搜索
[FreeCourseSite.com] Udemy - The Data Science Course 2022 Complete Data Science Bootcamp
磁力链接/BT种子名称
[FreeCourseSite.com] Udemy - The Data Science Course 2022 Complete Data Science Bootcamp
磁力链接/BT种子简介
种子哈希:
c48c0fc3ac45de1341e3e6786f3a5e00b0561062
文件大小:
7.79G
已经下载:
1773
次
下载速度:
极快
收录时间:
2022-01-30
最近下载:
2024-12-30
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:C48C0FC3AC45DE1341E3E6786F3A5E00B0561062
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
少女初夜
萝莉岛
最近搜索
红烧西蓝花
体术
微视频
小受 韩国
淫荡生物老师
9总探花之 一米八
impact+volume
丰润戴安娜两男两女4p啪啪,第一视角拍摄双女互舔
蜜桃涩
福清 护士
听水声
4ddig
97
偷偷拍女友
高潮继续
[影视]+09
连体黑丝自慰
好早
女健美
海棠风月
黑丝+巨乳
黄
透视黑
极品贤妻
网红女主播喜庆新年红衣款
眼镜+私拍
强行搭讪
jvid孫孫
探花郎李寻欢 初恋
3d 母
文件列表
12 - Probability - Distributions/015 A Practical Example of Probability Distributions.mp4
145.0 MB
11 - Probability - Bayesian Inference/012 A Practical Example of Bayesian Inference.mp4
131.6 MB
05 - The Field of Data Science - Popular Data Science Techniques/001 Techniques for Working with Traditional Data.mp4
110.6 MB
40 - Part 6_ Mathematics/011 Why is Linear Algebra Useful_.mp4
90.4 MB
35 - Advanced Statistical Methods - Practical Example_ Linear Regression/001 Practical Example_ Linear Regression (Part 1).mp4
89.0 MB
20 - Statistics - Hypothesis Testing/001 Null vs Alternative Hypothesis.mp4
84.8 MB
05 - The Field of Data Science - Popular Data Science Techniques/007 Techniques for Working with Traditional Methods.mp4
78.4 MB
55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/004 Business Case_ Preprocessing.mp4
78.0 MB
51 - Deep Learning - Business Case Example/004 Business Case_ Preprocessing the Data.mp4
77.4 MB
56 - Software Integration/003 Taking a Closer Look at APIs.mp4
68.5 MB
58 - Case Study - Preprocessing the 'Absenteeism_data'/011 Obtaining Dummies from a Single Feature.mp4
66.9 MB
05 - The Field of Data Science - Popular Data Science Techniques/010 Types of Machine Learning.mp4
64.8 MB
05 - The Field of Data Science - Popular Data Science Techniques/003 Techniques for Working with Big Data.mp4
63.4 MB
55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/001 Business Case_ Getting Acquainted with the Dataset.mp4
63.2 MB
56 - Software Integration/002 What are Data Connectivity, APIs, and Endpoints_.mp4
61.7 MB
55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/006 Creating a Data Provider.mp4
59.0 MB
02 - The Field of Data Science - The Various Data Science Disciplines/001 Data Science and Business Buzzwords_ Why are there so Many_.mp4
57.4 MB
58 - Case Study - Preprocessing the 'Absenteeism_data'/003 Checking the Content of the Data Set.mp4
56.9 MB
18 - Statistics - Inferential Statistics_ Confidence Intervals/002 Confidence Intervals; Population Variance Known; Z-score.mp4
54.7 MB
51 - Deep Learning - Business Case Example/001 Business Case_ Exploring the Dataset and Identifying Predictors.mp4
53.9 MB
05 - The Field of Data Science - Popular Data Science Techniques/005 Business Intelligence (BI) Techniques.mp4
53.8 MB
58 - Case Study - Preprocessing the 'Absenteeism_data'/016 Classifying the Various Reasons for Absence.mp4
53.8 MB
35 - Advanced Statistical Methods - Practical Example_ Linear Regression/008 Practical Example_ Linear Regression (Part 5).mp4
52.9 MB
02 - The Field of Data Science - The Various Data Science Disciplines/003 Business Analytics, Data Analytics, and Data Science_ An Introduction.mp4
52.4 MB
01 - Part 1_ Introduction/002 What Does the Course Cover.mp4
52.1 MB
05 - The Field of Data Science - Popular Data Science Techniques/009 Machine Learning (ML) Techniques.mp4
50.1 MB
18 - Statistics - Inferential Statistics_ Confidence Intervals/009 Confidence intervals. Two means. Dependent samples.mp4
47.2 MB
36 - Advanced Statistical Methods - Logistic Regression/003 Logistic vs Logit Function.mp4
46.1 MB
