MuerBT磁力搜索 BT种子搜索利器 免费下载BT种子,超5000万条种子数据

[FreeCourseSite.com] Udemy - Machine Learning with Javascript

磁力链接/BT种子名称

[FreeCourseSite.com] Udemy - Machine Learning with Javascript

磁力链接/BT种子简介

种子哈希:c3d9a51856dd6f9f28d7d0cff6db01aee7b78410
文件大小: 6.75G
已经下载:1557次
下载速度:极快
收录时间:2024-01-13
最近下载:2025-09-17

移花宫入口

移花宫.com邀月.com怜星.com花无缺.comyhgbt.icuyhgbt.top

磁力链接下载

magnet:?xt=urn:btih:C3D9A51856DD6F9F28D7D0CFF6DB01AEE7B78410
推荐使用PIKPAK网盘下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看

下载BT种子文件

磁力链接 迅雷下载 PIKPAK在线播放 世界之窗 91视频 含羞草 欲漫涩 逼哩逼哩 成人快手 51品茶 抖阴破解版 极乐禁地 91短视频 暗网Xvideo TikTok成人版 PornHub 听泉鉴鲍 少女日记 草榴社区 哆哔涩漫 呦乐园 萝莉岛 悠悠禁区 悠悠禁区 拔萝卜 疯马秀

最近搜索

小二 推特+上班穿搭 风韵御姐 唐伯虎白虎萝莉 我本初中+无密码 娘男 jezabel 日本女优+无码 巨乳风骚+摇着鸡巴 生变态 【ntr淫妻】 二龙潭 极品气质人妻 fkru-013 kfc坐 中学 waaa-112 扣扣传媒+ 学姐呻吟 mida-048 长生 高起强 狗 绳精 萝莉白袜 深春 站街女出租屋 露出小母狗 chowshow+upscaled++pixeldrain 修復

