搜索
[FreeCourseSite.com] Udemy - Machine Learning with Javascript
磁力链接/BT种子名称
[FreeCourseSite.com] Udemy - Machine Learning with Javascript
磁力链接/BT种子简介
种子哈希:
c3d9a51856dd6f9f28d7d0cff6db01aee7b78410
文件大小:
6.75G
已经下载:
1557
次
下载速度:
极快
收录时间:
2024-01-13
最近下载:
2025-09-17
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:C3D9A51856DD6F9F28D7D0CFF6DB01AEE7B78410
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
世界之窗
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
极乐禁地
91短视频
暗网Xvideo
TikTok成人版
PornHub
听泉鉴鲍
少女日记
草榴社区
哆哔涩漫
呦乐园
萝莉岛
悠悠禁区
悠悠禁区
拔萝卜
疯马秀
最近搜索
小二
推特+上班穿搭
风韵御姐
唐伯虎白虎萝莉
我本初中+无密码
娘男
jezabel
日本女优+无码
巨乳风骚+摇着鸡巴
生变态
【ntr淫妻】
二龙潭
极品气质人妻
fkru-013
kfc坐
中学
waaa-112
扣扣传媒+
学姐呻吟
mida-048
长生
高起强
狗
绳精
萝莉白袜
深春
站街女出租屋
露出小母狗
chowshow+upscaled++pixeldrain
修復
文件列表
05 - Getting Started with Gradient Descent/009 Why a Learning Rate.mp4
155.7 MB
02 - Algorithm Overview/013 Investigating Optimal K Values.mp4
117.9 MB
06 - Gradient Descent with Tensorflow/013 How it All Works Together!.mp4
115.9 MB
05 - Getting Started with Gradient Descent/012 Multiple Terms in Action.mp4
108.3 MB
06 - Gradient Descent with Tensorflow/008 Interpreting Results.mp4
94.0 MB
05 - Getting Started with Gradient Descent/007 Gradient Descent in Action.mp4
93.5 MB
13 - Performance Optimization/006 Measuring Memory Usage.mp4
90.0 MB
07 - Increasing Performance with Vectorized Solutions/013 Moving Towards Multivariate Regression.mp4
89.1 MB
10 - Natural Binary Classification/013 A Touch More Refactoring.mp4
82.5 MB
04 - Applications of Tensorflow/011 Normalization or Standardization.mp4
81.7 MB
05 - Getting Started with Gradient Descent/003 Understanding Gradient Descent.mp4
81.7 MB
12 - Image Recognition In Action/008 Debugging the Calculation Process.mp4
81.4 MB
04 - Applications of Tensorflow/014 Debugging Calculations.mp4
78.7 MB
11 - Multi-Value Classification/004 A Single Instance Approach.mp4
78.0 MB
07 - Increasing Performance with Vectorized Solutions/014 Refactoring for Multivariate Analysis.mp4
75.9 MB
05 - Getting Started with Gradient Descent/004 Guessing Coefficients with MSE.mp4
74.3 MB
03 - Onwards to Tensorflow JS!/003 Tensor Shape and Dimension.mp4
73.7 MB
02 - Algorithm Overview/001 How K-Nearest Neighbor Works.mp4
73.1 MB
04 - Applications of Tensorflow/008 Loading CSV Data.mp4
72.2 MB
11 - Multi-Value Classification/009 Marginal vs Conditional Probability.mp4
71.7 MB
06 - Gradient Descent with Tensorflow/005 Initial Gradient Descent Implementation.mp4
71.0 MB
07 - Increasing Performance with Vectorized Solutions/002 Refactoring to One Equation.mp4
66.9 MB
09 - Gradient Descent Alterations/001 Batch and Stochastic Gradient Descent.mp4
66.8 MB
01 - What is Machine Learning/005 A Complete Walkthrough.mp4
66.4 MB
01 - What is Machine Learning/004 Solving Machine Learning Problems.mp4
65.8 MB
12 - Image Recognition In Action/006 Implementing an Accuracy Gauge.mp4
65.2 MB
06 - Gradient Descent with Tensorflow/012 Simplification with Matrix Multiplication.mp4
63.7 MB
04 - Applications of Tensorflow/003 KNN with Tensorflow.mp4
62.4 MB
02 - Algorithm Overview/016 N-Dimension Distance.mp4
62.4 MB
02 - Algorithm Overview/003 Implementing KNN.mp4
62.2 MB
07 - Increasing Performance with Vectorized Solutions/003 A Few More Changes.mp4
61.4 MB
10 - Natural Binary Classification/016 Variable Decision Boundaries.mp4
61.3 MB
02 - Algorithm Overview/017 Arbitrary Feature Spaces.mp4
60.9 MB
07 - Increasing Performance with Vectorized Solutions/007 Dealing with Bad Accuracy.mp4
60.5 MB
02 - Algorithm Overview/022 Feature Selection with KNN.mp4
60.1 MB