51 - Deep Learning - Business Case Example/009 Business Case_ Setting an Early Stopping Mechanism.mp4
45.9 MB
62 - Appendix - Additional Python Tools/005 List Comprehensions.mp4
45.3 MB
55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/007 Business Case_ Model Outline.mp4
44.5 MB
15 - Statistics - Descriptive Statistics/001 Types of Data.mp4
44.5 MB
10 - Probability - Combinatorics/011 A Practical Example of Combinatorics.mp4
44.3 MB
56 - Software Integration/005 Software Integration - Explained.mp4
44.0 MB
58 - Case Study - Preprocessing the 'Absenteeism_data'/007 Dropping a Column from a DataFrame in Python.mp4
43.3 MB
61 - Case Study - Analyzing the Predicted Outputs in Tableau/004 Analyzing Reasons vs Probability in Tableau.mp4
42.2 MB
58 - Case Study - Preprocessing the 'Absenteeism_data'/026 Analyzing the Dates from the Initial Data Set.mp4
42.1 MB
13 - Probability - Probability in Other Fields/001 Probability in Finance.mp4
41.6 MB
58 - Case Study - Preprocessing the 'Absenteeism_data'/027 Extracting the Month Value from the _Date_ Column.mp4
40.8 MB
61 - Case Study - Analyzing the Predicted Outputs in Tableau/002 Analyzing Age vs Probability in Tableau.mp4
40.6 MB
20 - Statistics - Hypothesis Testing/003 Rejection Region and Significance Level.mp4
40.1 MB
54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/009 MNIST_ Results and Testing.mp4
40.0 MB
63 - Appendix - pandas Fundamentals/010 Data Selection in pandas DataFrames.mp4
39.1 MB
16 - Statistics - Practical Example_ Descriptive Statistics/001 Practical Example_ Descriptive Statistics.mp4
39.0 MB
20 - Statistics - Hypothesis Testing/005 Test for the Mean. Population Variance Known.mp4
38.8 MB
15 - Statistics - Descriptive Statistics/003 Categorical Variables - Visualization Techniques.mp4
38.4 MB
38 - Advanced Statistical Methods - K-Means Clustering/013 How is Clustering Useful_.mp4
38.3 MB
09 - Part 2_ Probability/003 Frequency.mp4
38.2 MB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/005 Splitting the Data for Training and Testing.mp4
37.9 MB
02 - The Field of Data Science - The Various Data Science Disciplines/004 Continuing with BI, ML, and AI.mp4
37.7 MB
34 - Advanced Statistical Methods - Linear Regression with sklearn/019 Train - Test Split Explained.mp4
37.3 MB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/006 Fitting the Model and Assessing its Accuracy.mp4
37.0 MB
37 - Advanced Statistical Methods - Cluster Analysis/002 Some Examples of Clusters.mp4
36.8 MB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/011 Dealing with Categorical Data - Dummy Variables.mp4
36.8 MB
54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/004 MNIST_ Model Outline.mp4
36.4 MB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/008 Interpreting the Coefficients for Our Problem.mp4
36.1 MB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/002 Adjusted R-Squared.mp4
35.9 MB
38 - Advanced Statistical Methods - K-Means Clustering/012 Market Segmentation with Cluster Analysis (Part 2).mp4
35.7 MB
02 - The Field of Data Science - The Various Data Science Disciplines/005 A Breakdown of our Data Science Infographic.mp4
35.6 MB
62 - Appendix - Additional Python Tools/006 Anonymous (Lambda) Functions.mp4
35.4 MB
20 - Statistics - Hypothesis Testing/007 p-value.mp4
34.7 MB
22 - Part 4_ Introduction to Python/004 Installing Python and Jupyter.mp4
34.5 MB
20 - Statistics - Hypothesis Testing/010 Test for the Mean. Dependent Samples.mp4
34.4 MB
50 - Deep Learning - Classifying on the MNIST Dataset/006 MNIST_ Preprocess the Data - Shuffle and Batch.mp4
34.3 MB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/002 Creating the Targets for the Logistic Regression.mp4
34.1 MB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/011 Backward Elimination or How to Simplify Your Model.mp4
33.5 MB