文件列表

  • 05 - Getting Started with Gradient Descent/009 Why a Learning Rate.mp4 155.7 MB
  • 02 - Algorithm Overview/013 Investigating Optimal K Values.mp4 117.9 MB
  • 06 - Gradient Descent with Tensorflow/013 How it All Works Together!.mp4 115.9 MB
  • 05 - Getting Started with Gradient Descent/012 Multiple Terms in Action.mp4 108.3 MB
  • 06 - Gradient Descent with Tensorflow/008 Interpreting Results.mp4 94.0 MB
  • 05 - Getting Started with Gradient Descent/007 Gradient Descent in Action.mp4 93.5 MB
  • 13 - Performance Optimization/006 Measuring Memory Usage.mp4 90.0 MB
  • 07 - Increasing Performance with Vectorized Solutions/013 Moving Towards Multivariate Regression.mp4 89.1 MB
  • 10 - Natural Binary Classification/013 A Touch More Refactoring.mp4 82.5 MB
  • 04 - Applications of Tensorflow/011 Normalization or Standardization.mp4 81.7 MB
  • 05 - Getting Started with Gradient Descent/003 Understanding Gradient Descent.mp4 81.7 MB
  • 12 - Image Recognition In Action/008 Debugging the Calculation Process.mp4 81.4 MB
  • 04 - Applications of Tensorflow/014 Debugging Calculations.mp4 78.7 MB
  • 11 - Multi-Value Classification/004 A Single Instance Approach.mp4 78.0 MB
  • 07 - Increasing Performance with Vectorized Solutions/014 Refactoring for Multivariate Analysis.mp4 75.9 MB
  • 05 - Getting Started with Gradient Descent/004 Guessing Coefficients with MSE.mp4 74.3 MB
  • 03 - Onwards to Tensorflow JS!/003 Tensor Shape and Dimension.mp4 73.7 MB
  • 02 - Algorithm Overview/001 How K-Nearest Neighbor Works.mp4 73.1 MB
  • 04 - Applications of Tensorflow/008 Loading CSV Data.mp4 72.2 MB
  • 11 - Multi-Value Classification/009 Marginal vs Conditional Probability.mp4 71.7 MB
  • 06 - Gradient Descent with Tensorflow/005 Initial Gradient Descent Implementation.mp4 71.0 MB
  • 07 - Increasing Performance with Vectorized Solutions/002 Refactoring to One Equation.mp4 66.9 MB
  • 09 - Gradient Descent Alterations/001 Batch and Stochastic Gradient Descent.mp4 66.8 MB
  • 01 - What is Machine Learning/005 A Complete Walkthrough.mp4 66.4 MB
  • 01 - What is Machine Learning/004 Solving Machine Learning Problems.mp4 65.8 MB
  • 12 - Image Recognition In Action/006 Implementing an Accuracy Gauge.mp4 65.2 MB
  • 06 - Gradient Descent with Tensorflow/012 Simplification with Matrix Multiplication.mp4 63.7 MB
  • 04 - Applications of Tensorflow/003 KNN with Tensorflow.mp4 62.4 MB
  • 02 - Algorithm Overview/016 N-Dimension Distance.mp4 62.4 MB
  • 02 - Algorithm Overview/003 Implementing KNN.mp4 62.2 MB
  • 07 - Increasing Performance with Vectorized Solutions/003 A Few More Changes.mp4 61.4 MB
  • 10 - Natural Binary Classification/016 Variable Decision Boundaries.mp4 61.3 MB
  • 02 - Algorithm Overview/017 Arbitrary Feature Spaces.mp4 60.9 MB
  • 07 - Increasing Performance with Vectorized Solutions/007 Dealing with Bad Accuracy.mp4 60.5 MB
  • 02 - Algorithm Overview/022 Feature Selection with KNN.mp4 60.1 MB
  • 07 - Increasing Performance with Vectorized Solutions/005 Calculating Model Accuracy.mp4 59.2 MB
  • 02 - Algorithm Overview/020 Normalization with MinMax.mp4 57.0 MB
  • 10 - Natural Binary Classification/011 Updating Linear Regression for Logistic Regression.mp4 56.9 MB
  • 02 - Algorithm Overview/019 Feature Normalization.mp4 56.7 MB
  • 09 - Gradient Descent Alterations/003 Determining Batch Size and Quantity.mp4 56.5 MB
  • 07 - Increasing Performance with Vectorized Solutions/015 Learning Rate Optimization.mp4 55.6 MB
  • 06 - Gradient Descent with Tensorflow/006 Calculating MSE Slopes.mp4 53.5 MB
  • 09 - Gradient Descent Alterations/005 Evaluating Batch Gradient Descent Results.mp4 53.2 MB
  • 14 - Appendix Custom CSV Loader/008 Extracting Data Columns.mp4 53.1 MB
  • 07 - Increasing Performance with Vectorized Solutions/010 Reapplying Standardization.mp4 52.6 MB
  • 02 - Algorithm Overview/014 Updating KNN for Multiple Features.mp4 51.2 MB
  • 14 - Appendix Custom CSV Loader/010 Splitting Test and Training.mp4 50.7 MB
  • 02 - Algorithm Overview/002 Lodash Review.mp4 50.6 MB
  • 01 - What is Machine Learning/009 Dataset Structures.mp4 50.6 MB
  • 04 - Applications of Tensorflow/006 Averaging Top Values.mp4 49.8 MB
