHTwIwVk_sc.mp4
25.3 MB
Part 02-Module 01-Lesson 01_Welcome To Term II/04. NewsRoom Liz V2-Os881EhJv68.mp4
23.7 MB
Part 02-Module 02-Lesson 03_Deep Learning with PyTorch/12. PyTorch V2 Part 3 Solution V2-zBWlOeX2sQM.mp4
22.3 MB
Part 02-Module 02-Lesson 03_Deep Learning with PyTorch/11. PyTorch V2 Part 3 V1-9ILiZwbi9dA.mp4
21.7 MB
Part 02-Module 01-Lesson 01_Welcome To Term II/05. AITND Term II Interview W Justin V2 V2-JOkwa1brNX8.mp4
19.2 MB
Part 02-Module 01-Lesson 05_Financial Statements/12. M5 SC 7 Metacharacters Part 2 V1-KK1xo8GDfvE.mp4
18.5 MB
Part 02-Module 01-Lesson 05_Financial Statements/03. M5 SC 15 10Ks Walkthrough V1-0ytyZ4LVG6s.mp4
18.0 MB
Part 02-Module 02-Lesson 03_Deep Learning with PyTorch/10. PyTorch V2 Part 2 Solution 2 V1-8KRX7HvqfP0.mp4
17.8 MB
Part 02-Module 02-Lesson 04_Recurrent Neural Networks/20. 07 CharRNN Solution V1-ed33qePHrJM.mp4
17.8 MB
Part 02-Module 02-Lesson 03_Deep Learning with PyTorch/25. PyTorch V2 Part 8 Solution V1-4n6T93hKRD4.mp4
17.5 MB
Part 02-Module 02-Lesson 03_Deep Learning with PyTorch/05. PyTorch V2 Part 1 Solution V1-mNJ8CujTtpo.mp4
17.3 MB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/14. PCA Toy Problem SC V1-uyl44T12yU8.mp4
16.7 MB
Part 02-Module 02-Lesson 03_Deep Learning with PyTorch/20. PyTorch - Part 7-hFu7GTfRWks.mp4
16.0 MB
Part 02-Module 01-Lesson 03_Text Processing/06. Cleaning-qawXp9DPV6I.mp4
15.7 MB
Part 02-Module 02-Lesson 04_Recurrent Neural Networks/17. 04 Implementing CharRNN V2-MMtgZXzFB10.mp4
15.7 MB
Part 02-Module 02-Lesson 05_Embeddings & Word2Vec/16. 12 CompleteModel CustomLoss V2-7SqNN_eUAdc.mp4
15.5 MB
Part 02-Module 02-Lesson 05_Embeddings & Word2Vec/06. 4 Data Subsampling V1-7SJXv2BQzZA.mp4
15.5 MB
Part 01-Module 03-Lesson 04_Portfolio Optimization/12. L4 13 Limitations V2-UbbZa7-3iuk.mp4
15.4 MB
Part 01-Module 01-Lesson 09_Project 1 Trading with Momentum/04. Eddy & Thomas 02 AI And Finanace V2-8Hna_hR_N7c.mp4
15.2 MB
Part 05-Module 01-Lesson 02_NumPy/05. NumPy 2 V1-KR3hHf9Zxxg.mp4
15.0 MB
Part 02-Module 01-Lesson 05_Financial Statements/14. M5 SC 9 Substitutions And Flags V1-9pxTGOlkLEY.mp4
15.0 MB
Part 02-Module 02-Lesson 04_Recurrent Neural Networks/12. 02 Time Series Prediction V2-xV5jHLFfJbQ.mp4
15.0 MB
Part 02-Module 01-Lesson 05_Financial Statements/13. M5 SC 8 Metacharacters Part 3 V1-nDlxRlDUNHk.mp4
14.3 MB
Part 02-Module 02-Lesson 03_Deep Learning with PyTorch/16. PyTorch V2 Part 5 V1 (1)-XACXlkIdS7Y.mp4
13.9 MB
Part 01-Module 02-Lesson 07_Project 2 Breakout Strategy/05. Eddy & Thomas 03 Jobs And Interviews V2-5W9XsgyxYHE.mp4
13.9 MB
Part 01-Module 01-Lesson 06_Data Processing/11. M1L4 13 Exchange Traded Funds V4-Zx7v5GCfpvI.mp4
13.9 MB
Part 02-Module 02-Lesson 03_Deep Learning with PyTorch/04. PyTorch V2 Part 1 V1-6Z7WntXays8.mp4
13.8 MB
Part 02-Module 02-Lesson 03_Deep Learning with PyTorch/19. Saving & Loading Models V1-psmrPu-mseA.mp4
13.6 MB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/11. Eddy & Thomas 01 Quants V2-ZRzhyaqz7I0.mp4
13.1 MB
Part 02-Module 02-Lesson 05_Embeddings & Word2Vec/10. 8 Word2vec Model V2-7BEYWhym8lI.mp4
13.1 MB
Part 01-Module 02-Lesson 04_Time Series Modeling/04. M2L4 05 Advanced Time Series Models V5-cj1RCBTDog8.mp4
13.1 MB
Part 02-Module 02-Lesson 05_Embeddings & Word2Vec/11. 9 Model Validation Loss V2-GKDCq8J76tM.mp4
12.9 MB
Part 03-Module 01-Lesson 03_Control Flow/10. For Loops-UtX0PXSUCdY.mp4
12.9 MB
Part 02-Module 02-Lesson 04_Recurrent Neural Networks/21. 08 Making Predictions V3-BhrpV3kwATo.mp4
12.9 MB
Part 01-Module 02-Lesson 02_Outliers and Filtering/02. M2L2 02 Sources Of Outliers V8-gXKhKQ2_TaA.mp4
12.5 MB
Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/11. Linear Transformations 3-g_yTyRwMzXU.mp4
12.4 MB
Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/09. Linear Transformations 1-99jYIxBRDww.mp4
12.3 MB
Part 02-Module 01-Lesson 05_Financial Statements/18. M5 SC 16 HTML Structure V1-R3QLtHxedXw.mp4
12.2 MB
Part 01-Module 01-Lesson 06_Data Processing/05. M1L4 08 Missing Values V5-XaMaVFUIc_I.mp4
12.0 MB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/25. Kalman Filter Code Solution - Artificial Intelligence for Robotics-X7cixvcogl8.mp4
11.9 MB
Part 04-Module 01-Lesson 03_Linear Combination/02. Linear Combinations 2-RsKJNDTb8nw.mp4
11.9 MB
Part 02-Module 02-Lesson 03_Deep Learning with PyTorch/17. PyTorch V2 Part 5 Solution V1-AjrXltxqsK4.mp4
11.8 MB
Part 01-Module 02-Lesson 03_Regression/06. Testing For Normalilty-Sa1MJegyYfc.mp4
11.7 MB
Part 03-Module 01-Lesson 02_Data Types and Operators/13. Strings-ySZDrs-nNqg.mp4
11.6 MB
Part 07-Module 01-Lesson 03_Clustering/13. Sklearn-3zHUAXcoZ7c.mp4
11.5 MB
Part 02-Module 01-Lesson 05_Financial Statements/10. M5 SC 5 Word Boundaries V1-3dWIHULqKog.mp4
11.3 MB
Part 01-Module 04-Lesson 03_Risk Factor Models/18. MV When You Dont Believe In Yourself 1 V1-rjCr-Z7UhZE.mp4
11.2 MB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/08. Jonathan Larkin Careers-QhHNPxM_Ku4.mp4
11.1 MB
Part 02-Module 02-Lesson 03_Deep Learning with PyTorch/08. PyTorch V2 Part 2 V1-CSQOdOb2mlg.mp4
11.0 MB
Part 02-Module 05-Lesson 02_Optimization with Transaction Costs/16. NewsRoom Juan V2-DpO73QaXaOY.mp4
11.0 MB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/25. M4 L1B 24 NLP Used To Enhance Fundamental Analysis V1-9zMWuZ9j7rI.mp4
11.0 MB
Part 01-Module 02-Lesson 05_Volatility/12. M2L5 12 Using Volatility For Equity Trading V5-Vh9ajVRedvY.mp4
11.0 MB
Part 02-Module 01-Lesson 05_Financial Statements/09. M5 SC 4 Searching For Simple Patte V1-7RAHoJ34gXI.mp4
10.8 MB
Part 05-Module 01-Lesson 02_NumPy/08. NumPy 4 V1-jeU7lLgyMms.mp4
10.7 MB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/26. M4 L1B 25 Other Alternative Data V1-hMw3AuPVSSs.mp4
10.7 MB
Part 01-Module 03-Lesson 04_Portfolio Optimization/11. L4 12 Rebalancing Strategies V2-8u5gBx-fYr8.mp4
10.4 MB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/04. 3 Data PreProcessing V1-Xw1MWmql7no.mp4
10.3 MB
Part 02-Module 02-Lesson 04_Recurrent Neural Networks/13. 03 Training Memory V1-sx7T_KP5v9I.mp4
10.3 MB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/17. MV 12 Embrace The Struggle V2-SGcgOm5kiKU.mp4
10.3 MB
Part 02-Module 01-Lesson 05_Financial Statements/23. M5 SC 14 Searching The Parse Tree Part 3 V1-PR--1dLqcTM.mp4
10.2 MB
Part 02-Module 02-Lesson 05_Embeddings & Word2Vec/12. 10 NegativeSampling V1-gnCwdegYNsQ.mp4
10.2 MB
Part 01-Module 04-Lesson 01_Factors/02. M4 L1A 02 Intro V2-W7_llXQ2GhA.mp4
10.2 MB
Part 02-Module 02-Lesson 03_Deep Learning with PyTorch/09. PyTorch V2 Part 2 Solution V1-zym36ihtOMY.mp4
10.2 MB
Part 03-Module 01-Lesson 04_Functions/02. Defining Functions-IP_tJYhynbc.mp4
10.1 MB
Part 03-Module 01-Lesson 02_Data Types and Operators/08. Números inteiros e floats-MiJ1vfWp-Ts.mp4
10.1 MB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/07. M4 L1B 06 Factor Models In Quant Finance V2-VeM2SudgZqc.mp4
10.1 MB
Part 01-Module 04-Lesson 06_Alpha Factors/34. M4 L3a 151 The Fundamental Law Of Active Management Part 1 V4-iCW_vqvrTlw.mp4
10.0 MB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/09. 8 TensorDataset Batching V1-Oxuf2QIPjj4.mp4
10.0 MB
Part 01-Module 04-Lesson 06_Alpha Factors/50. M4 L3a 23 Summary V3-FZYqdaqoiZk.mp4
9.9 MB
Part 04-Module 01-Lesson 03_Linear Combination/01. Linear Combinations 1-fmal7UE7dEE.mp4
9.8 MB
Part 02-Module 05-Lesson 01_Intro to Backtesting/10. NewsRoom Liz Short V2-vqHsk3hjBLU.mp4
9.8 MB
Part 01-Module 04-Lesson 06_Alpha Factors/53. M4 L3a 27 Interlude Pt 3 V2-v6cLkoJhujU.mp4
9.8 MB
Part 01-Module 04-Lesson 06_Alpha Factors/05. M4 L3a 04 Researching Alphas From Academic Papers V4-te0UTxemLBE.mp4
9.8 MB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/08. M4 L1B 07 Risk Factors V Alpha Factors V2-9KUpH1MDC1k.mp4
9.7 MB
Part 02-Module 03-Lesson 07_Feature Importance/11. M7L7 42 Prediction Intro Part 2 V1-DG-HiRum1JU.mp4
9.7 MB
Part 01-Module 02-Lesson 02_Outliers and Filtering/04. M2L2 03 Outliers Signals And Strategies V5-zyVgpsRy-mU.mp4
9.7 MB
Part 01-Module 04-Lesson 06_Alpha Factors/52. M4 L3a 26 Interlude Pt 2 V2-1a60RPqhO8k.mp4
9.7 MB
Part 02-Module 01-Lesson 05_Financial Statements/21. M5 SC 12 Searching The Parse Tree Part 1 V1-RyJuvYTF3Ms.mp4
9.7 MB
Part 07-Module 01-Lesson 01_Linear Regression/22. Regularization-PyFNIcsNma0.mp4
9.5 MB
Part 02-Module 04-Lesson 01_Take 30 Min to Improve your LinkedIn/02. Meet Chris-0ccflD9x5WU.mp4
9.4 MB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/22. M4 L3b 18 IVol Value Fundamental Or Discretionary Investing V2-sKAE5Z8e7IM.mp4
9.4 MB
Part 01-Module 02-Lesson 05_Volatility/11. M2L5 11 Markets & Volatility V3-jEHJkZUX9s4.mp4
9.4 MB
Part 02-Module 01-Lesson 06_Basic NLP Analysis/06. AIT M5L5 05 Frequency Reweighting V2-X-Cf2Uj7tH4.mp4
9.3 MB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/15. M4 L1B 14 PriceVolume Factors V2-zaG0PDc3wsA.mp4
9.3 MB
Part 02-Module 01-Lesson 05_Financial Statements/07. M5 SC 2 Finding Words V1-wTOh9B6aHGk.mp4
9.3 MB
Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/10. Linear Transformations 2-imtEd8M6__s.mp4
9.3 MB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/02. Jonathan Larkin - What Is A Quant-G22oM0qv0Hs.mp4
9.2 MB
Part 05-Module 01-Lesson 02_NumPy/07. NumPy 3 V1-Rt4aydeo9F8.mp4
9.2 MB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/14. M4 L3b 10 Skewness And Momentum Attentional Bias V3-3ZkFRBUmSQ0.mp4
9.2 MB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/12. M4 L3b 09 Winners And Losers Creating A Joint Factor V3-xmW05ii8Vxs.mp4
9.1 MB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/11. L3 09 Capital Market Line V2-BRO-vo3y0-U.mp4
9.1 MB
Part 02-Module 02-Lesson 02_Training Neural Networks/07. Regularization-ndYnUrx8xvs.mp4
9.0 MB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/05. M4 L3b 04 Overnight Returns Data Universe Methods V2-Y_lBDa1hRco.mp4
8.9 MB
Part 01-Module 02-Lesson 01_Quant Workflow/05. M2L1 04 Anatomy Of A Strategy Part 3 V1-vSxnkduTWWY.mp4
8.9 MB
Part 02-Module 05-Lesson 04_Project 8 Backtesting/03. AITND Finish V2-g-a4ZNIPQqw.mp4
8.8 MB
Part 01-Module 04-Lesson 03_Risk Factor Models/01. M4 L2A 01 Intro V1-DgsD3yL9Yy0.mp4
8.8 MB
Part 01-Module 04-Lesson 06_Alpha Factors/24. M4 L3a 12 Return Denominator Leverage And Factor Returns V3-QxHrP5LoXAI.mp4
8.8 MB
Part 02-Module 03-Lesson 07_Feature Importance/11. M7L7 51 Shap One Solution V2 (1)-Q0qAsUz2gnU.mp4
8.8 MB
Part 04-Module 01-Lesson 01_Introduction/03. Essence Of Linear Algebra Intro -EHcxDZpeGFg.mp4
8.7 MB
Part 02-Module 01-Lesson 05_Financial Statements/20. M5 SC 11 Navigating The Parse Tree V1-NzOB9Vyy0l4.mp4
8.7 MB
Part 02-Module 03-Lesson 07_Feature Importance/11. M7L7 50 Shap One Intro V1 (1)-BKD_FseE6Z4.mp4
8.7 MB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/16. M4 L1B 15 Volume Factors V1-1dTAV3Irxv4.mp4
8.7 MB
Part 05-Module 01-Lesson 03_Pandas/10. Pandas 6 V1-GS1kj04XQcM.mp4
8.7 MB
Part 01-Module 03-Lesson 02_ETFs/12. MV 11 Guided Meditation V1-njp1mnEEv9s.mp4
8.7 MB
Part 01-Module 04-Lesson 06_Alpha Factors/49. M4 L3a 22 Conditional Factors V2-2J1aUwGq6tc.mp4
8.7 MB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/22. M4 L1B 21 Analyst Ratings V1-cHkJo8qBKes.mp4
8.7 MB
Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/03. M2L6 04 Pairs Trading V3-7lEm_tFXcBk.mp4
8.6 MB
Part 02-Module 05-Lesson 01_Intro to Backtesting/03. M8L1 07 Backtest Validity V5-KTlrel9p6Q0.mp4
8.6 MB
Part 02-Module 02-Lesson 03_Deep Learning with PyTorch/15. PyTorch V2 Part 4 Solution V1-R6Y4hPLVQWM.mp4
8.5 MB
Part 01-Module 03-Lesson 04_Portfolio Optimization/10. L4 11 Rebalancing A Portfolio V2-S5SPhBpG3b0.mp4
8.5 MB
Part 05-Module 01-Lesson 03_Pandas/09. Pandas 5 V1-lClsJnZn_7w.mp4
8.5 MB
Part 03-Module 01-Lesson 02_Data Types and Operators/25. L2 06 Lists Methods V1-tz2Ja1Eaeqo.mp4
8.5 MB
Part 01-Module 04-Lesson 06_Alpha Factors/46. M4 L3a 20 Transfer Coefficient V3-4rZ0MWQzlIs.mp4
8.4 MB
Part 01-Module 04-Lesson 06_Alpha Factors/39. M4 L3a 172 Factor Rank Autocorrelation Turnover V2-QBvbMiVW100.mp4
8.3 MB
Part 05-Module 01-Lesson 03_Pandas/12. Pandas 7 V1-ruTYp-twXO0.mp4
8.3 MB
Part 02-Module 02-Lesson 04_Recurrent Neural Networks/19. 06 Defining Model V2-_LWzyqq4hCY.mp4
8.3 MB
Part 01-Module 04-Lesson 06_Alpha Factors/01. M4 L3a 01 Intro Efficient Market Hypothesis And Arbitrage Opportunities V3--YpXAt7zuh8.mp4
8.2 MB
Part 02-Module 02-Lesson 05_Embeddings & Word2Vec/03. 3 Word2Vec Notebook V2-4cWzv3YiF_w.mp4
8.2 MB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/14. M4 L4 17 Path Dependency 1 V3-ok9rKYRtZLE.mp4
8.2 MB
Part 01-Module 01-Lesson 05_Market Mechanics/03. M1L3 03 Trading Stocks V3-GHoRtfUrUMc.mp4
8.2 MB
Part 07-Module 01-Lesson 02_Naive Bayes/04. SL NB 03 Guess The Person Now V1 V2-pQgO1KF90yU.mp4
8.1 MB
Part 01-Module 02-Lesson 04_Time Series Modeling/06. M2L4 07 Kalman Filter V4-CLJhgfMI4Ho.mp4
8.1 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/14. Error Functions-jfKShxGAbok.mp4
8.1 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/14. Error Functions-jfKShxGAbok.mp4
8.1 MB
Part 01-Module 01-Lesson 06_Data Processing/04. M1L4 06 Technical Indicators V6-jo740Kq3YN4.mp4
8.1 MB
Part 05-Module 01-Lesson 02_NumPy/04. NumPy 1 V1-EOHW29kDg7w.mp4
8.1 MB
Part 01-Module 04-Lesson 06_Alpha Factors/09. M4 L3a 06 Ranking Part 1 V4-4j2hIB7WHY4.mp4
8.1 MB
Part 02-Module 03-Lesson 07_Feature Importance/09. M7L7 21 Optional Explanation Part 1 V2-7shDUICrpro.mp4
8.0 MB
Part 01-Module 04-Lesson 06_Alpha Factors/30. M4 L3A 141 Ranked Information Coefficient Part 1 V4-_huNulOIuB0.mp4
8.0 MB
Part 01-Module 02-Lesson 02_Outliers and Filtering/07. M2L2 06 Spotting Outliers In Signal Returns V4-BSLGZz0RzTg.mp4
8.0 MB
Part 03-Module 01-Lesson 03_Control Flow/25. Break and Continue-F6qJAv9ts9Y.mp4
7.9 MB
Part 02-Module 01-Lesson 05_Financial Statements/02. AIT M5L4A 02 Financial Statement V6-XYff0ROHzWo.mp4
7.8 MB
Part 03-Module 01-Lesson 05_Scripting/20. Importing Files-qjeSn6zZbR0.mp4
7.8 MB
Part 02-Module 03-Lesson 07_Feature Importance/09. M7L7 22 CaseA Part 1 V2-2X9531oXeJY.mp4
7.8 MB
Part 01-Module 02-Lesson 01_Quant Workflow/02. M2L1 01 Starting From A Hypothesis V3-yjlt4yerB9I.mp4
7.8 MB
Part 01-Module 03-Lesson 04_Portfolio Optimization/03. L4 03 Optimization With Constraints V3-91WzhG6dti8.mp4
7.7 MB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/10. M4 L4 10 Estimation Error V4-WdrMIRhScN0.mp4
7.7 MB
Part 02-Module 03-Lesson 07_Feature Importance/11. M7L7 37 Attributes V1-IMhB5bOK7Wg.mp4
7.7 MB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/16. M4 L3b 12 Skewness And Momentum Momentum Enhances Or Weakened By Skew V2-S73J_h8DHsE.mp4
7.6 MB
Part 01-Module 04-Lesson 01_Factors/01. M4 L3A 01 Intro To The Factors V2-OqhRUxHf6wo.mp4
7.6 MB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/02. M4 L1B 02 What Is A Factor Model V4-K5QKPwU38Do.mp4
7.6 MB
Part 05-Module 01-Lesson 03_Pandas/08. Pandas 4 V1-eMHUn9v9dds.mp4
7.6 MB
Part 03-Module 01-Lesson 02_Data Types and Operators/02. Arithmetic Operators-M8TIOK2P2yw.mp4
7.6 MB
Part 02-Module 01-Lesson 05_Financial Statements/05. AIT M5L4B 01 Introduction To Regex V4-WCXDD_n1ZuA.mp4
7.6 MB
Part 02-Module 03-Lesson 07_Feature Importance/09. M7L7 24 CaseB Solution T2 V1-lNlhJhtCdxE.mp4
7.5 MB
Part 02-Module 03-Lesson 05_Feature Engineering/09. M7L5 19 Dates Solution Part 2 V1-UhtIVQ8YGvI.mp4
7.5 MB
Part 02-Module 03-Lesson 07_Feature Importance/05. M7L7 07 Sklearn Code Intro Part 3 V1-e6SZrnZxaTI.mp4
7.4 MB
Part 02-Module 03-Lesson 07_Feature Importance/11. M7L7 43 Prediction Solution Part 1 V2-VgtWMV2GIic.mp4
7.4 MB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/10. L3 08 The Efficient Frontier V3-tEEyhU23bI4.mp4
7.4 MB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/03. M4 L1B 03 Factor Returns As Latent Variables V3-LpHvJq6XTOQ.mp4
7.4 MB
Part 04-Module 01-Lesson 02_Vectors/03. Vectors 3-mWV_MpEjz9c.mp4
7.4 MB
Part 02-Module 03-Lesson 05_Feature Engineering/10. M7L5 22 V1-34bV5mYUJAI.mp4
7.4 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/34. Backpropagation V2-1SmY3TZTyUk.mp4
7.4 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/34. Backpropagation V2-1SmY3TZTyUk.mp4
7.4 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/21. CrossEntropy V1-1BnhC6e0TFw.mp4
7.3 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/21. CrossEntropy V1-1BnhC6e0TFw.mp4
7.3 MB
Part 02-Module 05-Lesson 04_Project 8 Backtesting/01. NewsRoom Eddy 1 V2-9MlGvKWQn_o.mp4
7.3 MB
Part 03-Module 01-Lesson 02_Data Types and Operators/19. String Methods-Bv7CAxVOONs.mp4
7.3 MB
Part 02-Module 04-Lesson 02_Optimize Your GitHub Profile/14. Interview with Art - Part 3-M6PKr3S1rPg.mp4
7.3 MB
Part 02-Module 02-Lesson 02_Training Neural Networks/04. Underfitting And Overfitting-xj4PlXMsN-Y.mp4
7.3 MB
Part 01-Module 03-Lesson 02_ETFs/09. L2 11 2 Arbitrage Farmers Market V1-hHxp16mQNGA.mp4
7.1 MB
Part 02-Module 03-Lesson 07_Feature Importance/09. M7L7 20 Shap Intro V1-AhZN3Bv_OCg.mp4
7.1 MB
Part 01-Module 02-Lesson 02_Outliers and Filtering/08. M2L2 07 Handling Outliers In Signal Returns V4-ILdnNi4CgZM.mp4
7.1 MB
Part 05-Module 01-Lesson 02_NumPy/11. NumPy 6 V1-wtLRuGK0kW4.mp4
7.1 MB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/07. 6 Cleaning And Padding V1-UgPo1_cq-0g.mp4
7.1 MB
Part 02-Module 03-Lesson 07_Feature Importance/09. M7L7 22 CaseA Part 2 V1-Kuwa4DkNBZs.mp4
7.1 MB
Part 02-Module 02-Lesson 03_Deep Learning with PyTorch/21. PyTorch V2 Part 7 Solution V1-d_NhvI1yEf0.mp4
7.1 MB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/21. M4 L1B 20 Pre And Post Event V1-Olz9QZQaBxs.mp4
7.1 MB
Part 02-Module 02-Lesson 03_Deep Learning with PyTorch/06. PyTorch V2 Part 1 Solution 2 V1-QLaGMz8Ca3E.mp4
7.1 MB
Part 06-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-CNpSrdnYvbo.mp4
7.0 MB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/13. M4 L2b 14 Explained Variance V3-OdHeReNUqoQ.mp4
7.0 MB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/05. 4 EncodingWords Sol V1-4RYyn3zv1Hg.mp4
7.0 MB
Part 02-Module 02-Lesson 04_Recurrent Neural Networks/18. 05 Batching Data V1-9Eg0wf3eW-k.mp4
7.0 MB
Part 01-Module 02-Lesson 03_Regression/01. M2L3 01 Intro V4-C7vWJH05tKA.mp4
7.0 MB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/04. M1L1 05 Program Overview V1-Ci0j_UwLlQQ.mp4
6.9 MB
Part 02-Module 03-Lesson 07_Feature Importance/11. M7L7 53 Additive Feature Att Part 2 V1-ah171-grqus.mp4
6.9 MB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/10. M4 L1B 09 Risk Factors V Alpha Factors Part 3 V1-UmdOVhcRCVU.mp4
6.9 MB
Part 03-Module 01-Lesson 02_Data Types and Operators/10. Boolean Comparison and Logical Operators-iNNsUJIDtVU.mp4
6.7 MB
Part 02-Module 02-Lesson 03_Deep Learning with PyTorch/07. PyTorch V2 Part 1 Solution 3 V1-iMIo9p5iSbE.mp4
6.7 MB
Part 02-Module 03-Lesson 02_Decision Trees/02. MLND SL DT 00 Intro V2-l34ijtQhVNk.mp4
6.7 MB
Part 07-Module 01-Lesson 04_Decision Trees/01. MLND SL DT 00 Intro V2-l34ijtQhVNk.mp4
6.7 MB
Part 01-Module 04-Lesson 06_Alpha Factors/13. M4 L3a 08 Z Score V3-6_cKCoLa92o.mp4
6.7 MB
Part 01-Module 02-Lesson 04_Time Series Modeling/08. M2L4 09 Recurrent Neural Networks V5-5cYAAHyRHDo.mp4
6.7 MB
Part 01-Module 02-Lesson 05_Volatility/02. M2L5 02 Historical Volatility V3-BOPhsYLHkUU.mp4
6.7 MB
Part 01-Module 01-Lesson 08_Momentum Trading/09. M1L6 09 Statistical Analysis V10-_p1m_q8jE6E.mp4
6.7 MB
Part 02-Module 02-Lesson 05_Embeddings & Word2Vec/09. 7 Batching Data Solution V1-nu2rjLzt1HI.mp4
6.7 MB
Part 02-Module 04-Lesson 02_Optimize Your GitHub Profile/05. Interview with Art - Part 1-ClLYamtaO-Q.mp4
6.7 MB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/img/feb-26-2019-16-19-56.gif
6.6 MB
Part 01-Module 01-Lesson 02_Knowledge and Career Support/img/feb-26-2019-16-19-56.gif
6.6 MB
Part 02-Module 05-Lesson 02_Optimization with Transaction Costs/03. M8l2 02 Barra Data Take2 V1-7WjYfvpLSTM.mp4
6.6 MB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-b2zvrFL8AUw.mp4
6.6 MB
Part 01-Module 02-Lesson 03_Regression/11. M2L3 10 Linear Regression V4-GRY4eakMBJ8.mp4
6.6 MB
Part 02-Module 01-Lesson 06_Basic NLP Analysis/02. AIT M5L5 02 Readability V2-pcB63lIgiQg.mp4
6.6 MB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/24. M4 L1B 23 Sentiment Analysis On News And Social Media V1-Jph7h2Yl0yg.mp4
6.5 MB
Part 01-Module 04-Lesson 06_Alpha Factors/51. M4 L3a 25 Interlude Pt 1 V2-SMQwc5kwSr0.mp4
6.5 MB
Part 02-Module 02-Lesson 05_Embeddings & Word2Vec/08. 6 Defining Context Targets V1-DJN9MzD7ctY.mp4
6.5 MB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/24. M4 L3b 20 IVol Volatility Enhanced Price Earnings Ratio V2-x-1nqTEPGcA.mp4
6.5 MB
Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/09. M2L6 13 Trade Pairs Of Stocks V6-i1yVMrgjtB0.mp4
6.5 MB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/03. M1L1 Introducing The Instructors 1 V4-l5gG7r-BWYc.mp4
6.5 MB
Part 02-Module 03-Lesson 05_Feature Engineering/09. M7L5 18 V1-7LESwsbt70s.mp4
6.5 MB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/08. 7 PaddedFeatures Sol V1-sYOd1IDmep8.mp4
6.5 MB
Part 03-Module 01-Lesson 02_Data Types and Operators/08. Whitespace-UxkIwcOczQQ.mp4
6.5 MB
Part 02-Module 03-Lesson 07_Feature Importance/05. M7L7 07 Sklearn Code Intro Part 1 V3-1lkQSp6FHgo.mp4
6.5 MB
Part 02-Module 03-Lesson 07_Feature Importance/05. M7L7 07 Sklearn Code Intro Part 4 V1-l614btyXRCI.mp4
6.4 MB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/20. Notation for Random Variables-8NxTW1u4s-Y.mp4
6.4 MB
Part 06-Module 01-Lesson 12_Hypothesis Testing/30. What If Our Sample Is Large-WoTCeSTL1eM.mp4
6.4 MB
Part 01-Module 02-Lesson 02_Outliers and Filtering/06. M2L2 05 Handling Outliers In Raw Data V3-3l6kQZqlVJA.mp4
6.4 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/15. Discrete vs. Continuous-Rm2KxFaPiJg.mp4
6.4 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs. Continuous-Rm2KxFaPiJg.mp4
6.4 MB
Part 02-Module 03-Lesson 03_Model Testing and Evaluation/13. 04 L Types Of Errors-Twf1qnPZeSY.mp4
6.3 MB
Part 03-Module 01-Lesson 02_Data Types and Operators/31. L2 02 Dictionaries And Identiy Operators V3-QR8HTxCTWi0.mp4
6.3 MB
Part 06-Module 01-Lesson 05_Binomial Distribution/16. Binomial Distribution Conclusion-9gjCYs8f_PU.mp4
6.3 MB
Part 02-Module 03-Lesson 03_Model Testing and Evaluation/19. Learning Curves SC V1-ZNhnNVKl8NM.mp4
6.3 MB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/11. M4 L1B 10 Risk Factors V Alpha Factors Part 4 V1-3ZE298YwbCM.mp4
6.3 MB
Part 01-Module 04-Lesson 06_Alpha Factors/19. M4 L3a 10 Factor Returns V5-enyeTpyCS-o.mp4
6.3 MB
Part 02-Module 01-Lesson 05_Financial Statements/11. M5 SC 6 Metacharacters Part 1 V1-Jay3euM62NQ.mp4
6.3 MB
Part 02-Module 03-Lesson 07_Feature Importance/05. M7L7 07 Sklearn Code Intro Part 2 V1-ZxfpUIY_AcE.mp4
6.3 MB
Part 06-Module 01-Lesson 12_Hypothesis Testing/09. Types Of Errors - Part II-mbdSQ5CjdFs.mp4
6.2 MB
Part 06-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-o2Tpws5C2Eg.mp4
6.2 MB
Part 02-Module 05-Lesson 01_Intro to Backtesting/02. M8L1 06 What Is A Backtest V4-q2dW6-ZRaXE.mp4
6.2 MB
Part 06-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-FV_hc3MzS_8.mp4
6.2 MB
Part 01-Module 04-Lesson 06_Alpha Factors/04. M4 L3a 03 Definition Of Key Words V4-zySdIQTPTGo.mp4
6.2 MB
Part 03-Module 01-Lesson 03_Control Flow/20. L3 08 While Loops V3-7Sf5tcPlKQw.mp4
6.2 MB
Part 02-Module 03-Lesson 07_Feature Importance/07. L7 HS17 V1-k0vANVo-5Ek.mp4
6.2 MB
Part 02-Module 01-Lesson 05_Financial Statements/22. M5 SC 13 Searching The Parse Tree Part 2 V1-WS_bkGCk7qk.mp4
6.2 MB
Part 02-Module 04-Lesson 01_Take 30 Min to Improve your LinkedIn/03. Elevator Pitch-S-nAHPrkQrQ.mp4
6.2 MB
Part 01-Module 02-Lesson 05_Volatility/01. M2L5 01 What Is Volatility V3-brGVwpDSuG4.mp4
6.2 MB
Part 01-Module 04-Lesson 06_Alpha Factors/31. M4 L3A 142 Ranked Information Coefficient Part 2 V5-WKGmog0Nzgo.mp4
6.2 MB
Part 03-Module 01-Lesson 03_Control Flow/07. Good And Bad Examples-95oLh3WtdhY.mp4
6.2 MB
Part 02-Module 03-Lesson 03_Model Testing and Evaluation/15. Model-Complexity-Graph Solution 2-5pWHGkNyRhA.mp4
6.1 MB
Part 01-Module 03-Lesson 02_ETFs/06. L2 08 Authorized Participant And The Create Process V4-u4thSf3Uxsc.mp4
6.1 MB
Part 01-Module 02-Lesson 01_Quant Workflow/04. M2L1 03 Flavors Of Trading Strategies V4-uCCx8I9u_Nk.mp4
6.1 MB
Part 01-Module 04-Lesson 06_Alpha Factors/36. M4 L3a 161 Real World Constraints Liquidity V3-eu0YZRMu_3w.mp4
6.1 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.mp4
6.1 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.mp4
6.1 MB
Part 01-Module 02-Lesson 05_Volatility/03. M2L5 03 Annualized Volatility V8-yakh1pjP7uY.mp4
6.1 MB
Part 02-Module 01-Lesson 01_Welcome To Term II/01. AITND TII 01 Recap Of Term 1 V1-uhIvBfhcyLM.mp4
6.1 MB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/13. M4 L1B 12 How An Alpha Factor Becomes A Risk Factor Part 2 V1-9waaTtRaU-Y.mp4
6.1 MB
Part 02-Module 03-Lesson 07_Feature Importance/09. M7L7 22 CaseA Part 3 V1-EM21p54qrp0.mp4
6.1 MB
Part 02-Module 03-Lesson 05_Feature Engineering/09. M7L5 19 Dates Intro Part 1 V2-IXlHYPjcQ-o.mp4
6.1 MB
Part 02-Module 04-Lesson 01_Take 30 Min to Improve your LinkedIn/01. Why Network-exjEm9Paszk.mp4
6.1 MB
Part 03-Module 01-Lesson 02_Data Types and Operators/16. Type & Type Conversion-yN6Fam_vZrU.mp4
6.1 MB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/21. M4 L3b 17 IVol Idiosyncratic Volatility V2-B8hOR4G9CJk.mp4
6.1 MB
Part 01-Module 01-Lesson 04_Stock Prices/02. M1L2 02 Stock Prices V7-l_PilXVuh8I.mp4
6.0 MB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/08. Standard Deviation Calculation-H5zA1A-XPoY.mp4
6.0 MB
Part 01-Module 04-Lesson 01_Factors/06. M4 L1A 05 Demean Part 1 V3-R3N8bd8U6TM.mp4
6.0 MB
Part 01-Module 01-Lesson 07_Stock Returns/05. M1L5 06 Distribution Of Stock Prices Part 2 V1-cGoXGiO1DYk.mp4
6.0 MB
Part 06-Module 01-Lesson 11_Confidence Intervals/08. Statistical vs. Practical Differences-RKHD1wzxxPA.mp4
6.0 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.mp4
6.0 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.mp4
6.0 MB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/04. 04. Computer Vision Applications-aFJKp2NltCY.mp4
6.0 MB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/10. 9 DefiningModel V1-SpvIZl1YQRI.mp4
6.0 MB
Part 02-Module 03-Lesson 07_Feature Importance/11. M7L7 49 Subsets Solution V1-YfwUDZ_hNKI.mp4
6.0 MB
Part 02-Module 03-Lesson 05_Feature Engineering/05. M7L5 07 Volatility Dollar Volume Part 2 V1-1WK5VAMzQ2Q.mp4
6.0 MB
Part 01-Module 01-Lesson 08_Momentum Trading/06. M1L6 06 Trading Strategy V2-rrCHC20FkIc.mp4
5.9 MB
Part 07-Module 01-Lesson 02_Naive Bayes/07. SL NB 06 S False Positives V1 V3-Bg6_Tvcv81A.mp4
5.9 MB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/11. M4 L4 12 Infeasible Problems V4-ljg25Rj511Q.mp4
5.9 MB
Part 01-Module 04-Lesson 01_Factors/03. M4 L1A 03 Example Of A Factor V4-MJrwJDjWlAg.mp4
5.9 MB
Part 01-Module 02-Lesson 05_Volatility/08. M2L5 07 Exponentially Weighted Moving Average V4-VBPitTHzYRI.mp4
5.9 MB
Part 03-Module 01-Lesson 04_Functions/14. Iterators And Generators-tYH8X4Zeh-0.mp4
5.9 MB
Part 01-Module 04-Lesson 06_Alpha Factors/06. M4 L3a 051 Controlling For Risk Within An Alpha Factor Part 1 V3-raeVfAbBXnA.mp4
5.9 MB
Part 01-Module 04-Lesson 06_Alpha Factors/35. M4 L3a 152 The Fundamental Law Of Active Management Part 2 V7-CMc4ujA8Ahs.mp4
5.9 MB
Part 02-Module 01-Lesson 06_Basic NLP Analysis/07. AIT M5L5 08 Similarity Analysis V3-LNro_9JOIrY.mp4
5.9 MB
Part 02-Module 03-Lesson 07_Feature Importance/05. M7L7 10 Node Importance Intro V1-Q7KJgKCm8cs.mp4
5.9 MB
Part 01-Module 01-Lesson 05_Market Mechanics/12. Better Learning By Sleeping-6J4isuCRPGE.mp4
5.8 MB
Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/01. M2L6 01 Intro V3-CQ6QGAxbUF8.mp4
5.8 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/01. MV 11 Intro To Module 03 Difficulties In Learning V1-kqjFkUVZwEc.mp4
5.8 MB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/15. M4 L3b 11 Skewness And Momentum Defining Skew V2-6PgqIpmJBJ8.mp4
5.8 MB
Part 01-Module 02-Lesson 01_Quant Workflow/05. M2L1 04 Anatomy Of A Strategy Part 2 V1-v3w4JZKQixc.mp4
5.8 MB
Part 02-Module 03-Lesson 07_Feature Importance/11. M7L7 36 Algorithm Part 2 V1-g1nevC4NU2U.mp4
5.8 MB
Part 01-Module 01-Lesson 09_Project 1 Trading with Momentum/01. MV 03 Transition To Project 01 V1-dcps5Bg4bZE.mp4
5.8 MB
Part 02-Module 01-Lesson 05_Financial Statements/16. AIT M5L4B 06 Introduction To Beautifulsoup V3-k8e-kB3qBng.mp4
5.8 MB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/06. M4 L1B 05 Covariance Matrix Using Factor Model V3-_qfTLXoifsM.mp4
5.8 MB
Part 02-Module 03-Lesson 05_Feature Engineering/05. M7L5 07 Volatility Dollar Volume Solution V1-FBOlA2NaK3k.mp4
5.8 MB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/03. M4 L4 03 Setting Up The Problem Risk V4-2vcULOlXTzc.mp4
5.8 MB
Part 03-Module 01-Lesson 03_Control Flow/02. If Elif and Else-KZubH5XT0eU.mp4
5.8 MB
Part 02-Module 02-Lesson 02_Training Neural Networks/05. Model Complexity Graph-NnS0FJyVcDQ.mp4
5.8 MB
Part 02-Module 03-Lesson 05_Feature Engineering/07. M7L5 12 V1-cHU7Sh12eOo.mp4
5.7 MB
Part 01-Module 04-Lesson 06_Alpha Factors/07. M4 L3a 052 Controlling For Risk Within An Alpha Factor Part 2 V2-Ks8HiHcflPs.mp4
5.7 MB
Part 07-Module 01-Lesson 01_Linear Regression/06. Absolute Trick-DJWjBAqSkZw.mp4
5.7 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.mp4
5.7 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.mp4
5.7 MB
Part 06-Module 01-Lesson 07_Bayes Rule/20. Bayes Rule Summary-RgXQ8GRsjfc.mp4
5.7 MB
Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/06. M2L6 09 Cointegration V6-N4ZI5SyFMOc.mp4
5.6 MB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/18. M4 L1B 17 Fundamental Ratios V2-Eo-faV9CsP8.mp4
5.6 MB
Part 01-Module 04-Lesson 03_Risk Factor Models/15. M4 L2A 10 Portfolio Variance Using Factor Model V4-V06aCZUvgbo.mp4
5.6 MB
Part 03-Module 01-Lesson 03_Control Flow/31. List Comprehensions-6qxo-NV9v_s.mp4
5.6 MB
Part 01-Module 01-Lesson 06_Data Processing/03. M1L4 04 Corporate Actions V5-S60WArbQK7k.mp4
5.6 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/23. Error Function-V5kkHldUlVU.mp4
5.6 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/23. Error Function-V5kkHldUlVU.mp4
5.6 MB
Part 06-Module 01-Lesson 13_Case Study AB tests/02. AB Testing-EcWvhbIjT9o.mp4
5.6 MB
Part 02-Module 03-Lesson 05_Feature Engineering/07. M7L5 13 Marketvol Solution V1-yR1eWiv1jTM.mp4
5.6 MB
Part 02-Module 03-Lesson 04_Random Forests/01. L4 01 HS Intro V2-9c5d6MvguA0.mp4
5.6 MB
Part 06-Module 01-Lesson 12_Hypothesis Testing/20. What Is A P-value Anyway-eU6pUZjqviA.mp4
5.6 MB
Part 03-Module 01-Lesson 05_Scripting/21. The Standard Library-Fw3vf0tDrJM.mp4
5.5 MB
Part 02-Module 05-Lesson 01_Intro to Backtesting/04. M8L1 08 Backtest Overfitting V2-MnWHGIiqjns.mp4
5.5 MB
Part 02-Module 03-Lesson 04_Random Forests/06. L4 011 HS Random Forests V5-TSpYXdBYo1s.mp4
5.5 MB
Part 06-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-GeINbOOYkF8.mp4
5.5 MB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/10. M4 L3b 08 Winners And Losers Approximating Curves With Polynomials V4-Nw6v2EeECt0.mp4
5.5 MB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/06. M4 L4 07 Leverage Constraint V5-zJ9gon4rFQc.mp4
5.5 MB
Part 07-Module 01-Lesson 02_Naive Bayes/11. MLND SL NB Naive Bayes Algorithm-CQBMB9jwcp8.mp4
5.5 MB
Part 02-Module 02-Lesson 05_Embeddings & Word2Vec/15. 11 SkipGram Negative V1-e7ZrzpyXNDs.mp4
5.5 MB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/15. M4 L4 19 What Is Optimization Doing To OUr Alphas V3-6Yqb91Xahvg.mp4
5.5 MB
Part 06-Module 01-Lesson 12_Hypothesis Testing/02. Hypothesis Testing-9GbHHpiK6wk.mp4
5.4 MB
Part 05-Module 01-Lesson 02_NumPy/09. NumPy 5 V1-vGjI-WTnEbY.mp4
5.4 MB
Part 02-Module 03-Lesson 05_Feature Engineering/05. M7L5 6 V1-R8kfSvnHA3k.mp4
5.4 MB
Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/04. M2L6 07 Finding Pairs To Trade V4-6hQtoElcnGM.mp4
5.4 MB
Part 02-Module 02-Lesson 05_Embeddings & Word2Vec/02. M4L52 HSA Embedding Weight Matrix V3 RENDER V2-KVCcG5v8fi0.mp4
5.4 MB
Part 02-Module 03-Lesson 07_Feature Importance/11. M7L7 35 Tree Shap Intro V1-Si3r4-VR0CU.mp4
5.4 MB
Part 02-Module 01-Lesson 05_Financial Statements/06. M5 SC 1 Raw Strings V1-WhL1VbulThY.mp4
5.4 MB
Part 02-Module 03-Lesson 07_Feature Importance/09. M7L7 21 Optional Explanation Part 3 V1-xkhSC032Fxs.mp4
5.4 MB
Part 03-Module 01-Lesson 03_Control Flow/02. If Statements-jWiIUMrwPqA.mp4
5.4 MB
Part 02-Module 01-Lesson 07_Project 5 NLP on Financial Statements/01. Intro Term II V2-jSK9Pr7wFQo.mp4
5.4 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/02. Introduction-tn-CrUTkCUc.mp4
5.4 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/02. Introduction-tn-CrUTkCUc.mp4
5.4 MB
Part 06-Module 01-Lesson 12_Hypothesis Testing/14. Common Types of Hypothesis Tests-8hv8KnvQ6JY.mp4
5.4 MB
Part 04-Module 01-Lesson 02_Vectors/01. Vectors 1-oPBz-MLVUHk.mp4
5.3 MB
Part 02-Module 03-Lesson 07_Feature Importance/13. M7L7 66 Discussion V1-oTUWNw8X45M.mp4
5.3 MB
Part 01-Module 02-Lesson 07_Project 2 Breakout Strategy/04. MV 10 Transition From Project 02 Int V1-DYjOsL3VYfY.mp4
5.3 MB
Part 01-Module 04-Lesson 01_Factors/05. M4 L1A 04 Standardizing A Factor V5-sLZY2SQ4uME.mp4
5.3 MB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/04. L3 04 Portfolio Variance V2-LlxRypakop4.mp4
5.3 MB
Part 01-Module 02-Lesson 05_Volatility/10. M2L5 09 Forecasting Volatility V3-82v4v_PKDAE.mp4
5.3 MB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/27. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.mp4
5.3 MB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/02. Descriptive vs. Inferential Statistics-XV9pd8-RZ78.mp4
5.3 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/24. L1 27 OpenEnd Mutual Funds V2-T4_mmjEKUAo.mp4
5.2 MB
Part 01-Module 02-Lesson 07_Project 2 Breakout Strategy/01. MV 7 Transition To Project 02 1 V1-nkAcx2X_lfs.mp4
5.2 MB
Part 02-Module 01-Lesson 03_Text Processing/10. Stemming And Lemmatization-7Gjf81u5hmw.mp4
5.2 MB
Part 02-Module 03-Lesson 07_Feature Importance/09. M7L7 23 CaseB Intro V1-8RKZrweh0Mw.mp4
5.2 MB
Part 03-Module 01-Lesson 02_Data Types and Operators/05. L2 04b Variables II V3-4IJqbP8vi6A.mp4
5.2 MB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/06. M4 L2b 06 The Core Idea V3-0KwLkaKHAvg.mp4
5.2 MB
Part 03-Module 01-Lesson 02_Data Types and Operators/22. L2 08 Lists And Membership Operators V2-JAbZdZg5_x8.mp4
5.2 MB
Part 01-Module 04-Lesson 01_Factors/09. M4 L1A 08 Rescale Part 2 V3-8Ix10U6MEug.mp4
5.2 MB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/04. M4 L3b 03 Overnight Returns Possible Alpha Factors V2-QBCDr9q2rLo.mp4
5.2 MB
Part 02-Module 03-Lesson 07_Feature Importance/09. M7L7 26 CaseC Solution V1-jcAiG0nLByI.mp4
5.1 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/32. Combinando modelos-Boy3zHVrWB4.mp4
5.1 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/32. Combinando modelos-Boy3zHVrWB4.mp4
5.1 MB
Part 02-Module 03-Lesson 07_Feature Importance/11. M7L7 53 Additive Feature Att Part 1 V2-uTpfEfHp_KA.mp4
5.1 MB
Part 02-Module 01-Lesson 04_Feature Extraction/08. Embeddings For Deep Learning-gj8u1KG0H2w.mp4
5.1 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/27. L1 31 Transaction Costs V2-JGYAv7tQpyY.mp4
5.1 MB
Part 06-Module 01-Lesson 12_Hypothesis Testing/05. Setting Up Hypotheses - Part II-nByvHz77GiA.mp4
5.1 MB
Part 02-Module 02-Lesson 02_Training Neural Networks/08. Dropout-Ty6K6YiGdBs.mp4
5.0 MB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/06. Vision-based Emotion AI-7nKKWWn1sAc.mp4
5.0 MB
Part 02-Module 03-Lesson 03_Model Testing and Evaluation/03. Testing-gmxGRJSKEb0.mp4
5.0 MB
Part 03-Module 01-Lesson 02_Data Types and Operators/22. L2 09 Lists And Membership Operators V2-rNV_E50wcWM.mp4
5.0 MB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/10. AffdexMe Demo-dpFtXDqakvY.mp4
5.0 MB
Part 03-Module 01-Lesson 04_Functions/08. Documentation-_Vl9NJkA6JQ.mp4
5.0 MB
Part 02-Module 03-Lesson 07_Feature Importance/13. M7L7 65 Rank Shap Solution V1-jkAxXatozUo.mp4
5.0 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/20. Cross Entropy 1-iREoPUrpXvE.mp4
4.9 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/20. Cross Entropy 1-iREoPUrpXvE.mp4
4.9 MB
Part 01-Module 01-Lesson 05_Market Mechanics/08. M1L3 10 Volume V3-DFp7kp0xRCo.mp4
4.9 MB
Part 02-Module 03-Lesson 07_Feature Importance/13. M7L7 62 Shap V1-KidZpvQ9Sus.mp4
4.9 MB
Part 03-Module 01-Lesson 04_Functions/11. L4 08 Lambda Expressions V3-wkEmPz1peJM.mp4
4.9 MB
Part 03-Module 01-Lesson 03_Control Flow/28. Zip and Enumerate-bSJPzVArE7M.mp4
4.8 MB
Part 03-Module 01-Lesson 05_Scripting/26. Third Party Libraries And Package Managers-epOze9gC6T4.mp4
4.8 MB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/09. M4 L1B 08 Risk Factors V Alpha Factors Part 2 V2-AApfsuSpnMY.mp4
4.8 MB
Part 02-Module 03-Lesson 05_Feature Engineering/05. M7L5 07 Volatility Dollar Volume Part 1 V2-H5hJOG1DjBU.mp4
4.8 MB
Part 02-Module 03-Lesson 05_Feature Engineering/06. M7L5 9 V1-x7ON_-QrpHQ.mp4
4.8 MB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/05. M4 L1B 04 Factor Model Assumptions V3-qEu3m_3eGWk.mp4
4.7 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/05. Linear Boundaries-X-uMlsBi07k.mp4
4.7 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/05. Linear Boundaries-X-uMlsBi07k.mp4
4.7 MB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/06. M4 L3b 05 Overnight Returns Methods Quantile Analysis V3-4Js3mghq2mU.mp4