35 - Advanced Statistical Methods - Practical Example_ Linear Regression/002 Practical Example_ Linear Regression (Part 2).mp4
33.5 MB
54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/008 MNIST_ Learning.mp4
33.4 MB
34 - Advanced Statistical Methods - Linear Regression with sklearn/003 Simple Linear Regression with sklearn.mp4
33.2 MB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/012 Testing the Model We Created.mp4
33.2 MB
15 - Statistics - Descriptive Statistics/002 Levels of Measurement.mp4
33.0 MB
50 - Deep Learning - Classifying on the MNIST Dataset/010 MNIST_ Learning.mp4
32.5 MB
52 - Deep Learning - Conclusion/004 An overview of CNNs.mp4
31.9 MB
43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/004 Basic NN Example (Part 4).mp4
31.5 MB
35 - Advanced Statistical Methods - Practical Example_ Linear Regression/006 Practical Example_ Linear Regression (Part 4).mp4
31.3 MB
63 - Appendix - pandas Fundamentals/009 pandas DataFrames - Common Attributes.mp4
31.2 MB
32 - Advanced Statistical Methods - Linear Regression with StatsModels/005 First Regression in Python.mp4
31.1 MB
09 - Part 2_ Probability/002 Computing Expected Values.mp4
30.7 MB
09 - Part 2_ Probability/001 The Basic Probability Formula.mp4
30.5 MB
34 - Advanced Statistical Methods - Linear Regression with sklearn/004 Simple Linear Regression with sklearn - A StatsModels-like Summary Table.mp4
30.3 MB
12 - Probability - Distributions/008 Characteristics of Continuous Distributions.mp4
30.3 MB
32 - Advanced Statistical Methods - Linear Regression with StatsModels/008 How to Interpret the Regression Table.mp4
30.1 MB
12 - Probability - Distributions/002 Types of Probability Distributions.mp4
30.1 MB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/016 Preparing the Deployment of the Model through a Module.mp4
30.0 MB
18 - Statistics - Inferential Statistics_ Confidence Intervals/001 What are Confidence Intervals_.mp4
29.8 MB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/009 Standardizing only the Numerical Variables (Creating a Custom Scaler).mp4
29.4 MB
53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/007 Basic NN Example with TF_ Inputs, Outputs, Targets, Weights, Biases.mp4
29.4 MB
51 - Deep Learning - Business Case Example/008 Business Case_ Learning and Interpreting the Result.mp4
29.1 MB
58 - Case Study - Preprocessing the 'Absenteeism_data'/010 Analyzing the Reasons for Absence.mp4
29.0 MB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/008 A3_ Normality and Homoscedasticity.mp4
28.7 MB
44 - Deep Learning - TensorFlow 2.0_ Introduction/001 How to Install TensorFlow 2.0.mp4
28.7 MB
34 - Advanced Statistical Methods - Linear Regression with sklearn/015 Feature Selection through Standardization of Weights.mp4
28.5 MB
44 - Deep Learning - TensorFlow 2.0_ Introduction/006 Outlining the Model with TensorFlow 2.mp4
28.3 MB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/007 Creating a Summary Table with the Coefficients and Intercept.mp4
28.3 MB
55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/008 Business Case_ Optimization.mp4
28.3 MB
40 - Part 6_ Mathematics/010 Dot Product of Matrices.mp4
27.7 MB
63 - Appendix - pandas Fundamentals/005 Using .unique() and .nunique().mp4
27.6 MB
51 - Deep Learning - Business Case Example/003 Business Case_ Balancing the Dataset.mp4
27.5 MB
38 - Advanced Statistical Methods - K-Means Clustering/002 A Simple Example of Clustering.mp4
27.3 MB
60 - Case Study - Loading the 'absenteeism_module'/003 Deploying the 'absenteeism_module' - Part II.mp4
27.3 MB
39 - Advanced Statistical Methods - Other Types of Clustering/003 Heatmaps.mp4
27.0 MB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/013 Saving the Model and Preparing it for Deployment.mp4
26.8 MB
12 - Probability - Distributions/006 Discrete Distributions_ The Binomial Distribution.mp4