07 - Increasing Performance with Vectorized Solutions/005 Calculating Model Accuracy.mp4
59.2 MB
02 - Algorithm Overview/020 Normalization with MinMax.mp4
57.0 MB
10 - Natural Binary Classification/011 Updating Linear Regression for Logistic Regression.mp4
56.9 MB
02 - Algorithm Overview/019 Feature Normalization.mp4
56.7 MB
09 - Gradient Descent Alterations/003 Determining Batch Size and Quantity.mp4
56.5 MB
07 - Increasing Performance with Vectorized Solutions/015 Learning Rate Optimization.mp4
55.6 MB
06 - Gradient Descent with Tensorflow/006 Calculating MSE Slopes.mp4
53.5 MB
09 - Gradient Descent Alterations/005 Evaluating Batch Gradient Descent Results.mp4
53.2 MB
14 - Appendix Custom CSV Loader/008 Extracting Data Columns.mp4
53.1 MB
07 - Increasing Performance with Vectorized Solutions/010 Reapplying Standardization.mp4
52.6 MB
02 - Algorithm Overview/014 Updating KNN for Multiple Features.mp4
51.2 MB
14 - Appendix Custom CSV Loader/010 Splitting Test and Training.mp4
50.7 MB
02 - Algorithm Overview/002 Lodash Review.mp4
50.6 MB
01 - What is Machine Learning/009 Dataset Structures.mp4
50.6 MB
04 - Applications of Tensorflow/006 Averaging Top Values.mp4
49.8 MB
07 - Increasing Performance with Vectorized Solutions/006 Implementing Coefficient of Determination.mp4
49.8 MB
10 - Natural Binary Classification/007 Project Setup for Logistic Regression.mp4
49.2 MB
03 - Onwards to Tensorflow JS!/001 Let's Get Our Bearings.mp4
49.1 MB
13 - Performance Optimization/005 Shallow vs Retained Memory Usage.mp4
48.9 MB
02 - Algorithm Overview/018 Magnitude Offsets in Features.mp4
48.5 MB
02 - Algorithm Overview/010 Gauging Accuracy.mp4
48.2 MB
07 - Increasing Performance with Vectorized Solutions/001 Refactoring the Linear Regression Class.mp4
48.1 MB
02 - Algorithm Overview/005 Testing the Algorithm.mp4
47.1 MB
11 - Multi-Value Classification/010 Sigmoid vs Softmax.mp4
46.8 MB
06 - Gradient Descent with Tensorflow/010 More on Matrix Multiplication.mp4
45.7 MB
10 - Natural Binary Classification/017 Mean Squared Error vs Cross Entropy.mp4
45.7 MB
13 - Performance Optimization/017 Plotting Cost History.mp4
45.4 MB
03 - Onwards to Tensorflow JS!/004 Elementwise Operations.mp4
45.3 MB
10 - Natural Binary Classification/019 Finishing the Cost Refactor.mp4
44.2 MB
11 - Multi-Value Classification/011 Refactoring Sigmoid to Softmax.mp4
43.8 MB
11 - Multi-Value Classification/008 Training a Multinominal Model.mp4
43.2 MB
13 - Performance Optimization/013 Tidying the Training Loop.mp4
43.1 MB
07 - Increasing Performance with Vectorized Solutions/011 Fixing Standardization Issues.mp4
43.0 MB
04 - Applications of Tensorflow/010 Reporting Error Percentages.mp4
42.7 MB
04 - Applications of Tensorflow/012 Numerical Standardization with Tensorflow.mp4
42.1 MB
08 - Plotting Data with Javascript/002 Plotting MSE Values.mp4
41.6 MB
05 - Getting Started with Gradient Descent/008 Quick Breather and Review.mp4
40.9 MB
02 - Algorithm Overview/009 Generalizing KNN.mp4
40.9 MB
02 - Algorithm Overview/021 Applying Normalization.mp4
40.8 MB
12 - Image Recognition In Action/002 Greyscale Values.mp4
40.3 MB
12 - Image Recognition In Action/005 Encoding Label Values.mp4
40.1 MB
10 - Natural Binary Classification/018 Refactoring with Cross Entropy.mp4
40.1 MB
02 - Algorithm Overview/004 Finishing KNN Implementation.mp4
39.8 MB
12 - Image Recognition In Action/004 Flattening Image Data.mp4
38.8 MB
03 - Onwards to Tensorflow JS!/002 A Plan to Move Forward.mp4
38.7 MB
12 - Image Recognition In Action/003 Many Features.mp4
38.5 MB