4.7 MB
Part 03-Module 01-Lesson 02_Data Types and Operators/05. Variables-7pxpUot4x0w.mp4
4.7 MB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/03. KALMAN Tracking Intro RENDER V2-C73G7vfVNQc.mp4
4.7 MB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/02. M4 L4 02 Setting Up The Problem Alphas V5-6GeyU-thC4U.mp4
4.7 MB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/06. 5 GettingRid ZeroLength V1-Hs6ithuvDJg.mp4
4.7 MB
Part 02-Module 05-Lesson 01_Intro to Backtesting/07. M8L1 14 Structural Changes V1-EaxepBSycbQ.mp4
4.7 MB
Part 03-Module 01-Lesson 01_Why Python Programming/04. L1 02 Course Overview V4-vFxXSIV5cHM.mp4
4.7 MB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/03. M4 L3b 02 Overnight Returns Abstract V2-q5xidwa5W8w.mp4
4.7 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/26. L1 30 ClosedEnd Mutual Funds V3-y2VhtrF6vdc.mp4
4.7 MB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/09. M4 L3b 07 Winners And Losers Accelerated And Decelerated Gains And Losses V2-cdSdKl4uxVM.mp4
4.7 MB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/04. 29 Number Summary-gzUN5zKLHjQ.mp4
4.7 MB
Part 01-Module 02-Lesson 03_Regression/04. M2L3 04 Parameters Of A Distribution V3--akdmiLDny4.mp4
4.6 MB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/20. Outliers-HKIsvkZUZfo.mp4
4.6 MB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/09. 09. Training a Model-m4GVfwVkj74.mp4
4.6 MB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/04. M4 L2b 04 Bases As Languages V3-yEL0-AE3mjo.mp4
4.6 MB
Part 01-Module 02-Lesson 03_Regression/02. M2L3 02 Distributions V2-ZlRGxq5I9BU.mp4
4.6 MB
Part 01-Module 02-Lesson 04_Time Series Modeling/02. M2L4 02 Autoregressive Models V5-9jE7S4b-oIU.mp4
4.6 MB
Part 05-Module 01-Lesson 02_NumPy/03. NumPy 0 V1-vyjMs8KFHlE.mp4
4.6 MB
Part 03-Module 01-Lesson 03_Control Flow/07. Complex Boolean Expressions-gWmIKWgzFqI.mp4
4.6 MB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/07. What is the Standard Deviation Measuring-IbwUJ3ORZ5s.mp4
4.6 MB
Part 01-Module 04-Lesson 06_Alpha Factors/03. M4 L3a 02 Alpha Factors Versus Risk Factor Modeling V2-qsahBvhVTkk.mp4
4.6 MB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/23. M4 L3b 19 IVol Quantamental Investing V2-K6Ud6gams-U.mp4
4.6 MB
Part 06-Module 01-Lesson 06_Conditional Probability/15. Summary-yepMH9VswI8.mp4
4.6 MB
Part 03-Module 01-Lesson 05_Scripting/06. Programming Environment Setup-EKxDnCK0NAk.mp4
4.6 MB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/01. M4 L3b 01 Case Studies Intro V3-oWWrWbzDi2k.mp4
4.6 MB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/02. Introduction-XZL934YQ-FQ.mp4
4.6 MB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/02. Jupyter-qiYDWFLyXvg.mp4
4.6 MB
Part 03-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Part II-1GRv1S6K8gQ.mp4
4.6 MB
Part 02-Module 03-Lesson 07_Feature Importance/11. M7L7 41 Wrapper Solution V1-27tEa_Bpq20.mp4
4.6 MB
Part 01-Module 01-Lesson 08_Momentum Trading/02. M1L6 02 Momentumbased Signals V4-RedwbmYg6e4.mp4
4.6 MB
Part 01-Module 04-Lesson 06_Alpha Factors/45. M4 L3a 19 Quantiles Academic Research Vs Practitioners V2-AwL7cV2VyhM.mp4
4.5 MB
Part 07-Module 01-Lesson 03_Clustering/02. Unsupervised Learning-Mx9f99bRB3Q.mp4
4.5 MB
Part 07-Module 01-Lesson 01_Linear Regression/08. Gradient Descent-4s4x9h6AN5Y.mp4
4.5 MB
Part 01-Module 04-Lesson 06_Alpha Factors/23. M4 L3a 11 Universe Construction Rule V3-Cr0-k7gUSNg.mp4
4.5 MB
Part 02-Module 03-Lesson 02_Decision Trees/17. Maximizing Information Gain-3FgJOpKfdY8.mp4
4.5 MB
Part 07-Module 01-Lesson 04_Decision Trees/14. Maximizing Information Gain-3FgJOpKfdY8.mp4
4.5 MB
Part 06-Module 01-Lesson 12_Hypothesis Testing/25. Connecting Errors and P-Values-hFNjd5l9CLs.mp4
4.5 MB
Part 02-Module 05-Lesson 02_Optimization with Transaction Costs/06. M8l2 06 Scaling Alpha V2--gXKutS0jQc.mp4
4.5 MB
Part 01-Module 01-Lesson 07_Stock Returns/03. M1L5 03 Log Returns V5-62fZN1QnGjc.mp4
4.5 MB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/20. M4 L1B 19 Index Changes V1-C7QNfPZBXXo.mp4
4.5 MB
Part 02-Module 03-Lesson 05_Feature Engineering/09. M7L5 19 Dates Intro Part 4 V1-Eg9DvNMi1v8.mp4
4.5 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/24. Gradient Descent-rhVIF-nigrY.mp4
4.5 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/24. Gradient Descent-rhVIF-nigrY.mp4
4.5 MB
Part 01-Module 02-Lesson 03_Regression/10. M2L3 09 Transforming Data V3-N8Fhq8wiQZU.mp4
4.5 MB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/23. Kalman Filter Code - Artificial Intelligence for Robotics-3xBycKfnCOQ.mp4
4.5 MB
Part 01-Module 04-Lesson 03_Risk Factor Models/12. M4 L2A 08 Variance Of 2 Stocks Part 1 V3-PlPusmuR20k.mp4
4.4 MB
Part 02-Module 03-Lesson 07_Feature Importance/05. M7L7 08 Gini Intro V1-_Ar4nlfUUEM.mp4
4.4 MB
Part 07-Module 01-Lesson 03_Clustering/03. Clustering Movies-g8PKffm8IRY.mp4
4.4 MB
Part 02-Module 02-Lesson 02_Training Neural Networks/13. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.mp4
4.4 MB
Part 02-Module 03-Lesson 07_Feature Importance/11. M7L7 47 Marginal Solution V1-HINVjMBV6O8.mp4
4.4 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.mp4
4.4 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.mp4
4.4 MB
Part 02-Module 02-Lesson 04_Recurrent Neural Networks/03. LSTM Basics-gjb68a4XsqE.mp4
4.4 MB
Part 01-Module 04-Lesson 06_Alpha Factors/38. M4 L3a 171 Turnover As Proxy For Real World Constraints V2-6xo8sZjoSVk.mp4
4.3 MB
Part 02-Module 03-Lesson 07_Feature Importance/09. M7L7 28 CaseD Solution V1-gRSj2_SBwnM.mp4
4.3 MB
Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/02. M2L6 02 Mean Reversion V5-zQ08lFcZa_A.mp4
4.3 MB
Part 02-Module 03-Lesson 05_Feature Engineering/03. M7L5 03 Setup Code Exercise V1-xlwlc6l7pXg.mp4
4.3 MB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/13. Calculating the Mean-1nzZxmJ8xvU.mp4
4.3 MB
Part 02-Module 03-Lesson 02_Decision Trees/11. MLND SL DT 08 Entropy Formula 2 MAIN V2-6GHg70hrSJw.mp4
4.3 MB
Part 07-Module 01-Lesson 04_Decision Trees/09. MLND SL DT 08 Entropy Formula 2 MAIN V2-6GHg70hrSJw.mp4
4.3 MB
Part 06-Module 01-Lesson 12_Hypothesis Testing/31. Multiple Testing Corrections-DuMgeHrkIF0.mp4
4.3 MB
Part 01-Module 04-Lesson 01_Factors/08. M4 L1A 07 Rescale Part 1 V2-BcsxA0vy3jA.mp4
4.3 MB
Part 01-Module 04-Lesson 06_Alpha Factors/37. M4 L3a 162 Real World Constraints Transaction Costs V2-HAif7xSh8z0.mp4
4.3 MB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/13. M4 L2A 24 Categorical Variable Estimation V4-50hvTluqz3U.mp4
4.3 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/11. L1 12 How An Index Is Constructed V2-dsbi4dvdU9c.mp4
4.3 MB
Part 03-Module 01-Lesson 02_Data Types and Operators/29. L2 03 Sets V2-eIHNFgTFfnA.mp4
4.3 MB
Part 03-Module 01-Lesson 04_Functions/02. Default Arguments-cG6UfBZX2KI.mp4
4.3 MB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/05. M4 L4 06 Standard Constraints V4-OPBKsNQPr6I.mp4
4.3 MB
Part 01-Module 01-Lesson 04_Stock Prices/02. M1L2 01 Stock Pt II V1-SGb54HLbk1g.mp4
4.3 MB
Part 01-Module 04-Lesson 09_Project 4 Alpha Research and Factor Modeling/01. M4 01 Intro To Project 4 V1-7goOG7CdUjU.mp4
4.3 MB
Part 02-Module 01-Lesson 06_Basic NLP Analysis/04. AIT M5L5 04 BagofWords V3-8t2bf9kAVHE.mp4
4.3 MB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/16. M4 L2b 15 PCA As A Factor Model Pt 1 V3-4E3C5E-MmkI.mp4
4.2 MB
Part 02-Module 01-Lesson 04_Feature Extraction/07. GloVe-KK3PMIiIn8o.mp4
4.2 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/16. DL 18 Q Softmax V2-RC_A9Tu99y4.mp4
4.2 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 Q Softmax V2-RC_A9Tu99y4.mp4
4.2 MB
Part 03-Module 01-Lesson 02_Data Types and Operators/01. Introduction-4F7SC0C6tfQ.mp4
4.2 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/02. L1 01 Stocks V2-XHo5iyxDxOQ.mp4
4.2 MB
Part 01-Module 01-Lesson 06_Data Processing/03. M1L4 04b Dividends V2-OVZw9tci55w.mp4
4.2 MB
Part 02-Module 01-Lesson 04_Feature Extraction/02. Bag Of Words-A7M1z8yLl0w.mp4
4.2 MB
Part 06-Module 01-Lesson 12_Hypothesis Testing/12. Types Of Errors - Part III-Z-srkCPsdaM.mp4
4.2 MB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/06. Context-J-4pfu2w1C0.mp4
4.2 MB
Part 10-Module 01-Lesson 01_Intro to NLP/07. Context-J-4pfu2w1C0.mp4
4.2 MB
Part 01-Module 04-Lesson 06_Alpha Factors/41. M4 L3a 181 Quantile Analysis Part 1 V2-oT5GFbg0G8g.mp4
4.2 MB
Part 01-Module 03-Lesson 02_ETFs/05. L2 07 ETF Sponsor V2-v5vfAP1nJ10.mp4
4.2 MB
Part 03-Module 01-Lesson 02_Data Types and Operators/22. L2 07 Lists And Membership Operators II V3-3Nj-b-ZzqH8.mp4
4.2 MB
Part 01-Module 02-Lesson 05_Volatility/06. M2L5 06 Rolling Windows V3-4EuMKqeNXA0.mp4
4.2 MB
Part 02-Module 02-Lesson 04_Recurrent Neural Networks/02. RNN Vs LSTM-70MgF-IwAr8.mp4
4.2 MB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/09. M4 L2A 20 Fama French Risk Model V3-tepvGkpNKrI.mp4
4.2 MB
Part 02-Module 03-Lesson 05_Feature Engineering/11. M7L5 28 V1-Ffax3lTKAs0.mp4
4.2 MB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/02. L3 02 Diversification V3-tyzqlXddXd8.mp4
4.1 MB
Part 02-Module 03-Lesson 07_Feature Importance/09. M7L7 21 Optional Explanation Part 2 V1-zpn4NQNQJh8.mp4
4.1 MB
Part 03-Module 01-Lesson 05_Scripting/27. Experimenting With An Interpreter-hspPtnQwMPg.mp4
4.1 MB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/25. Aggregations-ADx1x2ljFB4.mp4
4.1 MB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/04. M4 L4 04 Regularization V4-fq-CanyDHuw.mp4
4.1 MB
Part 01-Module 01-Lesson 07_Stock Returns/01. M1L5 02 Returns V6-PngIo6G73Z8.mp4
4.1 MB
Part 05-Module 01-Lesson 03_Pandas/05. Pandas 2 V1-B7MuFIwboKU.mp4
4.1 MB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/12. M4 L4 14 Transaction Costs V3-yxwqTvbJhhc.mp4
4.1 MB
Part 05-Module 01-Lesson 03_Pandas/04. Pandas 1 V1-iXnYN8cnhzs.mp4
4.1 MB
Part 01-Module 03-Lesson 02_ETFs/01. L2 01 Intro V2-utlPzT8MEsM.mp4
4.1 MB
Part 03-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules-jPGyFgcIvsM.mp4
4.1 MB
Part 01-Module 01-Lesson 05_Market Mechanics/02. M1L3 02 Farmers Market V3-i_itXOdetCc.mp4
4.1 MB
Part 06-Module 01-Lesson 13_Case Study AB tests/07. Metric - Click Through Rate-EpfoKAwV_Eg.mp4
4.1 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/21. L1 24 Hedging Strategies V3-8bzw4ZMGpWU.mp4
4.1 MB
Part 01-Module 03-Lesson 04_Portfolio Optimization/02. L4 02 What Is Optimization V2-ISRlP1GeOjU.mp4
4.1 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 2-6nUUeQ9AeUA.mp4
4.1 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 2-6nUUeQ9AeUA.mp4
4.1 MB
Part 03-Module 01-Lesson 05_Scripting/17. Reading And Writing Files-w-ZG6DMkVi4.mp4
4.1 MB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/21. Working with Outliers-4RnQjtJB8t8.mp4
4.1 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/12. L1 13 Hang Seng Index Construction V2-rdGdC-meRLU.mp4
4.0 MB
Part 06-Module 01-Lesson 12_Hypothesis Testing/26. Conclusions In Hypothesis Testing-I0Mo7hcxahY.mp4
4.0 MB
Part 02-Module 05-Lesson 02_Optimization with Transaction Costs/09. M8l2 18 Linear Price Impact Part2 V2-aTNfxMjEg3w.mp4
4.0 MB
Part 06-Module 01-Lesson 12_Hypothesis Testing/03. Setting Up Hypotheses - Part I-NpZxJg4S6X4.mp4
4.0 MB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/13. Formula Summary-zqo1RJEHT_0.mp4
4.0 MB
Part 06-Module 01-Lesson 12_Hypothesis Testing/17. Simulating From the Null-sL2yJtHZd8Y.mp4
4.0 MB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/11. Why the Standard Deviation-XlTBvjQ2t8w.mp4
4.0 MB
Part 06-Module 01-Lesson 11_Confidence Intervals/11. Traditional vs. Bootstrapping Confidence Intervals-eZ8lyiumXDY.mp4
4.0 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/06. L1 07 Ratios V2-Dfbwep-tkok.mp4
4.0 MB
Part 02-Module 03-Lesson 02_Decision Trees/09. Entropy-piLpj1V1HEk.mp4
4.0 MB
Part 07-Module 01-Lesson 04_Decision Trees/07. Entropy-piLpj1V1HEk.mp4
4.0 MB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/18. M4 L3b 14 IVol Value And Idiosyncratic Volatility Overview V2-h7vamh2FPMs.mp4
4.0 MB
Part 02-Module 02-Lesson 05_Embeddings & Word2Vec/07. 5 Subsampling Solution V1-YXruURuFD7g.mp4
4.0 MB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/05. 05. Emotional Intelligence-D_LzJsJH5qk.mp4
4.0 MB
Part 06-Module 01-Lesson 12_Hypothesis Testing/21. Calculating the p-value-_W3Jg7jQ8jI.mp4
4.0 MB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/07. M4 L4 08 Factor Exposure And Position Constraints V3-wMY4zI5zLSM.mp4
4.0 MB
Part 07-Module 01-Lesson 01_Linear Regression/11. Minimizing Error Functions-RbT2TXN_6tY.mp4
4.0 MB
Part 03-Module 01-Lesson 02_Data Types and Operators/25. L2 05 Lists Methods V1-WXkPm4rv6ng.mp4
3.9 MB
Part 02-Module 03-Lesson 07_Feature Importance/11. M7L7 36 Algorithm Part 1 V2-4ko5-Ck-yCQ.mp4
3.9 MB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/22. Random & Observed Values-KFIt2OC3wCI.mp4
3.9 MB
Part 02-Module 03-Lesson 04_Random Forests/08. L4 15 HS Outofbag Score V4-CcdXrGYaOhE.mp4
3.9 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/34. Calculating The Gradient 1 -tVuZDbUrzzI.mp4
3.9 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/34. Calculating The Gradient 1 -tVuZDbUrzzI.mp4
3.9 MB
Part 07-Module 01-Lesson 03_Clustering/11. K-Means Clustering Visualization 2-fQXXa-CAoS0.mp4
3.9 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/25. L1 29 Open End Funds Holding Cash For Withdrawals V3-RU8-ZRBJ2Cw.mp4
3.9 MB
Part 01-Module 03-Lesson 02_ETFs/02. L2 12 Shortcomings Of Mutual Funds V2-oEqsaex31Qg.mp4
3.9 MB
Part 06-Module 01-Lesson 11_Confidence Intervals/03. Sampling Distributions & Confidence Intervals-gICzUhMVymo.mp4
3.9 MB
Part 03-Module 01-Lesson 03_Control Flow/07. Truth Value Testing-e52uw7ejV8k.mp4
3.9 MB
Part 06-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-pOKmt4w8T3g.mp4
3.9 MB
Part 06-Module 01-Lesson 06_Conditional Probability/01. Introduction to Conditional Probability-Ok8948Wcbmo.mp4
3.9 MB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/02. Structured Languages-NsmqUIHlk6U.mp4
3.9 MB
Part 10-Module 01-Lesson 01_Intro to NLP/03. Structured Languages-NsmqUIHlk6U.mp4
3.9 MB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-DjsL64Kjr1Q.mp4
3.9 MB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/12. Notation Parameters vs. Statistics-webref_dLrA.mp4
3.9 MB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/17. M4 L1B 16 Fundamentals V1-rPii5-ry8nc.mp4
3.9 MB
Part 01-Module 02-Lesson 02_Outliers and Filtering/05. M2L2 04 Spotting Outliers In Raw Data V3-kFIB0YIW1TQ.mp4
3.9 MB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/05. M4 L2A 16 Fama French Size Factor V2-94a2ugitC_E.mp4
3.9 MB
Part 02-Module 03-Lesson 05_Feature Engineering/06. M7L5 10 Dispersion Solution V1-S5lzU1nAuhU.mp4
3.9 MB
Part 01-Module 02-Lesson 01_Quant Workflow/05. M2L1 04 Anatomy Of A Strategy Part 1 V5-cnJK8c2zfq4.mp4
3.9 MB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/01. Welcome to Computer Vision-GgA3_-MMT_I.mp4
3.9 MB
Part 01-Module 02-Lesson 03_Regression/18. MV 14 What Happens In Your Brain V1-ioDP7ndd40Y.mp4
3.9 MB
Part 02-Module 03-Lesson 07_Feature Importance/11. M7L7 39 Proportion Solution V1-i03PYAy2ijE.mp4
3.9 MB
Part 01-Module 02-Lesson 04_Time Series Modeling/03. M2L4 03 Moving Average Models V5-1FkCP_dwxjI.mp4
3.9 MB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/06. M4 L2A 17 Fama French Size Factor V3-FXZuHsn0bx4.mp4
3.9 MB
Part 02-Module 02-Lesson 03_Deep Learning with PyTorch/13. PyTorch V2 Part 3 Solution 2 V1-ExyFG2MjsKs.mp4
3.8 MB
Part 06-Module 01-Lesson 11_Confidence Intervals/10. Traditional Confidence Interval Methods-DmZwYHuz2eM.mp4
3.8 MB
Part 05-Module 01-Lesson 03_Pandas/06. Pandas 3 V1-yhMT0X6YPFA.mp4
3.8 MB
Part 06-Module 01-Lesson 04_Probability/02. Flipping Coins-OpNufHYgJCg.mp4
3.8 MB
Part 02-Module 02-Lesson 05_Embeddings & Word2Vec/01. M4L51 HSA Word Embeddings V3 RENDER V1-ZsLhh1mly9k.mp4
3.8 MB
Part 06-Module 01-Lesson 11_Confidence Intervals/12. Other Language Associated With Confidence Intervals-9KYVRx7-llg.mp4
3.8 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.mp4
3.8 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.mp4
3.8 MB
Part 06-Module 01-Lesson 08_Python Probability Practice/02. Simulating Coin Flips-7YtQNZ3iy6o.mp4
3.8 MB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/01. L3 01 Intro V1-PxLJniuGyC0.mp4
3.8 MB
Part 02-Module 03-Lesson 07_Feature Importance/11. M7L7 54 Test1 V1-6yMdxyiykeg.mp4
3.8 MB
Part 01-Module 04-Lesson 03_Risk Factor Models/07. M4 L2A 04 Factor Model Of Portfolio Return V3-HEoPljS1wD0.mp4
3.7 MB
Part 06-Module 01-Lesson 13_Case Study AB tests/05. Experiment I-JLKAdT2JESk.mp4
3.7 MB
Part 02-Module 03-Lesson 07_Feature Importance/05. M7L7 09 Gini Solution V1-xCjkhgQDTu4.mp4
3.7 MB
Part 02-Module 01-Lesson 01_Welcome To Term II/02. AITND TII 02 Overview Of Term 2 V1-dVz-lVGvadY.mp4
3.7 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/32. Layers-pg99FkXYK0M.mp4
3.7 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/32. Layers-pg99FkXYK0M.mp4
3.7 MB
Part 01-Module 03-Lesson 02_ETFs/03. L2 03 Commodity Futures V3-qvSubjxMGJ0.mp4
3.7 MB
Part 06-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram-b8M9CWxRyQ4.mp4
3.7 MB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/12. Variance & Standard Deviation Final Points-vXUgp2375j4.mp4
3.7 MB
Part 02-Module 03-Lesson 05_Feature Engineering/09. M7L5 19 Dates Solution Part 1 V2-CliBAanDEhk.mp4
3.7 MB
Part 02-Module 04-Lesson 02_Optimize Your GitHub Profile/10. Interview with Art - Part 2-Vvzl2J5K7-Y.mp4
3.7 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/14. L1 16 Funds V2-s9f2Bzc9lnk.mp4
3.7 MB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/12. Normalizer-mQ_IjrtmmAk.mp4
3.7 MB
Part 02-Module 03-Lesson 05_Feature Engineering/08. M7L5 16 Sector Intro V2-NSp_qX8s_B0.mp4
3.7 MB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/01. M4 L2b 01 PCA Statistical Risk Model V1-lDxqJ0JYUzs.mp4
3.7 MB
Part 06-Module 01-Lesson 04_Probability/08. Two Flips 1-1txkcmxk3vU.mp4
3.6 MB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/10. Feature Extraction-UgENzCmfFWE.mp4
3.6 MB
Part 10-Module 01-Lesson 01_Intro to NLP/11. Feature Extraction-UgENzCmfFWE.mp4
3.6 MB
Part 02-Module 03-Lesson 05_Feature Engineering/08. M7L5 16 Sector Intro Part 2 V1-DmYfsKS6kRM.mp4
3.6 MB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/16. M4 L2A 27 Summary V1-rdqINNkTlqs.mp4
3.6 MB
Part 06-Module 01-Lesson 13_Case Study AB tests/04. Business Example-Wzz7omSDfEk.mp4
3.6 MB
Part 01-Module 03-Lesson 02_ETFs/03. L2 05 International ETFs V2-OL2p8S-82mY.mp4
3.6 MB
Part 02-Module 03-Lesson 07_Feature Importance/11. M7L7 55 Test2 V1-36-igThq7yI.mp4
3.6 MB
Part 06-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-JIWv5fU3GLA.mp4
3.6 MB
Part 01-Module 04-Lesson 03_Risk Factor Models/10. M4 L2A 06 Variance Of One Stock V3-rxaABg4wVZo.mp4
3.6 MB
Part 03-Module 01-Lesson 05_Scripting/08. Scripting With Raw Input-Fs9uLV2qfgI.mp4
3.6 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/28. L1 32 Summary V1-Pt2sVftdwS0.mp4
3.6 MB
Part 06-Module 01-Lesson 11_Confidence Intervals/02. Sampling To Distributions To Confidence Intervals-QYMLkDToigc.mp4
3.6 MB
Part 06-Module 01-Lesson 12_Hypothesis Testing/32. How Do Confidence Intervals & Hypothesis Tests Compare-KEmsEViOoMA.mp4
3.6 MB
Part 02-Module 03-Lesson 07_Feature Importance/09. M7L7 29 Shapley Intro V1-yOfZDm99Vac.mp4
3.6 MB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/19. M4 L1B 18 EventDriven Factors V1-2mnwjChH2hg.mp4
3.6 MB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/08. M4 L2b 08 Writing It Down Pt 1 V3-NyDNFqm8c_s.mp4
3.5 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.mp4
3.5 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.mp4
3.5 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/20. L1 22 Relative Returns V2-m4MvYRlyPoU.mp4
3.5 MB
Part 01-Module 02-Lesson 03_Regression/15. M2L3 14 Regression In Trading V2-bcOGRWxg7qQ.mp4
3.5 MB
Part 01-Module 04-Lesson 03_Risk Factor Models/05. M4 L2A 03 Factor Model Of Asset Return V2-7UnllxDmLj8.mp4
3.5 MB
Part 06-Module 01-Lesson 06_Conditional Probability/10. Total Probability-YSYpzFR4k1I.mp4
3.5 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/03. L1 02 Indices V2-BRv5B78YBGs.mp4
3.5 MB
Part 01-Module 01-Lesson 05_Market Mechanics/05. M1L3 08 Tick Data V4-2O0eSKmI6YQ.mp4
3.5 MB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/15. M4 L2A 26 Fundamental Factors V2-fndhL2Tolac.mp4
3.5 MB
Part 02-Module 01-Lesson 03_Text Processing/05. Tokenization-4Ieotbeh4u8.mp4
3.5 MB
Part 03-Module 01-Lesson 02_Data Types and Operators/27. L2 04 Tuples V3-33xN-AbTMoc.mp4
3.5 MB
Part 01-Module 01-Lesson 06_Data Processing/02. M1L4 02 Market Data V5-9aEp374GsgQ.mp4
3.5 MB
Part 07-Module 01-Lesson 03_Clustering/16. Counterintuitive Clusters-StmEUgT1XSY.mp4
3.5 MB
Part 06-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1-_DjfTytro6I.mp4
3.5 MB
Part 01-Module 04-Lesson 06_Alpha Factors/48. M4 L3a 21 Its All Relative V2-VBcOrT7TuFA.mp4
3.5 MB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/04. Unstructured Text-OmwSdaec5vU.mp4
3.5 MB
Part 10-Module 01-Lesson 01_Intro to NLP/05. Unstructured Text-OmwSdaec5vU.mp4
3.5 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/15. L1 18 Alpha And Beta V3-CcVdfrr5nD8.mp4
3.5 MB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/12. M4 L1B 11 How An Alpha Factor Becomes A Risk Factor Part 1 V3-p0cTudt8kXI.mp4
3.5 MB
Part 06-Module 01-Lesson 08_Python Probability Practice/04. Simulating Many Coin Flips-AqpWQIj2V5Y.mp4
3.5 MB
Part 01-Module 04-Lesson 06_Alpha Factors/27. M4 L3a 13 Sharpe Ratio V4-W8nfg1fkloA.mp4
3.5 MB
Part 01-Module 01-Lesson 04_Stock Prices/01. M1L2 01 Stocks V6-23sv5ey0ySs.mp4
3.5 MB
Part 01-Module 04-Lesson 06_Alpha Factors/16. M4 L3a 09 Smoothing V2-mAfrjpZOf7Q.mp4
3.5 MB
Part 07-Module 01-Lesson 02_Naive Bayes/10. SL NB 09 Bayesian Learning 3 V1 V4-u-Hj4RsJn1o.mp4
3.4 MB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/12. Introduction to Summary Statistics-PCZmHCrcMcw.mp4
3.4 MB
Part 01-Module 04-Lesson 03_Risk Factor Models/17. M4 L2A 11 Types Of Risk Models V1-SHj2VzJggAE.mp4
3.4 MB
Part 02-Module 03-Lesson 03_Model Testing and Evaluation/14. Model Complexity Graph-Question-YS5OQCA5cLY.mp4
3.4 MB
Part 02-Module 03-Lesson 02_Decision Trees/16. Information Gain-k9iZL53PAmw.mp4
3.4 MB
Part 07-Module 01-Lesson 04_Decision Trees/13. Information Gain-k9iZL53PAmw.mp4
3.4 MB
Part 02-Module 02-Lesson 03_Deep Learning with PyTorch/14. PyTorch - Part 4-AEJV_RKZ7VU.mp4
3.4 MB
Part 02-Module 01-Lesson 04_Feature Extraction/09. T-SNE-xxcK8oZ6_WE.mp4
3.4 MB
Part 02-Module 03-Lesson 03_Model Testing and Evaluation/04. Confusion Matrix-Question 1-9GLNjmMUB_4.mp4
3.4 MB
Part 07-Module 01-Lesson 01_Linear Regression/07. Square Trick-AGZEq-yQgRM.mp4
3.4 MB
Part 02-Module 05-Lesson 01_Intro to Backtesting/05. M8L1 10 Overtrading V2-0cdGLRDI_Sk.mp4
3.4 MB
Part 01-Module 04-Lesson 01_Factors/07. M4 L1A 06 Demean Part 2 V2-aaj1QVsSCIs.mp4
3.4 MB
Part 03-Module 01-Lesson 02_Data Types and Operators/05. Assignment Operators-p_qfzL-x3Cs.mp4
3.4 MB
Part 06-Module 01-Lesson 04_Probability/18. Doubles-fkUyTJNbdzU.mp4
3.4 MB
Part 02-Module 03-Lesson 05_Feature Engineering/07. M7L5 13 Marketvol Intro V1-G03W42Z5RSo.mp4
3.4 MB
Part 02-Module 03-Lesson 05_Feature Engineering/06. M7L5 09 Dispersion Intro Part 1 V2-xCGuuymx180.mp4
3.4 MB
Part 06-Module 01-Lesson 11_Confidence Intervals/07. Confidence Intervals Applications-C0wgmeRx9yE.mp4
3.4 MB
Part 01-Module 01-Lesson 08_Momentum Trading/01. M1L6 01 Designing A Trading Strategy V4-O7c6bPXBUsU.mp4
3.4 MB
Part 06-Module 01-Lesson 05_Binomial Distribution/08. Formula-DTdS-LlMTQ0.mp4
3.3 MB
Part 02-Module 01-Lesson 03_Text Processing/04. Normalization-eOV2UUY8vtM.mp4
3.3 MB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/02. 02. What Is Vision-_99V1rUNFa4.mp4
3.3 MB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/17. M4 L2b 16 PCA As A Factor Model Pt 2 V3-lcd-muqX5og.mp4
3.3 MB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/01. M4 L2A 12 Time Series Risk Model Factor Variance V2-hjVBXeZmA0w.mp4
3.3 MB
Part 02-Module 03-Lesson 07_Feature Importance/13. M7L7 59 Run Starter Code V1-T3K68vodL5E.mp4
3.3 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/10. L1 11 Adding Or Removing From An Index V2-_bWIZWa20j8.mp4
3.3 MB
Part 07-Module 01-Lesson 03_Clustering/12. K-Means Clustering Visualization 3-WfwX3B4d8_I.mp4
3.3 MB
Part 06-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-hoVOT8qcQ7c.mp4
3.3 MB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/23. Bootstrapping & the Central Limit Theorem-GJGUwNr_82s.mp4
3.3 MB
Part 02-Module 01-Lesson 04_Feature Extraction/06. Word2Vec-7jjappzGRe0.mp4
3.3 MB
Part 01-Module 01-Lesson 08_Momentum Trading/13. M1L6 12 Finding Alpha V1-r8lfWVhfQC0.mp4
3.3 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/07. L1 08 S&P Index Categories V2-D3VGIvti71g.mp4
3.3 MB
Part 06-Module 01-Lesson 13_Case Study AB tests/11. Metric - Average Reading Duration-w6Y9ZxHDEbw.mp4
3.3 MB
Part 02-Module 05-Lesson 02_Optimization with Transaction Costs/10. M8l2 12 Optimization Without Constraints Part2 V2-fvwhoqt9U70.mp4
3.3 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/09. L1 10 Market Cap Weighting V2-7qVVA5yLFnY.mp4
3.3 MB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/01. Welcome to NLP-g-AlFF61p0I.mp4
3.3 MB
Part 10-Module 01-Lesson 01_Intro to NLP/02. Welcome to NLP-g-AlFF61p0I.mp4
3.3 MB
Part 06-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-vasdN2Gol0M.mp4
3.3 MB
Part 06-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-R4zq6mPPMxs.mp4
3.3 MB
Part 01-Module 04-Lesson 06_Alpha Factors/10. M4 L3a 07 Ranking Part 2 V2-uwPUV5LBhWY.mp4
3.2 MB
Part 01-Module 04-Lesson 09_Project 4 Alpha Research and Factor Modeling/04. M4 03 Coming In Term II V1-2jF5J8MIdqc.mp4
3.2 MB
Part 03-Module 01-Lesson 05_Scripting/24. Techniques For Importing Modules Part II-aASigWQ_XU0.mp4
3.2 MB
Part 02-Module 05-Lesson 02_Optimization with Transaction Costs/05. M8l2 05 Holdings Dollars V1-GKA0cpKx0BE.mp4
3.2 MB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/25. Background Of Bootstrapping-6Vg5kGoDl7k.mp4
3.2 MB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/15. The Median-WlT3eeW0rb0.mp4
3.2 MB
Part 02-Module 03-Lesson 07_Feature Importance/09. M7L7 32 Discussion Solution V1-pxmaMYOtNys.mp4
3.2 MB
Part 01-Module 01-Lesson 08_Momentum Trading/04. M1L6 04 Long And Short Positions V3-TCOFgM-hxkQ.mp4
3.2 MB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/14. M4 L1B 13 Momentum Or Reversal V3-izTAHVF6V_g.mp4
3.2 MB
Part 02-Module 04-Lesson 01_Take 30 Min to Improve your LinkedIn/04. Elevator Pitch-0QtgTG49E9I.mp4
3.2 MB
Part 02-Module 01-Lesson 05_Financial Statements/19. M5 SC 10 Parsing An HTML File V1-Ybl4fI92cYE.mp4
3.2 MB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/19. What is Notation-MaHV5cKfcmE.mp4
3.2 MB
Part 07-Module 01-Lesson 02_Naive Bayes/02. SL NB 01 Guess The Person V1 V1-tAOAjI-7ins.mp4
3.2 MB
Part 02-Module 03-Lesson 07_Feature Importance/01. L7 Intro V1-tNGSsp6vUvY.mp4
3.2 MB
Part 01-Module 03-Lesson 02_ETFs/04. L2 06 Hedging V3-4k1bdohhawI.mp4
3.2 MB
Part 03-Module 01-Lesson 05_Scripting/13. Handling Errors Try Except Finally-S6hwBZG0KwM.mp4
3.2 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.mp4
3.2 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.mp4
3.2 MB
Part 01-Module 03-Lesson 02_ETFs/10. L2 12 Misaligned ETF Pricing V3-5-pBZ3fyv6I.mp4
3.2 MB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/12. M4 L2A 23 Categorical Factors V2-F76juAxHVIk.mp4
3.1 MB
Part 02-Module 04-Lesson 01_Take 30 Min to Improve your LinkedIn/04. Pitching to a Recruiter-LxAdWaA-qTQ.mp4
3.1 MB
Part 06-Module 01-Lesson 04_Probability/19. Probability Conclusion-dsVKoXymYDU.mp4
3.1 MB
Part 07-Module 01-Lesson 04_Decision Trees/15. MLND SL DT 13 Random Forests MAIN V1-n5DhXhcYKcw.mp4
3.1 MB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/20. When Does the CLT Not Work-uZGTVUEMfrU.mp4
3.1 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/09. DL 08 AND And OR Perceptrons-Y-ImuxNpS40.mp4
3.1 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/09. DL 08 AND And OR Perceptrons-Y-ImuxNpS40.mp4
3.1 MB
Part 01-Module 03-Lesson 02_ETFs/08. L2 10 Lower Operational Costs And Taxes V2-UlJusglK0h0.mp4
3.1 MB
Part 02-Module 02-Lesson 04_Recurrent Neural Networks/14. Character-Wise RNN-dXl3eWCGLdU.mp4
3.1 MB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/17. Shape of Distributions-UnN99AAYf8k.mp4
3.1 MB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/22. Bootstrapping-42j3YclcZ4Q.mp4
3.1 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/11. Perceptron Algorithm Pseudocode-p8Q3yu9YqYk.mp4
3.1 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/11. Perceptron Algorithm Pseudocode-p8Q3yu9YqYk.mp4
3.1 MB
Part 07-Module 01-Lesson 01_Linear Regression/18. Closed Form Solution-G3fRVgLa5gI.mp4
3.1 MB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/27. MV When Those Around You Dont Believe In You V1--vKspTOIXY0.mp4
3.1 MB
Part 02-Module 01-Lesson 06_Basic NLP Analysis/05. AIT M5L5 06 World Lists Searches V2-RutjcGh74Mw.mp4
3.1 MB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/16. M4 L4 20 Outro V1-c3J8t6q2BGo.mp4
3.1 MB
Part 01-Module 02-Lesson 05_Volatility/13. M2L5 13 Breakout Strategies V4-9eamk40DMu0.mp4
3.1 MB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/18. Data in the Real World-HmipezTjTDY.mp4
3.1 MB
Part 02-Module 01-Lesson 05_Financial Statements/08. M5 SC 3 Finding Metacharacters V1-RiSVD9E823Q.mp4
3.1 MB
Part 02-Module 02-Lesson 03_Deep Learning with PyTorch/18. PyTorch V2 Part 5 Solution 2 V1-3Py2SbtZLbc.mp4
3.0 MB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/18. KALMAN QUIZ Gaussian Motion 01 RENDER V2-LFPT0R3VaPs.mp4
3.0 MB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/10. M4 L2A 21 Cross Sectional Risk Model V3-mpnRAt8qUus.mp4
3.0 MB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/07. M4 L2A 18 Fama French Value Factor V4-IcbsQ4QRGbs.mp4
3.0 MB
Part 01-Module 01-Lesson 06_Data Processing/08. M1L4 11 Survivor Bias V2-39MeCCw5ndM.mp4
3.0 MB
Part 06-Module 01-Lesson 04_Probability/16. One Of Three 2-27Ed1GI4j84.mp4
3.0 MB
Part 06-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-mOPFQlKBg2M.mp4
3.0 MB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/08. M4 L2A 19 Fama French SMB And HML V2-fnncnimScFc.mp4
3.0 MB
Part 01-Module 01-Lesson 05_Market Mechanics/09. M1L3 12 Gaps In Market Data V3-jMT3VbUGiZI.mp4
3.0 MB
Part 06-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-lPrKmvckG4E.mp4
3.0 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/17. L1 19 Smart Beta V2-Rc9NEmNMzk8.mp4
3.0 MB
Part 02-Module 03-Lesson 07_Feature Importance/11. M7L7 40 Wrapper Intro V1-IfwRHDSxwPs.mp4
3.0 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/15. L1 17 Active Vs Passive V2-QzoHmUzJ5zw.mp4
2.9 MB
Part 01-Module 02-Lesson 04_Time Series Modeling/07. M2L4 08 Particle Filter V4-4KhDUAvwI74.mp4
2.9 MB
Part 01-Module 04-Lesson 06_Alpha Factors/42. M4 L3a 182 Quantile Analysis Part 2 V3-NF18kx0sfBE.mp4
2.9 MB
Part 01-Module 04-Lesson 03_Risk Factor Models/03. M4 L2A 02 Motivation For Risk Factor Model V2-jAQRjxK8PyQ.mp4
2.9 MB
Part 06-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-YIELbuet-ZE.mp4
2.9 MB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/20. M4 L3b 16 IVol Arbitrage Risk V3-rKtJ3iAYYns.mp4
2.9 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/06. 09 Higher Dimensions-eBHunImDmWw.mp4
2.9 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/06. 09 Higher Dimensions-eBHunImDmWw.mp4
2.9 MB
Part 01-Module 02-Lesson 04_Time Series Modeling/01. M2L4 01 Time Series Modeling V4-QeIu7GMZl20.mp4
2.9 MB
Part 01-Module 04-Lesson 03_Risk Factor Models/08. M4 L2A 05 Covariance Matrix Of Factors V3-llA1A0vjSuI.mp4
2.9 MB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/19. M4 L3b 15 IVol Arbitrage And Efficient Pricing Of Stocks V3-7Fqe5DP6iG8.mp4
2.9 MB
Part 06-Module 01-Lesson 04_Probability/15. One Of Three 1-bDCXSxkochE.mp4
2.9 MB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/08. Continuous vs. Discrete Data-BzgZebZD9kk.mp4
2.9 MB
Part 01-Module 01-Lesson 05_Market Mechanics/10. M1L3 14 Markets In Different Timezones V3-wmmEpPM-HVs.mp4
2.9 MB
Part 02-Module 03-Lesson 06_Overlapping Labels/03. L6 03 HS The Problem V4-4nTtrMyP6zQ.mp4
2.9 MB
Part 06-Module 01-Lesson 07_Bayes Rule/35. Using Sensor Data-vhl-SADfti8.mp4
2.9 MB
Part 02-Module 05-Lesson 02_Optimization with Transaction Costs/04. M8l2 04 Time Offset Take2 V1-TYYV3MnhCP0.mp4
2.8 MB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/26. M4 L3b 22 Summary V2-Tq8yVPEHxXs.mp4
2.8 MB
Part 02-Module 05-Lesson 02_Optimization with Transaction Costs/08. M8l2 10 Linear Impact V2-ntAIxAOzQQM.mp4
2.8 MB
Part 02-Module 05-Lesson 02_Optimization with Transaction Costs/07. M8l2 07 Tcost Part3 V2-ZFAZASS1m54.mp4
2.8 MB
Part 02-Module 03-Lesson 02_Decision Trees/12. Entropy Formula-w73JTBVeyjE.mp4
2.8 MB
Part 07-Module 01-Lesson 04_Decision Trees/10. Entropy Formula-w73JTBVeyjE.mp4
2.8 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 1-1yJx-QtlvNI.mp4
2.8 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 1-1yJx-QtlvNI.mp4
2.8 MB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/10. M4 L2b 10 Writing It Down Pt 3 V3-kSl0j4QIMIU.mp4
2.8 MB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/09. M4 L2b 09 Writing It Down Pt 2 V2-TSH3hTAHsIg.mp4
2.8 MB
Part 02-Module 03-Lesson 04_Random Forests/04. MLND SL DT 13 Random Forests MAIN V2-4xhjf6s_Pr0.mp4
2.8 MB
Part 06-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-yYqN9Mf4jqw.mp4
2.8 MB
Part 07-Module 01-Lesson 01_Linear Regression/16. Higher Dimensions--UvpQV1qmiE.mp4
2.8 MB
Part 03-Module 01-Lesson 04_Functions/05. Variable Scope-rYubQlAM-gw.mp4
2.8 MB
Part 02-Module 04-Lesson 02_Optimize Your GitHub Profile/02. Introduction-Vnj2VNQROtI.mp4
2.8 MB
Part 01-Module 01-Lesson 04_Stock Prices/05. Random Story-l_tnEtFCXnc.mp4
2.8 MB
Part 02-Module 03-Lesson 01_Overview/01. L1 01 HS Welcome To M7 V2-3l--nlBdfaA.mp4
2.8 MB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/05. M4 L2b 05 Translating Between Bases V4-lrE4VOJ2RCA.mp4
2.8 MB
Part 03-Module 01-Lesson 04_Functions/01. Introduction-p5L4rTV1Pgk.mp4
2.8 MB
Part 07-Module 01-Lesson 02_Naive Bayes/05. SL NB 04 Bayes Theorem V1 V2-nVbPJmf53AI.mp4
2.8 MB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/09. Text Processing-pqheVyctkNQ.mp4
2.7 MB
Part 10-Module 01-Lesson 01_Intro to NLP/10. Text Processing-pqheVyctkNQ.mp4
2.7 MB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/06. 5 Number Summary to Variance-Ljhau0hrZ1g.mp4
2.7 MB
Part 02-Module 03-Lesson 06_Overlapping Labels/08. L6 11 HS Foreshadow V2-iXqYUwpFTqs.mp4
2.7 MB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/26. Notation for the Mean-3EF15AoRxyM.mp4
2.7 MB
Part 02-Module 03-Lesson 05_Feature Engineering/08. M7L5 17 Sector Solution V1-I9iFbxzIu60.mp4
2.7 MB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/24. There Must Be A Better Way-oBp8YX2AgJw.mp4
2.7 MB
Part 02-Module 05-Lesson 03_Attribution/05. M8l3 06 Performance Attribution V1-kLGjemiiPIs.mp4
2.7 MB
Part 01-Module 02-Lesson 01_Quant Workflow/01. MV 05 Intro To Module 2 V1-92JzOXda9Q8.mp4
2.7 MB
Part 02-Module 03-Lesson 07_Feature Importance/13. M7L7 64 Rank Shap Intro V1-7b_CpMxqVYc.mp4
2.7 MB
Part 06-Module 01-Lesson 11_Confidence Intervals/14. Correct Interpretations of Confidence Intervals-IhYv_SlN7e8.mp4
2.7 MB
Part 02-Module 04-Lesson 02_Optimize Your GitHub Profile/03. GitHub profile important items-prvPVTjVkwQ.mp4
2.7 MB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/17. M4 L3b 13 Skewness And Momentum Conditional Factor V2-cMLTVZFKEm0.mp4
2.7 MB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/22. Outliers Advice-BhhDoTgYQmI.mp4
2.7 MB
Part 06-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-OdVAt79eQak.mp4
2.6 MB
Part 02-Module 03-Lesson 07_Feature Importance/11. M7L7 46 Marginal Intro V1-RhDVEN3vHc8.mp4
2.6 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/13. L1 15 Calculating Index After Add Or Delete V2-hiAHRE6JY0k.mp4
2.6 MB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/06. Example of Sampling Distributions - Part I-1XezzP6kxUE.mp4
2.6 MB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/15. Two Useful Theorems-jQ5i7CALdRQ.mp4
2.6 MB
Part 03-Module 01-Lesson 05_Scripting/02. Python Installation-2_P05aYChqQ.mp4
2.6 MB
Part 03-Module 01-Lesson 05_Scripting/11. Errors And Exceptions-DmthSiy2d0U.mp4
2.6 MB
Part 02-Module 03-Lesson 05_Feature Engineering/09. M7L5 19 Dates Intro Part 3 V1-QOwy_XTIAes.mp4
2.6 MB
Part 01-Module 01-Lesson 05_Market Mechanics/04. M1L3 04 Liquidity V4-KNVQeH6Y_YA.mp4
2.6 MB
Part 01-Module 03-Lesson 05_Project 3 Smart Beta and Portfolio Optimization/01. MV 12 Transition To Project 03 V1-ClzlNlWqMQI.mp4
2.6 MB
Part 02-Module 05-Lesson 02_Optimization with Transaction Costs/11. M8l2 13 Risk Factor Matrix V2-Obwjj-Fs2LM.mp4
2.6 MB
Part 04-Module 01-Lesson 02_Vectors/02. Vectors 2-R7WiQYixvRQ.mp4
2.6 MB
Part 06-Module 01-Lesson 11_Confidence Intervals/01. Confidence Intervals Introduction-crleT4000ak.mp4
2.6 MB
Part 01-Module 03-Lesson 02_ETFs/03. L2 02 Commodities V2-gc_GMqbCC2Q.mp4
2.6 MB
Part 02-Module 03-Lesson 07_Feature Importance/02. L7 H3 V1-xaXHTDANbnc.mp4