  • 07 - Increasing Performance with Vectorized Solutions/006 Implementing Coefficient of Determination.mp4 49.8 MB
  • 10 - Natural Binary Classification/007 Project Setup for Logistic Regression.mp4 49.2 MB
  • 03 - Onwards to Tensorflow JS!/001 Let's Get Our Bearings.mp4 49.1 MB
  • 13 - Performance Optimization/005 Shallow vs Retained Memory Usage.mp4 48.9 MB
  • 02 - Algorithm Overview/018 Magnitude Offsets in Features.mp4 48.5 MB
  • 02 - Algorithm Overview/010 Gauging Accuracy.mp4 48.2 MB
  • 07 - Increasing Performance with Vectorized Solutions/001 Refactoring the Linear Regression Class.mp4 48.1 MB
  • 02 - Algorithm Overview/005 Testing the Algorithm.mp4 47.1 MB
  • 11 - Multi-Value Classification/010 Sigmoid vs Softmax.mp4 46.8 MB
  • 06 - Gradient Descent with Tensorflow/010 More on Matrix Multiplication.mp4 45.7 MB
  • 10 - Natural Binary Classification/017 Mean Squared Error vs Cross Entropy.mp4 45.7 MB
  • 13 - Performance Optimization/017 Plotting Cost History.mp4 45.4 MB
  • 03 - Onwards to Tensorflow JS!/004 Elementwise Operations.mp4 45.3 MB
  • 10 - Natural Binary Classification/019 Finishing the Cost Refactor.mp4 44.2 MB
  • 11 - Multi-Value Classification/011 Refactoring Sigmoid to Softmax.mp4 43.8 MB
  • 11 - Multi-Value Classification/008 Training a Multinominal Model.mp4 43.2 MB
  • 13 - Performance Optimization/013 Tidying the Training Loop.mp4 43.1 MB
  • 07 - Increasing Performance with Vectorized Solutions/011 Fixing Standardization Issues.mp4 43.0 MB
  • 04 - Applications of Tensorflow/010 Reporting Error Percentages.mp4 42.7 MB
  • 04 - Applications of Tensorflow/012 Numerical Standardization with Tensorflow.mp4 42.1 MB
  • 08 - Plotting Data with Javascript/002 Plotting MSE Values.mp4 41.6 MB
  • 05 - Getting Started with Gradient Descent/008 Quick Breather and Review.mp4 40.9 MB
  • 02 - Algorithm Overview/009 Generalizing KNN.mp4 40.9 MB
  • 02 - Algorithm Overview/021 Applying Normalization.mp4 40.8 MB
  • 12 - Image Recognition In Action/002 Greyscale Values.mp4 40.3 MB
  • 12 - Image Recognition In Action/005 Encoding Label Values.mp4 40.1 MB
  • 10 - Natural Binary Classification/018 Refactoring with Cross Entropy.mp4 40.1 MB
  • 02 - Algorithm Overview/004 Finishing KNN Implementation.mp4 39.8 MB
  • 12 - Image Recognition In Action/004 Flattening Image Data.mp4 38.8 MB
  • 03 - Onwards to Tensorflow JS!/002 A Plan to Move Forward.mp4 38.7 MB
  • 12 - Image Recognition In Action/003 Many Features.mp4 38.5 MB
  • 04 - Applications of Tensorflow/013 Applying Standardization.mp4 38.3 MB
  • 08 - Plotting Data with Javascript/003 Plotting MSE History against B Values.mp4 37.9 MB
  • 04 - Applications of Tensorflow/004 Maintaining Order Relationships.mp4 37.9 MB
  • 13 - Performance Optimization/018 NaN in Cost History.mp4 37.6 MB
  • 08 - Plotting Data with Javascript/001 Observing Changing Learning Rate and MSE.mp4 37.1 MB
  • 10 - Natural Binary Classification/005 Decision Boundaries.mp4 36.7 MB
  • 01 - What is Machine Learning/008 Identifying Relevant Data.mp4 35.6 MB
  • 09 - Gradient Descent Alterations/006 Making Predictions with the Model.mp4 35.5 MB
  • 02 - Algorithm Overview/012 Refactoring Accuracy Reporting.mp4 35.5 MB
  • 13 - Performance Optimization/021 Improving Model Accuracy.mp4 35.3 MB
  • 10 - Natural Binary Classification/003 Bad Equation Fits.mp4 35.2 MB
  • 10 - Natural Binary Classification/020 Plotting Changing Cost History.mp4 34.9 MB
  • 02 - Algorithm Overview/011 Printing a Report.mp4 34.9 MB
  • 10 - Natural Binary Classification/009 Importing Vehicle Data.mp4 34.7 MB
  • 14 - Appendix Custom CSV Loader/009 Shuffling Data via Seed Phrase.mp4 34.5 MB
  • 07 - Increasing Performance with Vectorized Solutions/016 Recording MSE History.mp4 34.3 MB
  • 02 - Algorithm Overview/015 Multi-Dimensional KNN.mp4 33.5 MB
  • 13 - Performance Optimization/007 Releasing References.mp4 33.4 MB
  • 06 - Gradient Descent with Tensorflow/009 Matrix Multiplication.mp4 32.1 MB
  • 13 - Performance Optimization/019 Fixing Cost History.mp4 32.1 MB
  • 10 - Natural Binary Classification/004 The Sigmoid Equation.mp4 31.8 MB