04 - Applications of Tensorflow/013 Applying Standardization.mp4
38.3 MB
08 - Plotting Data with Javascript/003 Plotting MSE History against B Values.mp4
37.9 MB
04 - Applications of Tensorflow/004 Maintaining Order Relationships.mp4
37.9 MB
13 - Performance Optimization/018 NaN in Cost History.mp4
37.6 MB
08 - Plotting Data with Javascript/001 Observing Changing Learning Rate and MSE.mp4
37.1 MB
10 - Natural Binary Classification/005 Decision Boundaries.mp4
36.7 MB
01 - What is Machine Learning/008 Identifying Relevant Data.mp4
35.6 MB
09 - Gradient Descent Alterations/006 Making Predictions with the Model.mp4
35.5 MB
02 - Algorithm Overview/012 Refactoring Accuracy Reporting.mp4
35.5 MB
13 - Performance Optimization/021 Improving Model Accuracy.mp4
35.3 MB
10 - Natural Binary Classification/003 Bad Equation Fits.mp4
35.2 MB
10 - Natural Binary Classification/020 Plotting Changing Cost History.mp4
34.9 MB
02 - Algorithm Overview/011 Printing a Report.mp4
34.9 MB
10 - Natural Binary Classification/009 Importing Vehicle Data.mp4
34.7 MB
14 - Appendix Custom CSV Loader/009 Shuffling Data via Seed Phrase.mp4
34.5 MB
07 - Increasing Performance with Vectorized Solutions/016 Recording MSE History.mp4
34.3 MB
02 - Algorithm Overview/015 Multi-Dimensional KNN.mp4
33.5 MB
13 - Performance Optimization/007 Releasing References.mp4
33.4 MB
06 - Gradient Descent with Tensorflow/009 Matrix Multiplication.mp4
32.1 MB
13 - Performance Optimization/019 Fixing Cost History.mp4
32.1 MB
10 - Natural Binary Classification/004 The Sigmoid Equation.mp4
31.8 MB
11 - Multi-Value Classification/005 Refactoring to Multi-Column Weights.mp4
31.7 MB
03 - Onwards to Tensorflow JS!/010 Summing Values Along an Axis.mp4
31.5 MB
05 - Getting Started with Gradient Descent/002 Why Linear Regression.mp4
31.4 MB
10 - Natural Binary Classification/010 Encoding Label Values.mp4
31.3 MB
05 - Getting Started with Gradient Descent/010 Answering Common Questions.mp4
31.3 MB
04 - Applications of Tensorflow/005 Sorting Tensors.mp4
30.9 MB
11 - Multi-Value Classification/006 A Problem to Test Multinominal Classification.mp4
30.2 MB
11 - Multi-Value Classification/003 A Smarter Refactor!.mp4
29.9 MB
02 - Algorithm Overview/023 Objective Feature Picking.mp4
29.8 MB
03 - Onwards to Tensorflow JS!/008 Creating Slices of Data.mp4
29.3 MB
07 - Increasing Performance with Vectorized Solutions/017 Updating Learning Rate.mp4
29.3 MB
03 - Onwards to Tensorflow JS!/009 Tensor Concatenation.mp4
29.2 MB
02 - Algorithm Overview/007 Test and Training Data.mp4
28.7 MB
03 - Onwards to Tensorflow JS!/011 Massaging Dimensions with ExpandDims.mp4
28.5 MB
13 - Performance Optimization/008 Measuring Footprint Reduction.mp4
28.2 MB
04 - Applications of Tensorflow/007 Moving to the Editor.mp4
28.1 MB
06 - Gradient Descent with Tensorflow/003 Default Algorithm Options.mp4
27.9 MB
09 - Gradient Descent Alterations/004 Iterating Over Batches.mp4
27.7 MB
06 - Gradient Descent with Tensorflow/007 Updating Coefficients.mp4
27.3 MB
02 - Algorithm Overview/006 Interpreting Bad Results.mp4
26.9 MB
06 - Gradient Descent with Tensorflow/001 Project Overview.mp4
26.2 MB
03 - Onwards to Tensorflow JS!/005 Broadcasting Operations.mp4
25.4 MB
14 - Appendix Custom CSV Loader/006 Parsing Number Values.mp4
25.2 MB
09 - Gradient Descent Alterations/002 Refactoring Towards Batch Gradient Descent.mp4
24.7 MB
07 - Increasing Performance with Vectorized Solutions/009 Data Processing in a Helper Method.mp4
24.6 MB
10 - Natural Binary Classification/012 The Sigmoid Equation with Logistic Regression.mp4
24.4 MB