2.6 MB
Part 07-Module 01-Lesson 01_Linear Regression/09. Mean Absolute Error-vLKiY0Ehors.mp4
2.6 MB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/15. Summary-VP-PMcgqhc8.mp4
2.6 MB
Part 06-Module 01-Lesson 04_Probability/01. Introduction to Probability-HeoQccoqfTk.mp4
2.6 MB
Part 02-Module 03-Lesson 05_Feature Engineering/08. M7L5 15 V1 (1)-Q5CZxxKXAB8.mp4
2.6 MB
Part 06-Module 01-Lesson 12_Hypothesis Testing/16. Using A Confidence Interval to Make A Decision-MghT95b6LbQ.mp4
2.6 MB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/23. M4 L1B 22 Alternative Data V1-p6NxGZnkrdc.mp4
2.6 MB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/07. Example of Sampling Distributions - Part II-PKf3Nu6zAxM.mp4
2.6 MB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/05. KALMAN Gaussian Intro RENDER 1 1 V3-S2v1CExswT4.mp4
2.6 MB
Part 02-Module 01-Lesson 03_Text Processing/03. Capturing Text Data-Z4mnMN1ApG4.mp4
2.6 MB
Part 06-Module 01-Lesson 11_Confidence Intervals/05. Confidence Interval for a Difference In Means-8hrWGzjyhck.mp4
2.5 MB
Part 06-Module 01-Lesson 07_Bayes Rule/29. Generalizing-SdMk3aROgSc.mp4
2.5 MB
Part 02-Module 03-Lesson 07_Feature Importance/11. M7L7 48 Subsets Intro V1-ddoL_RcpZAc.mp4
2.5 MB
Part 02-Module 03-Lesson 01_Overview/03. Types Of Machine Learning Supervised V1-iGTuWwR6kZE.mp4
2.5 MB
Part 06-Module 01-Lesson 13_Case Study AB tests/16. Drawing Conclusions-s-4ghG9vrGQ.mp4
2.5 MB
Part 03-Module 01-Lesson 02_Data Types and Operators/35. L2 01 Compound Data Structures V1-jmQ8IKvQgBU.mp4
2.5 MB
Part 01-Module 01-Lesson 06_Data Processing/13. M1L4 16 Alternate Data V2-DFwu2ysGY8c.mp4
2.5 MB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/01. 1 SentimentRNN Intro V1-bQWUuaMc9ZI.mp4
2.5 MB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/04. What is Data-ldTDAjrVsA8.mp4
2.5 MB
Part 02-Module 05-Lesson 03_Attribution/04. M8l3 05 Variance Decomposition V3-2V80v8sQl90.mp4
2.5 MB
Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/14. M2L6 20 Summary V2-wuzha8SU2jw.mp4
2.5 MB
Part 02-Module 02-Lesson 02_Training Neural Networks/12. Other Activation Functions-kA-1vUt6cvQ.mp4
2.5 MB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/14. Other Sampling Distributions-Bxl0DonzX8c.mp4
2.5 MB
Part 06-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home-TtmQ7YCw_1Y.mp4
2.5 MB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/03. 03. Role In AI Render-xm1TXnNe5Pw.mp4
2.5 MB
Part 01-Module 01-Lesson 05_Market Mechanics/06. M1L3 09 Open High Low Close V4-FgNY4YgVWFk.mp4
2.5 MB
Part 06-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-CLgVLQAEYw8.mp4
2.5 MB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/03. L3 03 Portfolio Mean V3-vozlctvug7I.mp4
2.5 MB
Part 02-Module 03-Lesson 06_Overlapping Labels/01. L6 01 HS Intro V2-zUOOluyHe_E.mp4
2.4 MB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/07. 08. Computer Vision Pipeline-64hFcqhnNow.mp4
2.4 MB
Part 06-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Iz4ViIg9ZlQ.mp4
2.4 MB
Part 07-Module 01-Lesson 03_Clustering/06. Optimizing Centers (Rubber Bands)-nNR4hjhhGBc.mp4
2.4 MB
Part 06-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-9R44IyZ-aQI.mp4
2.4 MB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/25. M4 L3b 21 IVol Generalizing The Volatility Factor V2-Lt1JPjKHPmk.mp4
2.4 MB
Part 06-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-69je8wHh2mQ.mp4
2.4 MB
Part 01-Module 03-Lesson 02_ETFs/09. L2 11 Arbitrage V2-yp-CcGrMzYQ.mp4
2.4 MB
Part 02-Module 03-Lesson 07_Feature Importance/05. M7L7 12 Feature Importance Intro V1-v4Ksjo3snnI.mp4
2.4 MB
Part 03-Module 01-Lesson 05_Scripting/13. Handling Error Specifying Exceptions-EHW5I7shdJg.mp4
2.4 MB
Part 01-Module 01-Lesson 06_Data Processing/15. MV 06 Our Goal Is To Help You Meet Your Goals V1--pSppDzJRu8.mp4
2.4 MB
Part 02-Module 04-Lesson 02_Optimize Your GitHub Profile/07. Quick Fixes-Lb9e2KemR6I.mp4
2.4 MB
Part 02-Module 03-Lesson 03_Model Testing and Evaluation/11. 06 Precision SC V1-q2wVorBfefU.mp4
2.4 MB
Part 02-Module 03-Lesson 02_Decision Trees/05. Recommending Apps-nEvW8B1HNq4.mp4
2.4 MB
Part 07-Module 01-Lesson 04_Decision Trees/04. Recommending Apps-nEvW8B1HNq4.mp4
2.4 MB
Part 02-Module 03-Lesson 03_Model Testing and Evaluation/09. 04 Quiz False Negatives And Positives SC V1-_ytP9zIkziw.mp4
2.4 MB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/05. Data Types-gT6EYlsLZkE.mp4
2.4 MB
Part 01-Module 01-Lesson 08_Momentum Trading/14. MV 13 Global Talent Is Equally Distributed V1-QwDJbbBl_48.mp4
2.4 MB
Part 02-Module 03-Lesson 01_Overview/04. Types of Machine Learning - Unsupervised & Reinforcement-yg4A99NMzAQ.mp4
2.4 MB
Part 01-Module 02-Lesson 02_Outliers and Filtering/09. M2L2 08 Generating Robust Trading Signals V3-1ikkZmVkjl0.mp4
2.4 MB
Part 02-Module 03-Lesson 03_Model Testing and Evaluation/10. Answer False Negatives And Positives-KOytJL1lvgg.mp4
2.4 MB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/02. Histograms-4t10RgUv2Fc.mp4
2.4 MB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/03. M4 L2A 14 Time Series Risk Model Specific Variance V2-I0uJLfh_OgQ.mp4
2.4 MB
Part 02-Module 02-Lesson 04_Recurrent Neural Networks/15. Sequence-Batching-Z4OiyU0Cldg.mp4
2.4 MB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/26. KALMAN QUIZ Kalman Prediction V1-d8Gx4-RghD0.mp4
2.4 MB
Part 02-Module 02-Lesson 04_Recurrent Neural Networks/05. Learn Gate-aVHVI7ovbHY.mp4
2.4 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/02. L1 00 Intro V2-JA4WBd6sHF4.mp4
2.4 MB
Part 02-Module 03-Lesson 05_Feature Engineering/09. M7L5 19 Dates Intro Part 2 V1--I-jF0Ikli0.mp4
2.4 MB
Part 03-Module 01-Lesson 03_Control Flow/02. Indentation-G8qUNOTHtrM.mp4
2.4 MB
Part 02-Module 03-Lesson 04_Random Forests/05. MLND SL EM 02 Bagging V1 MAIN V1-9L_B0Jcio3c.mp4
2.4 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/19. L1 21 Hedge Funds V4-AgGPqvDFTHw.mp4
2.4 MB
Part 02-Module 02-Lesson 02_Training Neural Networks/15. Momentum-r-rYz_PEWC8.mp4
2.3 MB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/26. Why Are Sampling Distributions Important-aDFDOCJKoH0.mp4
2.3 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/03. L1 03 Indices Are Virtual Portfolios V2-oAd_szbBNWc.mp4
2.3 MB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/09. Maximize Gaussian - Artificial Intelligence for Robotics-fRYtUP0P4Lg.mp4
2.3 MB
Part 02-Module 03-Lesson 05_Feature Engineering/10. M7L5 23 Targets Intro V1-yaKHIvm7cXY.mp4
2.3 MB
Part 01-Module 04-Lesson 03_Risk Factor Models/13. M4 L2A 09 Variance Of 2 Stocks Part 2 V4-tSMutw0f6OE.mp4
2.3 MB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-1R44jvxIPJY.mp4
2.3 MB
Part 03-Module 01-Lesson 01_Why Python Programming/03. L1 03 Programming In Python V4-O1cTNYAjeeg.mp4
2.3 MB
Part 06-Module 01-Lesson 12_Hypothesis Testing/07. Types Of Errors - Part I-aw6GMxIvENc.mp4
2.3 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/18. L1 20 Mutual Funds V2-LgaylDkS92Y.mp4
2.3 MB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/02. M4 L2b 02 Vector Two Ways V3-mlw6FnCUloU.mp4
2.3 MB
Part 02-Module 05-Lesson 02_Optimization with Transaction Costs/15. M82 Outro V1-GbWg0wSTDfk.mp4
2.3 MB
Part 02-Module 03-Lesson 03_Model Testing and Evaluation/08. When Accuracy Wont Work-r0-O-gIDXZ0.mp4
2.3 MB
Part 02-Module 05-Lesson 02_Optimization with Transaction Costs/07. M8l2 07 Tcost Part2 V1-mWMFwCkWEFk.mp4
2.3 MB
Part 06-Module 01-Lesson 12_Hypothesis Testing/37. Hypothesis Testing Conclusion-nQFchD4XPPs.mp4
2.3 MB
Part 02-Module 01-Lesson 05_Financial Statements/01. AIT M5L4A 01 Intro V1-BS4n9rRYGtw.mp4
2.3 MB
Part 07-Module 01-Lesson 02_Naive Bayes/08. SL NB 07 Q Bayesian Learning 1 V1 V4-J4BmsKXPnkA.mp4
2.3 MB
Part 02-Module 01-Lesson 06_Basic NLP Analysis/01. AIT M5L5 01 Introduction V2-94CP-oy5KKI.mp4
2.3 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/22. L1 25 Net Asset Value V2-hBnY2DmEFo4.mp4
2.3 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/04. L1 05 Market Cap V2-PE0UgUc0f0U.mp4
2.3 MB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/14. M4 L2A 25 Specific Variance V2-JwA9g3NBglE.mp4
2.3 MB
Part 02-Module 05-Lesson 01_Intro to Backtesting/08. MLND SL EM 03 AdaBoost V1 MAIN V1-HD6SRBWKGUE.mp4
2.3 MB
Part 02-Module 01-Lesson 03_Text Processing/08. Part-of-Speech Tagging-WFEu8bXI5OA.mp4
2.3 MB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/02. M4 L2A 13 Time Series Risk Model Factor Exposure V4-WPBSMptBrfw.mp4
2.3 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/32. Multiclass Classification-uNTtvxwfox0.mp4
2.3 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/32. Multiclass Classification-uNTtvxwfox0.mp4
2.3 MB
Part 02-Module 03-Lesson 03_Model Testing and Evaluation/12. 07 Recall SC V1-0n5wUZiefkQ.mp4
2.3 MB
Part 06-Module 01-Lesson 07_Bayes Rule/32. Reducing Uncertainty-zuFMhmKQ--o.mp4
2.2 MB
Part 07-Module 01-Lesson 03_Clustering/17. Counterintuitive Clusters 2-HyjBus7S2gY.mp4
2.2 MB
Part 02-Module 03-Lesson 04_Random Forests/12. L4 17 HS Outro V2-oH7B6EyLE0k.mp4
2.2 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/03. Exemplo de classificação-Dh625piH7Z0.mp4
2.2 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/03. Exemplo de classificação-Dh625piH7Z0.mp4
2.2 MB
Part 01-Module 01-Lesson 05_Market Mechanics/01. M1L3 01 Intro V4-LE-4Xf8lzHk.mp4
2.2 MB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/01. M1L1 01 Welcome V1-W2R32yXgwcg.mp4
2.2 MB
Part 02-Module 01-Lesson 03_Text Processing/07. Stop Word Removal-WAU_Ij0GJbw.mp4
2.2 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/03. L1 04 Indices Describe The Market V2-jNzwxE3el7I.mp4
2.2 MB
Part 02-Module 03-Lesson 07_Feature Importance/13. M7L7 63 Local Global V1-8JiJ3R2F3Ng.mp4
2.2 MB
Part 07-Module 01-Lesson 01_Linear Regression/01. Welcome To Linear Regression-zxZkTkM34BY.mp4
2.2 MB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/11. Introduction To Notation-ISkBSUVH49M.mp4
2.2 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/25. Gradient Descent Algorithm-snxmBgi_GeU.mp4
2.2 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/25. Gradient Descent Algorithm-snxmBgi_GeU.mp4
2.2 MB
Part 02-Module 03-Lesson 07_Feature Importance/05. M7L7 11 Node Importance Solution V1-Il0GsMMyTcM.mp4
2.2 MB
Part 02-Module 04-Lesson 02_Optimize Your GitHub Profile/04. Good GitHub repository-qBi8Q1EJdfQ.mp4
2.2 MB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/06. M1L1 MV 01 Intro In The First Five V1-magg5AVJRVA.mp4
2.2 MB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/07. Natural Language Processing-UQBxJzoCp-I.mp4
2.1 MB
Part 10-Module 01-Lesson 01_Intro to NLP/08. Natural Language Processing-UQBxJzoCp-I.mp4
2.1 MB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/12. M4 L2b 13 Principal Components V3-XtecKk58CLs.mp4
2.1 MB
Part 02-Module 03-Lesson 05_Feature Engineering/10. M7L5 24 Targets Solution V2-rC27Xoeyes0.mp4
2.1 MB
Part 02-Module 01-Lesson 04_Feature Extraction/03. TF-IDF-XZBiBIRcACE.mp4
2.1 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/16. DL 18 S Softmax-n8S-v_LCTms.mp4
2.1 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 S Softmax-n8S-v_LCTms.mp4
2.1 MB
Part 02-Module 03-Lesson 07_Feature Importance/13. M7L7 60 Rank Sklearn V1-qZc-VBI4wY0.mp4
2.1 MB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/08. Example of Sampling Distributions - Part 3-E_4lvTWkSNI.mp4
2.1 MB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/14. KALMAN QUIZ Parameter Update 01 RENDER V3-UUXETqShme4.mp4
2.1 MB
Part 02-Module 03-Lesson 07_Feature Importance/03. L7 H4 V1-CHo9WLLAOl0.mp4
2.1 MB
Part 02-Module 02-Lesson 02_Training Neural Networks/16. Error Functions Around the World-34AAcTECu2A.mp4
2.1 MB
Part 06-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-dOa4Cl0wM0s.mp4
2.1 MB
Part 02-Module 03-Lesson 07_Feature Importance/11. M7L7 42 Prediction Intro Part 1 V2-MLAnUO0BSr0.mp4
2.1 MB
Part 02-Module 03-Lesson 07_Feature Importance/09. M7L7 25 CaseC Intro V1-C6i12sqcgtY.mp4
2.1 MB
Part 02-Module 04-Lesson 02_Optimize Your GitHub Profile/15. Participating in open source projects 2-elZCLxVvJrY.mp4
2.1 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/05. L1 06 Growth Vs Value V2-ZCjre5YTD0s.mp4
2.1 MB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-02v8ui9riew.mp4
2.1 MB
Part 06-Module 01-Lesson 05_Binomial Distribution/01. Binomial-3koDdc9r73E.mp4
2.1 MB
Part 10-Module 01-Lesson 01_Intro to NLP/01. Intro Arpan-MW5MWOLj064.mp4
2.1 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/04. 分类问题 2 -46PywnGa_cQ.mp4
2.1 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/04. 分类问题 2 -46PywnGa_cQ.mp4
2.1 MB
Part 06-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram-aUFWZ2uJuBE.mp4
2.1 MB
Part 01-Module 04-Lesson 03_Risk Factor Models/11. M4 L2A 07 Taking Constants Out Of Variance And Covariance Optional V3-M9R9870m_o0.mp4
2.0 MB
Part 02-Module 03-Lesson 02_Decision Trees/08. Student Admissions-TdgBi6LtOB8.mp4
2.0 MB
Part 07-Module 01-Lesson 04_Decision Trees/06. Student Admissions-TdgBi6LtOB8.mp4
2.0 MB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/01. M4 L4 01 Intro V1-9NzZFszX2E4.mp4
2.0 MB
Part 02-Module 03-Lesson 05_Feature Engineering/01. M7L5 Intro V1-lSJ3XajG1L8.mp4
2.0 MB
Part 02-Module 03-Lesson 07_Feature Importance/11. M7L7 52 Shap All V1 (1)--hYuszY7ffo.mp4
2.0 MB
Part 07-Module 01-Lesson 02_Naive Bayes/06. SL NB 05 Q False Positives V1 V2-ngA6v09eP08.mp4
2.0 MB
Part 02-Module 03-Lesson 07_Feature Importance/11. M7L7 56 Test3 V1-W_N9wjVnfBk.mp4
2.0 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/10. Perceptron Algorithm--zhTROHtscQ.mp4
2.0 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/10. Perceptron Algorithm--zhTROHtscQ.mp4
2.0 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/19. Quiz Cross Entropy-njq6bYrPqSU.mp4
2.0 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz Cross Entropy-njq6bYrPqSU.mp4
2.0 MB
Part 02-Module 03-Lesson 07_Feature Importance/09. M7L7 31 Discussion Intro V1-0wNk_7Smmoc.mp4
2.0 MB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/08. M4 L3b 06 Winners And Losers In Momentum Investing V2-84ygzbLENbE.mp4
2.0 MB
Part 01-Module 03-Lesson 02_ETFs/11. L2 14 Summary V1-E5br2PiH8kY.mp4
2.0 MB
Part 07-Module 01-Lesson 02_Naive Bayes/09. SL NB 08 S Bayesian Learning 2 V1 V6-3rIYZgCXVXY.mp4
2.0 MB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/11. M4 L2b 11 Writing It Down Pt 4 V3-7XO-syqIpCE.mp4
2.0 MB
Part 03-Module 01-Lesson 05_Scripting/05. Running A Python Script-vMKemwCderg.mp4
2.0 MB
Part 06-Module 01-Lesson 12_Hypothesis Testing/16. How Do We Choose Between Hypotheses-JkXTwS-5Daw.mp4
2.0 MB
Part 02-Module 02-Lesson 02_Training Neural Networks/03. Testing-EeBZpb-PSac.mp4
1.9 MB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/27. M4 L1B 26 Summary V1-yuLQA24Thms.mp4
1.9 MB
Part 02-Module 03-Lesson 07_Feature Importance/05. M7L7 13 Feature Importance Solution V1-C0_ngrOk-TA.mp4
1.9 MB
Part 02-Module 01-Lesson 04_Feature Extraction/01. Feature Extraction-Bd6TJB8eVLQ.mp4
1.9 MB
Part 06-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-omC0zbJyzUY.mp4
1.9 MB
Part 06-Module 01-Lesson 11_Confidence Intervals/16. Confidence Intervals And Hypothesis Tests-T2d9AUnWl-I.mp4
1.9 MB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/01. Instructors Introduction-lIvm8urf4GE.mp4
1.9 MB
Part 02-Module 05-Lesson 02_Optimization with Transaction Costs/01. M82 Intro V1-WQ95rYDyVSA.mp4
1.9 MB
Part 06-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-07vOaYwecII.mp4
1.9 MB
Part 07-Module 01-Lesson 03_Clustering/08. Match Points (again)-5j6VZr8sHo8.mp4
1.9 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.mp4
1.9 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.mp4
1.9 MB
Part 02-Module 03-Lesson 07_Feature Importance/11. M7L7 43 Prediction Solution Part 2 V1-y-vY_23kSU0.mp4
1.9 MB
Part 07-Module 01-Lesson 01_Linear Regression/10. Mean Squared Error-MRyxmZDngI4.mp4
1.9 MB
Part 02-Module 03-Lesson 06_Overlapping Labels/04. L6 05 HS Subsample Rows V4-IAl8kotkzYg.mp4
1.9 MB
Part 02-Module 03-Lesson 05_Feature Engineering/11. M7L5 Outro V1-k7DsfRhDwLQ.mp4
1.9 MB
Part 02-Module 03-Lesson 05_Feature Engineering/05. M7L5 07 Volatility Dollar Volume Part 3 V1-xwBdEXXTu1s.mp4
1.9 MB
Part 02-Module 04-Lesson 02_Optimize Your GitHub Profile/09. Writing READMEs with Walter-DQEfT2Zq5_o.mp4
1.9 MB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/10. KALMAN QUIZ Shifting The Mean 01 RENDER 1 V2-gfBdoCFborg.mp4
1.9 MB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/11. M4 L2A 22 Cross Sectional Risk Model A Different Approach V2-LauZ7h4bgKE.mp4
1.9 MB
Part 07-Module 01-Lesson 03_Clustering/10. K-Means Cluster Visualization-iCTPBcowJRY.mp4
1.9 MB
Part 06-Module 01-Lesson 05_Binomial Distribution/09. Arrangements-NRPcnpmFCg8.mp4
1.9 MB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/01. M4 L1B 01 Intro To Lesson V1-ff0paDNA75U.mp4
1.9 MB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/01. 矩阵介绍-Ugx3mldc0lE.mp4
1.8 MB
Part 06-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-aBBmlnd7okQ.mp4
1.8 MB
Part 06-Module 01-Lesson 13_Case Study AB tests/09. Experiment II-fq4eO7CybA4.mp4
1.8 MB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-9I8ysrRlmbA.mp4
1.8 MB
Part 02-Module 02-Lesson 04_Recurrent Neural Networks/10. Other Architectures-MsxFDuYlTuQ.mp4
1.8 MB
Part 06-Module 01-Lesson 07_Bayes Rule/02. Cancer Test-FnNveASivMA.mp4
1.8 MB
Part 03-Module 01-Lesson 03_Control Flow/01. Introduction-eUrvACMMJ5w.mp4
1.8 MB
Part 06-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3-GO6kbL3QRBE.mp4
1.8 MB
Part 06-Module 01-Lesson 04_Probability/17. Even Roll-DrnAR4SqlEE.mp4
1.8 MB
Part 01-Module 03-Lesson 02_ETFs/10. L2 13 Realigning ETF Share Prices V2-aRXJxjQQSiI.mp4
1.8 MB
Part 06-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-btGdX0ZpkNU.mp4
1.8 MB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/03. What Is Coming Up-oDJsnQcCPr4.mp4
1.8 MB
Part 06-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-05upwXtARuo.mp4
1.8 MB
Part 01-Module 03-Lesson 02_ETFs/03. L2 04 Commodity ETFs V2-UpgX6INJ6nU.mp4
1.8 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.mp4
1.8 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.mp4
1.8 MB
Part 02-Module 03-Lesson 02_Decision Trees/03. MLND SL DT 01 Recommending Apps 1 MAIN V3-uI_yNrqqKVg.mp4
1.8 MB
Part 07-Module 01-Lesson 04_Decision Trees/02. MLND SL DT 01 Recommending Apps 1 MAIN V3-uI_yNrqqKVg.mp4
1.8 MB
Part 02-Module 04-Lesson 01_Take 30 Min to Improve your LinkedIn/img/screen-shot-2018-09-21-at-11.36.43-am.png
1.8 MB
Part 02-Module 03-Lesson 07_Feature Importance/11. M7L7 38 Proportion Intro V1-gMkMy0BeuaU.mp4
1.7 MB
Part 06-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3-m1LSU9SPZ2k.mp4
1.7 MB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/06. M1L1 MV 04b Project Reviews V1-KJbx9f9VKJE.mp4
1.7 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/17. One-Hot Encoding-AePvjhyvsBo.mp4
1.7 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/17. One-Hot Encoding-AePvjhyvsBo.mp4
1.7 MB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/07. L3 06 The Covariance Matrix And Quadratic Forms V1-as5lafBZ2CA.mp4
1.7 MB
Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/08. M2L6 11 Clustering Stocks V3-LkgCK_qPqWE.mp4
1.7 MB
Part 01-Module 02-Lesson 03_Regression/09. M2L3 08 Heteroskedasticity V2-wias9OZ1tU4.mp4
1.7 MB
Part 02-Module 03-Lesson 03_Model Testing and Evaluation/16. KFold Cross Validation V3 V1-9W6o6eWGi-0.mp4
1.7 MB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/img/arpan-happy-results.png
1.7 MB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/img/screen-shot-2017-03-17-at-5.09.53-pm.png
1.7 MB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/img/arpan-happy-emoji.png
1.7 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/20. L1 23 Absolute Returns V3-wbb6WSyXLdU.mp4
1.7 MB
Part 02-Module 01-Lesson 03_Text Processing/01. Text Processing-6LO6I5M18PQ.mp4
1.7 MB
Part 06-Module 01-Lesson 04_Probability/03. Fair Coin-9LrlrexpW_o.mp4
1.7 MB
Part 01-Module 02-Lesson 01_Quant Workflow/03. M2L1 02 Quant Workflow V3-lZfCCRv2rEE.mp4
1.7 MB
Part 02-Module 03-Lesson 06_Overlapping Labels/05. L6 06 HS Adjust Bag Size V4-BZbgljJnGYE.mp4
1.7 MB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/01. Introduction-SvdlBB-ZjcQ.mp4
1.7 MB
Part 02-Module 05-Lesson 02_Optimization with Transaction Costs/12. M8l2 14 N By N Matrix V3-qYAWhI8hk7U.mp4
1.7 MB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/img/arpan-happy-features.png
1.7 MB
Part 07-Module 01-Lesson 03_Clustering/16. Counterintuitive Clusters-aveIz1JYeAg.mp4
1.7 MB
Part 07-Module 01-Lesson 01_Linear Regression/02. DLND REG 01 Quiz Housing Prices V2-8CSBiVKu35Q.mp4
1.7 MB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/17. Two Useful Theorems - Central Limit Theorem-L79u8ywRmG8.mp4
1.6 MB
Part 06-Module 01-Lesson 04_Probability/16. One Of Three 2-gGgqTGZ9TKg.mp4
1.6 MB
Part 02-Module 05-Lesson 01_Intro to Backtesting/01. M8L1 01 Intro V2-RjUIPy_robk.mp4
1.6 MB
Part 02-Module 03-Lesson 07_Feature Importance/09. M7L7 30 Shapley Solution V1-YmCSCA8Psgk.mp4
1.6 MB
Part 02-Module 03-Lesson 07_Feature Importance/14. L7 Outro V1-Y2E-XN3lnWM.mp4
1.6 MB
Part 01-Module 01-Lesson 03_Get Help with Your Account/img/screen-shot-2019-07-31-at-9.18.41-am.png
1.6 MB
Part 02-Module 02-Lesson 04_Recurrent Neural Networks/09. Putting It All Together-IF8FlKW-Zo0.mp4
1.6 MB
Part 03-Module 01-Lesson 01_Why Python Programming/02. L1 01 Intro V3-yyNtiUyI5Tw.mp4
1.6 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/13. Error Functions-YfUUunxWIJw.mp4
1.6 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/13. Error Functions-YfUUunxWIJw.mp4
1.6 MB
Part 06-Module 01-Lesson 04_Probability/09. Two Flips 2-uhrL5fatt3E.mp4
1.6 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/12. Non-Linear Regions-B8UrWnHh1Wc.mp4
1.6 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/12. Non-Linear Regions-B8UrWnHh1Wc.mp4
1.6 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/19. Quiz - Cross 1--xxrisIvD0E.mp4
1.6 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz - Cross 1--xxrisIvD0E.mp4
1.6 MB
Part 01-Module 02-Lesson 03_Regression/14. M2L3 12 Multivariate Linear Regression V3-WbCGVF7SAN0.mp4
1.6 MB
Part 02-Module 03-Lesson 07_Feature Importance/13. M7L7 61 Rank Sklearn Solution V1-p6_reRrh3p0.mp4
1.6 MB
Part 02-Module 02-Lesson 04_Recurrent Neural Networks/08. LSTM 7 Use Gate-5Ifolm1jTdY.mp4
1.6 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/08. L1 09 Price Weighting V2-2SFbwJ19NhA.mp4
1.6 MB
Part 01-Module 03-Lesson 02_ETFs/07. L2 09 Redeeming Shares V3-ZSVgU7DBarc.mp4
1.6 MB
Part 02-Module 03-Lesson 02_Decision Trees/10. Entropy Formula-iZiSYrOKvpo.mp4
1.6 MB
Part 07-Module 01-Lesson 04_Decision Trees/08. Entropy Formula-iZiSYrOKvpo.mp4
1.6 MB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/03. Grammar-Jw3dA7xmoQ4.mp4
1.6 MB
Part 10-Module 01-Lesson 01_Intro to NLP/04. Grammar-Jw3dA7xmoQ4.mp4
1.6 MB
Part 01-Module 01-Lesson 06_Data Processing/01. M1L4 01 Stock Data V2-sN0_IqmMGGA.mp4
1.6 MB
Part 02-Module 03-Lesson 02_Decision Trees/04. MLND SL DT 02 Recommending Apps 2 MAIN V3-KSrIYqKZwCA.mp4
1.6 MB
Part 07-Module 01-Lesson 04_Decision Trees/03. MLND SL DT 02 Recommending Apps 2 MAIN V3-KSrIYqKZwCA.mp4
1.6 MB
Part 06-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1-qDGSvvabN18.mp4
1.5 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/25. L1 28 Open End Mutual Funds Handling Withdrawals V2-46NGAQHY-Mc.mp4
1.5 MB
Part 06-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4-cDub-OOrIRE.mp4
1.5 MB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/23. L1 26 Expense Ratios V2-SHZ0AhJq134.mp4
1.5 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/34. Chain Rule-YAhIBOnbt54.mp4
1.5 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/34. Chain Rule-YAhIBOnbt54.mp4
1.5 MB
Part 02-Module 03-Lesson 02_Decision Trees/07. MLND SL DT 04 Q Student Admissions V3 MAIN V1-MOa335cQGI4.mp4
1.5 MB
Part 07-Module 01-Lesson 04_Decision Trees/05. MLND SL DT 04 Q Student Admissions V3 MAIN V1-MOa335cQGI4.mp4
1.5 MB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/09. Data Types Summary-T-KrQoAJUpI.mp4
1.5 MB
Part 06-Module 01-Lesson 07_Bayes Rule/33. Bayes' Rule and Robotics-meNSO42JF6I.mp4
1.5 MB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/07. Categorical Ordinal & Nominal Data-k5bLaPGY2Vw.mp4
1.5 MB
Part 06-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-55eZrE82TqA.mp4
1.5 MB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-HjpgML5zsUE.mp4
1.5 MB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/17. New Mean and Variance Solution - Artificial Intelligence for Robotics-SwxRWZaC1FM.mp4
1.5 MB
Part 01-Module 01-Lesson 05_Market Mechanics/11. M1L3 15 Outro V2-XVvfToYCsmo.mp4
1.5 MB
Part 07-Module 01-Lesson 02_Naive Bayes/12. MLND SL NB Solution Naive Bayes Algorithm-QDj3xzjuYmo.mp4
1.5 MB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/11. Emotion as a Service-2jAP3rP3USM.mp4
1.5 MB
Part 02-Module 03-Lesson 03_Model Testing and Evaluation/01. 01 Intro-4C4PuJANIdE.mp4
1.5 MB
Part 02-Module 03-Lesson 07_Feature Importance/09. M7L7 27 CaseD Intro V1-Z9nChsPuIbY.mp4
1.5 MB
Part 06-Module 01-Lesson 04_Probability/02. Flipping Coins-lgUDXtUyLLg.mp4
1.5 MB
Part 06-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-nUxwwMNKIYo.mp4
1.5 MB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/img/arpan-shocked.png
1.4 MB
Part 02-Module 03-Lesson 05_Feature Engineering/06. M7L5 09 Dispersion Intro Part 2 V1-waeV2fKGeW8.mp4
1.4 MB
Part 06-Module 01-Lesson 03_Admissions Case Study/11. Dangers Of Statistics-UYZXqP562qg.mp4
1.4 MB
Part 02-Module 03-Lesson 03_Model Testing and Evaluation/06. Accuracy-s6SfhPTNOHA.mp4
1.4 MB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/04. M4 L2A 15 Time Series Risk Model V2-Lz3RMLmov8o.mp4
1.4 MB
Part 06-Module 01-Lesson 04_Probability/11. Two Flips 4-bNoS6LQEFrI.mp4
1.4 MB
Part 06-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-QIQBb4nLsHc.mp4
1.4 MB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/03. What is the Difference-I3tQvrCgNrQ.mp4
1.4 MB
Part 03-Module 01-Lesson 05_Scripting/17. Reading And Writing Files Using With-OQ-Y0mMjm00.mp4
1.4 MB
Part 02-Module 05-Lesson 02_Optimization with Transaction Costs/10. M8l2 11 Optimization Without Constraints Part1 V2-l8UOQTmyyUw.mp4
1.4 MB
Part 01-Module 03-Lesson 04_Portfolio Optimization/13. L4 14 Recap V1-e3qJYCQfJD0.mp4
1.4 MB
Part 06-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1--TBAfU1cjRU.mp4
1.4 MB
Part 06-Module 01-Lesson 13_Case Study AB tests/14. Analyzing Multiple Metrics-DtZghKNa7Ak.mp4
1.4 MB
Part 07-Module 01-Lesson 03_Clustering/15. Limitations of K-Means-4Fkfu37el_k.mp4
1.4 MB
Part 01-Module 02-Lesson 02_Outliers and Filtering/01. M2L2 01 Intro V1-OGx1aYHMgbs.mp4
1.4 MB
Part 03-Module 01-Lesson 04_Functions/18. Conclusion-QRnLr7pwHyk.mp4
1.4 MB
Part 06-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2-tI0J14yQr1s.mp4
1.4 MB
Part 07-Module 01-Lesson 03_Clustering/05. Match Points with Clusters-lS5DfbsWH34.mp4
1.4 MB
Part 06-Module 01-Lesson 04_Probability/05. Loaded Coin 2-dGffszQYzqc.mp4
1.4 MB
Part 06-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-n_OrWrZ8tKY.mp4
1.4 MB
Part 02-Module 04-Lesson 02_Optimize Your GitHub Profile/06. Identify fixes for example “bad” profile-ncFtwW5urHk.mp4
1.4 MB
Part 06-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3-Jp2xJOtNQZ0.mp4
1.4 MB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/16. L3 13 Summary V1-I7XKJf8t_0s.mp4
1.4 MB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2-N-wpkttwcoA.mp4
1.4 MB
Part 06-Module 01-Lesson 12_Hypothesis Testing/01. Hypothesis Testing Introduction-Qi6F2rJAmrA.mp4
1.4 MB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/02. Shape-w5qcGO8krMw.mp4
1.3 MB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/img/screen-shot-2017-03-17-at-5.18.10-pm.png
1.3 MB
Part 02-Module 02-Lesson 02_Training Neural Networks/11. Vanishing Gradient-W_JJm_5syFw.mp4
1.3 MB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/11. Modeling-P4w_2rkxBvE.mp4
1.3 MB
Part 10-Module 01-Lesson 01_Intro to NLP/12. Modeling-P4w_2rkxBvE.mp4
1.3 MB
Part 01-Module 04-Lesson 01_Factors/10. M4 L1A 09 Overview For Standardizing A Factor V3-0clT0lnrTrU.mp4
1.3 MB
Part 06-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-iKTYAsZLbhc.mp4
1.3 MB
Part 06-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2-WYA5Zbf8HC4.mp4
1.3 MB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/01. 26 Spread Part 1-zb76Z_viYLY.mp4
1.3 MB
Part 03-Module 01-Lesson 05_Scripting/01. Scripting-Qxe_gCiXUDg.mp4
1.3 MB
Part 01-Module 02-Lesson 03_Regression/17. M2L3 15 Summary V1-n2VxcEcw0GY.mp4
1.3 MB
Part 06-Module 01-Lesson 13_Case Study AB tests/18. Conclusion-qmGjRpMVBz8.mp4
1.3 MB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/06. M1L1 MV 04a Knowledge V1-lX_is8cq0Bg.mp4
1.3 MB
Part 02-Module 01-Lesson 03_Text Processing/09. Named Entity Recognition-QUQu2nsE7vE.mp4
1.3 MB
Part 02-Module 02-Lesson 02_Training Neural Networks/02. Training Optimization-UiGKhx9pUYc.mp4
1.3 MB
Part 01-Module 01-Lesson 07_Stock Returns/01. M1L5 01 Intro V2-mE8OOxkgzy8.mp4
1.3 MB
Part 06-Module 01-Lesson 08_Python Probability Practice/08. Python Probability Conclusion-4JYar5GykXk.mp4
1.3 MB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/19. M4 L2b 19 Outro V1-nfVnAkndJCY.mp4
1.3 MB
Part 07-Module 01-Lesson 03_Clustering/04. How Many Clusters-R6oIvdBtsZw.mp4
1.3 MB
Part 02-Module 03-Lesson 05_Feature Engineering/08. M7L5 16 Sector Intro Part 3 V1-sywFquETqso.mp4
1.3 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/31. Non-Linear Models-HWuBKCZsCo8.mp4
1.3 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/31. Non-Linear Models-HWuBKCZsCo8.mp4
1.3 MB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/20. Predict Function - Artificial Intelligence for Robotics-DV2cX9W0tT8.mp4
1.2 MB
Part 06-Module 01-Lesson 03_Admissions Case Study/01. Admissions Case Study Introduction-FGbxq1hQgtk.mp4
1.2 MB
Part 06-Module 01-Lesson 04_Probability/13. One Head 1-T4A5uyqesjo.mp4
1.2 MB
Part 06-Module 01-Lesson 13_Case Study AB tests/01. Case Study Introduction-J5uvdPxHIfs.mp4
1.2 MB
Part 06-Module 01-Lesson 04_Probability/17. Even Roll-M3L0a5V4Nf0.mp4
1.2 MB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/02. M1L1 02 Interview W Jonathan V1-AeranuDRL7k.mp4
1.2 MB
Part 07-Module 01-Lesson 01_Linear Regression/03. Solution Housing Prices-uhdTulw9-Nc.mp4
1.2 MB
Part 02-Module 01-Lesson 04_Feature Extraction/05. Word Embeddings-4mM_S9L2_JQ.mp4
1.2 MB
Part 06-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior-GlmS_jox08s.mp4
1.2 MB
Part 07-Module 01-Lesson 01_Linear Regression/04. Fitting A Line-gkdoknEEcaI.mp4
1.2 MB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum-MZoYGBZTh-g.mp4
1.2 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/29. Continuous Perceptrons-07-JJ-aGEfM.mp4
1.2 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/29. Continuous Perceptrons-07-JJ-aGEfM.mp4
1.2 MB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/06. M1L1 MV 04 Study Groups V1-vmjk1EKR6mM.mp4
1.2 MB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/08. NLP M1-L1 01 NLP Pipeline-vJx6oKlu_MM.mp4
1.2 MB
Part 10-Module 01-Lesson 01_Intro to NLP/09. NLP M1-L1 01 NLP Pipeline-vJx6oKlu_MM.mp4
1.2 MB
Part 06-Module 01-Lesson 04_Probability/13. One Head 1-lHuZpDkfwq8.mp4
1.1 MB
Part 01-Module 03-Lesson 04_Portfolio Optimization/01. L4 01 Intro V1-CtIcmmR0YTs.mp4
1.1 MB
Part 06-Module 01-Lesson 03_Admissions Case Study/14. Conclusion-XiR_37bYA84.mp4
1.1 MB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability-5zkupL6EWh8.mp4
1.1 MB
Part 06-Module 01-Lesson 04_Probability/07. Complementary Outcomes-YseJqD-1oUg.mp4
1.1 MB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/31. Descriptive Statistics Summary-Fe7Gta2SfLA.mp4
1.1 MB
Part 02-Module 03-Lesson 03_Model Testing and Evaluation/02. 02 Intro SC V1-mIgABrjJVBY.mp4
1.1 MB
Part 02-Module 05-Lesson 02_Optimization with Transaction Costs/13. M8l2 16 Risk Aversion V1-tmTqo-yfQKE.mp4
1.1 MB
Part 07-Module 01-Lesson 03_Clustering/17. Counterintuitive Clusters 2-xSQTzAeeoEc.mp4
1.1 MB
Part 07-Module 01-Lesson 03_Clustering/14. Some challenges of k-means-e2CdlG5P4WA.mp4
1.1 MB
Part 06-Module 01-Lesson 07_Bayes Rule/01. Bayes Rules-CohZnkZMOxE.mp4
1.1 MB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-MEbJxfw3NVs.mp4
1.1 MB
Part 02-Module 02-Lesson 04_Recurrent Neural Networks/04. LSTM Architecture-ycwthhdx8ws.mp4
1.1 MB
Part 06-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads-Qm4KTLfFMzo.mp4
1.1 MB
Part 06-Module 01-Lesson 04_Probability/14. One Head 2-64EjAbqrtmo.mp4
1.1 MB
Part 06-Module 01-Lesson 04_Probability/10. Two Flips 3-3NSPqjp6pFY.mp4
1.1 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/08. 为何是神经网络-zAkzOZntK6Y.mp4
1.1 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/08. 为何是神经网络-zAkzOZntK6Y.mp4
1.1 MB
Part 02-Module 01-Lesson 04_Feature Extraction/04. One-Hot Encoding-a0j1CDXFYZI.mp4
1.1 MB
Part 02-Module 01-Lesson 06_Basic NLP Analysis/09. AIT M5L5 99 Summary V1-ThLOv6gDyHI.mp4
1.1 MB
Part 02-Module 01-Lesson 04_Feature Extraction/10. NLP Summary-B9ul8fsQYOA.mp4
1.1 MB
Part 07-Module 01-Lesson 03_Clustering/05. Match Points with Clusters-wJV1cRjmIYY.mp4
1.0 MB
Part 06-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-lmuonrQp_lM.mp4
1.0 MB
Part 06-Module 01-Lesson 04_Probability/18. Doubles-On_Guw8wac8.mp4
1.0 MB
Part 07-Module 01-Lesson 02_Naive Bayes/03. SL NB 02 Known And Inferred V1 V2-DrYfZXiDLQI.mp4
1.0 MB
Part 06-Module 01-Lesson 05_Binomial Distribution/img/48713571.gif
1.0 MB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-YSMWpFM92S0.mp4
1.0 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/21. Formula For Cross 1-qvr_ego_d6w.mp4
1.0 MB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/21. Formula For Cross 1-qvr_ego_d6w.mp4
1.0 MB
Part 02-Module 02-Lesson 04_Recurrent Neural Networks/06. Forget Gate-iWxpfxLUPSU.mp4
1.0 MB
Part 02-Module 02-Lesson 02_Training Neural Networks/06. DL 53 Q Regularization-KxROxcRsHL8.mp4
1.0 MB
Part 07-Module 01-Lesson 02_Naive Bayes/01. Naive Bayes Intro V2-vNOiQXghgRY.mp4
1.0 MB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/img/screen-shot-2017-03-17-at-5.25.16-pm.png
1.0 MB
Part 06-Module 01-Lesson 04_Probability/08. Two Flips 1-yUIz7SgUwJg.mp4
1.0 MB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/15. Discrete vs Continuous-rdP-RPDFkl0.mp4
993.0 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs Continuous-rdP-RPDFkl0.mp4
993.0 kB
Part 02-Module 03-Lesson 07_Feature Importance/11. M7L7 45 Weight Solution V1-VTQJc3Q7m9M.mp4
977.4 kB
Part 01-Module 02-Lesson 02_Outliers and Filtering/10. M2L2 09 Outro V1-r1SWu-7Rzf0.mp4
975.2 kB
Part 02-Module 05-Lesson 02_Optimization with Transaction Costs/14. M8l2 17 Objective Function Gradient V1-MXQTfFrZ44Y.mp4
972.3 kB
Part 07-Module 01-Lesson 01_Linear Regression/21. Polynomial Regression-DBhWG-PagEQ.mp4
971.9 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/30. Non-Linear Data-F7ZiE8PQiSc.mp4
971.6 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/30. Non-Linear Data-F7ZiE8PQiSc.mp4
971.6 kB
Part 07-Module 01-Lesson 03_Clustering/06. Optimizing Centers (Rubber Bands)-TN1rQMrx65c.mp4
970.3 kB
Part 06-Module 01-Lesson 04_Probability/12. Two Flips 5-HB8b7sZQFGs.mp4
968.5 kB
Part 07-Module 01-Lesson 01_Linear Regression/05. Moving A Line-8EIHFyL2Log.mp4
954.3 kB
Part 02-Module 01-Lesson 03_Text Processing/13. Summary-zKYEvRd2XmI.mp4
945.8 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem-36KLIHioAvA.mp4
931.1 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics-GzRNoodJZxk.mp4
929.9 kB
Part 03-Module 01-Lesson 03_Control Flow/34. Congrats!-vDoqpwCHxs4.mp4
922.1 kB
Part 02-Module 05-Lesson 03_Attribution/03. M8l3 04 Exposure Vector V1-CwzT8JST0Zg.mp4
920.6 kB
Part 02-Module 03-Lesson 01_Overview/img/screen-shot-2018-12-21-at-1.54.06-pm.png
920.4 kB
Part 06-Module 01-Lesson 07_Bayes Rule/37. Bayes Rule Conclusion-vlfDGCD8w0s.mp4
919.6 kB
Part 06-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-CMQBKuYjPBM.mp4
915.1 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/img/screen-shot-2017-11-07-at-2.17.08-pm.png
903.8 kB
Part 02-Module 02-Lesson 02_Training Neural Networks/14. Learning Rate-TwJ8aSZoh2U.mp4
903.5 kB
Part 01-Module 02-Lesson 05_Volatility/14. M2L5 15 Outro V1-FMXL37CkTgg.mp4
896.2 kB
Part 07-Module 01-Lesson 01_Linear Regression/14. DLND REG 13 Absolute Vs Squared Error 3 V1 (1)-bIVGf_dDkrY.mp4
885.3 kB
Part 07-Module 01-Lesson 01_Linear Regression/23. Conclusion-pyeojf0NniQ.mp4
880.3 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/17. Measures of Center - The Mode-NE81NZgECqg.mp4
878.2 kB
Part 06-Module 01-Lesson 08_Python Probability Practice/01. Python Probability Introduction-tFMdvAN7WDY.mp4
872.6 kB
Part 03-Module 01-Lesson 05_Scripting/29. Conclusion-rEMrswkLvh8.mp4
871.5 kB
Part 02-Module 04-Lesson 02_Optimize Your GitHub Profile/16. Starring interesting repositories-ZwMY5rAAd7Q.mp4
870.3 kB
Part 02-Module 05-Lesson 02_Optimization with Transaction Costs/07. M8l2 07 Tcost Part1 V1-E8di2Qu9Ogo.mp4
869.9 kB
Part 06-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3-Rf6WfB_1EJQ.mp4
862.2 kB
Part 06-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-5Tbd3_a5Vug.mp4