  • 11 - Multi-Value Classification/005 Refactoring to Multi-Column Weights.mp4 31.7 MB
  • 03 - Onwards to Tensorflow JS!/010 Summing Values Along an Axis.mp4 31.5 MB
  • 05 - Getting Started with Gradient Descent/002 Why Linear Regression.mp4 31.4 MB
  • 10 - Natural Binary Classification/010 Encoding Label Values.mp4 31.3 MB
  • 05 - Getting Started with Gradient Descent/010 Answering Common Questions.mp4 31.3 MB
  • 04 - Applications of Tensorflow/005 Sorting Tensors.mp4 30.9 MB
  • 11 - Multi-Value Classification/006 A Problem to Test Multinominal Classification.mp4 30.2 MB
  • 11 - Multi-Value Classification/003 A Smarter Refactor!.mp4 29.9 MB
  • 02 - Algorithm Overview/023 Objective Feature Picking.mp4 29.8 MB
  • 03 - Onwards to Tensorflow JS!/008 Creating Slices of Data.mp4 29.3 MB
  • 07 - Increasing Performance with Vectorized Solutions/017 Updating Learning Rate.mp4 29.3 MB
  • 03 - Onwards to Tensorflow JS!/009 Tensor Concatenation.mp4 29.2 MB
  • 02 - Algorithm Overview/007 Test and Training Data.mp4 28.7 MB
  • 03 - Onwards to Tensorflow JS!/011 Massaging Dimensions with ExpandDims.mp4 28.5 MB
  • 13 - Performance Optimization/008 Measuring Footprint Reduction.mp4 28.2 MB
  • 04 - Applications of Tensorflow/007 Moving to the Editor.mp4 28.1 MB
  • 06 - Gradient Descent with Tensorflow/003 Default Algorithm Options.mp4 27.9 MB
  • 09 - Gradient Descent Alterations/004 Iterating Over Batches.mp4 27.7 MB
  • 06 - Gradient Descent with Tensorflow/007 Updating Coefficients.mp4 27.3 MB
  • 02 - Algorithm Overview/006 Interpreting Bad Results.mp4 26.9 MB
  • 06 - Gradient Descent with Tensorflow/001 Project Overview.mp4 26.2 MB
  • 03 - Onwards to Tensorflow JS!/005 Broadcasting Operations.mp4 25.4 MB
  • 14 - Appendix Custom CSV Loader/006 Parsing Number Values.mp4 25.2 MB
  • 09 - Gradient Descent Alterations/002 Refactoring Towards Batch Gradient Descent.mp4 24.7 MB
  • 07 - Increasing Performance with Vectorized Solutions/009 Data Processing in a Helper Method.mp4 24.6 MB
  • 10 - Natural Binary Classification/012 The Sigmoid Equation with Logistic Regression.mp4 24.4 MB
  • 12 - Image Recognition In Action/009 Dealing with Zero Variances.mp4 24.1 MB
  • 01 - What is Machine Learning/007 Problem Outline.mp4 24.0 MB
  • 07 - Increasing Performance with Vectorized Solutions/012 Massaging Learning Rates.mp4 23.9 MB
  • 06 - Gradient Descent with Tensorflow/011 Matrix Form of Slope Equations.mp4 23.8 MB
  • 13 - Performance Optimization/004 The Javascript Garbage Collector.mp4 23.7 MB
  • 10 - Natural Binary Classification/014 Gauging Classification Accuracy.mp4 23.4 MB
  • 11 - Multi-Value Classification/012 Implementing Accuracy Gauges.mp4 23.1 MB
  • 13 - Performance Optimization/003 Creating Memory Snapshots.mp4 22.8 MB
  • 13 - Performance Optimization/015 One More Optimization.mp4 22.5 MB
  • 05 - Getting Started with Gradient Descent/005 Observations Around MSE.mp4 22.5 MB
  • 13 - Performance Optimization/016 Final Memory Report.mp4 22.1 MB
  • 02 - Algorithm Overview/024 Evaluating Different Feature Values.mp4 22.0 MB
  • 04 - Applications of Tensorflow/009 Running an Analysis.mp4 21.8 MB
  • 05 - Getting Started with Gradient Descent/006 Derivatives!.mp4 21.7 MB
  • 13 - Performance Optimization/010 Tensorflow's Eager Memory Usage.mp4 21.1 MB
  • 10 - Natural Binary Classification/015 Implementing a Test Function.mp4 21.0 MB
  • 11 - Multi-Value Classification/007 Classifying Continuous Values.mp4 20.6 MB
  • 06 - Gradient Descent with Tensorflow/002 Data Loading.mp4 20.5 MB
  • 04 - Applications of Tensorflow/001 KNN with Regression.mp4 19.9 MB
  • 07 - Increasing Performance with Vectorized Solutions/008 Reminder on Standardization.mp4 19.7 MB
  • 13 - Performance Optimization/001 Handing Large Datasets.mp4 19.4 MB
  • 04 - Applications of Tensorflow/015 What Now.mp4 18.6 MB
  • 10 - Natural Binary Classification/002 Logistic Regression in Action.mp4 18.6 MB
  • 01 - What is Machine Learning/011 What Type of Problem.mp4 17.7 MB
  • 05 - Getting Started with Gradient Descent/011 Gradient Descent with Multiple Terms.mp4 17.6 MB
  • 12 - Image Recognition In Action/010 Backfilling Variance.mp4 17.3 MB