12 - Image Recognition In Action/009 Dealing with Zero Variances.mp4
24.1 MB
01 - What is Machine Learning/007 Problem Outline.mp4
24.0 MB
07 - Increasing Performance with Vectorized Solutions/012 Massaging Learning Rates.mp4
23.9 MB
06 - Gradient Descent with Tensorflow/011 Matrix Form of Slope Equations.mp4
23.8 MB
13 - Performance Optimization/004 The Javascript Garbage Collector.mp4
23.7 MB
10 - Natural Binary Classification/014 Gauging Classification Accuracy.mp4
23.4 MB
11 - Multi-Value Classification/012 Implementing Accuracy Gauges.mp4
23.1 MB
13 - Performance Optimization/003 Creating Memory Snapshots.mp4
22.8 MB
13 - Performance Optimization/015 One More Optimization.mp4
22.5 MB
05 - Getting Started with Gradient Descent/005 Observations Around MSE.mp4
22.5 MB
13 - Performance Optimization/016 Final Memory Report.mp4
22.1 MB
02 - Algorithm Overview/024 Evaluating Different Feature Values.mp4
22.0 MB
04 - Applications of Tensorflow/009 Running an Analysis.mp4
21.8 MB
05 - Getting Started with Gradient Descent/006 Derivatives!.mp4
21.7 MB
13 - Performance Optimization/010 Tensorflow's Eager Memory Usage.mp4
21.1 MB
10 - Natural Binary Classification/015 Implementing a Test Function.mp4
21.0 MB
11 - Multi-Value Classification/007 Classifying Continuous Values.mp4
20.6 MB
06 - Gradient Descent with Tensorflow/002 Data Loading.mp4
20.5 MB
04 - Applications of Tensorflow/001 KNN with Regression.mp4
19.9 MB
07 - Increasing Performance with Vectorized Solutions/008 Reminder on Standardization.mp4
19.7 MB
13 - Performance Optimization/001 Handing Large Datasets.mp4
19.4 MB
04 - Applications of Tensorflow/015 What Now.mp4
18.6 MB
10 - Natural Binary Classification/002 Logistic Regression in Action.mp4
18.6 MB
01 - What is Machine Learning/011 What Type of Problem.mp4
17.7 MB
05 - Getting Started with Gradient Descent/011 Gradient Descent with Multiple Terms.mp4
17.6 MB
12 - Image Recognition In Action/010 Backfilling Variance.mp4
17.3 MB
13 - Performance Optimization/002 Minimizing Memory Usage.mp4
15.9 MB
04 - Applications of Tensorflow/002 A Change in Data Structure.mp4
15.8 MB
11 - Multi-Value Classification/002 A Smart Refactor to Multinominal Analysis.mp4
15.2 MB
14 - Appendix Custom CSV Loader/007 Custom Value Parsing.mp4
14.7 MB
13 - Performance Optimization/012 Implementing TF Tidy.mp4
14.3 MB
13 - Performance Optimization/020 Massaging Learning Parameters.mp4
14.2 MB
02 - Algorithm Overview/008 Randomizing Test Data.mp4
14.1 MB
01 - What is Machine Learning/010 Recording Observation Data.mp4
13.3 MB
07 - Increasing Performance with Vectorized Solutions/004 Same Results Or Not.mp4
12.6 MB
11 - Multi-Value Classification/013 Calculating Accuracy.mp4
12.2 MB
13 - Performance Optimization/009 Optimization Tensorflow Memory Usage.mp4
12.0 MB
13 - Performance Optimization/014 Measuring Reduced Memory Usage.mp4
11.5 MB
03 - Onwards to Tensorflow JS!/007 Tensor Accessors.mp4
11.5 MB
03 - Onwards to Tensorflow JS!/006 Logging Tensor Data.mp4
11.2 MB
05 - Getting Started with Gradient Descent/001 Linear Regression.mp4
10.2 MB
13 - Performance Optimization/011 Cleaning up Tensors with Tidy.mp4
9.9 MB
10 - Natural Binary Classification/001 Introducing Logistic Regression.mp4
9.4 MB
06 - Gradient Descent with Tensorflow/004 Formulating the Training Loop.mp4
9.1 MB
12 - Image Recognition In Action/001 Handwriting Recognition.mp4
8.8 MB
01 - What is Machine Learning/001 Getting Started - How to Get Help.mp4
8.8 MB
01 - What is Machine Learning/006 App Setup.mp4
8.5 MB
14 - Appendix Custom CSV Loader/005 Dropping Trailing Columns.mp4