858.0 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/img/screen-shot-2017-11-07-at-2.18.27-pm.png
852.0 kB
Part 06-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-mFfbts1lAEo.mp4
851.4 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/img/screen-shot-2017-03-17-at-5.20.52-pm.png
841.1 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4-mvJUNYfHngY.mp4
834.1 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-vMAl1m8ZtoI.mp4
825.1 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-yimIE9fCvi8.mp4
822.6 kB
Part 02-Module 05-Lesson 01_Intro to Backtesting/11. M8L1 15 Outro V1-mFk_HYJLF1w.mp4
820.5 kB
Part 02-Module 02-Lesson 02_Training Neural Networks/09. Local Minima-gF_sW_nY-xw.mp4
817.0 kB
Part 01-Module 02-Lesson 04_Time Series Modeling/09. M2L4 11 Outro V1-6sheR92KUU8.mp4
815.4 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/16. Quiz - Softmax-NNoezNnAMTY.mp4
809.8 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/16. Quiz - Softmax-NNoezNnAMTY.mp4
809.8 kB
Part 06-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2-t22oDruXhuo.mp4
809.2 kB
Part 06-Module 01-Lesson 04_Probability/04. Loaded Coin 1-T0EjWSjLGjQ.mp4
807.0 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-JWl8lPGhlbY.mp4
805.3 kB
Part 07-Module 01-Lesson 03_Clustering/img/sebastian-katie-jay.png
798.5 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/38. Conclusion-LLEZadlXM8A.mp4
796.2 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3-Ny2vcRZ6Aws.mp4
790.2 kB
Part 06-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-udduksMWMB4.mp4
785.1 kB
Part 06-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test-41HCYR-NW-w.mp4
783.7 kB
Part 06-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-ys9w-NNKCcU.mp4
783.0 kB
Part 02-Module 04-Lesson 01_Take 30 Min to Improve your LinkedIn/img/screen-shot-2018-02-23-at-5.00.25-pm.png
772.4 kB
Part 02-Module 03-Lesson 02_Decision Trees/15. MLND SL DT 10 Q Information Gain MAIN V1-tVLOLPEtLFw.mp4
768.8 kB
Part 07-Module 01-Lesson 04_Decision Trees/12. MLND SL DT 10 Q Information Gain MAIN V1-tVLOLPEtLFw.mp4
768.8 kB
Part 06-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-PGG9agooCvw.mp4
768.1 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/img/student-quiz.png
767.0 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/img/student-quiz.png
767.0 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-8jcCGD986jk.mp4
766.6 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-iyX0-eXStbw.mp4
766.4 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/12. KALMAN QUIZ Predicting The Peak 01 RENDER V1-_fGH3xJMxdM.mp4
757.1 kB
Part 02-Module 01-Lesson 05_Financial Statements/26. AIT M5L4B 99 Summary V1-NgIufQFEHps.mp4
756.3 kB
Part 02-Module 04-Lesson 02_Optimize Your GitHub Profile/12. Reflect on your commit messages-_0AHmKkfjTo.mp4
741.0 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/img/screen-shot-2018-04-23-at-4.10.20-pm.png
733.8 kB
Part 06-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2-VLLG0rYC7To.mp4
732.5 kB
Part 02-Module 02-Lesson 04_Recurrent Neural Networks/07. Remember Gate-0qlm86HaXuU.mp4
729.4 kB
Part 02-Module 04-Lesson 02_Optimize Your GitHub Profile/img/6509638772.gif
728.1 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/09. Maximize Gaussian Solution - Artificial Intelligence for Robotics-2cD8T65E-jM.mp4
708.5 kB
Part 02-Module 03-Lesson 03_Model Testing and Evaluation/05. Confusion-Matrix-Solution-ywwSzyU9rYs.mp4
707.0 kB
Part 07-Module 01-Lesson 03_Clustering/04. How Many Clusters-8Ygq5dRV0Kk.mp4
706.3 kB
Part 06-Module 01-Lesson 04_Probability/14. One Head 2-JHx3ucNS9f4.mp4
693.5 kB
Part 02-Module 04-Lesson 02_Optimize Your GitHub Profile/13. Participating in open source projects-OxL-gMTizUA.mp4
689.8 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads-lhhUjxnbad8.mp4
683.1 kB
Part 06-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-jPspIs-fNxg.mp4
678.9 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-YkaVgZ-yFrM.mp4
676.1 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1-RBfFHxEjsIU.mp4
671.2 kB
Part 07-Module 01-Lesson 01_Linear Regression/14. DLND REG 12 Absolute Vs Squared Error 2 V1 (1)-7El1OH17Oi4.mp4
669.1 kB
Part 06-Module 01-Lesson 04_Probability/15. One Of Three 1-rxfHfjy9Mm4.mp4
659.4 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/01. Binomial-x1yamZeOMPY.mp4
659.3 kB
Part 02-Module 05-Lesson 03_Attribution/09. M8L4 010 Outro V1-PNnSfMm-7-s.mp4
658.2 kB
Part 06-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1-9SbUxcyDTaQ.mp4
657.4 kB
Part 02-Module 03-Lesson 03_Model Testing and Evaluation/img/models.png
643.0 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/09. DL 09 XOR Perceptron--z9K49fdE3g.mp4
640.1 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/09. DL 09 XOR Perceptron--z9K49fdE3g.mp4
640.1 kB
Part 06-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8-7k5oAaZamCA.mp4
637.6 kB
Part 07-Module 01-Lesson 01_Linear Regression/14. Absolute Vs Squared Error-csvdjaqt1GM.mp4
635.7 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/13. KALMAN QUIZ Predicting The Peak 02 RENDER V1-mcwr6FcP2Vc.mp4
635.1 kB
Part 06-Module 01-Lesson 07_Bayes Rule/07. Total Probability-fAaE5K9OZJc.mp4
634.1 kB
Part 07-Module 01-Lesson 03_Clustering/07. Moving Centers 2-uC1Xwc7warg.mp4
632.1 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4-zB2Y-5YEIec.mp4
622.5 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/img/and-to-or.png
620.7 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/img/and-to-or.png
620.7 kB
Part 02-Module 03-Lesson 07_Feature Importance/11. M7L7 44 Weight Intro V1-1cautGeQWDE.mp4
618.1 kB
Part 02-Module 04-Lesson 02_Optimize Your GitHub Profile/16. Starring interesting repositories-U3FUxkm1MxI.mp4
616.4 kB
Part 06-Module 01-Lesson 04_Probability/12. Two Flips 5-G28YyiGFGWA.mp4
615.7 kB
Part 06-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability-V_Gqm42WodI.mp4
612.9 kB
Part 02-Module 04-Lesson 01_Take 30 Min to Improve your LinkedIn/img/profile-pics.jpg
609.9 kB
Part 02-Module 04-Lesson 02_Optimize Your GitHub Profile/08. Quick Fixes #2-It6AEuSDQw0.mp4
590.8 kB
Part 07-Module 01-Lesson 03_Clustering/08. Match Points (again)-9J3IwQFXveI.mp4
589.8 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/22. Predict Function Solution - Artificial Intelligence for Robotics-AMFig-sYGfM.mp4
585.8 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-z_eElEkVOPY.mp4
585.0 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-Uy7b3aMPnEY.mp4
584.4 kB
Part 04-Module 01-Lesson 01_Introduction/img/grant.png
583.6 kB
Part 06-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-hXyXlk0gYzk.mp4
583.3 kB
Part 02-Module 04-Lesson 02_Optimize Your GitHub Profile/06. Identify fixes for example “bad” profile-AF07y1oAim0.mp4
583.0 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value-rjpcSymYulE.mp4
571.7 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/15. KALMAN QUIZ Parameter Update 02 RENDER V2-vl6GkkEgY4M.mp4
569.9 kB
Part 02-Module 05-Lesson 03_Attribution/01. M8L4 01 Intro V1-sIh09ScQXCQ.mp4
568.4 kB
Part 02-Module 03-Lesson 04_Random Forests/img/row-column-example-dataset.png
552.1 kB
Part 07-Module 01-Lesson 03_Clustering/07. Moving Centers 2-FY0DXe0lfrI.mp4
551.1 kB
Part 06-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6--lC9xztr4zA.mp4
546.8 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6-CQHRYIU6v9Q.mp4
543.1 kB
Part 02-Module 03-Lesson 06_Overlapping Labels/06. L6 08 HS Ensemble Models Trained On Nonoverlapping Periods V5-YiXkL-Ts67I.mp4
542.4 kB
Part 06-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-a61GPGk-Qy4.mp4
540.2 kB
Part 06-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-FQM7i07EqGo.mp4
535.1 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/img/screen-shot-2018-11-19-at-11.32.05-am.png
533.6 kB
Part 06-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3--6l4_oprDOk.mp4
533.1 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-4LVRNqpdxsw.mp4
532.8 kB
Part 02-Module 03-Lesson 03_Model Testing and Evaluation/07. Accuracy 2-ueYCLfd_aNQ.mp4
532.3 kB
Part 06-Module 01-Lesson 04_Probability/06. Loaded Coin 3-HohMRlmHoMQ.mp4
530.5 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum-tiv8VKPL7jg.mp4
525.9 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LconwqN7hJs.mp4
524.3 kB
Part 03-Module 01-Lesson 01_Why Python Programming/img/screen-shot-2018-03-19-at-2.30.59-pm.png
519.6 kB
Part 05-Module 01-Lesson 02_NumPy/img/screen-shot-2018-03-19-at-2.30.59-pm.png
519.6 kB
Part 05-Module 01-Lesson 03_Pandas/img/screen-shot-2018-03-19-at-2.30.59-pm.png
519.6 kB
Part 01-Module 01-Lesson 02_Knowledge and Career Support/img/screen-shot-2020-03-04-at-2.54.07-pm.png
513.7 kB
Part 06-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4-pL8Bf6tck_A.mp4
510.5 kB
Part 07-Module 01-Lesson 01_Linear Regression/img/house.png
503.3 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-S87Z5DgPJeo.mp4
487.6 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/img/screen-shot-2018-03-19-at-3.49.28-pm.png
482.9 kB
Part 02-Module 02-Lesson 02_Training Neural Networks/img/screen-shot-2018-03-19-at-3.49.28-pm.png
482.9 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/img/screen-shot-2018-03-19-at-3.49.28-pm.png
482.9 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head-VEfOdACY9rA.mp4
477.9 kB
assets/img/udacimak.png
472.1 kB
Part 02-Module 04-Lesson 02_Optimize Your GitHub Profile/img/6485174133.gif
469.1 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/img/screen-shot-2017-03-17-at-4.03.20-pm.png
462.7 kB
Part 02-Module 04-Lesson 02_Optimize Your GitHub Profile/img/6499079068.gif
456.6 kB
Part 02-Module 04-Lesson 02_Optimize Your GitHub Profile/img/6551597473.gif
455.0 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/img/screen-shot-2018-03-19-at-2.49.57-pm.png
453.1 kB
Part 06-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1-SYnYIjLpbjE.mp4
440.5 kB
Part 07-Module 01-Lesson 03_Clustering/15. Limitations of K-Means-nvLhUSSUhiY.mp4
440.3 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/11. KALMAN QUIZ Shifting The Mean 02 RENDER V1-L8vNIKvpJ1s.mp4
435.5 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias-DeWp0hnRq4g.mp4
434.4 kB
Part 06-Module 01-Lesson 04_Probability/06. Loaded Coin 3-P4uljJ_OP6I.mp4
433.2 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2-vLhdJtXx060.mp4
431.3 kB
Part 02-Module 02-Lesson 02_Training Neural Networks/10. Random Restart-idyBBCzXiqg.mp4
425.3 kB
Part 07-Module 01-Lesson 03_Clustering/img/3013998667.gif
414.3 kB
Part 07-Module 01-Lesson 03_Clustering/10. K-Means Cluster Visualization-ZMfwPUrOFsE.mp4
409.8 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/img/screen-shot-2018-04-23-at-4.14.19-pm.png
404.9 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/img/or-quiz.png
403.1 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/img/or-quiz.png
403.1 kB
Part 01-Module 04-Lesson 01_Factors/img/screen-shot-2018-10-29-at-5.40.03-pm.png
398.7 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/08. Formula-yTr8zCHdo5M.mp4
394.2 kB
Part 02-Module 04-Lesson 02_Optimize Your GitHub Profile/img/mat-leonard-circle.png
394.1 kB
Part 06-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities-7ZLe_JP5wRY.mp4
389.7 kB
Part 06-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8-hyAQ28MYmc4.mp4
375.0 kB
Part 04-Module 01-Lesson 01_Introduction/img/screen-shot-2018-01-19-at-1.14.23-pm.png
367.2 kB
Part 06-Module 01-Lesson 04_Probability/11. Two Flips 4-rRPwknIDuI0.mp4
366.4 kB
Part 06-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6-cdFrLeXIkZU.mp4
364.9 kB
Part 01-Module 01-Lesson 03_Get Help with Your Account/img/screen-shot-2019-07-31-at-9.20.34-am.png
361.0 kB
Part 06-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-V96RcbbVP7Q.mp4
360.5 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/img/screen-shot-2018-05-26-at-3.45.03-pm.png
360.0 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-pJrwiukN3Ls.mp4
358.9 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/img/screen-shot-2018-05-26-at-3.22.39-pm.png
355.1 kB
Part 06-Module 01-Lesson 04_Probability/09. Two Flips 2-pT0FXiH_5nI.mp4
352.2 kB
Part 05-Module 01-Lesson 02_NumPy/img/screen-shot-2018-03-19-at-3.21.24-pm.png
348.1 kB
Part 05-Module 01-Lesson 03_Pandas/img/screen-shot-2018-03-19-at-3.21.24-pm.png
348.1 kB
Part 06-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4-d_fbDqAGVdE.mp4
345.2 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/img/github-issues.png
344.9 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/img/talent-program.png
344.2 kB
Part 01-Module 01-Lesson 02_Knowledge and Career Support/img/talent-program.png
344.2 kB
Part 06-Module 01-Lesson 04_Probability/04. Loaded Coin 1-sNvQeSikRFY.mp4
343.6 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-udXhxyls5Dw.mp4
340.4 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/media/unnamed-200065-0.mp4
338.3 kB
index.html
336.8 kB
Part 07-Module 01-Lesson 03_Clustering/09. Handoff to Katie-knrPsGtpyQY.mp4
335.3 kB
Part 04-Module 01-Lesson 03_Linear Combination/img/screen-shot-2018-01-26-at-11.05.49-pm.png
331.7 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited-4YY-hmqSz30.mp4
331.6 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2-d4LWnxyvrTQ.mp4
328.8 kB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/img/dancing-beemo.gif
325.8 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/img/screen-shot-2018-02-10-at-8.59.39-pm.png
322.0 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/img/screen-shot-2018-05-26-at-4.51.08-pm.png
320.9 kB
Part 03-Module 01-Lesson 05_Scripting/img/generate-messages-output.png
318.0 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/img/48665990.gif
316.7 kB
Part 01-Module 01-Lesson 03_Get Help with Your Account/img/screen-shot-2019-07-31-at-9.20.16-am.png
315.2 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/img/screen-shot-2017-03-17-at-5.12.46-pm.png
313.2 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula-z2xsu2Kehyo.mp4
313.2 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5-yof0QiP2mzk.mp4
310.9 kB
Part 02-Module 03-Lesson 02_Decision Trees/img/trees.png
307.2 kB
Part 07-Module 01-Lesson 04_Decision Trees/img/trees.png
307.2 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/img/screen-shot-2018-09-10-at-7.38.39-pm.png
303.4 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/img/screen-shot-2018-09-10-at-7.38.39-pm.png
303.4 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/img/screen-shot-2018-02-10-at-9.00.30-pm.png
303.0 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/img/48745039.gif
298.2 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/img/screen-shot-2018-04-23-at-4.05.20-pm.png
296.6 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2-xhpEqsHTf3g.mp4
296.1 kB
Part 06-Module 01-Lesson 04_Probability/10. Two Flips 3-uimwo-puQWY.mp4
290.5 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/img/screen-shot-2018-08-20-at-4.07.31-pm.png
288.8 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads-1PHs2w_NNTg.mp4
288.8 kB
Part 04-Module 01-Lesson 01_Introduction/img/screen-shot-2018-01-19-at-1.05.48-pm.png
286.4 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.mp4
283.6 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.mp4
283.6 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/img/48736116.gif
273.8 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/img/and-quiz.png
272.2 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/img/and-quiz.png
272.2 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails-yo55zJtJQwo.mp4
264.0 kB
Part 01-Module 04-Lesson 01_Factors/img/screen-shot-2018-10-29-at-5.35.49-pm.png
261.5 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4--GMhV1twy6Y.mp4
260.5 kB
Part 06-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7-cw_zgQbAWNU.mp4
259.0 kB
Part 06-Module 01-Lesson 04_Probability/03. Fair Coin-fSKL742j-zk.mp4
257.5 kB
Part 02-Module 03-Lesson 03_Model Testing and Evaluation/img/precision-quiz.png
256.8 kB
Part 06-Module 01-Lesson 04_Probability/05. Loaded Coin 2-Y7tnbth-gag.mp4
245.6 kB
Part 06-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2-GsneDVJB75E.mp4
241.6 kB
Part 06-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6-Se-ddM2Wdac.mp4
237.9 kB
assets/js/katex.min.js
236.8 kB
Part 02-Module 04-Lesson 01_Take 30 Min to Improve your LinkedIn/img/redacted-linkedinresults.png
236.3 kB
Part 07-Module 01-Lesson 03_Clustering/img/2956218691.gif
235.0 kB
Part 02-Module 03-Lesson 03_Model Testing and Evaluation/img/recall-quiz.png
233.7 kB
Part 06-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-UERKMwmkAsM.mp4
230.8 kB
Part 06-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6-iyE5h48qPFQ.mp4
229.4 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/img/profiles-view.png
228.9 kB
Part 01-Module 01-Lesson 02_Knowledge and Career Support/img/profiles-view.png
228.9 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/img/screen-shot-2018-01-30-at-5.14.39-pm.png
225.6 kB
Part 04-Module 01-Lesson 01_Introduction/img/screen-shot-2018-01-19-at-2.24.21-pm.png
224.0 kB
Part 01-Module 01-Lesson 03_Get Help with Your Account/img/screen-shot-2019-07-31-at-9.29.35-am.png
223.8 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/img/screen-shot-2018-10-29-at-3.04.01-pm.png
222.7 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/media/unnamed-199889-0.mp4
220.6 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/img/xor.png
220.1 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/img/xor.png
220.1 kB
Part 06-Module 01-Lesson 07_Bayes Rule/12. Normalizer-W5i-gRAvZxs.mp4
219.1 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/img/stop-sign-classification.png
216.6 kB
Part 02-Module 03-Lesson 04_Random Forests/img/example-finance-tree.png
214.9 kB
Part 02-Module 01-Lesson 01_Welcome To Term II/img/parnian-barekatain.jpg
214.6 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/img/meme.png
214.1 kB
Part 02-Module 02-Lesson 04_Recurrent Neural Networks/img/meme.png
214.1 kB
Part 02-Module 03-Lesson 02_Decision Trees/img/meme.png
214.1 kB
Part 02-Module 03-Lesson 03_Model Testing and Evaluation/img/meme.png
214.1 kB
Part 07-Module 01-Lesson 02_Naive Bayes/img/meme.png
214.1 kB
Part 07-Module 01-Lesson 03_Clustering/img/meme.png
214.1 kB
Part 07-Module 01-Lesson 04_Decision Trees/img/meme.png
214.1 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/img/meme.png
214.1 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value-LNzmJUj8K8w.mp4
209.6 kB
Part 04-Module 01-Lesson 02_Vectors/img/screen-shot-2018-01-24-at-3.13.49-pm.png
209.5 kB
Part 06-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1-E1ph6NP3_v4.mp4
208.6 kB
Part 06-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-goEMc0w58xM.mp4
208.1 kB
Part 07-Module 01-Lesson 03_Clustering/img/3081768538.gif
207.7 kB
Part 02-Module 04-Lesson 01_Take 30 Min to Improve your LinkedIn/img/screen-shot-2018-02-23-at-5.11.40-pm.png
205.5 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4-GD6cQhkoqS4.mp4
203.9 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/img/screen-shot-2018-05-26-at-3.51.18-pm.png
203.0 kB
Part 07-Module 01-Lesson 01_Linear Regression/img/batch-stochastic.png
201.6 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/img/screen-shot-2017-03-13-at-12.36.54-pm.png
197.6 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/img/screen-shot-2018-10-29-at-2.59.42-pm.png
197.0 kB
Part 07-Module 01-Lesson 03_Clustering/img/3050028596.gif
196.8 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/img/screen-shot-2018-05-26-at-3.37.30-pm.png
196.7 kB
Part 02-Module 03-Lesson 02_Decision Trees/img/table.png
196.7 kB
Part 07-Module 01-Lesson 04_Decision Trees/img/table.png
196.7 kB
Part 02-Module 03-Lesson 03_Model Testing and Evaluation/img/confusion.png
193.4 kB
Part 06-Module 01-Lesson 07_Bayes Rule/07. Total Probability-_hXCgF-aMB0.mp4
193.1 kB
Part 02-Module 03-Lesson 03_Model Testing and Evaluation/img/medical.png
191.0 kB
Part 07-Module 01-Lesson 03_Clustering/img/3056738546.gif
188.1 kB
Part 06-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5-fqt7NIvMB0s.mp4
187.7 kB
Part 06-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3-etrUbOAoh1U.mp4
185.7 kB
Part 06-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2--pOzdj6pnbA.mp4
185.3 kB
Part 02-Module 02-Lesson 03_Deep Learning with PyTorch/img/mat-headshot.png
184.3 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/img/mat-headshot.png
184.3 kB
Part 06-Module 01-Lesson 07_Bayes Rule/12. Normalizer-G9yQ_URDrDQ.mp4
183.7 kB
Part 07-Module 01-Lesson 01_Linear Regression/img/quiz.jpg
178.4 kB
Part 07-Module 01-Lesson 03_Clustering/img/3034378634.gif
177.3 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/img/screen-shot-2018-01-24-at-12.03.45-am.png
174.9 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/media/unnamed-199940-0.mp4
173.2 kB
Part 01-Module 04-Lesson 01_Factors/img/screen-shot-2018-10-29-at-11.08.44-pm.png
168.9 kB
Part 07-Module 01-Lesson 03_Clustering/img/3004978616.gif
168.5 kB
Part 06-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3-PfEYA6z-19w.mp4
167.6 kB
Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/img/08-identify-pairs-to-trade.png
166.3 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/img/screen-shot-2018-05-26-at-4.29.49-pm.png
164.6 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/img/screen-shot-2018-10-29-at-2.48.16-pm.png
161.7 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/img/screen-shot-2018-10-29-at-2.51.35-pm.png
161.5 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/img/magic-timeit.png
161.1 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/img/m4l2a-01-image-v1.png
160.9 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/img/server-shutdown.png
159.2 kB
Part 06-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5-tIrqdYTT_9Q.mp4
158.7 kB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/img/screen-shot-2018-11-05-at-11.33.57-am.png
157.6 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/img/screen-shot-2018-05-26-at-4.32.19-pm.png
156.2 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/img/screen-shot-2018-05-11-at-11.03.34-am.png
154.6 kB
Part 07-Module 01-Lesson 03_Clustering/img/3040398570.gif
152.3 kB
Part 02-Module 03-Lesson 03_Model Testing and Evaluation/img/email.png
152.1 kB
Part 02-Module 03-Lesson 02_Decision Trees/img/screen-shot-2018-12-12-at-12.49.37-pm.png
150.2 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/img/screen-shot-2018-10-29-at-2.42.15-pm.png
149.0 kB
Part 01-Module 02-Lesson 03_Regression/img/screen-shot-2018-04-19-at-1.17.37-pm.png
145.9 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/07. Aggregation-8j5hria6Rc8.mp4
145.6 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/img/screen-shot-2018-10-29-at-2.28.21-pm.png
144.3 kB
Part 02-Module 03-Lesson 02_Decision Trees/img/recommending-apps.png
143.9 kB
Part 07-Module 01-Lesson 04_Decision Trees/img/recommending-apps.png
143.9 kB
assets/css/bootstrap.min.css
140.9 kB
Part 07-Module 01-Lesson 01_Linear Regression/img/minibatch.png
140.0 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/img/screen-shot-2018-05-26-at-5.00.26-pm.png
138.9 kB
Part 07-Module 01-Lesson 02_Naive Bayes/img/spamham.png
138.3 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3-rDw0TIpwJ-c.mp4
137.9 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/img/screen-shot-2018-05-26-at-4.37.05-pm.png
129.9 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/img/screen-shot-2018-10-29-at-2.47.08-pm.png
129.8 kB
assets/js/plyr.polyfilled.min.js
129.2 kB
Part 04-Module 01-Lesson 01_Introduction/img/screen-shot-2018-01-19-at-1.58.00-pm.png
129.1 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/img/screen-shot-2018-10-29-at-4.03.59-pm.png
128.3 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/img/screen-shot-2018-10-29-at-4.27.07-pm.png
128.0 kB
Part 07-Module 01-Lesson 03_Clustering/img/3058428551.gif
127.7 kB
Part 06-Module 01-Lesson 07_Bayes Rule/img/screen-shot-2017-08-02-at-11.49.10-am.png
123.2 kB
Part 02-Module 02-Lesson 04_Recurrent Neural Networks/img/screen-shot-2018-10-15-at-8.35.15-pm.png
122.8 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/img/screen-shot-2018-10-29-at-3.36.06-pm.png
122.7 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3-tPSj6_m-0_M.mp4
121.9 kB
Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/img/screen-shot-2018-02-14-at-6.07.26-pm.png
120.3 kB
Part 06-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5-4qW7a5E74No.mp4
120.1 kB
Part 02-Module 05-Lesson 03_Attribution/img/variance-decomp-2.png
118.0 kB
Part 02-Module 05-Lesson 02_Optimization with Transaction Costs/img/screen-shot-2019-03-18-at-12.55.43-pm.png
117.7 kB
Part 04-Module 01-Lesson 01_Introduction/img/screen-shot-2018-01-19-at-1.57.42-pm.png
117.0 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/img/screen-shot-2018-05-26-at-4.15.46-pm.png
116.2 kB
Part 06-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7-clFL503NPyY.mp4
116.0 kB
Part 04-Module 01-Lesson 02_Vectors/img/screen-shot-2018-01-24-at-2.27.07-pm.png
115.9 kB
Part 02-Module 05-Lesson 02_Optimization with Transaction Costs/img/factor-cov.png
115.6 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/img/screen-shot-2018-05-26-at-4.04.18-pm.png
114.5 kB
Part 02-Module 03-Lesson 02_Decision Trees/img/min-samples-leaf.png
113.4 kB
Part 07-Module 01-Lesson 04_Decision Trees/img/screen-shot-2018-01-06-at-9.41.01-pm.png
113.4 kB
Part 01-Module 02-Lesson 03_Regression/img/distributions.png
113.1 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/img/screen-shot-2018-05-26-at-4.06.03-pm.png
112.6 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/img/conda-tab.png
112.6 kB
Part 02-Module 03-Lesson 03_Model Testing and Evaluation/img/learning-curves.png
111.6 kB
Part 06-Module 01-Lesson 07_Bayes Rule/img/screen-shot-2017-08-02-at-11.40.37-am.png
110.8 kB
Part 02-Module 05-Lesson 02_Optimization with Transaction Costs/img/screen-shot-2019-03-18-at-12.55.32-pm.png
109.2 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/img/screen-shot-2018-10-29-at-4.20.49-pm.png
108.8 kB
Part 02-Module 03-Lesson 03_Model Testing and Evaluation/img/accuracy-quiz.png
108.4 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/img/screen-shot-2018-10-29-at-4.37.50-pm.png
107.8 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/img/screen-shot-2019-02-26-at-4.09.24-pm.png
107.4 kB
Part 01-Module 01-Lesson 02_Knowledge and Career Support/img/screen-shot-2019-02-26-at-4.09.24-pm.png
107.4 kB
Part 01-Module 04-Lesson 01_Factors/img/screen-shot-2018-10-29-at-5.29.38-pm.png
107.4 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/img/screen-shot-2018-05-26-at-4.05.55-pm.png
107.1 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/img/notebook-server.png
105.8 kB
Part 01-Module 04-Lesson 01_Factors/img/screen-shot-2018-10-29-at-5.27.30-pm.png
105.5 kB
Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/img/screen-shot-2018-02-14-at-3.59.39-pm.png
105.4 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/img/new-notebook.png
104.2 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2-o91iPvtqt78.mp4
103.6 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/img/screen-shot-2018-10-29-at-3.23.22-pm.png
102.4 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/img/screen-shot-2018-10-29-at-2.48.34-pm.png
102.4 kB
Part 04-Module 01-Lesson 01_Introduction/img/screen-shot-2018-04-02-at-4.25.41-pm.png
99.9 kB
Part 06-Module 01-Lesson 06_Conditional Probability/img/48271967.gif
98.4 kB
Part 02-Module 03-Lesson 03_Model Testing and Evaluation/img/complexity.png
97.9 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/img/screen-shot-2018-01-30-at-4.39.42-pm.png
97.8 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/img/notebook-json.png
97.6 kB
Part 02-Module 04-Lesson 01_Take 30 Min to Improve your LinkedIn/media/unnamed-project-desc-0.gif
96.8 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/img/xor-quiz.png
96.4 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/img/xor-quiz.png
96.4 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/img/perceptronquiz.png
95.9 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/img/perceptronquiz.png
95.9 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/img/screen-shot-2018-10-29-at-3.55.55-pm.png
95.8 kB
Part 06-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4-ztkKTrMZHXg.mp4
95.5 kB
Part 04-Module 01-Lesson 02_Vectors/img/screen-shot-2018-01-23-at-11.30.13-am.png
95.0 kB
Part 02-Module 05-Lesson 02_Optimization with Transaction Costs/img/factor-var.png
94.9 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/img/48728202.gif
94.4 kB
Part 02-Module 03-Lesson 02_Decision Trees/img/student-data.png
94.1 kB
Part 07-Module 01-Lesson 04_Decision Trees/img/student-data.png
94.1 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/img/48684686.gif
93.8 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1-f3y_weFskL4.mp4
93.6 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/img/48698526.gif
93.2 kB
Part 06-Module 01-Lesson 06_Conditional Probability/img/48734324.gif
93.0 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/img/magic-matplotlib.png
92.9 kB
Part 04-Module 01-Lesson 01_Introduction/img/screen-shot-2018-01-19-at-2.28.03-pm.png
92.9 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/img/48721292.gif
92.7 kB
Part 01-Module 01-Lesson 07_Stock Returns/img/aapl-returns-log-returns.jpeg
92.2 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/img/48698525.gif
91.3 kB
Part 02-Module 03-Lesson 04_Random Forests/img/rf-for-alpha-combination.png
90.9 kB
Part 06-Module 01-Lesson 07_Bayes Rule/img/48240997.gif
90.7 kB
Part 02-Module 02-Lesson 02_Training Neural Networks/img/regularization-quiz.png
90.0 kB
Part 06-Module 01-Lesson 07_Bayes Rule/img/48310768.gif
89.8 kB
Part 06-Module 01-Lesson 07_Bayes Rule/img/48743074.gif
89.2 kB
Part 06-Module 01-Lesson 06_Conditional Probability/img/48271966.gif
88.8 kB
Part 06-Module 01-Lesson 07_Bayes Rule/img/48480561.gif
88.0 kB
assets/js/jquery-3.3.1.min.js
86.9 kB
Part 06-Module 01-Lesson 06_Conditional Probability/img/48716290.gif
86.8 kB
Part 06-Module 01-Lesson 07_Bayes Rule/img/48726280.gif
86.7 kB
Part 06-Module 01-Lesson 04_Probability/img/48667978.gif
86.5 kB
Part 04-Module 01-Lesson 03_Linear Combination/img/screen-shot-2018-01-29-at-11.51.35-am.png
86.3 kB
Part 06-Module 01-Lesson 07_Bayes Rule/img/screen-shot-2017-08-02-at-4.57.01-pm.png
86.0 kB
Part 06-Module 01-Lesson 06_Conditional Probability/img/48739228.gif
86.0 kB
Part 06-Module 01-Lesson 07_Bayes Rule/img/48646780.gif
85.9 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/img/screen-shot-2018-10-29-at-4.12.27-pm.png
85.4 kB
Part 06-Module 01-Lesson 07_Bayes Rule/img/48445276.gif
85.2 kB
Part 06-Module 01-Lesson 06_Conditional Probability/img/48641639.gif
85.1 kB
Part 06-Module 01-Lesson 07_Bayes Rule/img/48311832.gif
84.9 kB
Part 06-Module 01-Lesson 07_Bayes Rule/img/48198839.gif
84.8 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/img/screen-shot-2018-10-29-at-2.34.18-pm.png
84.5 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/img/48688787.gif
84.4 kB
Part 06-Module 01-Lesson 04_Probability/img/48752009.gif
84.4 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/img/48741083.gif
84.1 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/img/48750011.gif
84.0 kB
Part 06-Module 01-Lesson 07_Bayes Rule/img/48198838.gif
84.0 kB
Part 06-Module 01-Lesson 07_Bayes Rule/img/48011955.gif
83.9 kB
Part 02-Module 03-Lesson 02_Decision Trees/img/min-samples-split.png
83.1 kB
Part 07-Module 01-Lesson 04_Decision Trees/img/min-samples-split.png
83.1 kB
Part 06-Module 01-Lesson 07_Bayes Rule/img/48704300.gif
82.6 kB
Part 06-Module 01-Lesson 07_Bayes Rule/img/48240998.gif
82.5 kB
Part 06-Module 01-Lesson 07_Bayes Rule/img/48311831.gif
82.3 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/img/48658976.gif
82.1 kB
Part 06-Module 01-Lesson 06_Conditional Probability/img/48632848.gif
81.7 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/img/notebook-download.png
81.5 kB
Part 06-Module 01-Lesson 07_Bayes Rule/img/48230510.gif
81.1 kB
Part 02-Module 03-Lesson 02_Decision Trees/img/tree-anatomy-annotated.png
80.9 kB
Part 06-Module 01-Lesson 04_Probability/img/48750031.gif
80.5 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/img/screen-shot-2017-11-07-at-2.16.14-pm.png
80.2 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/img/48678737.gif
79.6 kB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/img/var-diagram.jpg
79.2 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/img/screen-shot-2017-06-26-at-3.47.37-pm.png
79.1 kB
Part 06-Module 01-Lesson 07_Bayes Rule/img/48737119.gif
79.0 kB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/img/screen-shot-2018-11-06-at-2.30.04-pm.png
77.8 kB
Part 06-Module 01-Lesson 07_Bayes Rule/img/48686674.gif
77.6 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/img/screen-shot-2018-10-29-at-2.30.49-pm.png
76.9 kB
Part 06-Module 01-Lesson 07_Bayes Rule/img/48241000.gif
76.5 kB
Part 02-Module 05-Lesson 03_Attribution/img/variance-decomp-1.png
76.1 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/img/48692636.gif
76.0 kB
Part 06-Module 01-Lesson 07_Bayes Rule/img/48709280.gif
75.7 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/img/48721315.gif
75.5 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/img/48678758.gif
75.3 kB
Part 02-Module 05-Lesson 02_Optimization with Transaction Costs/img/screen-shot-2019-03-18-at-1.10.03-pm.png
75.2 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/img/nbconvert-example.png
75.1 kB
Part 06-Module 01-Lesson 06_Conditional Probability/img/48652467.gif
74.5 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/img/48746014.gif
74.4 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/img/48687733.gif
73.6 kB
Part 02-Module 01-Lesson 01_Welcome To Term II/img/justin-100x1002x.png
73.5 kB
Part 06-Module 01-Lesson 07_Bayes Rule/img/48296523.gif
73.5 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/img/48632799.gif
73.1 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/img/screen-shot-2018-10-29-at-4.34.30-pm.png
73.1 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/img/48697566.gif
73.0 kB
Part 06-Module 01-Lesson 07_Bayes Rule/img/48629196.gif
72.6 kB
Part 06-Module 01-Lesson 07_Bayes Rule/img/48609553.gif
72.4 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/img/48683704.gif
72.4 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/img/48692663.gif
72.3 kB
Part 06-Module 01-Lesson 04_Probability/img/48667979.gif
72.1 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/img/screen-shot-2017-06-26-at-2.11.18-pm.png
71.9 kB
assets/css/fonts/KaTeX_AMS-Regular.ttf
71.4 kB
Part 02-Module 01-Lesson 01_Welcome To Term II/img/eddy-100x1002x.png
71.2 kB
Part 06-Module 01-Lesson 07_Bayes Rule/img/48480558.gif
71.0 kB
Part 02-Module 05-Lesson 02_Optimization with Transaction Costs/img/screen-shot-2019-03-18-at-1.09.56-pm.png
70.7 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/img/48725208.gif
70.5 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/img/magic-pdb.png
70.3 kB
Part 02-Module 05-Lesson 02_Optimization with Transaction Costs/img/tcost-2.png
70.2 kB
Part 07-Module 01-Lesson 01_Linear Regression/img/just-a-2d-reg.png
70.1 kB
assets/css/fonts/KaTeX_Main-Regular.ttf
70.1 kB
Part 06-Module 01-Lesson 06_Conditional Probability/img/48734186.gif
70.0 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/img/48680638.gif
70.0 kB
Part 02-Module 01-Lesson 01_Welcome To Term II/img/liz-100x1002x.png
69.5 kB
Part 07-Module 01-Lesson 02_Naive Bayes/img/spam.png
69.4 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/img/screen-shot-2018-10-29-at-4.11.07-pm.png
68.5 kB
Part 02-Module 03-Lesson 02_Decision Trees/img/depth.png
68.0 kB
Part 07-Module 01-Lesson 04_Decision Trees/img/screen-shot-2018-01-06-at-9.30.27-pm.png
68.0 kB
Part 04-Module 01-Lesson 03_Linear Combination/img/screen-shot-2018-01-29-at-11.49.47-am.png
67.0 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/img/screen-shot-2018-10-29-at-3.28.20-pm.png
66.9 kB
Part 02-Module 05-Lesson 02_Optimization with Transaction Costs/img/screen-shot-2019-03-18-at-12.54.43-pm.png
66.3 kB
Part 02-Module 01-Lesson 01_Welcome To Term II/img/jonathan-100x1002x.png
65.5 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/img/48739104.gif
65.4 kB
Part 04-Module 01-Lesson 01_Introduction/img/cp1a9390.jpg
65.2 kB
Part 06-Module 01-Lesson 04_Probability/img/48695597.gif
64.8 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/img/points.png
64.7 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/img/points.png
64.7 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/img/48716247.gif
64.3 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/img/notebook-shutdown.png
63.8 kB
Part 02-Module 03-Lesson 04_Random Forests/img/decision-trees-review-quiz.jpg
63.7 kB
Part 02-Module 05-Lesson 02_Optimization with Transaction Costs/img/tocst-4.png
63.7 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/img/slides-cell-toolbar-menu.png
62.8 kB
Part 06-Module 01-Lesson 04_Probability/img/48698583.gif
62.6 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/img/48738100.gif
62.5 kB
Part 02-Module 05-Lesson 02_Optimization with Transaction Costs/img/tcost-1.png
62.3 kB