  • 13 - Performance Optimization/002 Minimizing Memory Usage.mp4 15.9 MB
  • 04 - Applications of Tensorflow/002 A Change in Data Structure.mp4 15.8 MB
  • 11 - Multi-Value Classification/002 A Smart Refactor to Multinominal Analysis.mp4 15.2 MB
  • 14 - Appendix Custom CSV Loader/007 Custom Value Parsing.mp4 14.7 MB
  • 13 - Performance Optimization/012 Implementing TF Tidy.mp4 14.3 MB
  • 13 - Performance Optimization/020 Massaging Learning Parameters.mp4 14.2 MB
  • 02 - Algorithm Overview/008 Randomizing Test Data.mp4 14.1 MB
  • 01 - What is Machine Learning/010 Recording Observation Data.mp4 13.3 MB
  • 07 - Increasing Performance with Vectorized Solutions/004 Same Results Or Not.mp4 12.6 MB
  • 11 - Multi-Value Classification/013 Calculating Accuracy.mp4 12.2 MB
  • 13 - Performance Optimization/009 Optimization Tensorflow Memory Usage.mp4 12.0 MB
  • 13 - Performance Optimization/014 Measuring Reduced Memory Usage.mp4 11.5 MB
  • 03 - Onwards to Tensorflow JS!/007 Tensor Accessors.mp4 11.5 MB
  • 03 - Onwards to Tensorflow JS!/006 Logging Tensor Data.mp4 11.2 MB
  • 05 - Getting Started with Gradient Descent/001 Linear Regression.mp4 10.2 MB
  • 13 - Performance Optimization/011 Cleaning up Tensors with Tidy.mp4 9.9 MB
  • 10 - Natural Binary Classification/001 Introducing Logistic Regression.mp4 9.4 MB
  • 06 - Gradient Descent with Tensorflow/004 Formulating the Training Loop.mp4 9.1 MB
  • 12 - Image Recognition In Action/001 Handwriting Recognition.mp4 8.8 MB
  • 01 - What is Machine Learning/001 Getting Started - How to Get Help.mp4 8.8 MB
  • 01 - What is Machine Learning/006 App Setup.mp4 8.5 MB
  • 14 - Appendix Custom CSV Loader/005 Dropping Trailing Columns.mp4 8.0 MB
  • 12 - Image Recognition In Action/007 Unchanging Accuracy.mp4 7.4 MB
  • 14 - Appendix Custom CSV Loader/004 Splitting into Columns.mp4 7.0 MB
  • 14 - Appendix Custom CSV Loader/003 Reading Files from Disk.mp4 6.9 MB
  • 11 - Multi-Value Classification/001 Multinominal Logistic Regression.mp4 6.9 MB
  • 14 - Appendix Custom CSV Loader/001 Loading CSV Files.mp4 6.3 MB
  • 14 - Appendix Custom CSV Loader/002 A Test Dataset.mp4 3.9 MB
  • 10 - Natural Binary Classification/006 Changes for Logistic Regression.mp4 3.6 MB
  • 01 - What is Machine Learning/002 diagrams.zip 808.8 kB
  • 10 - Natural Binary Classification/008 regressions.zip 35.1 kB
  • 05 - Getting Started with Gradient Descent/009 Why a Learning Rate_en.srt 27.2 kB
  • 06 - Gradient Descent with Tensorflow/013 How it All Works Together!_en.srt 22.5 kB
  • 05 - Getting Started with Gradient Descent/003 Understanding Gradient Descent_en.srt 20.6 kB
  • 03 - Onwards to Tensorflow JS!/003 Tensor Shape and Dimension_en.srt 20.0 kB
  • 07 - Increasing Performance with Vectorized Solutions/013 Moving Towards Multivariate Regression_en.srt 19.6 kB
  • 05 - Getting Started with Gradient Descent/007 Gradient Descent in Action_en.srt 19.1 kB
  • 05 - Getting Started with Gradient Descent/012 Multiple Terms in Action_en.srt 17.4 kB
  • 11 - Multi-Value Classification/009 Marginal vs Conditional Probability_en.srt 16.6 kB
  • 02 - Algorithm Overview/016 N-Dimension Distance_en.srt 16.4 kB
  • 11 - Multi-Value Classification/004 A Single Instance Approach_en.srt 16.2 kB
  • 05 - Getting Started with Gradient Descent/004 Guessing Coefficients with MSE_en.srt 16.2 kB
  • 06 - Gradient Descent with Tensorflow/008 Interpreting Results_en.srt 16.1 kB
  • 04 - Applications of Tensorflow/008 Loading CSV Data_en.srt 16.1 kB
  • 01 - What is Machine Learning/005 A Complete Walkthrough_en.srt 15.8 kB
  • 02 - Algorithm Overview/002 Lodash Review_en.srt 15.8 kB
  • 06 - Gradient Descent with Tensorflow/012 Simplification with Matrix Multiplication_en.srt 15.4 kB
  • 04 - Applications of Tensorflow/003 KNN with Tensorflow_en.srt 15.4 kB
  • 06 - Gradient Descent with Tensorflow/005 Initial Gradient Descent Implementation_en.srt 14.7 kB
  • 07 - Increasing Performance with Vectorized Solutions/002 Refactoring to One Equation_en.srt 14.4 kB
  • 13 - Performance Optimization/006 Measuring Memory Usage_en.srt 14.2 kB
  • 07 - Increasing Performance with Vectorized Solutions/005 Calculating Model Accuracy_en.srt 14.0 kB