8.0 MB
12 - Image Recognition In Action/007 Unchanging Accuracy.mp4
7.4 MB
14 - Appendix Custom CSV Loader/004 Splitting into Columns.mp4
7.0 MB
14 - Appendix Custom CSV Loader/003 Reading Files from Disk.mp4
6.9 MB
11 - Multi-Value Classification/001 Multinominal Logistic Regression.mp4
6.9 MB
14 - Appendix Custom CSV Loader/001 Loading CSV Files.mp4
6.3 MB
14 - Appendix Custom CSV Loader/002 A Test Dataset.mp4
3.9 MB
10 - Natural Binary Classification/006 Changes for Logistic Regression.mp4
3.6 MB
01 - What is Machine Learning/002 diagrams.zip
808.8 kB
10 - Natural Binary Classification/008 regressions.zip
35.1 kB
05 - Getting Started with Gradient Descent/009 Why a Learning Rate_en.srt
27.2 kB
06 - Gradient Descent with Tensorflow/013 How it All Works Together!_en.srt
22.5 kB
05 - Getting Started with Gradient Descent/003 Understanding Gradient Descent_en.srt
20.6 kB
03 - Onwards to Tensorflow JS!/003 Tensor Shape and Dimension_en.srt
20.0 kB
07 - Increasing Performance with Vectorized Solutions/013 Moving Towards Multivariate Regression_en.srt
19.6 kB
05 - Getting Started with Gradient Descent/007 Gradient Descent in Action_en.srt
19.1 kB
05 - Getting Started with Gradient Descent/012 Multiple Terms in Action_en.srt
17.4 kB
11 - Multi-Value Classification/009 Marginal vs Conditional Probability_en.srt
16.6 kB
02 - Algorithm Overview/016 N-Dimension Distance_en.srt
16.4 kB
11 - Multi-Value Classification/004 A Single Instance Approach_en.srt
16.2 kB
05 - Getting Started with Gradient Descent/004 Guessing Coefficients with MSE_en.srt
16.2 kB
06 - Gradient Descent with Tensorflow/008 Interpreting Results_en.srt
16.1 kB
04 - Applications of Tensorflow/008 Loading CSV Data_en.srt
16.1 kB
01 - What is Machine Learning/005 A Complete Walkthrough_en.srt
15.8 kB
02 - Algorithm Overview/002 Lodash Review_en.srt
15.8 kB
06 - Gradient Descent with Tensorflow/012 Simplification with Matrix Multiplication_en.srt
15.4 kB
04 - Applications of Tensorflow/003 KNN with Tensorflow_en.srt
15.4 kB
06 - Gradient Descent with Tensorflow/005 Initial Gradient Descent Implementation_en.srt
14.7 kB
07 - Increasing Performance with Vectorized Solutions/002 Refactoring to One Equation_en.srt
14.4 kB
13 - Performance Optimization/006 Measuring Memory Usage_en.srt
14.2 kB
07 - Increasing Performance with Vectorized Solutions/005 Calculating Model Accuracy_en.srt
14.0 kB
02 - Algorithm Overview/017 Arbitrary Feature Spaces_en.srt
14.0 kB
02 - Algorithm Overview/001 How K-Nearest Neighbor Works_en.srt
13.9 kB
06 - Gradient Descent with Tensorflow/003 Default Algorithm Options_en.srt
13.5 kB
02 - Algorithm Overview/022 Feature Selection with KNN_en.srt
13.4 kB
12 - Image Recognition In Action/008 Debugging the Calculation Process_en.srt
13.3 kB
07 - Increasing Performance with Vectorized Solutions/015 Learning Rate Optimization_en.srt
13.1 kB
09 - Gradient Descent Alterations/004 Iterating Over Batches_en.srt
12.9 kB
04 - Applications of Tensorflow/005 Sorting Tensors_en.srt
12.8 kB
10 - Natural Binary Classification/005 Decision Boundaries_en.srt
12.8 kB
09 - Gradient Descent Alterations/006 Making Predictions with the Model_en.srt
12.7 kB
03 - Onwards to Tensorflow JS!/011 Massaging Dimensions with ExpandDims_en.srt
12.7 kB
14 - Appendix Custom CSV Loader/010 Splitting Test and Training_en.srt
12.7 kB
03 - Onwards to Tensorflow JS!/004 Elementwise Operations_en.srt
12.6 kB
03 - Onwards to Tensorflow JS!/001 Let's Get Our Bearings_en.srt
12.6 kB
07 - Increasing Performance with Vectorized Solutions/007 Dealing with Bad Accuracy_en.srt