Part 06-Module 01-Lesson 06_Conditional Probability/img/48632846.gif
62.1 kB
Part 06-Module 01-Lesson 07_Bayes Rule/img/48230509.gif
61.8 kB
assets/css/fonts/KaTeX_Main-Bold.ttf
61.7 kB
Part 02-Module 05-Lesson 02_Optimization with Transaction Costs/img/screen-shot-2019-03-18-at-1.18.17-pm.png
61.0 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/img/48692666.gif
61.0 kB
Part 02-Module 02-Lesson 04_Recurrent Neural Networks/img/cezanne-head.jpg
61.0 kB
Part 06-Module 01-Lesson 06_Conditional Probability/img/48716288.gif
60.8 kB
Part 02-Module 05-Lesson 02_Optimization with Transaction Costs/img/screen-shot-2019-03-18-at-1.16.33-pm.png
60.5 kB
Part 06-Module 01-Lesson 07_Bayes Rule/img/48292975.gif
60.2 kB
Part 02-Module 05-Lesson 02_Optimization with Transaction Costs/img/screen-shot-2019-03-18-at-12.56.03-pm.png
60.1 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/img/48750006.gif
60.0 kB
Part 06-Module 01-Lesson 04_Probability/img/48693692.gif
59.9 kB
Part 01-Module 02-Lesson 03_Regression/img/screen-shot-2018-04-20-at-3.04.04-pm.png
59.9 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/img/48204962.gif
59.7 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/img/48635652.gif
59.5 kB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/img/screen-shot-2018-11-06-at-2.48.40-pm.png
59.4 kB
Part 06-Module 01-Lesson 04_Probability/img/48688828.gif
59.4 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/img/48746015.gif
59.4 kB
Part 06-Module 01-Lesson 04_Probability/img/48687795.gif
58.7 kB
Part 02-Module 01-Lesson 01_Welcome To Term II/img/arpan-100x1002x.png
58.5 kB
Part 06-Module 01-Lesson 04_Probability/img/48684742.gif
58.5 kB
Part 06-Module 01-Lesson 04_Probability/img/48742066.gif
57.7 kB
Part 01-Module 03-Lesson 04_Portfolio Optimization/img/cvxpy-example.jpeg
57.6 kB
Part 02-Module 04-Lesson 01_Take 30 Min to Improve your LinkedIn/img/screen-shot-2018-09-21-at-12.02.03-pm.png
57.5 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/img/magic-timeit2.png
57.5 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/img/48741058.gif
57.4 kB
Part 02-Module 05-Lesson 02_Optimization with Transaction Costs/img/screen-shot-2019-03-18-at-1.09.46-pm.png
57.1 kB
Part 01-Module 03-Lesson 04_Portfolio Optimization/img/two-asset-variance.jpeg
57.1 kB
Part 02-Module 05-Lesson 02_Optimization with Transaction Costs/img/screen-shot-2019-03-18-at-1.14.44-pm.png
56.9 kB
Part 06-Module 01-Lesson 06_Conditional Probability/img/48720246.gif
56.6 kB
Part 06-Module 01-Lesson 04_Probability/img/48699581.gif
56.5 kB
Part 02-Module 05-Lesson 02_Optimization with Transaction Costs/img/tcost-3.png
56.0 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/img/48729170.gif
55.7 kB
Part 02-Module 05-Lesson 02_Optimization with Transaction Costs/img/screen-shot-2019-03-18-at-1.14.37-pm.png
55.3 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/img/slides-choose-slide-type.png
54.6 kB
Part 06-Module 01-Lesson 04_Probability/img/48698595.gif
54.3 kB
Part 06-Module 01-Lesson 04_Probability/img/48667981.gif
53.8 kB
Part 06-Module 01-Lesson 04_Probability/img/48741099.gif
53.6 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/img/screen-shot-2018-10-29-at-2.34.00-pm.png
53.6 kB
Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/img/screen-shot-2018-02-14-at-10.47.52-am.png
52.7 kB
Part 01-Module 03-Lesson 04_Portfolio Optimization/img/l2-norm.jpeg
52.6 kB
Part 02-Module 03-Lesson 02_Decision Trees/img/screen-shot-2018-01-06-at-8.13.20-pm.png
52.0 kB
Part 07-Module 01-Lesson 04_Decision Trees/img/screen-shot-2018-01-06-at-8.13.20-pm.png
52.0 kB
Part 02-Module 03-Lesson 03_Model Testing and Evaluation/img/circle-data.png
51.1 kB
assets/js/bootstrap.min.js
51.0 kB
Part 04-Module 01-Lesson 02_Vectors/img/screen-shot-2018-03-21-at-2.40.42-pm.png
49.7 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/img/screen-shot-2018-10-29-at-4.09.18-pm.png
48.9 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/img/48632800.gif
48.8 kB
Part 06-Module 01-Lesson 04_Probability/img/48738115.gif
48.7 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/img/screen-shot-2018-02-01-at-12.10.40-am.png
48.7 kB
assets/css/fonts/KaTeX_Main-Italic.ttf
48.0 kB
Part 01-Module 03-Lesson 04_Portfolio Optimization/img/pythagorean-theroem.jpeg
46.8 kB
Part 02-Module 02-Lesson 04_Recurrent Neural Networks/img/screen-shot-2017-11-16-at-4.31.41-pm.png
46.0 kB
Part 04-Module 01-Lesson 03_Linear Combination/img/screen-shot-2018-01-26-at-10.16.48-pm.png
45.6 kB
Part 04-Module 01-Lesson 03_Linear Combination/img/screen-shot-2018-01-26-at-11.16.45-pm.png
45.5 kB
assets/js/jquery.mCustomScrollbar.concat.min.js
45.5 kB
Part 04-Module 01-Lesson 03_Linear Combination/img/screen-shot-2018-01-26-at-11.21.42-pm.png
45.3 kB
assets/css/fonts/KaTeX_Main-BoldItalic.ttf
44.8 kB
Part 03-Module 01-Lesson 05_Scripting/img/step6-testrun.png
44.5 kB
Part 04-Module 01-Lesson 03_Linear Combination/img/screen-shot-2018-01-26-at-11.48.02-pm.png
44.4 kB
Part 04-Module 01-Lesson 02_Vectors/img/screen-shot-2018-01-23-at-10.49.16-am.png
43.4 kB
assets/css/jquery.mCustomScrollbar.min.css
42.8 kB
Part 01-Module 03-Lesson 04_Portfolio Optimization/img/cvxpy-visual.jpeg
42.4 kB
Part 02-Module 02-Lesson 04_Recurrent Neural Networks/img/screen-shot-2017-11-16-at-4.26.22-pm.png
42.2 kB
assets/css/fonts/KaTeX_Math-Italic.ttf
41.4 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/img/conda-environments.png
41.1 kB
Part 01-Module 01-Lesson 07_Stock Returns/img/aapl-adj-close.jpeg
40.9 kB
assets/css/fonts/KaTeX_AMS-Regular.woff
40.2 kB
Part 01-Module 02-Lesson 05_Volatility/09. Quiz Estimate Volatility.html
39.9 kB
assets/css/fonts/KaTeX_Math-BoldItalic.ttf
39.7 kB
assets/css/fonts/KaTeX_Main-Regular.woff
39.4 kB
assets/css/fonts/KaTeX_Main-Bold.woff
36.8 kB
Part 05-Module 01-Lesson 03_Pandas/12. Loading Data into a pandas DataFrame.html
36.5 kB
assets/css/fonts/KaTeX_Typewriter-Regular.ttf
36.3 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/img/histogram-nonnormal.png
36.2 kB
assets/css/fonts/KaTeX_Fraktur-Bold.ttf
36.0 kB
assets/css/fonts/KaTeX_Fraktur-Regular.ttf
34.7 kB
Part 05-Module 01-Lesson 03_Pandas/10. Dealing with NaN.html
34.1 kB
assets/css/fonts/KaTeX_SansSerif-Bold.ttf
34.0 kB
Part 02-Module 05-Lesson 02_Optimization with Transaction Costs/img/screen-shot-2019-03-18-at-1.14.51-pm.png
33.5 kB
assets/css/fonts/KaTeX_AMS-Regular.woff2
33.2 kB
Part 04-Module 01-Lesson 03_Linear Combination/img/screen-shot-2018-03-28-at-5.15.59-pm.png
32.9 kB
assets/css/fonts/KaTeX_Main-Regular.woff2
32.9 kB
Part 04-Module 01-Lesson 03_Linear Combination/img/screen-shot-2018-03-28-at-5.11.09-pm.png
32.8 kB
Part 04-Module 01-Lesson 03_Linear Combination/img/screen-shot-2018-03-28-at-4.44.34-pm.png
31.5 kB
assets/css/fonts/KaTeX_SansSerif-Italic.ttf
31.3 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/img/notebook-components.png
31.0 kB
assets/css/fonts/KaTeX_Main-Bold.woff2
30.6 kB
Part 05-Module 01-Lesson 03_Pandas/09. Accessing Elements in pandas DataFrames.html
30.5 kB
assets/css/fonts/KaTeX_SansSerif-Regular.ttf
30.2 kB
Part 05-Module 01-Lesson 02_NumPy/05. Using Built-in Functions to Create ndarrays.html
29.3 kB
Part 07-Module 01-Lesson 01_Linear Regression/img/lin-reg-no-outliers.png
29.3 kB
Part 02-Module 03-Lesson 01_Overview/img/josh-bernhard.jpg
29.2 kB
Part 02-Module 02-Lesson 04_Recurrent Neural Networks/img/screen-shot-2017-11-16-at-4.27.58-pm.png
28.4 kB
Part 07-Module 01-Lesson 01_Linear Regression/img/lin-reg-w-outliers.png
28.2 kB
Part 04-Module 01-Lesson 01_Introduction/img/img-4646.jpg
27.8 kB
assets/css/fonts/KaTeX_Main-Italic.woff
27.2 kB
Part 07-Module 01-Lesson 01_Linear Regression/img/just-a-simple-lin-reg.png
26.6 kB
assets/css/fonts/KaTeX_Main-BoldItalic.woff
26.2 kB
Part 01-Module 01-Lesson 07_Stock Returns/img/numerical-stability-example.jpg
25.7 kB
assets/css/fonts/KaTeX_Script-Regular.ttf
24.9 kB
Part 01-Module 02-Lesson 05_Volatility/05. Quiz Volatility.html
24.6 kB
assets/css/plyr.css
24.2 kB
Part 07-Module 01-Lesson 01_Linear Regression/img/quadraticlinearregression.png
24.1 kB
assets/css/fonts/KaTeX_Math-Italic.woff
23.8 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/11. Quiz Types of Errors - Part II(b).html
23.6 kB
assets/css/fonts/KaTeX_Fraktur-Bold.woff
23.4 kB
assets/css/fonts/KaTeX_Math-BoldItalic.woff
23.2 kB
assets/css/fonts/KaTeX_Main-Italic.woff2
23.1 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/33. Notebook + Quiz Impact of Sample Size.html
22.9 kB
assets/css/fonts/KaTeX_Fraktur-Regular.woff
22.8 kB
Part 05-Module 01-Lesson 03_Pandas/08. Creating pandas DataFrames.html
22.4 kB
assets/css/fonts/KaTeX_Main-BoldItalic.woff2
22.2 kB
assets/css/katex.min.css
22.1 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/img/screen-shot-2019-02-26-at-4.25.04-pm.png
21.4 kB
Part 01-Module 01-Lesson 02_Knowledge and Career Support/img/screen-shot-2019-02-26-at-4.25.04-pm.png
21.4 kB
Part 03-Module 01-Lesson 05_Scripting/img/step3-path.png
21.3 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/18. Notebook + Quiz Simulating from the Null.html
21.0 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/09. Perceptrons as Logical Operators.html
20.9 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/09. Perceptrons as Logical Operators.html
20.9 kB
assets/css/fonts/KaTeX_Typewriter-Regular.woff
20.9 kB
assets/css/fonts/KaTeX_Fraktur-Bold.woff2
20.5 kB
Part 02-Module 03-Lesson 03_Model Testing and Evaluation/20. Detecting Overfitting and Underfitting with Learning Curves.html
20.4 kB
assets/css/fonts/KaTeX_Math-Italic.woff2
20.4 kB
Part 01-Module 01-Lesson 08_Momentum Trading/img/momentum-quiz.jpeg
20.2 kB
Part 02-Module 03-Lesson 02_Decision Trees/img/graphviz-example.png
20.0 kB
assets/css/fonts/KaTeX_Math-BoldItalic.woff2
20.0 kB
assets/css/fonts/KaTeX_Fraktur-Regular.woff2
19.9 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/35. Notebook + Quiz Multiple Tests.html
19.7 kB
Part 02-Module 04-Lesson 01_Take 30 Min to Improve your LinkedIn/media/unnamed-project-desc-1.gif
19.6 kB
assets/css/fonts/KaTeX_Caligraphic-Bold.ttf
19.6 kB
Part 04-Module 01-Lesson 01_Introduction/img/screen-shot-2018-02-21-at-6.41.35-pm.png
19.2 kB
assets/css/fonts/KaTeX_SansSerif-Bold.woff
19.2 kB
Part 06-Module 01-Lesson 07_Bayes Rule/31. Learning Objectives - Conditional Probability.html
19.1 kB
assets/css/fonts/KaTeX_Caligraphic-Regular.ttf
19.0 kB
Part 05-Module 01-Lesson 02_NumPy/04. Creating and Saving NumPy ndarrays.html
18.9 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/13. Case Study in Python.html
18.8 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/29. Quiz Descriptive vs. Inferential (Bagels).html
18.6 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/06. Quiz Setting Up Hypothesis Tests.html
18.5 kB
Part 03-Module 01-Lesson 05_Scripting/img/step4-alias.png
18.3 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/04. Quiz Descriptive vs. Inferential (Bagels).html
18.2 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/38. Quiz + Text Recap.html
18.2 kB
Part 05-Module 01-Lesson 02_NumPy/11. Arithmetic operations and Broadcasting.html
18.1 kB
assets/css/fonts/KaTeX_SansSerif-Italic.woff
18.1 kB
Part 02-Module 03-Lesson 03_Model Testing and Evaluation/img/time-series-validation-2.png
18.1 kB
Part 03-Module 01-Lesson 05_Scripting/22. Quiz The Standard Library.html
18.0 kB
Part 03-Module 01-Lesson 03_Control Flow/08. Quiz Boolean Expressions for Conditions.html
18.0 kB
Part 05-Module 01-Lesson 02_NumPy/07. Accessing, Deleting, and Inserting Elements Into ndarrays.html
18.0 kB
Part 07-Module 01-Lesson 01_Linear Regression/15. Linear Regression in scikit-learn.html
18.0 kB
Part 03-Module 01-Lesson 05_Scripting/18. Quiz Reading and Writing Files.html
17.9 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/12. [Preview] Project Mimic Me!.html
17.9 kB
Part 02-Module 03-Lesson 02_Decision Trees/21. Decision Trees in sklearn.html
17.7 kB
Part 06-Module 01-Lesson 07_Bayes Rule/36. Learning Objectives - Bayes' Rule.html
17.6 kB
Part 01-Module 01-Lesson 07_Stock Returns/04. Quiz Log Returns and Compounding.html
17.6 kB
assets/css/fonts/KaTeX_Typewriter-Regular.woff2
17.5 kB
Part 02-Module 04-Lesson 01_Take 30 Min to Improve your LinkedIn/img/speaking.png
17.5 kB
Part 03-Module 01-Lesson 03_Control Flow/13. Quiz For Loops.html
17.5 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/15. Quiz More Hypothesis Testing Practice.html
17.4 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/04. Notebook + Quiz Building Confidence Intervals.html
17.4 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/24. Gradient Descent.html
17.3 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/24. Gradient Descent.html
17.3 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/06. Notebook + Quiz Difference in Means.html
17.2 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/32. Quiz Dictionaries and Identity Operators.html
17.1 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/11. Perceptron Algorithm.html
17.1 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/11. Perceptron Algorithm.html
17.1 kB
Part 05-Module 01-Lesson 02_NumPy/08. Slicing ndarrays.html
17.1 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/27. Quiz Connecting Errors and P-Values.html
17.0 kB
Part 07-Module 01-Lesson 04_Decision Trees/17. Decision Trees in sklearn.html
17.0 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/17. Quiz Type and Type Conversion.html
16.9 kB
Part 01-Module 04-Lesson 06_Alpha Factors/11. Ranking in Zipline.html
16.9 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/13. Quiz Types of Errors - Part III.html
16.9 kB
assets/css/fonts/KaTeX_SansSerif-Regular.woff
16.8 kB
Part 03-Module 01-Lesson 05_Scripting/img/step2-pwd.png
16.8 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/23. Quiz Shape and Outliers (Comparing Distributions).html
16.8 kB
Part 06-Module 01-Lesson 13_Case Study AB tests/06. Quiz Experiment I.html
16.8 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/14. Quiz Strings.html
16.7 kB
Part 02-Module 04-Lesson 01_Take 30 Min to Improve your LinkedIn/Project Rubric - Improve Your LinkedIn Profile.html
16.7 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/06. Quiz Data Types (Quantitative vs. Categorical).html
16.7 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/25. Quiz Shape and Outliers (Final Quiz).html
16.6 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/28. Notebook + Quiz Drawing Conclusions.html
16.4 kB
Part 01-Module 03-Lesson 04_Portfolio Optimization/06. Formulating Portfolio Optimization Problems.html
16.3 kB
Part 03-Module 01-Lesson 03_Control Flow/02. Conditional Statements.html
16.3 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/36. Quiz Compound Data Structures.html
16.3 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/18. Measures of Center (Mode).html
16.2 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/09. Notebook + Quiz Sampling Distributions & Python.html
16.2 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/22. Lists and Membership Operators.html
16.2 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/img/iris-box-plot.png
16.2 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/27. Quiz + Text Recap & Next Steps.html
16.1 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/img/screen-shot-2017-11-06-at-1.14.05-pm.png
16.0 kB
assets/css/fonts/KaTeX_SansSerif-Bold.woff2
16.0 kB
Part 03-Module 01-Lesson 05_Scripting/04. [For Windows] Configuring Git Bash to Run Python.html
15.9 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/22. Quiz What is a p-value Anyway.html
15.9 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/10. Text + Quiz Data Types (Ordinal vs. Nominal).html
15.9 kB
Part 06-Module 01-Lesson 13_Case Study AB tests/17. Quiz Difficulties in AB Testing.html
15.9 kB
Part 02-Module 03-Lesson 07_Feature Importance/11. Tree Shap Code Walkthrough (Optional).html
15.7 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/39. Summary.html
15.7 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/24. Quiz Shape and Outliers (Visuals).html
15.7 kB
Part 03-Module 01-Lesson 05_Scripting/img/step5-source.png
15.6 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/14. Quiz Applied Standard Deviation and Variance.html
15.6 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/23. Quiz Lists and Membership Operators.html
15.5 kB
Part 07-Module 01-Lesson 01_Linear Regression/19. (Optional) Closed form Solution Math.html
15.4 kB
Part 03-Module 01-Lesson 03_Control Flow/29. Quiz Zip and Enumerate.html
15.3 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/26. Quiz List Methods.html
15.2 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/06. Quiz Variables and Assignment Operators.html
15.2 kB
assets/css/fonts/KaTeX_SansSerif-Italic.woff2
15.2 kB
Part 03-Module 01-Lesson 05_Scripting/28. Online Resources.html
15.1 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/10. Quiz Types of Errors - Part II(a).html
15.1 kB
Part 02-Module 05-Lesson 04_Project 8 Backtesting/Project Rubric - Backtesting.html
15.1 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/28. Quiz Notation for the Mean.html
15.0 kB
Part 03-Module 01-Lesson 05_Scripting/img/step1-cd.png
15.0 kB
Part 03-Module 01-Lesson 03_Control Flow/18. Quiz Iterating Through Dictionaries.html
15.0 kB
Part 03-Module 01-Lesson 03_Control Flow/10. For Loops.html
14.9 kB
Part 03-Module 01-Lesson 04_Functions/02. Defining Functions.html
14.9 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/15. Homework 1 Final Quiz on Measures Spread.html
14.9 kB
Part 03-Module 01-Lesson 03_Control Flow/07. Boolean Expressions for Conditions.html
14.8 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/34. Quiz More With Dictionaries.html
14.8 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/28. Quiz Tuples.html
14.7 kB
Part 03-Module 01-Lesson 03_Control Flow/16. Building Dictionaries.html
14.6 kB
Part 02-Module 03-Lesson 02_Decision Trees/img/tree-example.png
14.6 kB
Part 02-Module 03-Lesson 02_Decision Trees/20. Hyperparameters.html
14.6 kB
Part 04-Module 01-Lesson 03_Linear Combination/06. Solving a Simplified Set of Equations.html
14.6 kB
Part 05-Module 01-Lesson 03_Pandas/05. Accessing and Deleting Elements in pandas Series.html
14.5 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/05. Variables and Assignment Operators.html
14.4 kB
Part 07-Module 01-Lesson 01_Linear Regression/17. Multiple Linear Regression.html
14.3 kB
Part 05-Module 01-Lesson 03_Pandas/06. Arithmetic Operations on pandas Series.html
14.3 kB
Part 01-Module 04-Lesson 06_Alpha Factors/02. install libraries.html
14.2 kB
Part 01-Module 04-Lesson 06_Alpha Factors/20. Factor returns quiz.html
14.2 kB
Part 02-Module 01-Lesson 01_Welcome To Term II/03. Your Instructors.html
14.2 kB
Part 07-Module 01-Lesson 04_Decision Trees/16. Hyperparameters.html
14.1 kB
Part 03-Module 01-Lesson 03_Control Flow/15. Quiz Match Inputs To Outputs.html
14.0 kB
assets/css/fonts/KaTeX_SansSerif-Regular.woff2
14.0 kB
Part 03-Module 01-Lesson 03_Control Flow/23. Quiz While Loops.html
14.0 kB
Part 05-Module 01-Lesson 02_NumPy/09. Boolean Indexing, Set Operations, and Sorting.html
14.0 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/19. String Methods.html
13.9 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/10. Text Introduction to the Standard Deviation and Variance.html
13.9 kB
assets/css/fonts/KaTeX_Script-Regular.woff
13.9 kB
Part 03-Module 01-Lesson 05_Scripting/26. Third-Party Libraries.html
13.8 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/21. Notebook + Quiz Central Limit Theorem - Part III.html
13.7 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/20. String Methods.html
13.7 kB
Part 06-Module 01-Lesson 07_Bayes Rule/21. Robot Sensing 1.html
13.7 kB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/12. Training the Model.html
13.6 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/26. Text Descriptive Statistics Summary .html
13.6 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/03. Quiz Arithmetic Operators.html
13.6 kB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/14. Inference, Solution.html
13.5 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/13. Advanced Standard Deviation and Variance.html
13.5 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/23. Quiz Calculating a p-value.html
13.5 kB
Part 01-Module 04-Lesson 06_Alpha Factors/21. get_clean_factor_and_forward_returns.html
13.5 kB
Part 02-Module 01-Lesson 01_Welcome To Term II/img/brok-bucholtz-thumbnail.jpg
13.4 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/24. Quiz Calculating another p-value.html
13.3 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/18. Notebook + Quiz Central Limit Theorem.html
13.3 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/19. Notebook + Quiz Central Limit Theorem - Part II.html
13.3 kB
Part 02-Module 02-Lesson 03_Deep Learning with PyTorch/01. Welcome!.html
13.3 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/02. What are Jupyter notebooks.html
13.3 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/19. Quiz Shape and Outliers (What's the Impact).html
13.3 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/25. List Methods.html
13.3 kB
Part 01-Module 04-Lesson 06_Alpha Factors/35. The Fundamental Law of Active Management Part 2.html
13.3 kB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/11. Complete Sentiment RNN.html
13.2 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/09. Quiz Integers and Floats.html
13.2 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/24. Notebook + Quiz Bootstrapping.html
13.2 kB
assets/css/fonts/KaTeX_Size1-Regular.ttf
13.2 kB
Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/12. Linear Transformation Quiz Answers.html
13.1 kB
Part 03-Module 01-Lesson 03_Control Flow/05. Quiz Conditional Statements.html
13.1 kB
Part 01-Module 04-Lesson 06_Alpha Factors/17. Smoothing Quiz 1.html
13.1 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/13. Quiz Notation.html
13.1 kB
Part 06-Module 01-Lesson 08_Python Probability Practice/06. Cancer Test Results.html
13.1 kB
Part 01-Module 04-Lesson 06_Alpha Factors/43. mean returns by quantile quiz.html
13.0 kB
Part 03-Module 01-Lesson 05_Scripting/12. Errors and Exceptions.html
13.0 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/30. Quiz Sets.html
13.0 kB
Part 01-Module 04-Lesson 06_Alpha Factors/25. Making dollar neutral and leverage ratio equal to one.html
12.9 kB
Part 01-Module 02-Lesson 03_Regression/03. Exercise Visualize Distributions.html
12.9 kB
Part 01-Module 01-Lesson 07_Stock Returns/05. Distributions of Returns and Prices.html
12.9 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/16. Text Measures of Center and Spread Summary.html
12.9 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/08. Integers and Floats.html
12.8 kB
Part 01-Module 04-Lesson 06_Alpha Factors/32. Quiz factor_information_coefficient.html
12.8 kB
Part 02-Module 01-Lesson 01_Welcome To Term II/img/ritter-gordon.jpg
12.8 kB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/14. The Capital Assets Pricing Model.html
12.7 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/04. Setting Up Hypotheses.html
12.7 kB
Part 01-Module 03-Lesson 04_Portfolio Optimization/07. cvxpy.html
12.7 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/08. Quiz Types of Errors - Part I.html
12.7 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/13. Strings.html
12.7 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/23. Quiz Introduction to Notation.html
12.7 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/16. Softmax.html
12.7 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/16. Softmax.html
12.7 kB
Part 06-Module 01-Lesson 07_Bayes Rule/34. Learning from Sensor Data.html
12.7 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/32. Neural Network Architecture.html
12.6 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/32. Neural Network Architecture.html
12.6 kB
Part 01-Module 04-Lesson 06_Alpha Factors/22. Factor and forward returns exercise.html
12.6 kB
Part 01-Module 04-Lesson 06_Alpha Factors/47. Transfer Coefficient Coding Exercise.html
12.5 kB
Part 01-Module 04-Lesson 06_Alpha Factors/44. Quantile analysis exercise.html
12.5 kB
Part 01-Module 04-Lesson 06_Alpha Factors/33. Rank IC coding exercise.html
12.5 kB
Part 01-Module 04-Lesson 06_Alpha Factors/26. Factor returns coding exercise.html
12.5 kB
Part 01-Module 04-Lesson 06_Alpha Factors/28. Sharpe Ratio Coding Exercise.html
12.5 kB
Part 01-Module 04-Lesson 06_Alpha Factors/04. Definition of key words.html
12.5 kB
Part 01-Module 04-Lesson 06_Alpha Factors/08. Sector Neutral Exercise.html
12.5 kB
Part 01-Module 04-Lesson 06_Alpha Factors/40. Turnover Exercise.html
12.5 kB
Part 02-Module 03-Lesson 03_Model Testing and Evaluation/03. Testing your models.html
12.5 kB
Part 01-Module 04-Lesson 06_Alpha Factors/18. Smoothing Exercise.html
12.5 kB
Part 01-Module 04-Lesson 06_Alpha Factors/15. z-score exercise.html
12.5 kB
Part 01-Module 04-Lesson 06_Alpha Factors/12. Ranking exercise.html
12.5 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/27. Quiz Summation.html
12.5 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/20. What is a p-value Anyway.html
12.5 kB
Part 01-Module 04-Lesson 06_Alpha Factors/14. z-score quiz.html
12.4 kB
Part 03-Module 01-Lesson 03_Control Flow/32. Quiz List Comprehensions.html
12.4 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/11. Quiz Booleans, Comparison Operators, and Logical Operators.html
12.4 kB
assets/css/fonts/KaTeX_Size2-Regular.ttf
12.4 kB
Part 03-Module 01-Lesson 03_Control Flow/25. Break, Continue.html
12.4 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/28. Quiz Descriptive vs. Inferential (Udacity Students).html
12.4 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/14. Common Types of Hypothesis Tests.html
12.4 kB
Part 03-Module 01-Lesson 03_Control Flow/17. Iterating Through Dictionaries with For Loops.html
12.3 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/30. Other Things to Consider - Impact of Large Sample Size.html
12.3 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/31. Dictionaries and Identity Operators.html
12.3 kB
Part 03-Module 01-Lesson 05_Scripting/17. Reading and Writing Files.html
12.3 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/12. Video Notation for Parameters vs. Statistics.html
12.3 kB
assets/css/fonts/KaTeX_Script-Regular.woff2
12.3 kB
Part 02-Module 03-Lesson 07_Feature Importance/09. Shapley Code Walkthrough (Optional).html
12.3 kB
Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/13. Details of Johansen Test (optional).html
12.3 kB
Part 01-Module 04-Lesson 06_Alpha Factors/42. Quantile Analysis Part 2.html
12.3 kB
Part 03-Module 01-Lesson 03_Control Flow/09. Solution Boolean Expressions for Conditions.html
12.2 kB
Part 01-Module 04-Lesson 06_Alpha Factors/29. Halfway There!.html
12.2 kB
Part 03-Module 01-Lesson 03_Control Flow/21. Practice While Loops.html
12.2 kB
assets/css/fonts/KaTeX_Caligraphic-Bold.woff
12.1 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/10. Perceptron Trick.html
12.1 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/10. Perceptron Trick.html
12.1 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/25. Video Summation.html
12.1 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/34. Backpropagation.html
12.1 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/34. Backpropagation.html
12.1 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/07. Solution Variables and Assignment Operators.html
12.0 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/05. Setting Up Hypothesis Tests - Part II.html
12.0 kB
Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/07. ADF and roots.html
12.0 kB
Part 06-Module 01-Lesson 08_Python Probability Practice/07. Conditional Probability & Bayes Rule Quiz.html
12.0 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/03. Quiz Descriptive vs. Inferential (Udacity Students).html
12.0 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/18. iVol Value and Idiosyncratic volatility Overview.html
12.0 kB
Part 01-Module 04-Lesson 06_Alpha Factors/01. Intro Efficient Market hypothesis and Arbitrage opportunities.html
12.0 kB
Part 03-Module 01-Lesson 03_Control Flow/30. Solution Zip and Enumerate.html
12.0 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/04. Launching the notebook server.html
12.0 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/10. Booleans, Comparison Operators, and Logical Operators.html
12.0 kB
Part 03-Module 01-Lesson 05_Scripting/20. Importing Local Scripts.html
11.9 kB
Part 01-Module 04-Lesson 06_Alpha Factors/06. Controlling for Risk within an Alpha Factor Part 1.html
11.9 kB
Part 01-Module 04-Lesson 06_Alpha Factors/24. Return Denominator, Leverage, and Factor Returns.html
11.9 kB
Part 01-Module 04-Lesson 06_Alpha Factors/34. The Fundamental Law of Active Management Part 1.html
11.9 kB
Part 01-Module 04-Lesson 06_Alpha Factors/07. Controlling for Risk within an Alpha Factor Part 2.html
11.9 kB
Part 01-Module 04-Lesson 06_Alpha Factors/30. Ranked Information Coefficient (Rank IC) Part 1.html
11.9 kB
Part 01-Module 04-Lesson 06_Alpha Factors/38. Turnover as a Proxy for Real World Constraints.html
11.9 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/22. Video Capital vs. Lower.html
11.9 kB
Part 01-Module 04-Lesson 06_Alpha Factors/31. Ranked Information Coefficient (Rank IC) Part 2.html
11.9 kB
Part 01-Module 04-Lesson 06_Alpha Factors/37. Real World Constraints Transaction Costs.html
11.9 kB
Part 01-Module 04-Lesson 06_Alpha Factors/45. Quantiles Academic Research vs. Practitioners.html
11.9 kB
Part 01-Module 04-Lesson 06_Alpha Factors/05. Researching Alphas from Academic Papers.html
11.9 kB
Part 01-Module 04-Lesson 06_Alpha Factors/51. Interlude Reading Academic Research Papers, Part 1.html
11.9 kB
Part 01-Module 04-Lesson 06_Alpha Factors/52. Interlude Reading Academic Research Papers, Part 2.html
11.9 kB
assets/css/fonts/KaTeX_Caligraphic-Regular.woff
11.9 kB
Part 01-Module 04-Lesson 06_Alpha Factors/03. Alpha Factors versus Risk Factor Modeling.html
11.9 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/17. Text Recap + Next Steps.html
11.9 kB
Part 01-Module 04-Lesson 06_Alpha Factors/36. Real World Constraints Liquidity.html
11.8 kB
Part 01-Module 04-Lesson 06_Alpha Factors/39. Factor Rank Autocorrelation (Turnover).html
11.8 kB
Part 01-Module 04-Lesson 06_Alpha Factors/23. Universe construction rule.html
11.8 kB
Part 01-Module 04-Lesson 06_Alpha Factors/41. Quantile Analysis Part 1.html
11.8 kB
Part 01-Module 04-Lesson 06_Alpha Factors/46. Transfer Coefficient.html
11.8 kB
Part 01-Module 04-Lesson 06_Alpha Factors/48. It’s all Relative.html
11.7 kB
Part 01-Module 04-Lesson 06_Alpha Factors/49. Conditional Factors.html
11.7 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/16. How Do We Choose Between Hypotheses.html
11.7 kB
Part 01-Module 04-Lesson 06_Alpha Factors/19. Factor Returns.html
11.7 kB
Part 01-Module 04-Lesson 06_Alpha Factors/10. Ranking Part 2.html
11.7 kB
Part 01-Module 04-Lesson 06_Alpha Factors/27. Sharpe Ratio.html
11.7 kB
Part 01-Module 04-Lesson 06_Alpha Factors/50. Summary.html
11.7 kB
Part 01-Module 04-Lesson 06_Alpha Factors/09. Ranking Part 1.html
11.7 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/03. Setting Up Hypothesis Tests - Part I.html
11.7 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/08. Winners and Losers in Momentum Investing.html
11.7 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/12. Types of Errors - Part III.html
11.7 kB
Part 01-Module 04-Lesson 06_Alpha Factors/53. Interlude Reading Academic Research Papers, Part 3.html
11.7 kB
Part 01-Module 04-Lesson 06_Alpha Factors/16. Smoothing.html
11.7 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/21. Another String Method - Split.html
11.7 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/14. Measures of Center (Mean).html
11.7 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/30. Text Descriptive vs. Inferential Summary.html
11.7 kB
Part 01-Module 04-Lesson 06_Alpha Factors/13. Z score.html
11.7 kB
Part 06-Module 01-Lesson 13_Case Study AB tests/12. Metric - Average Classroom Time.html
11.7 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/13. Other Language Associated with Confidence Intervals.html
11.6 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/09. Types of Errors - Part II.html
11.6 kB
Part 03-Module 01-Lesson 05_Scripting/25. Quiz Techniques for Importing Modules.html
11.6 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/20. Video Random Variables.html
11.6 kB
Part 03-Module 01-Lesson 03_Control Flow/11. Practice For Loops.html
11.6 kB
Part 03-Module 01-Lesson 05_Scripting/02. Python Installation.html
11.5 kB
Part 02-Module 04-Lesson 01_Take 30 Min to Improve your LinkedIn/07. Profile Essentials.html
11.5 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/05. Quiz 5 Number Summary Practice.html
11.5 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/06. Video + Quiz Introduction to Sampling Distributions Part I.html
11.5 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/26. Pre-Notebook Gradient Descent.html
11.5 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/29. Text Summary on Notation.html
11.5 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/26. Pre-Notebook Gradient Descent.html
11.5 kB
Part 06-Module 01-Lesson 08_Python Probability Practice/03. Probability Quiz.html
11.5 kB
Part 01-Module 01-Lesson 08_Momentum Trading/11. Quiz Test Returns for Statistical Significance.html
11.5 kB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/12. The Sharpe Ratio.html
11.5 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/31. Other Things to Consider - What If We Test More Than Once.html
11.5 kB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/09. Alternative Ways of Setting Up the Problem.html
11.4 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/24. Solution List and Membership Operators.html
11.4 kB
Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/06. Cointegration.html
11.4 kB
Part 02-Module 04-Lesson 02_Optimize Your GitHub Profile/01. Prove Your Skills With GitHub.html
11.4 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/07. Video + Quiz Introduction to Sampling Distributions Part II.html
11.4 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/27. Tuples.html
11.4 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/21. Cross-Entropy 2.html
11.4 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/21. Cross-Entropy 2.html
11.4 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/02. install libraries.html
11.4 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/21. Quiz Variable Types.html
11.3 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/35. Compound Data Structures.html
11.3 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/07. Quiz Variance and Preferred Gaussian.html
11.3 kB
Part 05-Module 01-Lesson 03_Pandas/11. Manipulate a DataFrame.html
11.3 kB
assets/css/fonts/KaTeX_Size4-Regular.ttf
11.3 kB
Part 06-Module 01-Lesson 08_Python Probability Practice/05. Binomial Distributions Quiz.html
11.3 kB
Part 03-Module 01-Lesson 03_Control Flow/14. Solution For Loops Quiz.html
11.3 kB
Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/02. Mean Reversion.html
11.2 kB
Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/05. Multiplication of Square Matrices.html
11.2 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/17. Video Simulating from the Null.html
11.2 kB
Part 03-Module 01-Lesson 05_Scripting/13. Handling Errors.html
11.2 kB
Part 06-Module 01-Lesson 13_Case Study AB tests/03. AB Testing.html
11.2 kB
Part 03-Module 01-Lesson 03_Control Flow/28. Zip and Enumerate.html
11.2 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/29. Sets.html
11.2 kB
Part 02-Module 03-Lesson 02_Decision Trees/24. Visualizing Your Tree.html
11.2 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/20. Relative and Absolute Returns.html
11.1 kB
Part 03-Module 01-Lesson 03_Control Flow/03. Practice Conditional Statements.html
11.1 kB
Part 03-Module 01-Lesson 05_Scripting/27. Experimenting with an Interpreter.html
11.1 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/09. Measures of Spread (Calculation and Units).html
11.1 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/16. Notebook + Quiz Law of Large Numbers.html
11.1 kB
Part 02-Module 03-Lesson 02_Decision Trees/06. Tree Anatomy.html
11.1 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/25. Connecting Errors and P-Values.html
11.1 kB
Part 02-Module 03-Lesson 02_Decision Trees/03. Recommending Apps 1.html
11.1 kB
Part 03-Module 01-Lesson 03_Control Flow/20. While Loops.html
11.1 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/12. Video Important Final Points.html
11.1 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/32. Other Things to Consider - How Do CIs and HTs Compare.html
11.1 kB
Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/07. Matrix Multiplication - General.html
11.1 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/14. Skewness and Momentum Attentional Bias.html
11.1 kB
Part 03-Module 01-Lesson 03_Control Flow/31. List Comprehensions.html
11.0 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood.html
11.0 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood.html
11.0 kB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/img/sml-chart.png