  • 02 - Algorithm Overview/017 Arbitrary Feature Spaces_en.srt 14.0 kB
  • 02 - Algorithm Overview/001 How K-Nearest Neighbor Works_en.srt 13.9 kB
  • 06 - Gradient Descent with Tensorflow/003 Default Algorithm Options_en.srt 13.5 kB
  • 02 - Algorithm Overview/022 Feature Selection with KNN_en.srt 13.4 kB
  • 12 - Image Recognition In Action/008 Debugging the Calculation Process_en.srt 13.3 kB
  • 07 - Increasing Performance with Vectorized Solutions/015 Learning Rate Optimization_en.srt 13.1 kB
  • 09 - Gradient Descent Alterations/004 Iterating Over Batches_en.srt 12.9 kB
  • 04 - Applications of Tensorflow/005 Sorting Tensors_en.srt 12.8 kB
  • 10 - Natural Binary Classification/005 Decision Boundaries_en.srt 12.8 kB
  • 09 - Gradient Descent Alterations/006 Making Predictions with the Model_en.srt 12.7 kB
  • 03 - Onwards to Tensorflow JS!/011 Massaging Dimensions with ExpandDims_en.srt 12.7 kB
  • 14 - Appendix Custom CSV Loader/010 Splitting Test and Training_en.srt 12.7 kB
  • 03 - Onwards to Tensorflow JS!/004 Elementwise Operations_en.srt 12.6 kB
  • 03 - Onwards to Tensorflow JS!/001 Let's Get Our Bearings_en.srt 12.6 kB
  • 07 - Increasing Performance with Vectorized Solutions/007 Dealing with Bad Accuracy_en.srt 12.5 kB
  • 07 - Increasing Performance with Vectorized Solutions/014 Refactoring for Multivariate Analysis_en.srt 12.4 kB
  • 07 - Increasing Performance with Vectorized Solutions/001 Refactoring the Linear Regression Class_en.srt 12.4 kB
  • 02 - Algorithm Overview/019 Feature Normalization_en.srt 12.4 kB
  • 04 - Applications of Tensorflow/012 Numerical Standardization with Tensorflow_en.srt 12.3 kB
  • 10 - Natural Binary Classification/013 A Touch More Refactoring_en.srt 12.2 kB
  • 04 - Applications of Tensorflow/011 Normalization or Standardization_en.srt 12.1 kB
  • 03 - Onwards to Tensorflow JS!/008 Creating Slices of Data_en.srt 12.1 kB
  • 07 - Increasing Performance with Vectorized Solutions/006 Implementing Coefficient of Determination_en.srt 12.0 kB
  • 09 - Gradient Descent Alterations/001 Batch and Stochastic Gradient Descent_en.srt 11.7 kB
  • 06 - Gradient Descent with Tensorflow/009 Matrix Multiplication_en.srt 11.6 kB
  • 05 - Getting Started with Gradient Descent/006 Derivatives!_en.srt 11.4 kB
  • 10 - Natural Binary Classification/002 Logistic Regression in Action_en.srt 11.2 kB
  • 03 - Onwards to Tensorflow JS!/005 Broadcasting Operations_en.srt 11.0 kB
  • 02 - Algorithm Overview/020 Normalization with MinMax_en.srt 10.9 kB
  • 04 - Applications of Tensorflow/004 Maintaining Order Relationships_en.srt 10.8 kB
  • 02 - Algorithm Overview/014 Updating KNN for Multiple Features_en.srt 10.8 kB
  • 02 - Algorithm Overview/003 Implementing KNN_en.srt 10.7 kB
  • 07 - Increasing Performance with Vectorized Solutions/017 Updating Learning Rate_en.srt 10.6 kB
  • 11 - Multi-Value Classification/010 Sigmoid vs Softmax_en.srt 10.5 kB
  • 13 - Performance Optimization/004 The Javascript Garbage Collector_en.srt 10.4 kB
  • 07 - Increasing Performance with Vectorized Solutions/003 A Few More Changes_en.srt 10.3 kB
  • 12 - Image Recognition In Action/009 Dealing with Zero Variances_en.srt 10.3 kB
  • 04 - Applications of Tensorflow/010 Reporting Error Percentages_en.srt 10.2 kB
  • 06 - Gradient Descent with Tensorflow/006 Calculating MSE Slopes_en.srt 9.9 kB
  • 06 - Gradient Descent with Tensorflow/011 Matrix Form of Slope Equations_en.srt 9.8 kB
  • 01 - What is Machine Learning/004 Solving Machine Learning Problems_en.srt 9.8 kB
  • 06 - Gradient Descent with Tensorflow/001 Project Overview_en.srt 9.7 kB
  • 12 - Image Recognition In Action/005 Encoding Label Values_en.srt 9.7 kB
  • 09 - Gradient Descent Alterations/005 Evaluating Batch Gradient Descent Results_en.srt 9.6 kB
  • 13 - Performance Optimization/005 Shallow vs Retained Memory Usage_en.srt 9.6 kB
  • 05 - Getting Started with Gradient Descent/005 Observations Around MSE_en.srt 9.5 kB
  • 01 - What is Machine Learning/009 Dataset Structures_en.srt 9.5 kB
  • 09 - Gradient Descent Alterations/003 Determining Batch Size and Quantity_en.srt 9.5 kB