12.5 kB
07 - Increasing Performance with Vectorized Solutions/014 Refactoring for Multivariate Analysis_en.srt
12.4 kB
07 - Increasing Performance with Vectorized Solutions/001 Refactoring the Linear Regression Class_en.srt
12.4 kB
02 - Algorithm Overview/019 Feature Normalization_en.srt
12.4 kB
04 - Applications of Tensorflow/012 Numerical Standardization with Tensorflow_en.srt
12.3 kB
10 - Natural Binary Classification/013 A Touch More Refactoring_en.srt
12.2 kB
04 - Applications of Tensorflow/011 Normalization or Standardization_en.srt
12.1 kB
03 - Onwards to Tensorflow JS!/008 Creating Slices of Data_en.srt
12.1 kB
07 - Increasing Performance with Vectorized Solutions/006 Implementing Coefficient of Determination_en.srt
12.0 kB
09 - Gradient Descent Alterations/001 Batch and Stochastic Gradient Descent_en.srt
11.7 kB
06 - Gradient Descent with Tensorflow/009 Matrix Multiplication_en.srt
11.6 kB
05 - Getting Started with Gradient Descent/006 Derivatives!_en.srt
11.4 kB
10 - Natural Binary Classification/002 Logistic Regression in Action_en.srt
11.2 kB
03 - Onwards to Tensorflow JS!/005 Broadcasting Operations_en.srt
11.0 kB
02 - Algorithm Overview/020 Normalization with MinMax_en.srt
10.9 kB
04 - Applications of Tensorflow/004 Maintaining Order Relationships_en.srt
10.8 kB
02 - Algorithm Overview/014 Updating KNN for Multiple Features_en.srt
10.8 kB
02 - Algorithm Overview/003 Implementing KNN_en.srt
10.7 kB
07 - Increasing Performance with Vectorized Solutions/017 Updating Learning Rate_en.srt
10.6 kB
11 - Multi-Value Classification/010 Sigmoid vs Softmax_en.srt
10.5 kB
13 - Performance Optimization/004 The Javascript Garbage Collector_en.srt
10.4 kB
07 - Increasing Performance with Vectorized Solutions/003 A Few More Changes_en.srt
10.3 kB
12 - Image Recognition In Action/009 Dealing with Zero Variances_en.srt
10.3 kB
04 - Applications of Tensorflow/010 Reporting Error Percentages_en.srt
10.2 kB
06 - Gradient Descent with Tensorflow/006 Calculating MSE Slopes_en.srt
9.9 kB
06 - Gradient Descent with Tensorflow/011 Matrix Form of Slope Equations_en.srt
9.8 kB
01 - What is Machine Learning/004 Solving Machine Learning Problems_en.srt
9.8 kB
06 - Gradient Descent with Tensorflow/001 Project Overview_en.srt
9.7 kB
12 - Image Recognition In Action/005 Encoding Label Values_en.srt
9.7 kB
09 - Gradient Descent Alterations/005 Evaluating Batch Gradient Descent Results_en.srt
9.6 kB
13 - Performance Optimization/005 Shallow vs Retained Memory Usage_en.srt
9.6 kB
05 - Getting Started with Gradient Descent/005 Observations Around MSE_en.srt
9.5 kB
01 - What is Machine Learning/009 Dataset Structures_en.srt
9.5 kB
09 - Gradient Descent Alterations/003 Determining Batch Size and Quantity_en.srt
9.5 kB
10 - Natural Binary Classification/007 Project Setup for Logistic Regression_en.srt
9.4 kB
07 - Increasing Performance with Vectorized Solutions/011 Fixing Standardization Issues_en.srt
9.4 kB
10 - Natural Binary Classification/017 Mean Squared Error vs Cross Entropy_en.srt
9.4 kB
02 - Algorithm Overview/018 Magnitude Offsets in Features_en.srt
9.3 kB
03 - Onwards to Tensorflow JS!/007 Tensor Accessors_en.srt
9.1 kB
02 - Algorithm Overview/004 Finishing KNN Implementation_en.srt
9.1 kB
14 - Appendix Custom CSV Loader/009 Shuffling Data via Seed Phrase_en.srt
9.0 kB
10 - Natural Binary Classification/003 Bad Equation Fits_en.srt
9.0 kB
10 - Natural Binary Classification/015 Implementing a Test Function_en.srt
8.9 kB
03 - Onwards to Tensorflow JS!/009 Tensor Concatenation_en.srt
8.9 kB