11.0 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/03. Overnight Returns Abstract.html
11.0 kB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/13. Other Risk Measures.html
11.0 kB
Part 03-Module 01-Lesson 05_Scripting/09. Quiz Scripting with Raw Input.html
11.0 kB
Part 03-Module 01-Lesson 05_Scripting/14. Practice Handling Input Errors.html
11.0 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/04. Video Introduction to Five Number Summary.html
11.0 kB
Part 04-Module 01-Lesson 01_Introduction/05. Working with Equations.html
11.0 kB
Part 03-Module 01-Lesson 03_Control Flow/04. Solution Conditional Statements.html
11.0 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/09. Magic keywords.html
11.0 kB
Part 01-Module 03-Lesson 04_Portfolio Optimization/04. Two-Asset Portfolio Optimization.html
11.0 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/19. Video What is Notation.html
11.0 kB
Part 01-Module 01-Lesson 06_Data Processing/09. Fundamental Information.html
11.0 kB
Part 03-Module 01-Lesson 05_Scripting/03. Install Python Using Anaconda.html
11.0 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/26. Conclusions in Hypothesis Testing.html
10.9 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/16. Measures of Center (Median).html
10.9 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/29. Solution Notebook Drawing Conclusions.html
10.9 kB
Part 03-Module 01-Lesson 03_Control Flow/24. Solution While Loops Quiz.html
10.9 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/10. Text Sampling Distribution Notes.html
10.9 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/15. Discrete vs Continuous.html
10.9 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/19. Solution Notebook Simulating from the Null.html
10.9 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs Continuous.html
10.9 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/34. Solution Notebook Impact of Sample Size.html
10.9 kB
Part 02-Module 04-Lesson 01_Take 30 Min to Improve your LinkedIn/09. Build and Strengthen Your Network.html
10.9 kB
Part 03-Module 01-Lesson 05_Scripting/24. Techniques for Importing Modules.html
10.9 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/22. Video Working With Outliers My Advice.html
10.9 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/36. Solution Notebook Multiple tests.html
10.9 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/17. Video Shape.html
10.9 kB
Part 05-Module 01-Lesson 03_Pandas/04. Creating pandas Series.html
10.8 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/16. Type and Type Conversion.html
10.8 kB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/13. Testing.html
10.8 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/01. Introduction.html
10.8 kB
Part 02-Module 04-Lesson 01_Take 30 Min to Improve your LinkedIn/01. Get Opportunities with LinkedIn.html
10.8 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/15. Video Two Useful Theorems - Law of Large Numbers.html
10.8 kB
Part 03-Module 01-Lesson 03_Control Flow/26. Quiz Break, Continue.html
10.8 kB
Part 07-Module 01-Lesson 01_Linear Regression/14. Absolute Error vs Squared Error.html
10.8 kB
Part 02-Module 03-Lesson 03_Model Testing and Evaluation/21. Solution Detecting Overfitting and Underfitting.html
10.7 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/07. Markdown cells.html
10.7 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/02. Arithmetic Operators.html
10.7 kB
Part 01-Module 04-Lesson 09_Project 4 Alpha Research and Factor Modeling/Project Rubric - Multi-factor Model.html
10.7 kB
Part 06-Module 01-Lesson 13_Case Study AB tests/10. Metric - Enrollment Rate.html
10.7 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/14. Log-loss Error Function.html
10.7 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/14. Log-loss Error Function.html
10.7 kB
Part 06-Module 01-Lesson 13_Case Study AB tests/13. Metric - Completion Rate.html
10.7 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/11. Data Types (Continuous vs. Discrete).html
10.7 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/05. Text Descriptive vs. Inferential Statistics.html
10.7 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/23. Video Bootstrapping & The Central Limit Theorem.html
10.7 kB
Part 02-Module 02-Lesson 07_Project 6 Sentiment Analysis with Neural Networks/Project Rubric - Sentiment Analysis with Neural Networks.html
10.6 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/21. Video Calculating the p-value.html
10.6 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/15. Solution Strings.html
10.6 kB
assets/css/fonts/KaTeX_Caligraphic-Bold.woff2
10.6 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/27. Video Descriptive vs. Inferential Statistics.html
10.6 kB
Part 04-Module 01-Lesson 03_Linear Combination/03. Linear Combination and Span.html
10.6 kB
Part 03-Module 01-Lesson 05_Scripting/06. Programming Environment Setup.html
10.5 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/19. Maximizing Probabilities.html
10.5 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/19. Maximizing Probabilities.html
10.5 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/35. Pre-Notebook Analyzing Student Data.html
10.5 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/35. Pre-Notebook Analyzing Student Data.html
10.5 kB
Part 02-Module 03-Lesson 02_Decision Trees/19. Gini Impurity.html
10.5 kB
Part 02-Module 01-Lesson 05_Financial Statements/04. Quiz 10-Ks and EDGAR.html
10.5 kB
Part 03-Module 01-Lesson 03_Control Flow/06. Solution Conditional Statements.html
10.5 kB
Part 03-Module 01-Lesson 04_Functions/15. [Optional] Quiz Iterators and Generators.html
10.5 kB
Part 03-Module 01-Lesson 03_Control Flow/33. Solution List Comprehensions.html
10.5 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/11. Winners and Losers Content Quiz.html
10.5 kB
Part 03-Module 01-Lesson 04_Functions/03. Quiz Defining Functions.html
10.4 kB
Part 04-Module 01-Lesson 02_Vectors/04. Vectors- Mathematical definition .html
10.4 kB
Part 06-Module 01-Lesson 07_Bayes Rule/02. Cancer Test.html
10.4 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/01. Introduction.html
10.4 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/05. Notebook interface.html
10.4 kB
Part 03-Module 01-Lesson 04_Functions/12. Quiz Lambda Expressions.html
10.4 kB
assets/css/fonts/KaTeX_Caligraphic-Regular.woff2
10.4 kB
Part 07-Module 01-Lesson 04_Decision Trees/02. Recommending Apps 1.html
10.4 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/07. Video Introduction to Standard Deviation and Variance.html
10.4 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/13. Video Measures of Center (Mean).html
10.4 kB
Part 02-Module 04-Lesson 02_Optimize Your GitHub Profile/11. Commit messages best practices.html
10.3 kB
Part 06-Module 01-Lesson 13_Case Study AB tests/15. Quiz Analyzing Multiple Metrics.html
10.3 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/04. Computer Vision Applications.html
10.3 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/18. Video The Shape For Data In The World.html
10.3 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/15. Correct Interpretations of Confidence Intervals.html
10.3 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/33. Solution Dictionaries and Identity Operators.html
10.3 kB
Part 02-Module 03-Lesson 07_Feature Importance/05. sklearn Code Walkthrough (Optional).html
10.3 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/04. Solution Arithmetic Operators.html
10.3 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/12. Solution Booleans, Comparison and Logical Operators.html
10.3 kB
Part 02-Module 04-Lesson 02_Optimize Your GitHub Profile/Project Description - Optimize Your GitHub Profile.html
10.3 kB
Part 06-Module 01-Lesson 07_Bayes Rule/10. Cancer Probabilities.html
10.3 kB
Part 03-Module 01-Lesson 03_Control Flow/19. Solution Iterating Through Dictionaries.html
10.3 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/17. Smart Beta.html
10.2 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/21. Video Working With Outliers.html
10.2 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/23. Logistic Regression.html
10.2 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/23. Logistic Regression.html
10.2 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/03. Classification Problems 1.html
10.2 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/03. Classification Problems 1.html
10.2 kB
Part 06-Module 01-Lesson 07_Bayes Rule/14. Disease Test 1.html
10.2 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/37. Solution Compound Data Structions.html
10.2 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/02. Video Descriptive vs. Inferential Statistics.html
10.2 kB
Part 06-Module 01-Lesson 07_Bayes Rule/28. Robot Sensing 8.html
10.2 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/06. Higher Dimensions.html
10.2 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/06. Higher Dimensions.html
10.2 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/20. Video Shape and Outliers.html
10.2 kB
Part 06-Module 01-Lesson 07_Bayes Rule/13. Normalizing Probability.html
10.2 kB
Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/08. Matrix Multiplication Quiz.html
10.2 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/25. Handling Withdrawals.html
10.2 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/01. Introduction.html
10.2 kB
Part 02-Module 03-Lesson 02_Decision Trees/14. Multiclass Entropy.html
10.2 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/26. Video Notation for the Mean.html
10.2 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/07. Perceptrons.html
10.2 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/22. Multi-Class Cross Entropy.html
10.2 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/07. Perceptrons.html
10.2 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/22. Multi-Class Cross Entropy.html
10.2 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/17. Video Two Useful Theorems - Central Limit Theorem.html
10.1 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/15. Video Measures of Center (Median).html
10.1 kB
Part 02-Module 04-Lesson 02_Optimize Your GitHub Profile/Project Rubric - Optimize Your GitHub Profile.html
10.1 kB
Part 01-Module 03-Lesson 04_Portfolio Optimization/02. What is Optimization.html
10.1 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/37. Hypothesis Testing Conclusion.html
10.1 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/01. Video What are Measures of Spread.html
10.1 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/07. Types of Errors - Part I.html
10.1 kB
Part 03-Module 01-Lesson 04_Functions/05. Variable Scope.html
10.1 kB
Part 03-Module 01-Lesson 03_Control Flow/22. Solution While Loops Practice.html
10.1 kB
Part 10-Module 01-Lesson 01_Intro to NLP/06. Counting Words.html
10.1 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/02. Hypothesis Testing.html
10.1 kB
Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/04. Scalar Multiplication of Matrix and Quiz.html
10.0 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/20. Video When Does the Central Limit Theorem Not Work.html
10.0 kB
Part 01-Module 03-Lesson 02_ETFs/03. How ETFs are Used.html
10.0 kB
Part 02-Module 04-Lesson 01_Take 30 Min to Improve your LinkedIn/08. Work Experiences & Accomplishments.html
10.0 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/11. How an Index is Constructed.html
10.0 kB
Part 07-Module 01-Lesson 02_Naive Bayes/08. Bayesian Learning 1.html
10.0 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/18. Quiz Gaussian Motion.html
10.0 kB
Part 02-Module 04-Lesson 01_Take 30 Min to Improve your LinkedIn/05. Use Your Elevator Pitch on LinkedIn.html
10.0 kB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/05. Counting Words.html
10.0 kB
Part 02-Module 03-Lesson 02_Decision Trees/15. Quiz Information Gain.html
10.0 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/18. Solution Type and Type Conversion.html
10.0 kB
Part 06-Module 01-Lesson 07_Bayes Rule/11. Probability Given Test.html
10.0 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/14. Quiz Parameter Update.html
10.0 kB
Part 03-Module 01-Lesson 05_Scripting/05. Running a Python Script.html
10.0 kB
Part 06-Module 01-Lesson 07_Bayes Rule/03. Prior And Posterior.html
9.9 kB
Part 01-Module 01-Lesson 08_Momentum Trading/12. Quiz Statistical Analysis.html
9.9 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/15. Portfolio Variance using Factor Model.html
9.9 kB
Part 04-Module 01-Lesson 02_Vectors/06. Magnitude and Direction .html
9.9 kB
Part 04-Module 01-Lesson 02_Vectors/12. Vectors Quiz 3.html
9.9 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/02. Video Histograms.html
9.9 kB
Part 06-Module 01-Lesson 07_Bayes Rule/22. Robot Sensing 2.html
9.9 kB
Part 06-Module 01-Lesson 07_Bayes Rule/19. Disease Test 6.html
9.9 kB
Part 02-Module 03-Lesson 03_Model Testing and Evaluation/04. Confusion Matrix.html
9.9 kB
Part 06-Module 01-Lesson 07_Bayes Rule/23. Robot Sensing 3.html
9.9 kB
Part 06-Module 01-Lesson 07_Bayes Rule/18. Disease Test 5.html
9.9 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/07. Computer Vision Pipeline.html
9.9 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/05. Gaussian Intro.html
9.9 kB
Part 01-Module 02-Lesson 03_Regression/06. Testing for Normality.html
9.9 kB
Part 06-Module 01-Lesson 07_Bayes Rule/30. Sebastian At Home.html
9.8 kB
Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/06. Square Matrix Multiplication Quiz.html
9.8 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/33. Feedforward.html
9.8 kB
Part 03-Module 01-Lesson 05_Scripting/08. Scripting with Raw Input.html
9.8 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/33. Feedforward.html
9.8 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/01. Case Studies Intro.html
9.8 kB
Part 03-Module 01-Lesson 03_Control Flow/12. Solution For Loops Practice.html
9.8 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/02. install libraries.html
9.8 kB
Part 02-Module 03-Lesson 03_Model Testing and Evaluation/09. False Negatives and Positives.html
9.8 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/08. Quiz Pipeline Steps.html
9.8 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/27. Notebook Gradient Descent.html
9.8 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/27. Notebook Gradient Descent.html
9.8 kB
Part 03-Module 01-Lesson 05_Scripting/19. Solution Reading and Writing Files.html
9.8 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/36. Notebook Analyzing Student Data.html
9.8 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/36. Notebook Analyzing Student Data.html
9.8 kB
Part 02-Module 04-Lesson 02_Optimize Your GitHub Profile/06. Identify fixes for example “bad” profile.html
9.8 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/08. Video Standard Deviation Calculation.html
9.8 kB
Part 03-Module 01-Lesson 03_Control Flow/27. Solution Break, Continue.html
9.8 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/25. Video The Background of Bootstrapping.html
9.8 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/03. Indices.html
9.8 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/05. Linear Boundaries.html
9.7 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/05. Linear Boundaries.html
9.7 kB
Part 05-Module 01-Lesson 02_NumPy/02. Introduction to NumPy.html
9.7 kB
Part 07-Module 01-Lesson 01_Linear Regression/20. Linear Regression Warnings.html
9.7 kB
Part 02-Module 03-Lesson 03_Model Testing and Evaluation/18. Validation for Financial Data.html
9.7 kB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/07. The Covariance Matrix and Quadratic Forms.html
9.7 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/13. Winners and Losers in Momentum Exercise.html
9.7 kB
Part 02-Module 04-Lesson 01_Take 30 Min to Improve your LinkedIn/06. Create Your Profile With SEO In Mind.html
9.7 kB
Part 02-Module 02-Lesson 04_Recurrent Neural Networks/16. Notebook Character-Level RNN.html
9.7 kB
Part 03-Module 01-Lesson 04_Functions/14. [Optional] Iterators and Generators.html
9.7 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/10. Quiz Shifting the Mean.html
9.7 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/07. Overnight Returns exercise.html
9.7 kB
Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/12. 3 or more stocks (optional).html
9.7 kB
Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/02. Matrix Addition.html
9.7 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/09. Market Cap Weighting.html
9.6 kB
Part 02-Module 03-Lesson 02_Decision Trees/10. Entropy Formula 1.html
9.6 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/17. Video Measures of Center (Mode).html
9.6 kB
Part 06-Module 01-Lesson 07_Bayes Rule/07. Total Probability.html
9.6 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/22. Video Bootstrapping.html
9.6 kB
Part 06-Module 01-Lesson 07_Bayes Rule/26. Robot Sensing 6.html
9.6 kB
Part 06-Module 01-Lesson 07_Bayes Rule/25. Robot Sensing 5.html
9.6 kB
Part 06-Module 01-Lesson 07_Bayes Rule/27. Robot Sensing 7.html
9.6 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/08. Video Introduction to Sampling Distributions Part III.html
9.6 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/12. Quiz Predicting the Peak.html
9.6 kB
Part 06-Module 01-Lesson 07_Bayes Rule/15. Disease Test 2.html
9.6 kB
Part 02-Module 05-Lesson 02_Optimization with Transaction Costs/07. Transaction Costs.html
9.6 kB
Part 06-Module 01-Lesson 07_Bayes Rule/06. Normalizing 3.html
9.6 kB
Part 06-Module 01-Lesson 07_Bayes Rule/24. Robot Sensing 4.html
9.6 kB
Part 06-Module 01-Lesson 07_Bayes Rule/05. Normalizing 2.html
9.6 kB
Part 06-Module 01-Lesson 07_Bayes Rule/16. Disease Test 3.html
9.6 kB
Part 06-Module 01-Lesson 07_Bayes Rule/17. Disease Test 4.html
9.6 kB
Part 06-Module 01-Lesson 07_Bayes Rule/12. Normalizer.html
9.6 kB
Part 06-Module 01-Lesson 07_Bayes Rule/04. Normalizing 1.html
9.6 kB
Part 01-Module 03-Lesson 02_ETFs/10. Arbitrage for Efficient ETF Pricing.html
9.6 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/38. Conclusion.html
9.6 kB
Part 02-Module 01-Lesson 05_Financial Statements/17. Parsers.html
9.6 kB
Part 07-Module 01-Lesson 01_Linear Regression/11. Minimizing Error Functions.html
9.6 kB
Part 02-Module 04-Lesson 01_Take 30 Min to Improve your LinkedIn/10. Reaching Out on LinkedIn.html
9.6 kB
Part 02-Module 02-Lesson 03_Deep Learning with PyTorch/02. Pre-Notebook.html
9.6 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/03. Video Weekdays vs. Weekends What is the Difference.html
9.6 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/24. Video Better Way.html
9.6 kB
Part 07-Module 01-Lesson 03_Clustering/05. Match Points with Clusters.html
9.6 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/06. Video What if We Only Want One Number.html
9.6 kB
Part 02-Module 03-Lesson 07_Feature Importance/13. Ranking Features Walkthrough (optional).html
9.6 kB
Part 01-Module 01-Lesson 06_Data Processing/10. Price Earnings Ratio.html
9.6 kB
Part 02-Module 02-Lesson 05_Embeddings & Word2Vec/04. Pre-Notebook Word2Vec, SkipGram.html
9.6 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/10. Video Traditional Confidence Intervals.html
9.5 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/13. How an alpha factor becomes a risk factor part 2.html
9.5 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/03. Tracking Intro.html
9.5 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/11. Video Why the Standard Deviation.html
9.5 kB
Part 07-Module 01-Lesson 03_Clustering/08. Match Points (again).html
9.5 kB
Part 04-Module 01-Lesson 03_Linear Combination/img/screen-shot-2018-03-28-at-4.52.09-pm.png
9.5 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/02. Text Optional Lessons Note.html
9.5 kB
Part 03-Module 01-Lesson 05_Scripting/07. Editing a Python Script.html
9.5 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/08. Video Data Types (Continuous vs. Discrete).html
9.5 kB
Part 07-Module 01-Lesson 04_Decision Trees/11. Multiclass Entropy.html
9.5 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/12. Hang Seng Index Construction.html
9.5 kB
Part 03-Module 01-Lesson 05_Scripting/16. Accessing Error Messages.html
9.5 kB
Part 03-Module 01-Lesson 03_Control Flow/01. Introduction.html
9.5 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/01. Instructor.html
9.5 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/01. Instructor.html
9.5 kB
Part 01-Module 01-Lesson 08_Momentum Trading/07. Quiz Momentum-based Portfolio.html
9.5 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/14. Central Limit Theorem.html
9.5 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/22. Net Asset Value.html
9.5 kB
Part 02-Module 03-Lesson 02_Decision Trees/18. Calculating Information Gain on a Dataset.html
9.5 kB
Part 01-Module 04-Lesson 06_Alpha Factors/index.html
9.4 kB
Part 02-Module 03-Lesson 04_Random Forests/09. Random Forest Hyperparameters.html
9.4 kB
Part 07-Module 01-Lesson 01_Linear Regression/13. Mini-batch Gradient Descent.html
9.4 kB
Part 02-Module 02-Lesson 05_Embeddings & Word2Vec/13. Pre-Notebook Negative Sampling.html
9.4 kB
Part 05-Module 01-Lesson 03_Pandas/02. Introduction to pandas.html
9.4 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/07. Video Data Types (Ordinal vs. Nominal).html
9.4 kB
Part 02-Module 01-Lesson 01_Welcome To Term II/img/cezanne-camacho.jpg
9.4 kB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/05. Reducing Risk.html
9.4 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/08. Risk Factors v. Alpha Factors.html
9.4 kB
Part 02-Module 02-Lesson 03_Deep Learning with PyTorch/26. Tips, Tricks, and Other Notes.html
9.4 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/31. Video Summary.html
9.3 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/01. Kalman Filters and Linear Algebra.html
9.3 kB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/08. Calculate a Covariance Matrix.html
9.3 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/28. Perceptron vs Gradient Descent.html
9.3 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/28. Perceptron vs Gradient Descent.html
9.3 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/06. Student Support.html
9.3 kB
Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/01. What is a Matrix.html
9.3 kB
Part 07-Module 01-Lesson 04_Decision Trees/12. Quiz Information Gain.html
9.3 kB
Part 10-Module 01-Lesson 01_Intro to NLP/03. Structured Languages.html
9.3 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/27. Transaction Costs.html
9.3 kB
Part 01-Module 02-Lesson 04_Time Series Modeling/04. Advanced Time Series Models.html
9.3 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/08. Answer Variance and Preferred Gaussian.html
9.3 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/05. Video Data Types (Quantitative vs. Categorical).html
9.3 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/09. Risk Factors v. Alpha Factors part 2.html
9.3 kB
Part 02-Module 02-Lesson 04_Recurrent Neural Networks/13. Training & Memory.html
9.3 kB
Part 03-Module 01-Lesson 04_Functions/08. Documentation.html
9.2 kB
Part 02-Module 03-Lesson 03_Model Testing and Evaluation/12. Recall.html
9.2 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/26. Video Why are Sampling Distributions Important.html
9.2 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/04. Terminology.html
9.2 kB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/02. Structured Languages.html
9.2 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/20. Cross-Entropy 1.html
9.2 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/20. Cross-Entropy 1.html
9.2 kB
Part 02-Module 03-Lesson 02_Decision Trees/07. Quiz Student Admissions.html
9.2 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/14. Video Other Sampling Distributions.html
9.2 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/37. Outro.html
9.2 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/37. Outro.html
9.2 kB
Part 03-Module 01-Lesson 05_Scripting/11. Errors and Exceptions.html
9.2 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/11. Video Introduction to Notation.html
9.2 kB
Part 03-Module 01-Lesson 05_Scripting/10. Solution Scripting with Raw Input.html
9.2 kB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/02. Pre-Notebook Sentiment RNN.html
9.2 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/04. Answer Tracking Intro.html
9.2 kB
Part 02-Module 01-Lesson 01_Welcome To Term II/img/luis-serrano.jpg
9.2 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/03. Your Instructors.html
9.2 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/img/codecogseqn-60-2.png
9.2 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/img/codecogseqn-60-2.png
9.2 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/09. Winners and Losers Accelerated and Decelerated Gains and Losses.html
9.1 kB
Part 05-Module 01-Lesson 03_Pandas/07. Manipulate a Series.html
9.1 kB
Part 02-Module 02-Lesson 04_Recurrent Neural Networks/20. Char-RNN, Solution.html
9.1 kB
Part 04-Module 01-Lesson 03_Linear Combination/04. Linear Combination -Quiz 1.html
9.1 kB
Part 02-Module 03-Lesson 02_Decision Trees/11. Entropy Formula 2.html
9.1 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/09. Statistical vs. Practical Significance.html
9.1 kB
Part 02-Module 03-Lesson 03_Model Testing and Evaluation/17. Cross Validation for Time Series.html
9.1 kB
Part 01-Module 01-Lesson 04_Stock Prices/02. Stock Prices.html
9.1 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/16. Skewness and Momentum Momentum Enhanced or weakened by Skew.html
9.1 kB
Part 07-Module 01-Lesson 01_Linear Regression/12. Mean vs Total Error.html
9.1 kB
Part 06-Module 01-Lesson 07_Bayes Rule/09. Equivalent Diagram.html
9.1 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/26. Other Alternative Data.html
9.1 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/10. Winners and Losers approximating curves with polynomials.html
9.1 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/10. Prepare for the Udacity Talent Program.html
9.1 kB
Part 02-Module 03-Lesson 03_Model Testing and Evaluation/11. Precision.html
9.1 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/24. iVol Joint Factor Volatility Enhanced Price Earnings Ratio.html
9.1 kB
Part 02-Module 03-Lesson 02_Decision Trees/04. Recommending Apps 2.html
9.1 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/25. Logistic Regression Algorithm.html
9.0 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/25. Logistic Regression Algorithm.html
9.0 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/08. Why Neural Networks.html
9.0 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/08. Why Neural Networks.html
9.0 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/22. iVol Value, Fundamental or Discretionary Investing.html
9.0 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/25. NLP used to enhance Fundamental Analysis.html
9.0 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/12. Winners and Losers Creating a joint factor.html
9.0 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/19. iVol Arbitrage and Efficient Pricing of Stocks.html
9.0 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/17. Skewness and Momentum Conditional Factor.html
9.0 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/06. Overnight Returns Methods Quantile Analysis.html
9.0 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/05. Overnight Returns Data, Universe, Methods.html
9.0 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/29. Continuous Perceptrons.html
9.0 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/29. Continuous Perceptrons.html
9.0 kB
Part 03-Module 01-Lesson 05_Scripting/23. Solution The Standard Library.html
9.0 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/04. Overnight Returns Possible Alpha Factors.html
9.0 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/04. Classification Problems 2.html
9.0 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/04. Classification Problems 2.html
9.0 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/06. Answer Gaussian Intro.html
9.0 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/15. Skewness and Momentum Defining Skew.html
9.0 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/09. Gaussian Function and Maximum.html
9.0 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/31. Non-Linear Models.html
9.0 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/31. Non-Linear Models.html
9.0 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/12. Non-Linear Regions.html
9.0 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/12. Non-Linear Regions.html
9.0 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/13. Error Functions.html
9.0 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/17. One-Hot Encoding.html
9.0 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/13. Error Functions.html
9.0 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/17. One-Hot Encoding.html
9.0 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/30. Non-linear Data.html
9.0 kB
Part 07-Module 01-Lesson 04_Decision Trees/08. Entropy Formula 1.html
9.0 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/30. Non-linear Data.html
9.0 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/16. Notebook New Mean and Variance.html
9.0 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/25. iVol Generalizing the volatility Factor.html
9.0 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/02. Introduction.html
9.0 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/02. Introduction.html
9.0 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/21. iVol Idiosyncratic Volatility.html
9.0 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/23. iVOL Quantamental Investing.html
9.0 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/21. Notebook Predict Function.html
8.9 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/24. Notebook 1D Kalman Filter.html
8.9 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/02. Video From Sampling Distributions to Confidence Intervals.html
8.9 kB
Part 03-Module 01-Lesson 05_Scripting/01. Introduction.html
8.9 kB
Part 03-Module 01-Lesson 05_Scripting/15. Solution Handling Input Errors.html
8.9 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/11. Risk Factors v. Alpha Factors part 4.html
8.9 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/15. Active vs. Passive.html
8.9 kB
Part 04-Module 01-Lesson 01_Introduction/07. Try our workspace again!.html
8.9 kB
Part 02-Module 02-Lesson 03_Deep Learning with PyTorch/12. Network Architectures Solution.html
8.9 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/20. iVol Arbitrage Risk.html
8.9 kB
Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/03. Matrix Addition Quiz.html
8.9 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/09. Training a Model.html
8.9 kB
Part 05-Module 01-Lesson 02_NumPy/03. Why Use NumPy.html
8.9 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/03. Video Welcome!.html
8.9 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/05. ScreenCast Difference In Means.html
8.9 kB
Part 06-Module 01-Lesson 07_Bayes Rule/33. Bayes' Rule and Robotics.html
8.8 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/27. Next Motion Models and State.html
8.8 kB
Part 02-Module 02-Lesson 03_Deep Learning with PyTorch/23. Notebook Workspace w GPU.html
8.8 kB
Part 03-Module 01-Lesson 04_Functions/11. Lambda Expressions.html
8.8 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/11. Taking constants out of Variance and Covariance (optional).html
8.8 kB
Part 02-Module 02-Lesson 05_Embeddings & Word2Vec/06. Data & Subsampling.html
8.8 kB
Part 04-Module 01-Lesson 03_Linear Combination/08. Linear Combination - Quiz 3.html
8.8 kB
Part 02-Module 01-Lesson 05_Financial Statements/22. Searching by Class and Regexes.html
8.8 kB
Part 02-Module 02-Lesson 03_Deep Learning with PyTorch/03. Notebook Workspace.html
8.8 kB
Part 02-Module 01-Lesson 05_Financial Statements/21. Searching The Parse Tree.html
8.8 kB
Part 03-Module 01-Lesson 03_Control Flow/34. Conclusion.html
8.8 kB
Part 02-Module 02-Lesson 04_Recurrent Neural Networks/01. Intro to RNNs.html
8.8 kB
Part 06-Module 01-Lesson 13_Case Study AB tests/02. AB Testing.html
8.8 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/11. Creating a slideshow.html
8.8 kB
Part 06-Module 01-Lesson 07_Bayes Rule/32. Reducing Uncertainty.html
8.8 kB
Part 01-Module 02-Lesson 07_Project 2 Breakout Strategy/Project Rubric - Breakout Strategy.html
8.8 kB
Part 02-Module 01-Lesson 05_Financial Statements/09. Searching For Simple Patterns.html
8.8 kB
Part 06-Module 01-Lesson 07_Bayes Rule/35. Using Sensor Data.html
8.8 kB
Part 02-Module 01-Lesson 05_Financial Statements/20. Navigating The Parse Tree.html
8.8 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/26. Summary.html
8.8 kB
Part 02-Module 01-Lesson 05_Financial Statements/14. Substitutions and Flags.html
8.8 kB
Part 02-Module 01-Lesson 05_Financial Statements/08. Finding MetaCharacters.html
8.8 kB
Part 02-Module 01-Lesson 05_Financial Statements/23. Children Tags.html
8.8 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/10. Risk Factors v. Alpha Factors part 3.html
8.8 kB
Part 06-Module 01-Lesson 07_Bayes Rule/08. Bayes Rule Diagram.html
8.8 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/12. Video Other Language Associated with Confidence Intervals.html
8.8 kB
Part 06-Module 01-Lesson 07_Bayes Rule/20. Bayes Rule Summary.html
8.8 kB
Part 03-Module 01-Lesson 04_Functions/04. Solution Defining Functions.html
8.8 kB
Part 02-Module 01-Lesson 05_Financial Statements/19. Parsing an HTML File.html
8.8 kB
Part 01-Module 02-Lesson 03_Regression/12. Breusch Pagan in Depth (Optional).html
8.8 kB
Part 02-Module 04-Lesson 01_Take 30 Min to Improve your LinkedIn/11. Boost Your Visibility.html
8.8 kB
Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/11. Variations of Pairs Trading and Mean Reversion Trading.html
8.8 kB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/06. Variance of a 3-Asset Portfolio.html
8.8 kB
Part 03-Module 01-Lesson 05_Scripting/21. The Standard Library.html
8.8 kB
Part 02-Module 01-Lesson 05_Financial Statements/11. Simple MetaCharacters.html
8.8 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/12. Video Introduction to Summary Statistics.html
8.8 kB
Part 02-Module 02-Lesson 03_Deep Learning with PyTorch/11. Network Architectures in PyTorch.html
8.8 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/09. Access the Career Portal.html
8.8 kB
Part 02-Module 03-Lesson 04_Random Forests/03. Ensemble Methods.html
8.8 kB
Part 06-Module 01-Lesson 07_Bayes Rule/29. Generalizing.html
8.8 kB
Part 01-Module 02-Lesson 03_Regression/05. Quiz Standard Normal Distribution.html
8.8 kB
Part 02-Module 01-Lesson 05_Financial Statements/10. Word Boundaries.html
8.8 kB
Part 06-Module 01-Lesson 07_Bayes Rule/01. Bayes Rule.html
8.8 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/27. Interlude.html
8.8 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/04. Video What is Data Why is it important.html
8.8 kB
Part 02-Module 01-Lesson 05_Financial Statements/07. Finding Words .html
8.8 kB
Part 02-Module 01-Lesson 05_Financial Statements/12. Character Sets.html
8.8 kB
Part 04-Module 01-Lesson 02_Vectors/10. Vectors- Quiz 2.html
8.8 kB
Part 02-Module 02-Lesson 03_Deep Learning with PyTorch/05. Single layer neural networks solution.html
8.7 kB
Part 02-Module 01-Lesson 05_Financial Statements/13. Groups.html
8.7 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/16. Quiz Rate of Returns Over Multiple Periods.html
8.7 kB
Part 02-Module 02-Lesson 03_Deep Learning with PyTorch/10. Implementing Softmax Solution.html
8.7 kB
Part 02-Module 01-Lesson 05_Financial Statements/06. Raw Strings.html
8.7 kB
Part 02-Module 02-Lesson 03_Deep Learning with PyTorch/04. Single layer neural networks.html
8.7 kB
Part 06-Module 01-Lesson 04_Probability/20. Text Recap + Next Steps.html
8.7 kB
Part 02-Module 02-Lesson 03_Deep Learning with PyTorch/22. Pre-Notebook with GPU.html
8.7 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/09. Video Data Types Summary.html
8.7 kB
Part 02-Module 02-Lesson 03_Deep Learning with PyTorch/06. Networks Using Matrix Multiplication.html
8.7 kB
Part 03-Module 01-Lesson 04_Functions/16. [Optional] Solution Iterators and Generators.html
8.7 kB
Part 02-Module 03-Lesson 02_Decision Trees/22. Titanic Survival Model with Decision Trees.html
8.7 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/01. Introduce Instructors.html
8.7 kB
Part 06-Module 01-Lesson 07_Bayes Rule/37. Bayes Rule Conclusion.html
8.7 kB
Part 06-Module 01-Lesson 13_Case Study AB tests/08. Click Through Rate.html
8.7 kB
Part 07-Module 01-Lesson 01_Linear Regression/02. Quiz Housing Prices.html
8.7 kB
Part 02-Module 02-Lesson 03_Deep Learning with PyTorch/08. Neural Networks in PyTorch.html
8.7 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/14. Video Correct Interpretations of Confidence Intervals.html
8.7 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/08. Video Statistical vs. Practical Significance.html
8.7 kB