  • 10 - Natural Binary Classification/007 Project Setup for Logistic Regression_en.srt 9.4 kB
  • 07 - Increasing Performance with Vectorized Solutions/011 Fixing Standardization Issues_en.srt 9.4 kB
  • 10 - Natural Binary Classification/017 Mean Squared Error vs Cross Entropy_en.srt 9.4 kB
  • 02 - Algorithm Overview/018 Magnitude Offsets in Features_en.srt 9.3 kB
  • 03 - Onwards to Tensorflow JS!/007 Tensor Accessors_en.srt 9.1 kB
  • 02 - Algorithm Overview/004 Finishing KNN Implementation_en.srt 9.1 kB
  • 14 - Appendix Custom CSV Loader/009 Shuffling Data via Seed Phrase_en.srt 9.0 kB
  • 10 - Natural Binary Classification/003 Bad Equation Fits_en.srt 9.0 kB
  • 10 - Natural Binary Classification/015 Implementing a Test Function_en.srt 8.9 kB
  • 03 - Onwards to Tensorflow JS!/009 Tensor Concatenation_en.srt 8.9 kB
  • 07 - Increasing Performance with Vectorized Solutions/010 Reapplying Standardization_en.srt 8.9 kB
  • 11 - Multi-Value Classification/002 A Smart Refactor to Multinominal Analysis_en.srt 8.7 kB
  • 08 - Plotting Data with Javascript/002 Plotting MSE Values_en.srt 8.6 kB
  • 04 - Applications of Tensorflow/001 KNN with Regression_en.srt 8.4 kB
  • 03 - Onwards to Tensorflow JS!/010 Summing Values Along an Axis_en.srt 8.4 kB
  • 13 - Performance Optimization/003 Creating Memory Snapshots_en.srt 8.4 kB
  • 07 - Increasing Performance with Vectorized Solutions/016 Recording MSE History_en.srt 8.4 kB
  • 14 - Appendix Custom CSV Loader/008 Extracting Data Columns_en.srt 8.3 kB
  • 02 - Algorithm Overview/010 Gauging Accuracy_en.srt 8.3 kB
  • 12 - Image Recognition In Action/002 Greyscale Values_en.srt 8.2 kB
  • 01 - What is Machine Learning/011 What Type of Problem_en.srt 8.1 kB
  • 05 - Getting Started with Gradient Descent/002 Why Linear Regression_en.srt 8.0 kB
  • 02 - Algorithm Overview/012 Refactoring Accuracy Reporting_en.srt 8.0 kB
  • 11 - Multi-Value Classification/011 Refactoring Sigmoid to Softmax_en.srt 7.9 kB
  • 06 - Gradient Descent with Tensorflow/002 Data Loading_en.srt 7.9 kB
  • 13 - Performance Optimization/019 Fixing Cost History_en.srt 7.9 kB
  • 03 - Onwards to Tensorflow JS!/002 A Plan to Move Forward_en.srt 7.9 kB
  • 13 - Performance Optimization/002 Minimizing Memory Usage_en.srt 7.7 kB
  • 11 - Multi-Value Classification/005 Refactoring to Multi-Column Weights_en.srt 7.7 kB
  • 05 - Getting Started with Gradient Descent/011 Gradient Descent with Multiple Terms_en.srt 7.6 kB
  • 02 - Algorithm Overview/005 Testing the Algorithm_en.srt 7.6 kB
  • 13 - Performance Optimization/010 Tensorflow's Eager Memory Usage_en.srt 7.6 kB
  • 10 - Natural Binary Classification/004 The Sigmoid Equation_en.srt 7.5 kB
  • 11 - Multi-Value Classification/006 A Problem to Test Multinominal Classification_en.srt 7.5 kB
  • 13 - Performance Optimization/001 Handing Large Datasets_en.srt 7.4 kB
  • 10 - Natural Binary Classification/012 The Sigmoid Equation with Logistic Regression_en.srt 7.4 kB
  • 07 - Increasing Performance with Vectorized Solutions/008 Reminder on Standardization_en.srt 7.3 kB
  • 02 - Algorithm Overview/021 Applying Normalization_en.srt 7.3 kB
  • 13 - Performance Optimization/018 NaN in Cost History_en.srt 7.3 kB
  • 01 - What is Machine Learning/008 Identifying Relevant Data_en.srt 7.0 kB
  • 08 - Plotting Data with Javascript/001 Observing Changing Learning Rate and MSE_en.srt 7.0 kB
  • 13 - Performance Optimization/017 Plotting Cost History_en.srt 7.0 kB
  • 13 - Performance Optimization/021 Improving Model Accuracy_en.srt 7.0 kB
  • 10 - Natural Binary Classification/019 Finishing the Cost Refactor_en.srt 6.9 kB
  • 03 - Onwards to Tensorflow JS!/006 Logging Tensor Data_en.srt 6.9 kB
  • 04 - Applications of Tensorflow/013 Applying Standardization_en.srt 6.8 kB
  • 14 - Appendix Custom CSV Loader/007 Custom Value Parsing_en.srt 6.8 kB
  • 02 - Algorithm Overview/006 Interpreting Bad Results_en.srt 6.8 kB
  • 04 - Applications of Tensorflow/002 A Change in Data Structure_en.srt 6.8 kB
  • 02 - Algorithm Overview/015 Multi-Dimensional KNN_en.srt 6.6 kB
  • 13 - Performance Optimization/008 Measuring Footprint Reduction_en.srt 6.6 kB
  • 04 - Applications of Tensorflow/015 What Now_en.srt 6.6 kB