07 - Increasing Performance with Vectorized Solutions/010 Reapplying Standardization_en.srt
8.9 kB
11 - Multi-Value Classification/002 A Smart Refactor to Multinominal Analysis_en.srt
8.7 kB
08 - Plotting Data with Javascript/002 Plotting MSE Values_en.srt
8.6 kB
04 - Applications of Tensorflow/001 KNN with Regression_en.srt
8.4 kB
03 - Onwards to Tensorflow JS!/010 Summing Values Along an Axis_en.srt
8.4 kB
13 - Performance Optimization/003 Creating Memory Snapshots_en.srt
8.4 kB
07 - Increasing Performance with Vectorized Solutions/016 Recording MSE History_en.srt
8.4 kB
14 - Appendix Custom CSV Loader/008 Extracting Data Columns_en.srt
8.3 kB
02 - Algorithm Overview/010 Gauging Accuracy_en.srt
8.3 kB
12 - Image Recognition In Action/002 Greyscale Values_en.srt
8.2 kB
01 - What is Machine Learning/011 What Type of Problem_en.srt
8.1 kB
05 - Getting Started with Gradient Descent/002 Why Linear Regression_en.srt
8.0 kB
02 - Algorithm Overview/012 Refactoring Accuracy Reporting_en.srt
8.0 kB
11 - Multi-Value Classification/011 Refactoring Sigmoid to Softmax_en.srt
7.9 kB
06 - Gradient Descent with Tensorflow/002 Data Loading_en.srt
7.9 kB
13 - Performance Optimization/019 Fixing Cost History_en.srt
7.9 kB
03 - Onwards to Tensorflow JS!/002 A Plan to Move Forward_en.srt
7.9 kB
13 - Performance Optimization/002 Minimizing Memory Usage_en.srt
7.7 kB
11 - Multi-Value Classification/005 Refactoring to Multi-Column Weights_en.srt
7.7 kB
05 - Getting Started with Gradient Descent/011 Gradient Descent with Multiple Terms_en.srt
7.6 kB
02 - Algorithm Overview/005 Testing the Algorithm_en.srt
7.6 kB
13 - Performance Optimization/010 Tensorflow's Eager Memory Usage_en.srt
7.6 kB
10 - Natural Binary Classification/004 The Sigmoid Equation_en.srt
7.5 kB
11 - Multi-Value Classification/006 A Problem to Test Multinominal Classification_en.srt
7.5 kB
13 - Performance Optimization/001 Handing Large Datasets_en.srt
7.4 kB
10 - Natural Binary Classification/012 The Sigmoid Equation with Logistic Regression_en.srt
7.4 kB
07 - Increasing Performance with Vectorized Solutions/008 Reminder on Standardization_en.srt
7.3 kB
02 - Algorithm Overview/021 Applying Normalization_en.srt
7.3 kB
13 - Performance Optimization/018 NaN in Cost History_en.srt
7.3 kB
01 - What is Machine Learning/008 Identifying Relevant Data_en.srt
7.0 kB
08 - Plotting Data with Javascript/001 Observing Changing Learning Rate and MSE_en.srt
7.0 kB
13 - Performance Optimization/017 Plotting Cost History_en.srt
7.0 kB
13 - Performance Optimization/021 Improving Model Accuracy_en.srt
7.0 kB
10 - Natural Binary Classification/019 Finishing the Cost Refactor_en.srt
6.9 kB
03 - Onwards to Tensorflow JS!/006 Logging Tensor Data_en.srt
6.9 kB
04 - Applications of Tensorflow/013 Applying Standardization_en.srt
6.8 kB
14 - Appendix Custom CSV Loader/007 Custom Value Parsing_en.srt
6.8 kB
02 - Algorithm Overview/006 Interpreting Bad Results_en.srt
6.8 kB
04 - Applications of Tensorflow/002 A Change in Data Structure_en.srt
6.8 kB
02 - Algorithm Overview/015 Multi-Dimensional KNN_en.srt
6.6 kB
13 - Performance Optimization/008 Measuring Footprint Reduction_en.srt
6.6 kB
04 - Applications of Tensorflow/015 What Now_en.srt
6.6 kB
02 - Algorithm Overview/007 Test and Training Data_en.srt
6.4 kB
13 - Performance Optimization/013 Tidying the Training Loop_en.srt
6.3 kB
05 - Getting Started with Gradient Descent/010 Answering Common Questions_en.srt
6.3 kB
11 - Multi-Value Classification/003 A Smarter Refactor!_en.srt
6.0 kB
02 - Algorithm Overview/008 Randomizing Test Data_en.srt
6.0 kB
02 - Algorithm Overview/009 Generalizing KNN_en.srt