Part 02-Module 02-Lesson 03_Deep Learning with PyTorch/16. Inference and Validation.html
8.7 kB
Part 02-Module 03-Lesson 02_Decision Trees/23. [Solution] Titanic Survival Model.html
8.7 kB
Part 02-Module 03-Lesson 02_Decision Trees/16. Solution Information Gain.html
8.7 kB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/15. Quiz Portfolio Return with a 3-Asset Portfolio.html
8.7 kB
Part 01-Module 04-Lesson 01_Factors/11. Quiz dollar neutral and leverage ratio.html
8.7 kB
Part 02-Module 02-Lesson 03_Deep Learning with PyTorch/09. Neural Networks Solution.html
8.7 kB
Part 02-Module 02-Lesson 03_Deep Learning with PyTorch/14. Classifying Fashion-MNIST.html
8.7 kB
Part 02-Module 05-Lesson 02_Optimization with Transaction Costs/10. Optimization without constraints.html
8.6 kB
Part 04-Module 01-Lesson 03_Linear Combination/07. Linear Combination - Quiz 2.html
8.6 kB
Part 02-Module 03-Lesson 02_Decision Trees/25. Visualizing Your Tree Exercise.html
8.6 kB
Part 02-Module 03-Lesson 08_Project 7 Combining Signals for Enhanced Alpha/Project Rubric - Combining Signals for Enhanced Alpha.html
8.6 kB
Part 06-Module 01-Lesson 04_Probability/10. Two Flips 3.html
8.6 kB
Part 06-Module 01-Lesson 04_Probability/14. One Head 2.html
8.6 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/06. Ratios.html
8.6 kB
Part 06-Module 01-Lesson 13_Case Study AB tests/05. Experiment I.html
8.6 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/07. Index Categories.html
8.6 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/17. Text Recap + Next Steps.html
8.6 kB
Part 02-Module 01-Lesson 05_Financial Statements/24. Exercise Get Headers and Paragraphs.html
8.6 kB
Part 01-Module 03-Lesson 05_Project 3 Smart Beta and Portfolio Optimization/Project Rubric - Smart Beta and Portfolio Optimization.html
8.6 kB
Part 02-Module 01-Lesson 05_Financial Statements/15. Applying Regexes to 10-Ks.html
8.6 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/03. ScreenCast Sampling Distributions and Confidence Intervals.html
8.6 kB
Part 10-Module 01-Lesson 01_Intro to NLP/05. Unstructured Text.html
8.6 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/08. Price Weighting.html
8.5 kB
Part 02-Module 03-Lesson 03_Model Testing and Evaluation/14. Model Complexity Graph.html
8.5 kB
Part 02-Module 01-Lesson 05_Financial Statements/25. The Requests Library.html
8.5 kB
Part 03-Module 01-Lesson 04_Functions/09. Quiz Documentation.html
8.5 kB
Part 07-Module 01-Lesson 04_Decision Trees/05. Quiz Student Admissions.html
8.5 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/07. Feedback.html
8.5 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/11. ScreenCast Traditional Confidence Interval Methods.html
8.5 kB
Part 04-Module 01-Lesson 02_Vectors/05. Transpose.html
8.5 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/19. Answer Gaussian Motion.html
8.5 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/15. Price-Volume Factors.html
8.5 kB
Part 01-Module 01-Lesson 08_Momentum Trading/10. The Many Meanings of Alpha.html
8.5 kB
Part 02-Module 01-Lesson 01_Welcome To Term II/img/juan-delgado-1.jpg
8.5 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/09. Fama French Risk Model.html
8.5 kB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/04. Unstructured Text.html
8.5 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/26. Close End Mutual Funds.html
8.5 kB
Part 07-Module 01-Lesson 04_Decision Trees/09. Entropy Formula 2.html
8.4 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/12. How an alpha factor becomes a risk factor part 1.html
8.4 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/24. Open End Mutual Funds.html
8.4 kB
Part 02-Module 03-Lesson 03_Model Testing and Evaluation/06. Accuracy.html
8.4 kB
Part 04-Module 01-Lesson 02_Vectors/07. Vectors- Quiz 1.html
8.4 kB
Part 02-Module 03-Lesson 02_Decision Trees/01. Welcome.html
8.4 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/24. Sentiment Analysis on News and Social Media.html
8.4 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/15. Answer Parameter Update.html
8.4 kB
Part 07-Module 01-Lesson 04_Decision Trees/03. Recommending Apps 2.html
8.4 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/06. Covariance Matrix Using a Factor Model.html
8.4 kB
assets/css/fonts/KaTeX_Size3-Regular.ttf
8.4 kB
Part 02-Module 04-Lesson 02_Optimize Your GitHub Profile/08. Quick Fixes #2.html
8.4 kB
Part 07-Module 01-Lesson 03_Clustering/01. Introduction.html
8.4 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/07. Video Confidence Interval Applications.html
8.4 kB
Part 07-Module 01-Lesson 03_Clustering/07. Moving Centers 2.html
8.3 kB
Part 02-Module 04-Lesson 01_Take 30 Min to Improve your LinkedIn/Project Description - Improve Your LinkedIn Profile.html
8.3 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/03. Factor Returns as Latent Variables.html
8.3 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/02. Intro to this lesson.html
8.3 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/07. Factor Models in Quant Finance.html
8.3 kB
Part 02-Module 02-Lesson 05_Embeddings & Word2Vec/08. Context Word Targets.html
8.3 kB
Part 02-Module 03-Lesson 02_Decision Trees/12. Entropy Formula 3.html
8.3 kB
Part 02-Module 04-Lesson 02_Optimize Your GitHub Profile/16. Starring interesting repositories.html
8.3 kB
Part 05-Module 01-Lesson 02_NumPy/06. Create an ndarray.html
8.3 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/05. Factor Model Assumptions.html
8.3 kB
Part 03-Module 01-Lesson 05_Scripting/29. Conclusion.html
8.3 kB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/13. Will the Portfolios Be Different.html
8.3 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/02. What is a Factor Model.html
8.3 kB
Part 01-Module 01-Lesson 02_Knowledge and Career Support/02. Prepare for the Udacity Talent Program.html
8.3 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/17. Solution New Mean and Variance.html
8.3 kB
Part 02-Module 04-Lesson 01_Take 30 Min to Improve your LinkedIn/12. Up Next.html
8.3 kB
Part 03-Module 01-Lesson 04_Functions/07. Solution Variable Scope.html
8.3 kB
Part 02-Module 04-Lesson 01_Take 30 Min to Improve your LinkedIn/02. Use Your Story to Stand Out.html
8.3 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/23. Alternative Data.html
8.3 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/14. Momentum or Reversal.html
8.3 kB
Part 01-Module 01-Lesson 09_Project 1 Trading with Momentum/Project Rubric - Trading with Momentum.html
8.3 kB
Part 02-Module 04-Lesson 02_Optimize Your GitHub Profile/17. Next Steps.html
8.3 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/19. Event-Driven Factors.html
8.3 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/18. Fundamental Ratios.html
8.3 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/25. Answer 1D Kalman Filter.html
8.3 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/19. Hedge Funds.html
8.3 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/22. Answer Predict Function.html
8.3 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/21. Pre and Post Event.html
8.2 kB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/04. Portfolio Variance.html
8.2 kB
Part 03-Module 01-Lesson 04_Functions/10. Solution Documentation.html
8.2 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/01. Intro to Lesson.html
8.2 kB
Part 02-Module 03-Lesson 04_Random Forests/11. Random Forests for Alpha Combination.html
8.2 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/22. Analyst Ratings.html
8.2 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/20. Index Changes.html
8.2 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/16. Volume Factors.html
8.2 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/23. Kalman Filter Code.html
8.2 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/17. Fundamentals.html
8.2 kB
Part 07-Module 01-Lesson 03_Clustering/06. Optimizing Centers (Rubber Bands).html
8.2 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/13. Answer Predicting the Peak.html
8.2 kB
Part 01-Module 02-Lesson 03_Regression/07. Quiz Normality .html
8.2 kB
Part 07-Module 01-Lesson 03_Clustering/10. K-Means Cluster Visualization.html
8.2 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/11. Answer Shifting the Mean.html
8.2 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/20. Predict Function.html
8.2 kB
Part 04-Module 01-Lesson 03_Linear Combination/05. Linear Dependency .html
8.2 kB
Part 06-Module 01-Lesson 13_Case Study AB tests/16. Drawing Conclusions.html
8.2 kB
Part 01-Module 01-Lesson 06_Data Processing/07. Quiz Trading Experiment.html
8.2 kB
Part 01-Module 01-Lesson 06_Data Processing/02. When to Use Time Stamps.html
8.2 kB
Part 05-Module 01-Lesson 03_Pandas/03. Why Use pandas.html
8.2 kB
Part 02-Module 03-Lesson 05_Feature Engineering/05. Universal Quant Features.html
8.2 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/26. Kalman Prediction.html
8.2 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/23. Expense Ratios.html
8.2 kB
Part 05-Module 01-Lesson 02_NumPy/10. Manipulating ndarrays.html
8.2 kB
Part 06-Module 01-Lesson 12_Hypothesis Testing/index.html
8.2 kB
Part 07-Module 01-Lesson 02_Naive Bayes/11. Naive Bayes Algorithm 1.html
8.2 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/img/codecogseqn-43.gif
8.2 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/img/codecogseqn-43.gif
8.2 kB
Part 07-Module 01-Lesson 02_Naive Bayes/13. Building a Spam Classifier.html
8.1 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/02. What is Vision.html
8.1 kB
Part 02-Module 03-Lesson 02_Decision Trees/26. Outro.html
8.1 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/14. Covariance Matrix of Assets Exercise.html
8.1 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/09. Factor Model of Portfolio Return Exercise.html
8.1 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/06. Factor Model of Asset Return Exercise.html
8.1 kB
Part 05-Module 01-Lesson 02_NumPy/01. Instructors.html
8.1 kB
Part 01-Module 03-Lesson 04_Portfolio Optimization/05. Portfolio Optimization with 2 Stocks.html
8.1 kB
Part 02-Module 05-Lesson 02_Optimization with Transaction Costs/09. Linear Transaction cost model.html
8.1 kB
Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/05. Quiz Identify Pairs to Trade.html
8.1 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/12. Variance of 2 stocks part 1.html
8.1 kB
Part 02-Module 02-Lesson 03_Deep Learning with PyTorch/07. Multilayer Networks Solution.html
8.1 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/02. Introduction.html
8.1 kB
Part 02-Module 02-Lesson 03_Deep Learning with PyTorch/13. Training a Network Solution.html
8.1 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/04. Historical Variance Exercise.html
8.1 kB
Part 02-Module 02-Lesson 03_Deep Learning with PyTorch/25. Transfer Learning Solution.html
8.1 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/18. Mutual Funds.html
8.1 kB
Part 02-Module 02-Lesson 04_Recurrent Neural Networks/21. Making Predictions.html
8.1 kB
Part 02-Module 02-Lesson 03_Deep Learning with PyTorch/21. Loading Image Data Solution.html
8.1 kB
Part 03-Module 01-Lesson 04_Functions/06. Variable Scope.html
8.1 kB
Part 02-Module 03-Lesson 07_Feature Importance/10. Tree Shap Exercise.html
8.1 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/10. Minimum.html
8.1 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/16. Portfolio Variance Exercise.html
8.1 kB
Part 03-Module 01-Lesson 04_Functions/13. Solution Lambda Expressions.html
8.1 kB
Part 02-Module 02-Lesson 03_Deep Learning with PyTorch/19. Saving and Loading Models.html
8.1 kB
Part 02-Module 03-Lesson 02_Decision Trees/08. Solution Student Admissions.html
8.1 kB
Part 02-Module 03-Lesson 07_Feature Importance/04. sklearn Exercise.html
8.1 kB
Part 02-Module 02-Lesson 03_Deep Learning with PyTorch/15. Fashion-MNIST Solution.html
8.1 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/27. Summary.html
8.1 kB
Part 02-Module 04-Lesson 02_Optimize Your GitHub Profile/12. Reflect on your commit messages.html
8.1 kB
Part 02-Module 01-Lesson 07_Project 5 NLP on Financial Statements/Project Rubric - NLP on Financial Statements.html
8.1 kB
Part 02-Module 02-Lesson 03_Deep Learning with PyTorch/18. Dropout Solution.html
8.1 kB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/14. PCA Toy Problem.html
8.1 kB
Part 02-Module 02-Lesson 04_Recurrent Neural Networks/12. Time-Series Prediction.html
8.1 kB
Part 02-Module 02-Lesson 03_Deep Learning with PyTorch/17. Validation Solution.html
8.1 kB
Part 05-Module 01-Lesson 02_NumPy/12. Creating ndarrays with Broadcasting.html
8.1 kB
Part 02-Module 02-Lesson 03_Deep Learning with PyTorch/24. Transfer Learning II.html
8.1 kB
Part 02-Module 02-Lesson 03_Deep Learning with PyTorch/20. Loading Image Data.html
8.1 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/08. Formula.html
8.0 kB
Part 02-Module 03-Lesson 02_Decision Trees/13. Quiz Do You Know Your Entropy.html
8.0 kB
Part 02-Module 03-Lesson 07_Feature Importance/08. Shap Exercise.html
8.0 kB
Part 10-Module 01-Lesson 01_Intro to NLP/04. Grammar.html
8.0 kB
Part 02-Module 03-Lesson 07_Feature Importance/12. Rank Features Exercise.html
8.0 kB
Part 07-Module 01-Lesson 04_Decision Trees/18. Titanic Survival Model with Decision Trees.html
8.0 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/13. Variance of 2 stocks part 2.html
8.0 kB
Part 06-Module 01-Lesson 13_Case Study AB tests/11. Metric - Average Reading Duration.html
8.0 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/10. Converting notebooks.html
8.0 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/10. Adding or Removing from an Index.html
8.0 kB
Part 02-Module 01-Lesson 01_Welcome To Term II/img/mat-leonard.jpg
8.0 kB
Part 04-Module 01-Lesson 02_Vectors/08. Operations in the Field.html
8.0 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/07. Factor Model of Portfolio Return.html
8.0 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/05. Factor Model of Asset Return.html
8.0 kB
Part 07-Module 01-Lesson 04_Decision Trees/13. Solution Information Gain.html
8.0 kB
Part 07-Module 01-Lesson 04_Decision Trees/19. [Solution] Titanic Survival Model.html
8.0 kB
Part 06-Module 01-Lesson 13_Case Study AB tests/07. Metric - Click Through Rate.html
8.0 kB
Part 07-Module 01-Lesson 03_Clustering/16. Counterintuitive Clusters.html
8.0 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/13. Index after Add or Delete.html
8.0 kB
Part 02-Module 05-Lesson 01_Intro to Backtesting/08. Gradient Boosting.html
8.0 kB
Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/03. Pairs Trading.html
8.0 kB
Part 01-Module 02-Lesson 03_Regression/13. Quiz Regression.html
8.0 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/01. Intro Module 3.html
8.0 kB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/03. Grammar.html
8.0 kB
Part 02-Module 02-Lesson 04_Recurrent Neural Networks/11. Implementing RNNs.html
8.0 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/03. Role in AI.html
8.0 kB
Part 06-Module 01-Lesson 04_Probability/04. Loaded Coin 1.html
7.9 kB
Part 07-Module 01-Lesson 03_Clustering/15. Limitations of K-Means.html
7.9 kB
Part 01-Module 01-Lesson 02_Knowledge and Career Support/01. Knowledge.html
7.9 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/08. Career Support.html
7.9 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/03. Motivation for Risk Factor Models.html
7.9 kB
Part 02-Module 05-Lesson 02_Optimization with Transaction Costs/12. Avoid N by N matrix.html
7.9 kB
Part 07-Module 01-Lesson 02_Naive Bayes/06. Quiz False Positives.html
7.9 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/21. Hedging Strategies.html
7.9 kB
Part 06-Module 01-Lesson 13_Case Study AB tests/09. Experiment II.html
7.9 kB
Part 01-Module 02-Lesson 03_Regression/09. Heteroskedasticity.html
7.9 kB
Part 06-Module 01-Lesson 04_Probability/02. Flipping Coins.html
7.9 kB
Part 02-Module 03-Lesson 02_Decision Trees/17. Maximizing Information Gain.html
7.9 kB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/18. PCA as a Factor Model Coding Exercise.html
7.9 kB
Part 04-Module 01-Lesson 02_Vectors/13. Vectors Quiz Answers.html
7.9 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/05. Growth V. Value.html
7.9 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/06. SMB.html
7.9 kB
Part 02-Module 03-Lesson 05_Feature Engineering/02. Review Random Forests.html
7.9 kB
Part 02-Module 05-Lesson 03_Attribution/02. Review Multi-Factor Models.html
7.9 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/08. Preview of Portfolio Variance Formula.html
7.9 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/04. Market Cap.html
7.9 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/06. Quadratics 3.html
7.9 kB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/15. PCA Coding Exercise.html
7.9 kB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/09. TensorDataset & Batching Data.html
7.9 kB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/08. Advanced Optimization Exercise.html
7.9 kB
Part 02-Module 03-Lesson 07_Feature Importance/06. When Feature Importance is Inconsistent.html
7.9 kB
Part 06-Module 01-Lesson 04_Probability/17. Even Roll.html
7.9 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/14. Funds.html
7.9 kB
Part 02-Module 05-Lesson 02_Optimization with Transaction Costs/02. exercise.html
7.9 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/04. Quadratics.html
7.9 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/10. Variance of one stock.html
7.9 kB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/07. PCA Exercise.html
7.9 kB
Part 07-Module 01-Lesson 03_Clustering/17. Counterintuitive Clusters 2.html
7.8 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/08. Maximum.html
7.8 kB
Part 02-Module 01-Lesson 05_Financial Statements/16. Introduction to BeautifulSoup.html
7.8 kB
Part 01-Module 01-Lesson 02_Knowledge and Career Support/03. Access the Career Portal.html
7.8 kB
Part 02-Module 03-Lesson 02_Decision Trees/05. Recommending Apps 3.html
7.8 kB
Part 03-Module 01-Lesson 04_Functions/18. Conclusion.html
7.8 kB
Part 02-Module 02-Lesson 04_Recurrent Neural Networks/08. The Use Gate.html
7.8 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/02. Shape.html
7.8 kB
Part 02-Module 03-Lesson 06_Overlapping Labels/02. Review Feature Engineering.html
7.8 kB
Part 02-Module 03-Lesson 03_Model Testing and Evaluation/19. Learning Curves.html
7.8 kB
Part 06-Module 01-Lesson 06_Conditional Probability/16. Text Summary.html
7.8 kB
Part 02-Module 03-Lesson 03_Model Testing and Evaluation/10. Precision and Recall.html
7.8 kB
Part 01-Module 02-Lesson 03_Regression/16. Exercise regression with two stocks.html
7.8 kB
Part 02-Module 01-Lesson 05_Financial Statements/05. Introduction to Regexes.html
7.8 kB
Part 02-Module 03-Lesson 02_Decision Trees/02. Intro.html
7.8 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/05. Quadratics 2.html
7.8 kB
Part 02-Module 01-Lesson 05_Financial Statements/02. Financial Statements.html
7.8 kB
Part 02-Module 03-Lesson 04_Random Forests/04. Perturbations on Columns.html
7.8 kB
Part 02-Module 04-Lesson 02_Optimize Your GitHub Profile/13. Participating in open source projects.html
7.8 kB
Part 02-Module 02-Lesson 04_Recurrent Neural Networks/05. The Learn Gate.html
7.8 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/16. Video Confidence Intervals & Hypothesis Tests.html
7.8 kB
Part 04-Module 01-Lesson 01_Introduction/04. Structure of this lesson.html
7.8 kB
Part 01-Module 02-Lesson 04_Time Series Modeling/06. Kalman Filter.html
7.8 kB
Part 01-Module 04-Lesson 01_Factors/04. Quiz factor values and weights.html
7.8 kB
Part 02-Module 03-Lesson 02_Decision Trees/09. Entropy.html
7.8 kB
Part 02-Module 01-Lesson 05_Financial Statements/03. 10-K Walkthrough.html
7.8 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/01. Time Series Model Factor Variance.html
7.8 kB
Part 02-Module 03-Lesson 05_Feature Engineering/09. Date Parts.html
7.8 kB
Part 01-Module 02-Lesson 03_Regression/08. Exercise Normality.html
7.8 kB
Part 02-Module 01-Lesson 05_Financial Statements/18. HTML Structure.html
7.8 kB
Part 06-Module 01-Lesson 02_Descriptive Statistics - Part II/index.html
7.8 kB
Part 02-Module 01-Lesson 05_Financial Statements/01. Introduction.html
7.8 kB
Part 01-Module 02-Lesson 03_Regression/04. Parameters of a Distribution.html
7.8 kB
Part 06-Module 01-Lesson 06_Conditional Probability/13. Two Coins 3.html
7.8 kB
Part 03-Module 01-Lesson 02_Data Types and Operators/index.html
7.8 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/28. Summary.html
7.7 kB
Part 02-Module 02-Lesson 02_Training Neural Networks/06. Regularization.html
7.7 kB
Part 07-Module 01-Lesson 03_Clustering/04. How Many Clusters.html
7.7 kB
Part 06-Module 01-Lesson 04_Probability/06. Loaded Coin 3.html
7.7 kB
Part 06-Module 01-Lesson 04_Probability/15. One Of Three 1.html
7.7 kB
Part 02-Module 04-Lesson 02_Optimize Your GitHub Profile/03. GitHub profile important items.html
7.7 kB
Part 02-Module 03-Lesson 04_Random Forests/06. Forests of Randomized Trees.html
7.7 kB
Part 02-Module 04-Lesson 02_Optimize Your GitHub Profile/09. Writing READMEs with Walter.html
7.7 kB
Part 06-Module 01-Lesson 04_Probability/16. One Of Three 2.html
7.7 kB
Part 06-Module 01-Lesson 13_Case Study AB tests/04. Business Example.html
7.7 kB
Part 06-Module 01-Lesson 04_Probability/05. Loaded Coin 2.html
7.7 kB
Part 06-Module 01-Lesson 06_Conditional Probability/11. Two Coins 1.html
7.7 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/01. Video Introduction.html
7.7 kB
Part 02-Module 03-Lesson 04_Random Forests/02. Review Decision Trees.html
7.7 kB
Part 02-Module 05-Lesson 01_Intro to Backtesting/06. Backtest Best Practices.html
7.7 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/02. Time Series Model Factor Exposure.html
7.7 kB
Part 02-Module 02-Lesson 04_Recurrent Neural Networks/06. The Forget Gate.html
7.7 kB
Part 02-Module 02-Lesson 04_Recurrent Neural Networks/19. Defining the Model.html
7.7 kB
Part 06-Module 01-Lesson 04_Probability/08. Two Flips 1.html
7.7 kB
Part 06-Module 01-Lesson 04_Probability/09. Two Flips 2.html
7.7 kB
Part 06-Module 01-Lesson 04_Probability/11. Two Flips 4.html
7.7 kB
Part 06-Module 01-Lesson 04_Probability/12. Two Flips 5.html
7.7 kB
Part 06-Module 01-Lesson 04_Probability/13. One Head 1.html
7.7 kB
Part 07-Module 01-Lesson 01_Linear Regression/18. Closed Form Solution.html
7.7 kB
Part 06-Module 01-Lesson 04_Probability/03. Fair Coin.html
7.7 kB
Part 06-Module 01-Lesson 04_Probability/18. Doubles.html
7.7 kB
Part 01-Module 03-Lesson 02_ETFs/08. Lower Operational Costs & Taxes.html
7.7 kB
Part 06-Module 01-Lesson 06_Conditional Probability/14. Two Coins 4.html
7.7 kB
Part 02-Module 02-Lesson 05_Embeddings & Word2Vec/14. Notebook Negative Sampling.html
7.7 kB
Part 02-Module 05-Lesson 03_Attribution/07. Attribution Reporting.html
7.7 kB
Part 02-Module 02-Lesson 05_Embeddings & Word2Vec/05. Notebook Word2Vec, SkipGram.html
7.7 kB
Part 02-Module 03-Lesson 03_Model Testing and Evaluation/22. Outro.html
7.7 kB
Part 06-Module 01-Lesson 06_Conditional Probability/09. Medical Example 8.html
7.7 kB
Part 06-Module 01-Lesson 06_Conditional Probability/08. Medical Example 7.html
7.7 kB
Part 02-Module 03-Lesson 03_Model Testing and Evaluation/img/train-valid-test-time-2.png
7.7 kB
Part 03-Module 01-Lesson 04_Functions/01. Introduction.html
7.7 kB
Part 01-Module 01-Lesson 08_Momentum Trading/03. Quiz Momentum-based Signals.html
7.7 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/13. Categorical Variable Estimation.html
7.7 kB
Part 02-Module 04-Lesson 02_Optimize Your GitHub Profile/02. Introduction.html
7.7 kB
Part 04-Module 01-Lesson 01_Introduction/02. Instructors.html
7.7 kB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/10. The Efficient Frontier.html
7.7 kB
Part 03-Module 01-Lesson 04_Functions/17. [Optional] Generator Expressions.html
7.7 kB
Part 02-Module 03-Lesson 03_Model Testing and Evaluation/08. When accuracy won't work.html
7.6 kB
Part 04-Module 01-Lesson 02_Vectors/09. Vector Addition.html
7.6 kB
Part 06-Module 01-Lesson 06_Conditional Probability/12. Two Coins 2.html
7.6 kB
Part 07-Module 01-Lesson 04_Decision Trees/10. Entropy Formula 3.html
7.6 kB
Part 02-Module 01-Lesson 05_Financial Statements/26. Summary.html
7.6 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/10. Cross Sectional Model.html
7.6 kB
Part 04-Module 01-Lesson 01_Introduction/06. Try our workspace out!.html
7.6 kB
Part 02-Module 02-Lesson 04_Recurrent Neural Networks/17. Implementing a Char-RNN.html
7.6 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/12. Categorical Factors.html
7.6 kB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/18. Feedback.html
7.6 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/05. Emotional Intelligence.html
7.6 kB
Part 05-Module 01-Lesson 02_NumPy/14. Mini-Project Mean Normalization and Data Separation.html
7.6 kB
Part 02-Module 05-Lesson 02_Optimization with Transaction Costs/14. objective function, gradient and optimizer.html
7.6 kB
Part 02-Module 02-Lesson 04_Recurrent Neural Networks/07. The Remember Gate.html
7.6 kB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/17. PCA as a Factor Model Part 2.html
7.6 kB
Part 01-Module 01-Lesson 08_Momentum Trading/04. Long and Short Positions.html
7.6 kB
Part 05-Module 01-Lesson 03_Pandas/13. Getting Set Up for the Mini-Project.html
7.6 kB
Part 07-Module 01-Lesson 02_Naive Bayes/14. Project.html
7.6 kB
Part 01-Module 01-Lesson 06_Data Processing/12. Index vs ETF.html
7.6 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/11. Binomial 2.html
7.6 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/10. Binomial 1.html
7.6 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/17. Types of Risk Models.html
7.6 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/14. Cross Section Specific Variance.html
7.6 kB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/09. Quiz np.cov.html
7.6 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/08. Fama French SMB and HML.html
7.6 kB
Part 02-Module 02-Lesson 04_Recurrent Neural Networks/10. Other architectures.html
7.6 kB
Part 06-Module 01-Lesson 10_Sampling distributions and the Central Limit Theorem/index.html
7.6 kB
Part 07-Module 01-Lesson 01_Linear Regression/03. Solution Housing Prices.html
7.5 kB
Part 01-Module 01-Lesson 08_Momentum Trading/08. Quiz Calculate Top and Bottom Performing.html
7.5 kB
Part 03-Module 01-Lesson 04_Functions/19. Further Learning.html
7.5 kB
Part 07-Module 01-Lesson 01_Linear Regression/04. Fitting a Line Through Data.html
7.5 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/01. Intro.html
7.5 kB
Part 02-Module 04-Lesson 02_Optimize Your GitHub Profile/15. Participating in open source projects 2.html
7.5 kB
Part 07-Module 01-Lesson 01_Linear Regression/21. Polynomial Regression.html
7.5 kB
Part 04-Module 01-Lesson 02_Vectors/11. Scalar by Vector Multiplication.html
7.5 kB
Part 02-Module 05-Lesson 02_Optimization with Transaction Costs/11. Risk Factor Matrix.html
7.5 kB
Part 07-Module 01-Lesson 01_Linear Regression/10. Mean Squared Error.html
7.5 kB
Part 07-Module 01-Lesson 01_Linear Regression/09. Mean Absolute Error.html
7.5 kB
Part 07-Module 01-Lesson 01_Linear Regression/16. Higher Dimensions.html
7.5 kB
Part 01-Module 01-Lesson 05_Market Mechanics/03. Trading Stocks.html
7.5 kB
Part 05-Module 01-Lesson 02_NumPy/13. Getting Set Up for the Mini-Project.html
7.5 kB
Part 07-Module 01-Lesson 01_Linear Regression/08. Gradient Descent.html
7.5 kB
Part 07-Module 01-Lesson 03_Clustering/11. K-Means Clustering Visualization 2.html
7.5 kB
Part 06-Module 01-Lesson 13_Case Study AB tests/14. Analyzing Multiple Metrics.html
7.5 kB
Part 07-Module 01-Lesson 01_Linear Regression/01. Intro.html
7.5 kB
Part 07-Module 01-Lesson 01_Linear Regression/06. Absolute Trick.html
7.5 kB
Part 07-Module 01-Lesson 01_Linear Regression/05. Moving a Line.html
7.5 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/10. Gender Bias Revisited.html
7.5 kB
Part 07-Module 01-Lesson 01_Linear Regression/07. Square Trick.html
7.5 kB
Part 07-Module 01-Lesson 01_Linear Regression/22. Regularization.html
7.5 kB
Part 02-Module 04-Lesson 02_Optimize Your GitHub Profile/05. Interview with Art - Part 1.html
7.5 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/03. Time Series Model specific variance.html
7.5 kB
Part 06-Module 01-Lesson 06_Conditional Probability/05. Medical Example 4.html
7.5 kB
Part 06-Module 01-Lesson 06_Conditional Probability/06. Medical Example 5.html
7.5 kB
Part 06-Module 01-Lesson 06_Conditional Probability/07. Medical Example 6.html
7.5 kB
Part 01-Module 01-Lesson 06_Data Processing/03. Corporate Actions Stock Splits.html
7.5 kB
Part 06-Module 01-Lesson 06_Conditional Probability/03. Medical Example 2.html
7.5 kB
Part 01-Module 03-Lesson 02_ETFs/06. Authorized Participant and the Create Process.html
7.5 kB
Part 02-Module 04-Lesson 02_Optimize Your GitHub Profile/14. Interview with Art - Part 3.html
7.5 kB
Part 06-Module 01-Lesson 06_Conditional Probability/04. Medical Example 3.html
7.5 kB
Part 01-Module 01-Lesson 05_Market Mechanics/04. Liquidity.html
7.5 kB
Part 05-Module 01-Lesson 03_Pandas/14. Mini-Project Statistics From Stock Data.html
7.5 kB
Part 07-Module 01-Lesson 02_Naive Bayes/15. Spam Classifier - Workspace.html
7.5 kB
Part 07-Module 01-Lesson 04_Decision Trees/20. Outro.html
7.5 kB
Part 02-Module 04-Lesson 02_Optimize Your GitHub Profile/10. Interview with Art - Part 2.html
7.5 kB
Part 01-Module 01-Lesson 08_Momentum Trading/06. Trading Strategy.html
7.5 kB
Part 01-Module 04-Lesson 01_Factors/12. Zipline Pipeline.html
7.5 kB
Part 02-Module 03-Lesson 03_Model Testing and Evaluation/16. K-Fold Cross Validation.html
7.4 kB
Part 01-Module 01-Lesson 08_Momentum Trading/05. Quiz Dtype.html
7.4 kB
Part 01-Module 01-Lesson 06_Data Processing/06. Trading Days.html
7.4 kB
Part 01-Module 02-Lesson 05_Volatility/04. Scale of Volatility.html
7.4 kB
Part 06-Module 01-Lesson 06_Conditional Probability/02. Medical Example 1.html
7.4 kB
Part 01-Module 02-Lesson 03_Regression/01. Intro.html
7.4 kB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/03. Refresh Linear Algebra.html
7.4 kB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/13. Explained Variance.html
7.4 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/06. 5 Flips 3 Heads.html
7.4 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/07. 10 Flips 5 Heads.html
7.4 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/05. 5 Flips 2 Heads.html
7.4 kB
Part 02-Module 03-Lesson 04_Random Forests/10. Choosing Hyperparameter Values.html
7.4 kB
Part 02-Module 04-Lesson 02_Optimize Your GitHub Profile/04. Good GitHub repository.html
7.4 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/04. 5 Flips 1 Head.html
7.4 kB
Part 02-Module 03-Lesson 03_Model Testing and Evaluation/15. Cross Validation.html
7.4 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/03. Heads Tails 2.html
7.4 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/05. Size.html
7.4 kB
Part 02-Module 03-Lesson 05_Feature Engineering/08. Sector.html
7.4 kB
Part 05-Module 01-Lesson 03_Pandas/01. Instructors.html
7.4 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/09. Arrangements.html
7.4 kB
Part 07-Module 01-Lesson 04_Decision Trees/06. Solution Student Admissions.html
7.4 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/06. Gender Bias.html
7.4 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/15. Binomial 6.html
7.4 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/02. Heads Tails.html
7.4 kB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/03. Notebook Sentiment RNN.html
7.4 kB
Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/10. Exercise finding pairs.html
7.4 kB
Part 02-Module 03-Lesson 03_Model Testing and Evaluation/05. Confusion Matrix 2.html
7.4 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/03. Better Formula.html
7.4 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/14. Binomial 5.html
7.4 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/12. Binomial 3.html
7.4 kB
Part 02-Module 03-Lesson 03_Model Testing and Evaluation/13. Types of Errors.html
7.4 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/13. Binomial 4.html
7.4 kB
Part 01-Module 01-Lesson 06_Data Processing/04. Technical Indicators.html
7.4 kB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/11. Capital Market Line.html
7.4 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/01. Binomial.html
7.4 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/07. Quadratics 4.html
7.4 kB
Part 02-Module 05-Lesson 02_Optimization with Transaction Costs/16. ML for Trading interview.html
7.4 kB
Part 02-Module 05-Lesson 02_Optimization with Transaction Costs/08. Transaction cost formula.html
7.4 kB
Part 01-Module 02-Lesson 02_Outliers and Filtering/03. Outliers Due to Real Events.html
7.4 kB
Part 01-Module 03-Lesson 04_Portfolio Optimization/09. Exercise cvxpy advanced optimization.html
7.4 kB
Part 01-Module 02-Lesson 05_Volatility/07. Quiz Rolling Windows.html
7.4 kB
Part 02-Module 04-Lesson 02_Optimize Your GitHub Profile/07. Quick Fixes #1.html
7.4 kB
Part 02-Module 03-Lesson 03_Model Testing and Evaluation/07. Accuracy 2.html
7.4 kB
Part 02-Module 03-Lesson 03_Model Testing and Evaluation/02. Outline.html
7.4 kB
Part 02-Module 05-Lesson 01_Intro to Backtesting/07. Structural Changes.html
7.4 kB
Part 06-Module 01-Lesson 13_Case Study AB tests/01. Introduction.html
7.3 kB
Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/09. Trade Pairs of Stocks.html
7.3 kB
Part 07-Module 01-Lesson 01_Linear Regression/23. Outro.html
7.3 kB
Part 02-Module 03-Lesson 03_Model Testing and Evaluation/01. Intro.html
7.3 kB
Part 01-Module 03-Lesson 04_Portfolio Optimization/08. Exercise cvxpy.html
7.3 kB
Part 01-Module 01-Lesson 04_Stock Prices/03. Terminology.html
7.3 kB
Part 01-Module 01-Lesson 08_Momentum Trading/09. Statistical Analysis.html
7.3 kB
Part 02-Module 03-Lesson 05_Feature Engineering/04. Feature Eng Exercise.html
7.3 kB
Part 01-Module 04-Lesson 01_Factors/06. De-mean part 1.html
7.3 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/04. Program Overview.html
7.3 kB
Part 02-Module 05-Lesson 04_Project 8 Backtesting/01. Project Description.html
7.3 kB
Part 01-Module 03-Lesson 02_ETFs/07. Redeeming Shares.html
7.3 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/12. Text Recap + Next Steps.html
7.3 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/01. Welcome to Computer Vision.html
7.3 kB
Part 02-Module 04-Lesson 01_Take 30 Min to Improve your LinkedIn/04. Create Your Elevator Pitch.html
7.3 kB
Part 01-Module 04-Lesson 07_Alpha Factor Research Methods/index.html
7.3 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/09. Aggregation 3.html
7.3 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/01. Maximum Probability.html
7.2 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/08. Aggregation 2.html
7.2 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/15. Fundamental Factors.html
7.2 kB
Part 02-Module 02-Lesson 04_Recurrent Neural Networks/09. Putting it All Together.html
7.2 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/05. Admissions 4.html
7.2 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/04. Admissions 3.html
7.2 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/02. Admissions 1.html
7.2 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/03. Admissions 2.html
7.2 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/07. Aggregation.html
7.2 kB
Part 02-Module 02-Lesson 04_Recurrent Neural Networks/18. Batching Data, Solution.html
7.2 kB
Part 01-Module 04-Lesson 01_Factors/10. Overview for standardizing a factor.html
7.2 kB
Part 02-Module 02-Lesson 05_Embeddings & Word2Vec/03. Word2Vec Notebook.html
7.2 kB
Part 02-Module 02-Lesson 04_Recurrent Neural Networks/15. Sequence Batching.html
7.2 kB
Part 02-Module 05-Lesson 02_Optimization with Transaction Costs/01. intro.html
7.2 kB
Part 02-Module 02-Lesson 04_Recurrent Neural Networks/14. Character-wise RNNs.html
7.2 kB
Part 02-Module 02-Lesson 04_Recurrent Neural Networks/04. Architecture of LSTM.html
7.2 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/11. Minimum Value.html
7.2 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/09. Maximum Value.html
7.2 kB
Part 07-Module 01-Lesson 04_Decision Trees/14. Maximizing Information Gain.html
7.2 kB
Part 01-Module 04-Lesson 01_Factors/09. Rescale Part 2.html
7.2 kB
Part 02-Module 02-Lesson 04_Recurrent Neural Networks/03. Basics of LSTM.html
7.2 kB
Part 03-Module 01-Lesson 03_Control Flow/index.html
7.2 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/18. Interlude.html
7.2 kB
Part 07-Module 01-Lesson 04_Decision Trees/15. Random Forests.html
7.2 kB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/07. Factor Exposure and Position Constraints.html
7.2 kB
Part 02-Module 01-Lesson 03_Text Processing/11. Exercise Process Tweets.html
7.2 kB
Part 02-Module 01-Lesson 03_Text Processing/12. Text Processing Coding Examples.html
7.2 kB
Part 02-Module 02-Lesson 04_Recurrent Neural Networks/02. RNN vs LSTM.html
7.2 kB
Part 07-Module 01-Lesson 04_Decision Trees/04. Recommending Apps 3.html
7.2 kB
Part 02-Module 05-Lesson 02_Optimization with Transaction Costs/03. barra data.html
7.2 kB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/15. What Is Optimization Doing to Our Alphas.html