  • 02 - Algorithm Overview/007 Test and Training Data_en.srt 6.4 kB
  • 13 - Performance Optimization/013 Tidying the Training Loop_en.srt 6.3 kB
  • 05 - Getting Started with Gradient Descent/010 Answering Common Questions_en.srt 6.3 kB
  • 11 - Multi-Value Classification/003 A Smarter Refactor!_en.srt 6.0 kB
  • 02 - Algorithm Overview/008 Randomizing Test Data_en.srt 6.0 kB
  • 02 - Algorithm Overview/009 Generalizing KNN_en.srt 6.0 kB
  • 07 - Increasing Performance with Vectorized Solutions/004 Same Results Or Not_en.srt 5.8 kB
  • 10 - Natural Binary Classification/020 Plotting Changing Cost History_en.srt 5.8 kB
  • 07 - Increasing Performance with Vectorized Solutions/009 Data Processing in a Helper Method_en.srt 5.7 kB
  • 10 - Natural Binary Classification/014 Gauging Classification Accuracy_en.srt 5.7 kB
  • 14 - Appendix Custom CSV Loader/006 Parsing Number Values_en.srt 5.5 kB
  • 12 - Image Recognition In Action/003 Many Features_en.srt 5.5 kB
  • 04 - Applications of Tensorflow/007 Moving to the Editor_en.srt 5.4 kB
  • 02 - Algorithm Overview/011 Printing a Report_en.srt 5.3 kB
  • 01 - What is Machine Learning/007 Problem Outline_en.srt 5.2 kB
  • 06 - Gradient Descent with Tensorflow/007 Updating Coefficients_en.srt 5.2 kB
  • 11 - Multi-Value Classification/013 Calculating Accuracy_en.srt 5.1 kB
  • 06 - Gradient Descent with Tensorflow/004 Formulating the Training Loop_en.srt 5.1 kB
  • 13 - Performance Optimization/007 Releasing References_en.srt 5.0 kB
  • 05 - Getting Started with Gradient Descent/001 Linear Regression_en.srt 4.7 kB
  • 02 - Algorithm Overview/024 Evaluating Different Feature Values_en.srt 4.6 kB
  • 13 - Performance Optimization/011 Cleaning up Tensors with Tidy_en.srt 4.5 kB
  • 12 - Image Recognition In Action/010 Backfilling Variance_en.srt 4.2 kB
  • 10 - Natural Binary Classification/001 Introducing Logistic Regression_en.srt 4.2 kB
  • 13 - Performance Optimization/015 One More Optimization_en.srt 4.0 kB
  • 14 - Appendix Custom CSV Loader/005 Dropping Trailing Columns_en.srt 3.9 kB
  • 11 - Multi-Value Classification/001 Multinominal Logistic Regression_en.srt 3.8 kB
  • 12 - Image Recognition In Action/001 Handwriting Recognition_en.srt 3.8 kB
  • 15 - Extras/001 Bonus!.html 3.7 kB
  • 14 - Appendix Custom CSV Loader/001 Loading CSV Files_en.srt 3.6 kB
  • 12 - Image Recognition In Action/007 Unchanging Accuracy_en.srt 3.3 kB
  • 14 - Appendix Custom CSV Loader/002 A Test Dataset_en.srt 3.1 kB
  • 13 - Performance Optimization/009 Optimization Tensorflow Memory Usage_en.srt 2.9 kB
  • 13 - Performance Optimization/020 Massaging Learning Parameters_en.srt 2.8 kB
  • 13 - Performance Optimization/014 Measuring Reduced Memory Usage_en.srt 2.5 kB
  • 10 - Natural Binary Classification/006 Changes for Logistic Regression_en.srt 2.1 kB
  • 01 - What is Machine Learning/001 Getting Started - How to Get Help_en.srt 2.0 kB
  • 01 - What is Machine Learning/002 Course Resources.html 1.4 kB
  • 01 - What is Machine Learning/003 Join Our Community!.html 318 Bytes
  • 10 - Natural Binary Classification/008 Project Download.html 213 Bytes
  • 0. Websites you may like/[FreeCourseSite.com].url 127 Bytes
  • 02 - Algorithm Overview/0. Websites you may like/[FreeCourseSite.com].url 127 Bytes
  • 09 - Gradient Descent Alterations/0. Websites you may like/[FreeCourseSite.com].url 127 Bytes
  • 13 - Performance Optimization/0. Websites you may like/[FreeCourseSite.com].url 127 Bytes
  • 0. Websites you may like/[CourseClub.Me].url 122 Bytes
  • 02 - Algorithm Overview/0. Websites you may like/[CourseClub.Me].url 122 Bytes
  • 09 - Gradient Descent Alterations/0. Websites you may like/[CourseClub.Me].url 122 Bytes
  • 13 - Performance Optimization/0. Websites you may like/[CourseClub.Me].url 122 Bytes
  • 0. Websites you may like/[GigaCourse.Com].url 49 Bytes
  • 02 - Algorithm Overview/0. Websites you may like/[GigaCourse.Com].url 49 Bytes
  • 09 - Gradient Descent Alterations/0. Websites you may like/[GigaCourse.Com].url 49 Bytes
  • 13 - Performance Optimization/0. Websites you may like/[GigaCourse.Com].url 49 Bytes

随机展示

相关说明

本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!