6.0 kB
07 - Increasing Performance with Vectorized Solutions/004 Same Results Or Not_en.srt
5.8 kB
10 - Natural Binary Classification/020 Plotting Changing Cost History_en.srt
5.8 kB
07 - Increasing Performance with Vectorized Solutions/009 Data Processing in a Helper Method_en.srt
5.7 kB
10 - Natural Binary Classification/014 Gauging Classification Accuracy_en.srt
5.7 kB
14 - Appendix Custom CSV Loader/006 Parsing Number Values_en.srt
5.5 kB
12 - Image Recognition In Action/003 Many Features_en.srt
5.5 kB
04 - Applications of Tensorflow/007 Moving to the Editor_en.srt
5.4 kB
02 - Algorithm Overview/011 Printing a Report_en.srt
5.3 kB
01 - What is Machine Learning/007 Problem Outline_en.srt
5.2 kB
06 - Gradient Descent with Tensorflow/007 Updating Coefficients_en.srt
5.2 kB
11 - Multi-Value Classification/013 Calculating Accuracy_en.srt
5.1 kB
06 - Gradient Descent with Tensorflow/004 Formulating the Training Loop_en.srt
5.1 kB
13 - Performance Optimization/007 Releasing References_en.srt
5.0 kB
05 - Getting Started with Gradient Descent/001 Linear Regression_en.srt
4.7 kB
02 - Algorithm Overview/024 Evaluating Different Feature Values_en.srt
4.6 kB
13 - Performance Optimization/011 Cleaning up Tensors with Tidy_en.srt
4.5 kB
12 - Image Recognition In Action/010 Backfilling Variance_en.srt
4.2 kB
10 - Natural Binary Classification/001 Introducing Logistic Regression_en.srt
4.2 kB
13 - Performance Optimization/015 One More Optimization_en.srt
4.0 kB
14 - Appendix Custom CSV Loader/005 Dropping Trailing Columns_en.srt
3.9 kB
11 - Multi-Value Classification/001 Multinominal Logistic Regression_en.srt
3.8 kB
12 - Image Recognition In Action/001 Handwriting Recognition_en.srt
3.8 kB
15 - Extras/001 Bonus!.html
3.7 kB
14 - Appendix Custom CSV Loader/001 Loading CSV Files_en.srt
3.6 kB
12 - Image Recognition In Action/007 Unchanging Accuracy_en.srt
3.3 kB
14 - Appendix Custom CSV Loader/002 A Test Dataset_en.srt
3.1 kB
13 - Performance Optimization/009 Optimization Tensorflow Memory Usage_en.srt
2.9 kB
13 - Performance Optimization/020 Massaging Learning Parameters_en.srt
2.8 kB
13 - Performance Optimization/014 Measuring Reduced Memory Usage_en.srt
2.5 kB
10 - Natural Binary Classification/006 Changes for Logistic Regression_en.srt
2.1 kB
01 - What is Machine Learning/001 Getting Started - How to Get Help_en.srt
2.0 kB
01 - What is Machine Learning/002 Course Resources.html
1.4 kB
01 - What is Machine Learning/003 Join Our Community!.html
318 Bytes
10 - Natural Binary Classification/008 Project Download.html
213 Bytes
0. Websites you may like/[FreeCourseSite.com].url
127 Bytes
02 - Algorithm Overview/0. Websites you may like/[FreeCourseSite.com].url
127 Bytes
09 - Gradient Descent Alterations/0. Websites you may like/[FreeCourseSite.com].url
127 Bytes
13 - Performance Optimization/0. Websites you may like/[FreeCourseSite.com].url
127 Bytes
0. Websites you may like/[CourseClub.Me].url
122 Bytes
02 - Algorithm Overview/0. Websites you may like/[CourseClub.Me].url
122 Bytes
09 - Gradient Descent Alterations/0. Websites you may like/[CourseClub.Me].url
122 Bytes
13 - Performance Optimization/0. Websites you may like/[CourseClub.Me].url
122 Bytes
0. Websites you may like/[GigaCourse.Com].url
49 Bytes
02 - Algorithm Overview/0. Websites you may like/[GigaCourse.Com].url
49 Bytes
09 - Gradient Descent Alterations/0. Websites you may like/[GigaCourse.Com].url
49 Bytes
13 - Performance Optimization/0. Websites you may like/[GigaCourse.Com].url
49 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!