7.2 kB
Part 02-Module 03-Lesson 04_Random Forests/07. Random Forests Exercise.html
7.2 kB
Part 02-Module 03-Lesson 05_Feature Engineering/06. Market Dispersion.html
7.2 kB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/16. PCA as a Factor Model.html
7.2 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/01. Welcome!.html
7.2 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/index.html
7.2 kB
Part 06-Module 01-Lesson 08_Python Probability Practice/04. Simulating Many Coin Flips.html
7.2 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/index.html
7.2 kB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/05. Translating Between Bases.html
7.1 kB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/01. Statistical Risk Model.html
7.1 kB
Part 02-Module 05-Lesson 02_Optimization with Transaction Costs/15. outro.html
7.1 kB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/11. Writing it Down Part 4.html
7.1 kB
Part 02-Module 01-Lesson 03_Text Processing/03. Capturing Text Data.html
7.1 kB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/08. Writing it Down Part 1.html
7.1 kB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/09. Writing it Down Part 2.html
7.1 kB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/10. Writing it Down Part 3.html
7.1 kB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/12. The Principal Components.html
7.1 kB
Part 07-Module 01-Lesson 04_Decision Trees/01. Intro.html
7.1 kB
Part 01-Module 04-Lesson 01_Factors/13. Zipline Coding Exercises.html
7.1 kB
Part 07-Module 01-Lesson 02_Naive Bayes/04. Guess the Person Now.html
7.1 kB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/02. Setting Up the Problem Alphas.html
7.1 kB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/04. Bases as Languages.html
7.1 kB
Part 02-Module 05-Lesson 02_Optimization with Transaction Costs/05. holdings in dollars.html
7.1 kB
Part 07-Module 01-Lesson 04_Decision Trees/07. Entropy.html
7.1 kB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/02. Vectors Two Ways.html
7.1 kB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/03. Setting Up the Problem Risk.html
7.1 kB
Part 02-Module 01-Lesson 03_Text Processing/04. Normalization.html
7.1 kB
Part 06-Module 01-Lesson 08_Python Probability Practice/02. Simulating Coin Flips.html
7.1 kB
Part 02-Module 02-Lesson 05_Embeddings & Word2Vec/16. Complete Model & Custom Loss.html
7.1 kB
Part 02-Module 05-Lesson 03_Attribution/08. Understanding Portfolio Characteristics.html
7.1 kB
Part 06-Module 01-Lesson 13_Case Study AB tests/18. Conclusion.html
7.1 kB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/06. Leverage Constraint.html
7.1 kB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/06. The Core Idea.html
7.1 kB
Part 02-Module 05-Lesson 02_Optimization with Transaction Costs/13. risk aversion parameter.html
7.1 kB
Part 01-Module 02-Lesson 03_Regression/14. Multivariate Linear Regression.html
7.1 kB
Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/09. Linear Transformation and Matrices . Part 1.html
7.1 kB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/05. Standard Constraints.html
7.1 kB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/14. Path Dependency.html
7.1 kB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/12. Transaction Costs.html
7.1 kB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/11. Infeasible Problems.html
7.1 kB
Part 01-Module 03-Lesson 02_ETFs/09. Arbitrage.html
7.1 kB
Part 01-Module 02-Lesson 03_Regression/15. Regression in Trading.html
7.1 kB
Part 02-Module 02-Lesson 02_Training Neural Networks/01. Instructor.html
7.1 kB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/10. Estimation Error.html
7.1 kB
Part 02-Module 02-Lesson 02_Training Neural Networks/12. Other Activation Functions.html
7.0 kB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/04. Regularization.html
7.0 kB
Part 01-Module 02-Lesson 03_Regression/11. Linear Regression.html
7.0 kB
Part 01-Module 04-Lesson 01_Factors/08. Rescale part 1.html
7.0 kB
Part 06-Module 01-Lesson 01_Descriptive Statistics - Part I/index.html
7.0 kB
Part 07-Module 01-Lesson 02_Naive Bayes/10. Bayesian Learning 3.html
7.0 kB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/17. Interlude.html
7.0 kB
Part 02-Module 05-Lesson 02_Optimization with Transaction Costs/04. time offsets.html
7.0 kB
Part 01-Module 02-Lesson 03_Regression/10. Transforming Data.html
7.0 kB
Part 01-Module 02-Lesson 03_Regression/02. Distributions.html
7.0 kB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/01. Intro.html
7.0 kB
Part 07-Module 01-Lesson 03_Clustering/12. K-Means Clustering Visualization 3.html
7.0 kB
Part 02-Module 05-Lesson 02_Optimization with Transaction Costs/06. scaling alpha factor.html
7.0 kB
Part 01-Module 01-Lesson 05_Market Mechanics/07. Quiz Resample Data.html
7.0 kB
Part 02-Module 02-Lesson 05_Embeddings & Word2Vec/02. Embedding Weight MatrixLookup Table.html
7.0 kB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/16. Outro.html
7.0 kB
Part 07-Module 01-Lesson 03_Clustering/14. Some challenges of k-means.html
7.0 kB
assets/css/fonts/KaTeX_Size1-Regular.woff
7.0 kB
Part 01-Module 01-Lesson 06_Data Processing/01. Market Data.html
7.0 kB
Part 01-Module 02-Lesson 03_Regression/17. Summary.html
7.0 kB
Part 02-Module 03-Lesson 04_Random Forests/05. Perturbations on Rows.html
7.0 kB
Part 06-Module 01-Lesson 04_Probability/01. Introduction to Probability.html
7.0 kB
Part 02-Module 01-Lesson 03_Text Processing/08. Part-of-Speech Tagging.html
7.0 kB
Part 07-Module 01-Lesson 03_Clustering/02. Unsupervised Learning.html
7.0 kB
Part 01-Module 03-Lesson 04_Portfolio Optimization/12. Limitations of the Classical Approach.html
6.9 kB
Part 06-Module 01-Lesson 04_Probability/19. Probability Conclusion.html
6.9 kB
Part 02-Module 02-Lesson 05_Embeddings & Word2Vec/15. SkipGramNeg, Model Definition.html
6.9 kB
Part 07-Module 01-Lesson 03_Clustering/09. Handoff to Katie.html
6.9 kB
Part 02-Module 03-Lesson 07_Feature Importance/14. Outro.html
6.9 kB
Part 02-Module 02-Lesson 05_Embeddings & Word2Vec/01. Word Embeddings.html
6.9 kB
Part 06-Module 01-Lesson 04_Probability/07. Complementary Outcomes.html
6.9 kB
Part 01-Module 02-Lesson 01_Quant Workflow/05. Anatomy of a Strategy.html
6.9 kB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/19. Outro.html
6.9 kB
Part 07-Module 01-Lesson 03_Clustering/03. Clustering Movies.html
6.9 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/06. Code cells.html
6.9 kB
Part 02-Module 05-Lesson 01_Intro to Backtesting/09. Overfitting Exercise.html
6.9 kB
Part 01-Module 02-Lesson 03_Regression/18. Interlude Your Brain.html
6.9 kB
Part 06-Module 01-Lesson 07_Bayes Rule/index.html
6.9 kB
Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/10. Linear Transformation and Matrices. Part 2.html
6.9 kB
Part 02-Module 02-Lesson 05_Embeddings & Word2Vec/09. Batching Data, Solution.html
6.9 kB
Part 02-Module 01-Lesson 03_Text Processing/02. Coding Examples.html
6.9 kB
Part 02-Module 02-Lesson 05_Embeddings & Word2Vec/11. Model & Validations.html
6.9 kB
Part 02-Module 02-Lesson 05_Embeddings & Word2Vec/07. Subsampling Solution.html
6.9 kB
Part 02-Module 01-Lesson 03_Text Processing/06. Cleaning.html
6.9 kB
Part 02-Module 02-Lesson 05_Embeddings & Word2Vec/12. Negative Sampling.html
6.9 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/11. A different approach.html
6.9 kB
Part 02-Module 03-Lesson 05_Feature Engineering/07. Market Volatility.html
6.9 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/01. Instructor.html
6.9 kB
Part 07-Module 01-Lesson 03_Clustering/13. Sklearn.html
6.9 kB
Part 02-Module 02-Lesson 05_Embeddings & Word2Vec/10. Word2Vec Model.html
6.9 kB
Part 01-Module 03-Lesson 04_Portfolio Optimization/11. Rebalancing Strategies.html
6.9 kB
Part 07-Module 01-Lesson 02_Naive Bayes/16. Outro.html
6.9 kB
Part 01-Module 03-Lesson 02_ETFs/05. ETF Sponsors.html
6.9 kB
Part 02-Module 03-Lesson 05_Feature Engineering/10. Targets (Labels).html
6.8 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/04. Time Series Risk Model.html
6.8 kB
Part 02-Module 03-Lesson 01_Overview/05. Getting Started.html
6.8 kB
Part 02-Module 04-Lesson 01_Take 30 Min to Improve your LinkedIn/03. Why Use an Elevator Pitch.html
6.8 kB
Part 02-Module 01-Lesson 06_Basic NLP Analysis/08. Exercise Bag of Words and Document Vector.html
6.8 kB
Part 02-Module 05-Lesson 03_Attribution/06. Performance Attribution Exercise.html
6.8 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/07. Value (HML).html
6.8 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/02. What is a Quant.html
6.8 kB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/02. Diversification.html
6.8 kB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/03. Portfolio Mean.html
6.8 kB
Part 01-Module 04-Lesson 01_Factors/05. Standardizing a factor.html
6.8 kB
Part 01-Module 03-Lesson 02_ETFs/04. Hedging.html
6.8 kB
Part 02-Module 03-Lesson 05_Feature Engineering/11. Outro.html
6.8 kB
Part 01-Module 02-Lesson 04_Time Series Modeling/05. Exercise ARMA and ARIMA.html
6.8 kB
Part 03-Module 01-Lesson 05_Scripting/index.html
6.8 kB
Part 02-Module 01-Lesson 06_Basic NLP Analysis/03. Exercise Readability.html
6.8 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/08. Keyboard shortcuts.html
6.8 kB
Part 02-Module 02-Lesson 02_Training Neural Networks/13. Batch vs Stochastic Gradient Descent.html
6.8 kB
Part 01-Module 01-Lesson 08_Momentum Trading/01. Designing a Trading Strategy.html
6.8 kB
Part 01-Module 01-Lesson 05_Market Mechanics/09. Gaps in Market Data.html
6.8 kB
Part 01-Module 04-Lesson 01_Factors/07. De-mean part 2.html
6.8 kB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/01. Intro.html
6.7 kB
Part 01-Module 01-Lesson 08_Momentum Trading/02. Momentum-based Signals.html
6.7 kB
Part 07-Module 01-Lesson 02_Naive Bayes/12. Naive Bayes Algorithm 2.html
6.7 kB
Part 06-Module 01-Lesson 06_Conditional Probability/01. Introduction to Conditional Probability.html
6.7 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/10. AffdexMe Demo.html
6.7 kB
Part 10-Module 01-Lesson 01_Intro to NLP/07. Context Is Everything.html
6.7 kB
Part 02-Module 02-Lesson 02_Training Neural Networks/04. Overfitting and Underfitting.html
6.7 kB
Part 07-Module 01-Lesson 02_Naive Bayes/07. Solution False Positives.html
6.7 kB
Part 04-Module 01-Lesson 02_Vectors/02. Vectors, what even are they Part 2.html
6.7 kB
Part 02-Module 03-Lesson 07_Feature Importance/02. Feature Importance in Finance.html
6.7 kB
Part 04-Module 01-Lesson 02_Vectors/03. Vectors, what even are they Part 3.html
6.7 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/05. Tell Us About Yourself.html
6.7 kB
Part 02-Module 03-Lesson 07_Feature Importance/03. Feature Importance in Scikit-learn.html
6.7 kB
Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/11. Linear Transformation and Matrices. Part 3.html
6.7 kB
Part 07-Module 01-Lesson 02_Naive Bayes/09. Bayesian Learning 2.html
6.7 kB
Part 07-Module 01-Lesson 02_Naive Bayes/03. Known and Inferred.html
6.7 kB
Part 02-Module 03-Lesson 07_Feature Importance/07. Shapley Additive Explanations.html
6.7 kB
Part 01-Module 01-Lesson 08_Momentum Trading/13. Finding Alpha.html
6.7 kB
Part 07-Module 01-Lesson 02_Naive Bayes/02. Guess the Person.html
6.7 kB
Part 01-Module 02-Lesson 05_Volatility/08. Exponentially Weighted Moving Average.html
6.7 kB
Part 02-Module 02-Lesson 02_Training Neural Networks/11. Vanishing Gradient.html
6.7 kB
Part 02-Module 02-Lesson 02_Training Neural Networks/02. Training Optimization.html
6.7 kB
Part 01-Module 02-Lesson 07_Project 2 Breakout Strategy/03. Breakout Strategy Workspace.html
6.7 kB
assets/css/fonts/KaTeX_Size2-Regular.woff
6.7 kB
Part 07-Module 01-Lesson 02_Naive Bayes/05. Bayes Theorem.html
6.7 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/03. Installing Jupyter Notebook.html
6.7 kB
Part 01-Module 02-Lesson 05_Volatility/12. Using Volatility for Equity Trading.html
6.7 kB
Part 02-Module 02-Lesson 02_Training Neural Networks/05. Early Stopping.html
6.7 kB
Part 02-Module 01-Lesson 03_Text Processing/05. Tokenization.html
6.7 kB
Part 04-Module 01-Lesson 02_Vectors/01. What's a Vector.html
6.7 kB
Part 02-Module 01-Lesson 06_Basic NLP Analysis/05. Sentiments from Wordlists.html
6.7 kB
Part 03-Module 01-Lesson 01_Why Python Programming/04. Course Overview.html
6.7 kB
Part 02-Module 02-Lesson 02_Training Neural Networks/14. Learning Rate Decay.html
6.7 kB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/06. Getting Rid of Zero-Length.html
6.7 kB
Part 02-Module 02-Lesson 02_Training Neural Networks/10. Random Restart.html
6.7 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/16. Summary.html
6.7 kB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/08. Padded Features, Solution.html
6.7 kB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/01. Sentiment RNN, Introduction.html
6.7 kB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/07. Cleaning & Padding Data.html
6.7 kB
Part 02-Module 02-Lesson 02_Training Neural Networks/07. Regularization 2.html
6.7 kB
Part 01-Module 01-Lesson 09_Project 1 Trading with Momentum/03. Trading with Momentum Workspace.html
6.7 kB
Part 01-Module 01-Lesson 05_Market Mechanics/10. Markets in Different Timezones.html
6.7 kB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/06. Context Is Everything.html
6.7 kB
Part 02-Module 03-Lesson 07_Feature Importance/01. Intro.html
6.7 kB
Part 02-Module 02-Lesson 02_Training Neural Networks/09. Local Minima.html
6.7 kB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/05. Encoding Words, Solution.html
6.7 kB
Part 01-Module 01-Lesson 08_Momentum Trading/14. Interlude Global Talent.html
6.6 kB
Part 01-Module 04-Lesson 02_Factor Models and Types of Factors/index.html
6.6 kB
Part 02-Module 02-Lesson 02_Training Neural Networks/15. Momentum.html
6.6 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/16. Binomial Conclusion.html
6.6 kB
Part 01-Module 01-Lesson 06_Data Processing/11. Exchange Traded Funds.html
6.6 kB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/16. Summary.html
6.6 kB
Part 07-Module 01-Lesson 02_Naive Bayes/01. Intro.html
6.6 kB
Part 02-Module 02-Lesson 02_Training Neural Networks/03. Testing.html
6.6 kB
Part 01-Module 01-Lesson 06_Data Processing/14. Interview Satellite Data.html
6.6 kB
Part 01-Module 02-Lesson 05_Volatility/11. Markets & Volatility.html
6.6 kB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/04. Data Pre-Processing.html
6.6 kB
Part 02-Module 02-Lesson 02_Training Neural Networks/16. Error Functions Around the World.html
6.6 kB
Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/04. Finding Pairs to Trade.html
6.6 kB
Part 02-Module 03-Lesson 06_Overlapping Labels/07. Dependent Labels Exercise.html
6.6 kB
Part 01-Module 03-Lesson 04_Portfolio Optimization/03. Optimization with Constraints.html
6.6 kB
Part 01-Module 01-Lesson 06_Data Processing/13. Alternative Data.html
6.6 kB
Part 02-Module 05-Lesson 01_Intro to Backtesting/04. Backtest Overfitting.html
6.6 kB
Part 02-Module 02-Lesson 02_Training Neural Networks/08. Dropout.html
6.6 kB
Part 01-Module 02-Lesson 05_Volatility/10. Forecasting Volatility.html
6.6 kB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/10. Defining the Model.html
6.6 kB
Part 06-Module 01-Lesson 06_Conditional Probability/10. Total Probability.html
6.6 kB
Part 01-Module 01-Lesson 06_Data Processing/08. Survivor Bias.html
6.6 kB
Part 01-Module 02-Lesson 05_Volatility/02. Historical Volatility.html
6.6 kB
Part 01-Module 02-Lesson 05_Volatility/03. Annualized Volatility.html
6.6 kB
Part 01-Module 01-Lesson 06_Data Processing/05. Missing Values.html
6.6 kB
Part 01-Module 02-Lesson 05_Volatility/01. What is Volatility.html
6.6 kB
Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/08. Clustering Stocks.html
6.6 kB
Part 01-Module 02-Lesson 05_Volatility/13. Breakout Strategies.html
6.6 kB
Part 01-Module 03-Lesson 04_Portfolio Optimization/10. Rebalancing a Portfolio.html
6.6 kB
Part 01-Module 02-Lesson 05_Volatility/06. Rolling Windows.html
6.6 kB
Part 06-Module 01-Lesson 06_Conditional Probability/15. Summary.html
6.6 kB
Part 01-Module 01-Lesson 06_Data Processing/15. Interlude Your Goals.html
6.6 kB
Part 01-Module 01-Lesson 07_Stock Returns/06. Why Log Returns.html
6.6 kB
Part 07-Module 01-Lesson 05_Introduction to Kalman Filters/index.html
6.6 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/11. Emotion as a Service.html
6.5 kB
Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/01. Intro.html
6.5 kB
Part 01-Module 03-Lesson 05_Project 3 Smart Beta and Portfolio Optimization/03. Smart Beta and Portfolio Optimization Workspace.html
6.5 kB
Part 02-Module 03-Lesson 06_Overlapping Labels/05. Possible Solution 2.html
6.5 kB
Part 01-Module 04-Lesson 09_Project 4 Alpha Research and Factor Modeling/03. Project 4 Workspace.html
6.5 kB
Part 10-Module 01-Lesson 01_Intro to NLP/11. Feature Extraction.html
6.5 kB
Part 01-Module 02-Lesson 02_Outliers and Filtering/07. Spotting Outliers in Signal Returns.html
6.5 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/01. Admissions Case Study Introduction.html
6.5 kB
Part 01-Module 04-Lesson 01_Factors/03. Example of a factor.html
6.5 kB
Part 01-Module 04-Lesson 01_Factors/01. Intro to the Module.html
6.5 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/12. Finishing up.html
6.5 kB
Part 01-Module 03-Lesson 04_Portfolio Optimization/01. Intro.html
6.5 kB
Part 10-Module 01-Lesson 01_Intro to NLP/10. Text Processing.html
6.5 kB
Part 01-Module 01-Lesson 07_Stock Returns/02. Quiz Calculate Returns.html
6.5 kB
Part 02-Module 02-Lesson 03_Deep Learning with PyTorch/index.html
6.5 kB
Part 01-Module 04-Lesson 01_Factors/02. Intro to the Lesson.html
6.5 kB
Part 01-Module 02-Lesson 04_Time Series Modeling/07. Particle Filter.html
6.5 kB
Part 01-Module 02-Lesson 02_Outliers and Filtering/04. Outliers, Signals and Strategies.html
6.5 kB
assets/css/fonts/KaTeX_Size4-Regular.woff
6.5 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/11. Dangers of Statistics.html
6.5 kB
Part 01-Module 02-Lesson 04_Time Series Modeling/08. Recurrent Neural Networks.html
6.5 kB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/10. Feature Extraction.html
6.4 kB
Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/14. Summary.html
6.4 kB
Part 01-Module 01-Lesson 09_Project 1 Trading with Momentum/02. Project Description.html
6.4 kB
Part 02-Module 01-Lesson 03_Text Processing/10. Stemming and Lemmatization.html
6.4 kB
Part 02-Module 05-Lesson 01_Intro to Backtesting/10. AI in Finance Interview.html
6.4 kB
Part 02-Module 01-Lesson 03_Text Processing/09. Named Entity Recognition.html
6.4 kB
Part 01-Module 02-Lesson 05_Volatility/14. Summary.html
6.4 kB
Part 02-Module 03-Lesson 04_Random Forests/08. The Out-of-Bag Estimate.html
6.4 kB
Part 02-Module 03-Lesson 06_Overlapping Labels/03. Frame the Problem.html
6.4 kB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/09. Text Processing.html
6.4 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/13. Formula Summary.html
6.4 kB
Part 01-Module 03-Lesson 04_Portfolio Optimization/13. Summary.html
6.4 kB
Part 02-Module 05-Lesson 04_Project 8 Backtesting/02. Project 8 Workspace.html
6.4 kB
Part 02-Module 01-Lesson 03_Text Processing/07. Stop Word Removal.html
6.4 kB
Part 01-Module 03-Lesson 02_ETFs/02. Shortcomings of Mutual Funds.html
6.4 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/06. Vision-based Emotion AI.html
6.4 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/12. Normalizer.html
6.4 kB
Part 02-Module 01-Lesson 03_Text Processing/01. Text Processing.html
6.4 kB
Part 02-Module 01-Lesson 07_Project 5 NLP on Financial Statements/03. Project 5 Workspace.html
6.4 kB
Part 01-Module 02-Lesson 02_Outliers and Filtering/08. Handling Outliers in Signal Returns.html
6.3 kB
Part 02-Module 03-Lesson 04_Random Forests/01. Intro.html
6.3 kB
Part 01-Module 03-Lesson 05_Project 3 Smart Beta and Portfolio Optimization/02. Project Description.html
6.3 kB
Part 01-Module 02-Lesson 02_Outliers and Filtering/06. Handling Outliers in Raw Data.html
6.3 kB
Part 01-Module 02-Lesson 02_Outliers and Filtering/05. Spotting Outliers in Raw Data.html
6.3 kB
Part 01-Module 02-Lesson 02_Outliers and Filtering/09. Generating Robust Trading Signals.html
6.3 kB
Part 06-Module 01-Lesson 11_Confidence Intervals/index.html
6.3 kB
Part 02-Module 03-Lesson 01_Overview/02. Overview of Machine Learning Techniques.html
6.3 kB
Part 01-Module 01-Lesson 05_Market Mechanics/06. OHLC Open, High, Low, Close.html
6.3 kB
Part 02-Module 02-Lesson 07_Project 6 Sentiment Analysis with Neural Networks/02. Project Notebook.html
6.3 kB
Part 02-Module 03-Lesson 08_Project 7 Combining Signals for Enhanced Alpha/02. Project 7 Workspace.html
6.3 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/14. Conclusion.html
6.3 kB
Part 01-Module 03-Lesson 01_Stocks, Indices, Funds/index.html
6.3 kB
Part 01-Module 03-Lesson 02_ETFs/11. Summary.html
6.3 kB
Part 01-Module 03-Lesson 02_ETFs/01. Intro.html
6.3 kB
Part 03-Module 01-Lesson 01_Why Python Programming/02. Welcome to the Course!.html
6.3 kB
Part 01-Module 01-Lesson 03_Get Help with Your Account/01. FAQ.html
6.3 kB
Part 01-Module 01-Lesson 07_Stock Returns/01. Returns.html
6.3 kB
Part 04-Module 01-Lesson 03_Linear Combination/02. Linear Combination. Part 2.html
6.3 kB
Part 04-Module 01-Lesson 03_Linear Combination/01. Linear Combination. Part 1.html
6.3 kB
Part 01-Module 02-Lesson 02_Outliers and Filtering/02. Sources of Outliers.html
6.3 kB
Part 01-Module 01-Lesson 04_Stock Prices/04. Quiz Stock Data.html
6.3 kB
Part 02-Module 03-Lesson 02_Decision Trees/index.html
6.2 kB
Part 01-Module 02-Lesson 07_Project 2 Breakout Strategy/Project Description - Breakout Strategy.html
6.2 kB
Part 01-Module 01-Lesson 05_Market Mechanics/02. Farmers' Market.html
6.2 kB
Part 01-Module 01-Lesson 07_Stock Returns/03. Log Returns.html
6.2 kB
Part 10-Module 01-Lesson 01_Intro to NLP/09. How NLP Pipelines Work.html
6.2 kB
Part 10-Module 01-Lesson 01_Intro to NLP/08. NLP and Pipelines.html
6.2 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/15. Summary.html
6.2 kB
Part 02-Module 03-Lesson 02_Decision Trees/img/screen-shot-2018-05-22-at-12.25.34-pm.png
6.2 kB
Part 07-Module 01-Lesson 04_Decision Trees/img/screen-shot-2018-05-22-at-12.25.34-pm.png
6.2 kB
Part 04-Module 01-Lesson 01_Introduction/01. Our Goal .html
6.2 kB
Part 01-Module 01-Lesson 05_Market Mechanics/05. Tick Data.html
6.2 kB
Part 01-Module 03-Lesson 02_ETFs/12. Interlude Meditation.html
6.2 kB
Part 01-Module 01-Lesson 05_Market Mechanics/11. Summary.html
6.2 kB
Part 02-Module 03-Lesson 04_Random Forests/12. Outro.html
6.2 kB
Part 02-Module 01-Lesson 03_Text Processing/13. Summary.html
6.2 kB
Part 02-Module 03-Lesson 06_Overlapping Labels/06. Possible Solution 3.html
6.2 kB
Part 01-Module 01-Lesson 05_Market Mechanics/08. Volume.html
6.2 kB
Part 10-Module 01-Lesson 01_Intro to NLP/01. Introducing Arpan.html
6.2 kB
Part 10-Module 01-Lesson 01_Intro to NLP/02. NLP Overview.html
6.2 kB
Part 01-Module 01-Lesson 05_Market Mechanics/01. Intro.html
6.2 kB
Part 01-Module 01-Lesson 09_Project 1 Trading with Momentum/Project Description - Trading with Momentum.html
6.2 kB
Part 02-Module 01-Lesson 05_Financial Statements/index.html
6.2 kB
Part 01-Module 04-Lesson 09_Project 4 Alpha Research and Factor Modeling/02. Project Description.html
6.2 kB
Part 01-Module 02-Lesson 02_Outliers and Filtering/01. Intro.html
6.2 kB
Part 01-Module 01-Lesson 05_Market Mechanics/12. Better Learning - By Sleeping.html
6.2 kB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/08. How NLP Pipelines Work.html
6.2 kB
Part 02-Module 05-Lesson 01_Intro to Backtesting/02. What is a Backtest.html
6.2 kB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/07. NLP and Pipelines.html
6.2 kB
Part 02-Module 05-Lesson 01_Intro to Backtesting/03. Backtest Validity.html
6.2 kB
Part 02-Module 03-Lesson 05_Feature Engineering/03. Setup Code Exercise.html
6.1 kB
Part 02-Module 05-Lesson 01_Intro to Backtesting/05. Overtrading.html
6.1 kB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/01. NLP Overview.html
6.1 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/11. Insights from a Quant.html
6.1 kB
Part 01-Module 02-Lesson 07_Project 2 Breakout Strategy/02. Project Description.html
6.1 kB
Part 02-Module 05-Lesson 01_Intro to Backtesting/01. Intro.html
6.1 kB
Part 02-Module 05-Lesson 03_Attribution/05. Performance Attribution.html
6.1 kB
Part 02-Module 01-Lesson 06_Basic NLP Analysis/06. Frequency Reweighting (TF-IDF).html
6.1 kB
Part 02-Module 05-Lesson 03_Attribution/04. Variance Decomposition.html
6.1 kB
Part 01-Module 02-Lesson 02_Outliers and Filtering/10. Summary.html
6.1 kB
Part 02-Module 01-Lesson 06_Basic NLP Analysis/07. Similarity Metrics.html
6.1 kB
Part 02-Module 03-Lesson 05_Feature Engineering/01. Intro.html
6.1 kB
Part 10-Module 01-Lesson 01_Intro to NLP/12. Modeling.html
6.0 kB
Part 01-Module 02-Lesson 04_Time Series Modeling/03. Moving Average Models.html
6.0 kB
Part 01-Module 02-Lesson 04_Time Series Modeling/02. Autoregressive Models.html
6.0 kB
Part 01-Module 01-Lesson 04_Stock Prices/01. Stocks.html
6.0 kB
Part 01-Module 02-Lesson 04_Time Series Modeling/01. Time Series Modeling.html
6.0 kB
Part 02-Module 05-Lesson 03_Attribution/03. Exposure Vector.html
6.0 kB
Part 02-Module 04-Lesson 02_Optimize Your GitHub Profile/index.html
6.0 kB
Part 02-Module 01-Lesson 06_Basic NLP Analysis/04. Bag-of-Words.html
6.0 kB
Part 02-Module 01-Lesson 06_Basic NLP Analysis/02. Readability.html
6.0 kB
Part 03-Module 01-Lesson 01_Why Python Programming/01. Instructor.html
6.0 kB
Part 02-Module 01-Lesson 06_Basic NLP Analysis/01. Introduction.html
6.0 kB
Part 07-Module 01-Lesson 01_Linear Regression/index.html
6.0 kB
Part 02-Module 01-Lesson 01_Welcome To Term II/04. Interview with Gordon Ritter.html
6.0 kB
Part 02-Module 01-Lesson 04_Feature Extraction/08. Embeddings for Deep Learning.html
6.0 kB
Part 02-Module 02-Lesson 07_Project 6 Sentiment Analysis with Neural Networks/01. Project Description.html
6.0 kB
Part 02-Module 05-Lesson 03_Attribution/01. Intro.html
6.0 kB
Part 02-Module 05-Lesson 01_Intro to Backtesting/11. Outro.html
6.0 kB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/11. Modeling.html
6.0 kB
Part 06-Module 01-Lesson 08_Python Probability Practice/01. Introduction.html
6.0 kB
Part 02-Module 01-Lesson 04_Feature Extraction/01. Feature Extraction.html
6.0 kB
Part 01-Module 02-Lesson 07_Project 2 Breakout Strategy/04. Wrapping Up Module 2.html
5.9 kB
Part 02-Module 01-Lesson 04_Feature Extraction/04. One-Hot Encoding.html
5.9 kB
Part 02-Module 01-Lesson 04_Feature Extraction/05. Word Embeddings.html
5.9 kB
Part 02-Module 03-Lesson 03_Model Testing and Evaluation/index.html
5.9 kB
Part 02-Module 01-Lesson 04_Feature Extraction/02. Bag of Words.html
5.9 kB
Part 03-Module 01-Lesson 01_Why Python Programming/03. Programming in Python.html
5.9 kB
Part 01-Module 02-Lesson 07_Project 2 Breakout Strategy/01. Intro Project 2.html
5.9 kB
Part 01-Module 04-Lesson 03_Risk Factor Models/index.html
5.9 kB
Part 02-Module 01-Lesson 04_Feature Extraction/07. GloVe.html
5.9 kB
Part 02-Module 01-Lesson 01_Welcome To Term II/05. Interview with Justin Sheetz.html
5.9 kB
Part 02-Module 01-Lesson 04_Feature Extraction/03. TF-IDF.html
5.9 kB
Part 02-Module 01-Lesson 04_Feature Extraction/06. Word2Vec.html
5.9 kB
Part 02-Module 01-Lesson 04_Feature Extraction/09. t-SNE.html
5.9 kB
Part 02-Module 01-Lesson 06_Basic NLP Analysis/09. Summary.html
5.9 kB
Part 02-Module 03-Lesson 06_Overlapping Labels/04. Simple Solution.html
5.9 kB
Part 02-Module 05-Lesson 03_Attribution/09. Outro.html
5.9 kB
Part 01-Module 01-Lesson 09_Project 1 Trading with Momentum/01. Intro to Project 1.html
5.9 kB
Part 01-Module 02-Lesson 07_Project 2 Breakout Strategy/05. Insights from a Quant - Careers.html
5.9 kB
Part 04-Module 01-Lesson 01_Introduction/03. Essence of Linear Algebra.html
5.8 kB
Part 01-Module 02-Lesson 04_Time Series Modeling/09. Summary.html
5.8 kB
Part 02-Module 01-Lesson 07_Project 5 NLP on Financial Statements/02. Project Description.html
5.8 kB
Part 06-Module 01-Lesson 08_Python Probability Practice/08. Conclusion.html
5.8 kB
assets/css/fonts/KaTeX_Size1-Regular.woff2
5.8 kB
Part 02-Module 03-Lesson 08_Project 7 Combining Signals for Enhanced Alpha/01. Project Description.html
5.8 kB
Part 02-Module 03-Lesson 06_Overlapping Labels/01. Intro.html
5.8 kB
Part 01-Module 03-Lesson 05_Project 3 Smart Beta and Portfolio Optimization/01. Intro Project 3.html
5.8 kB
Part 01-Module 01-Lesson 09_Project 1 Trading with Momentum/04. Insights from a Quant - AI and Finance.html
5.8 kB
Part 02-Module 01-Lesson 04_Feature Extraction/10. Summary.html
5.8 kB
Part 02-Module 02-Lesson 04_Recurrent Neural Networks/index.html
5.8 kB
Part 02-Module 03-Lesson 01_Overview/04. Unsupervised and Reinforcement Learning.html
5.8 kB
Part 01-Module 01-Lesson 03_Get Help with Your Account/02. Support.html
5.8 kB
Part 03-Module 01-Lesson 04_Functions/index.html
5.7 kB
Part 01-Module 04-Lesson 09_Project 4 Alpha Research and Factor Modeling/01. Intro.html
5.7 kB
Part 07-Module 01-Lesson 04_Decision Trees/index.html
5.7 kB
Part 02-Module 01-Lesson 07_Project 5 NLP on Financial Statements/01. Introduction to Project 5.html
5.7 kB
Part 02-Module 03-Lesson 06_Overlapping Labels/08. Outro.html
5.7 kB
Part 01-Module 04-Lesson 05_Risk Factor Models with PCA/index.html
5.7 kB
Part 02-Module 03-Lesson 01_Overview/03. Supervised Learning.html
5.7 kB
Part 01-Module 04-Lesson 08_Advanced Portfolio Optimization/index.html
5.7 kB
Part 01-Module 04-Lesson 09_Project 4 Alpha Research and Factor Modeling/04. Outro What's next.html
5.7 kB
Part 01-Module 03-Lesson 05_Project 3 Smart Beta and Portfolio Optimization/Project Description - Smart Beta and Portfolio Optimization.html
5.6 kB
Part 01-Module 02-Lesson 01_Quant Workflow/02. Starting from a Hypothesis.html
5.6 kB
Part 02-Module 03-Lesson 01_Overview/01. Welcome.html
5.6 kB
Part 02-Module 01-Lesson 01_Welcome To Term II/02. Overview of Term II.html
5.6 kB
Part 01-Module 02-Lesson 01_Quant Workflow/04. Flavors of Trading.html
5.6 kB
Part 01-Module 02-Lesson 03_Regression/index.html
5.6 kB
Part 06-Module 01-Lesson 13_Case Study AB tests/index.html
5.6 kB
Part 02-Module 01-Lesson 01_Welcome To Term II/01. Welcome!.html
5.6 kB
Part 01-Module 02-Lesson 01_Quant Workflow/01. Intro Module 2.html
5.6 kB
Part 01-Module 02-Lesson 01_Quant Workflow/03. Quant Workflow.html
5.6 kB
Part 02-Module 04-Lesson 01_Take 30 Min to Improve your LinkedIn/index.html
5.6 kB
Part 02-Module 02-Lesson 05_Embeddings & Word2Vec/index.html
5.6 kB
assets/css/fonts/KaTeX_Size2-Regular.woff2
5.6 kB
Part 07-Module 01-Lesson 03_Clustering/index.html
5.6 kB
Part 05-Module 01-Lesson 02_NumPy/index.html
5.5 kB
Part 01-Module 04-Lesson 04_Time Series and Cross Sectional Risk Models/index.html
5.5 kB
Part 01-Module 04-Lesson 09_Project 4 Alpha Research and Factor Modeling/Project Description - Multi-factor Model.html
5.5 kB
Part 02-Module 01-Lesson 07_Project 5 NLP on Financial Statements/Project Description - NLP on Financial Statements.html
5.5 kB
Part 01-Module 03-Lesson 03_Portfolio Risk and Return/index.html
5.5 kB
Part 02-Module 05-Lesson 04_Project 8 Backtesting/03. Congratulations!.html
5.5 kB
Part 06-Module 01-Lesson 04_Probability/index.html
5.5 kB
Part 02-Module 02-Lesson 07_Project 6 Sentiment Analysis with Neural Networks/Project Description - Sentiment Analysis with Neural Networks.html
5.5 kB
Part 02-Module 03-Lesson 08_Project 7 Combining Signals for Enhanced Alpha/Project Description - Combining Signals for Enhanced Alpha.html
5.5 kB
Part 01-Module 01-Lesson 02_Knowledge and Career Support/img/screen-shot-2020-03-04-at-2.49.43-pm.png
5.5 kB
Part 02-Module 05-Lesson 02_Optimization with Transaction Costs/index.html
5.4 kB
Part 05-Module 01-Lesson 03_Pandas/index.html
5.4 kB
Part 04-Module 01-Lesson 04_Linear Transformation and Matrices/index.html
5.4 kB
Part 02-Module 03-Lesson 07_Feature Importance/index.html
5.4 kB
Part 01-Module 01-Lesson 08_Momentum Trading/index.html
5.4 kB
Part 02-Module 02-Lesson 02_Training Neural Networks/index.html
5.4 kB
Part 02-Module 05-Lesson 04_Project 8 Backtesting/Project Description - Backtesting.html
5.4 kB
Part 01-Module 01-Lesson 04_Stock Prices/05. Random Story.html
5.3 kB
Part 02-Module 02-Lesson 06_Sentiment Prediction RNN/index.html
5.3 kB
Part 07-Module 01-Lesson 02_Naive Bayes/index.html
5.3 kB
Part 01-Module 02-Lesson 06_Pairs Trading and Mean Reversion/index.html
5.3 kB
Part 06-Module 01-Lesson 06_Conditional Probability/index.html
5.3 kB
Part 01-Module 01-Lesson 06_Data Processing/index.html
5.3 kB
Part 01-Module 03-Lesson 04_Portfolio Optimization/index.html
5.3 kB
Part 01-Module 02-Lesson 05_Volatility/index.html
5.3 kB
Part 06-Module 01-Lesson 05_Binomial Distribution/index.html
5.3 kB
Part 04-Module 01-Lesson 02_Vectors/index.html
5.2 kB
assets/css/fonts/KaTeX_Size4-Regular.woff2
5.2 kB
Part 01-Module 04-Lesson 01_Factors/index.html
5.2 kB
Part 06-Module 01-Lesson 03_Admissions Case Study/index.html
5.2 kB
Part 02-Module 03-Lesson 04_Random Forests/index.html
5.1 kB
Part 09-Module 01-Lesson 01_Intro to Computer Vision/index.html
5.1 kB
Part 06-Module 01-Lesson 09_Normal Distribution Theory/index.html
5.1 kB
Part 02-Module 01-Lesson 03_Text Processing/index.html
5.1 kB
Part 05-Module 01-Lesson 01_Jupyter Notebooks/index.html
5.0 kB
Part 01-Module 02-Lesson 02_Outliers and Filtering/index.html
5.0 kB
Part 01-Module 03-Lesson 02_ETFs/index.html
5.0 kB
Part 01-Module 01-Lesson 01_Welcome to the Nanodegree Program/index.html
5.0 kB
Part 01-Module 01-Lesson 05_Market Mechanics/index.html
5.0 kB
Part 10-Module 01-Lesson 01_Intro to NLP/index.html
5.0 kB
Part 02-Module 01-Lesson 02_Intro to Natural Language Processing/index.html
5.0 kB
Part 02-Module 05-Lesson 01_Intro to Backtesting/index.html
4.9 kB
Part 02-Module 03-Lesson 05_Feature Engineering/index.html
4.9 kB
Part 04-Module 01-Lesson 03_Linear Combination/index.html
4.9 kB
Part 02-Module 05-Lesson 03_Attribution/index.html
4.8 kB
Part 02-Module 01-Lesson 06_Basic NLP Analysis/index.html
4.8 kB
Part 01-Module 02-Lesson 04_Time Series Modeling/index.html
4.8 kB
Part 06-Module 01-Lesson 08_Python Probability Practice/index.html
4.8 kB
Part 01-Module 02-Lesson 07_Project 2 Breakout Strategy/index.html
4.8 kB
Part 01-Module 03-Lesson 05_Project 3 Smart Beta and Portfolio Optimization/index.html
4.8 kB
assets/css/fonts/KaTeX_Size3-Regular.woff
4.8 kB
Part 02-Module 01-Lesson 04_Feature Extraction/index.html
4.8 kB
Part 01-Module 01-Lesson 09_Project 1 Trading with Momentum/index.html
4.8 kB
Part 02-Module 03-Lesson 06_Overlapping Labels/index.html
4.7 kB
Part 01-Module 04-Lesson 09_Project 4 Alpha Research and Factor Modeling/index.html
4.7 kB
Part 02-Module 01-Lesson 07_Project 5 NLP on Financial Statements/index.html
4.7 kB
Part 02-Module 02-Lesson 07_Project 6 Sentiment Analysis with Neural Networks/index.html
4.7 kB
Part 04-Module 01-Lesson 01_Introduction/index.html
4.7 kB
Part 02-Module 03-Lesson 08_Project 7 Combining Signals for Enhanced Alpha/index.html
4.7 kB
Part 01-Module 01-Lesson 07_Stock Returns/index.html
4.6 kB
Part 02-Module 05-Lesson 04_Project 8 Backtesting/index.html
4.5 kB
Part 02-Module 03-Lesson 01_Overview/index.html
4.5 kB
Part 02-Module 01-Lesson 01_Welcome To Term II/index.html
4.5 kB
Part 01-Module 02-Lesson 01_Quant Workflow/index.html
4.5 kB
Part 03-Module 01-Lesson 01_Why Python Programming/index.html
4.4 kB
Part 01-Module 01-Lesson 04_Stock Prices/index.html
4.4 kB
Part 01-Module 01-Lesson 02_Knowledge and Career Support/index.html
4.4 kB
Part 02-Module 03-Lesson 02_Decision Trees/img/screen-shot-2018-05-22-at-12.27.55-pm.png
4.4 kB
Part 07-Module 01-Lesson 04_Decision Trees/img/screen-shot-2018-05-22-at-12.27.55-pm.png
4.4 kB
Part 02-Module 03-Lesson 02_Decision Trees/img/screen-shot-2018-05-22-at-12.27.22-pm.png
4.3 kB
Part 07-Module 01-Lesson 04_Decision Trees/img/screen-shot-2018-05-22-at-12.27.22-pm.png
4.3 kB
Part 01-Module 01-Lesson 03_Get Help with Your Account/index.html
4.2 kB
assets/css/styles.css
4.1 kB
Part 07-Module 01-Lesson 01_Linear Regression/img/m.gif
3.9 kB
assets/css/fonts/KaTeX_Size3-Regular.woff2
3.9 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/img/codecogseqn-49.gif
2.1 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/img/sigmoid-derivative.gif
2.1 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/img/codecogseqn-49.gif
2.1 kB
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/img/sigmoid-derivative.gif
2.1 kB
Part 07-Module 01-Lesson 01_Linear Regression/img/codecogseqn-61.gif
2.1 kB
Part 07-Module 01-Lesson 01_Linear Regression/img/f1.gif
2.1 kB
Part 07-Module 01-Lesson 01_Linear Regression/img/f2.gif
1.9 kB
Part 07-Module 01-Lesson 01_Linear Regression/img/f6.gif
1.6 kB
Part 07-Module 01-Lesson 01_Linear Regression/img/y.gif
1.4 kB
Part 07-Module 01-Lesson 01_Linear Regression/img/codecogseqn-62.gif
1.3 kB
Part 07-Module 01-Lesson 01_Linear Regression/img/e.gif
1.2 kB
Part 07-Module 01-Lesson 01_Linear Regression/img/f4.gif
1.2 kB
Part 07-Module 01-Lesson 01_Linear Regression/img/gif-1.gif
1.1 kB
Part 02-Module 02-Lesson 01_Introduction to Neural Networks/img/codecogseqn-58.gif
919 Bytes
Part 08-Module 01-Lesson 01_Introduction to Neural Networks/img/codecogseqn-58.gif
919 Bytes
README.txt
913 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>