26.2 MB
28 - Python - Sequences/005 Dictionaries.mp4
26.1 MB
20 - Statistics - Hypothesis Testing/014 Test for the mean. Independent Samples (Part 2).mp4
25.7 MB
13 - Probability - Probability in Other Fields/003 Probability in Data Science.mp4
25.1 MB
32 - Advanced Statistical Methods - Linear Regression with StatsModels/004 Python Packages Installation.mp4
24.8 MB
29 - Python - Iterations/001 For Loops.mp4
24.7 MB
63 - Appendix - pandas Fundamentals/011 pandas DataFrames - Indexing with .iloc[].mp4
24.7 MB
28 - Python - Sequences/002 Using Methods.mp4
24.6 MB
50 - Deep Learning - Classifying on the MNIST Dataset/004 MNIST_ Preprocess the Data - Create a Validation Set and Scale It.mp4
24.0 MB
17 - Statistics - Inferential Statistics Fundamentals/006 Central Limit Theorem.mp4
24.0 MB
42 - Deep Learning - Introduction to Neural Networks/011 Optimization Algorithm_ 1-Parameter Gradient Descent.mp4
23.8 MB
18 - Statistics - Inferential Statistics_ Confidence Intervals/008 Margin of Error.mp4
23.8 MB
50 - Deep Learning - Classifying on the MNIST Dataset/012 MNIST_ Testing the Model.mp4
23.7 MB
05 - The Field of Data Science - Popular Data Science Techniques/011 Real Life Examples of Machine Learning (ML).mp4
23.5 MB
32 - Advanced Statistical Methods - Linear Regression with StatsModels/010 What is the OLS_.mp4
23.5 MB
63 - Appendix - pandas Fundamentals/001 Introduction to pandas Series.mp4
23.3 MB
19 - Statistics - Practical Example_ Inferential Statistics/001 Practical Example_ Inferential Statistics.mp4
23.2 MB
50 - Deep Learning - Classifying on the MNIST Dataset/008 MNIST_ Outline the Model.mp4
23.2 MB
40 - Part 6_ Mathematics/006 Addition and Subtraction of Matrices.mp4
23.1 MB
29 - Python - Iterations/004 Conditional Statements and Loops.mp4
23.0 MB
36 - Advanced Statistical Methods - Logistic Regression/002 A Simple Example in Python.mp4
23.0 MB
03 - The Field of Data Science - Connecting the Data Science Disciplines/001 Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.mp4
22.8 MB
62 - Appendix - Additional Python Tools/001 Using the .format() Method.mp4
22.7 MB
36 - Advanced Statistical Methods - Logistic Regression/015 Testing the Model.mp4
22.6 MB
55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/003 The Importance of Working with a Balanced Dataset.mp4
22.6 MB
05 - The Field of Data Science - Popular Data Science Techniques/008 Real Life Examples of Traditional Methods.mp4
22.2 MB
38 - Advanced Statistical Methods - K-Means Clustering/011 Market Segmentation with Cluster Analysis (Part 1).mp4
22.2 MB
11 - Probability - Bayesian Inference/011 Bayes' Law.mp4
22.0 MB
63 - Appendix - pandas Fundamentals/012 pandas DataFrames - Indexing with .loc[].mp4
21.7 MB
12 - Probability - Distributions/010 Continuous Distributions_ The Standard Normal Distribution.mp4
21.7 MB
28 - Python - Sequences/001 Lists.mp4
21.5 MB
40 - Part 6_ Mathematics/008 Transpose of a Matrix.mp4
21.5 MB
34 - Advanced Statistical Methods - Linear Regression with sklearn/014 Feature Scaling (Standardization).mp4
21.4 MB
36 - Advanced Statistical Methods - Logistic Regression/012 Calculating the Accuracy of the Model.mp4
21.3 MB
15 - Statistics - Descriptive Statistics/015 Variance.mp4
21.2 MB
29 - Python - Iterations/002 While Loops and Incrementing.mp4
21.2 MB
15 - Statistics - Descriptive Statistics/017 Standard Deviation and Coefficient of Variation.mp4
21.1 MB
11 - Probability - Bayesian Inference/010 The Multiplication Law.mp4
20.8 MB
38 - Advanced Statistical Methods - K-Means Clustering/006 How to Choose the Number of Clusters.mp4
20.8 MB
58 - Case Study - Preprocessing the 'Absenteeism_data'/017 Using .concat() in Python.mp4
20.7 MB
23 - Python - Variables and Data Types/003 Python Strings.mp4
20.7 MB
20 - Statistics - Hypothesis Testing/008 Test for the Mean. Population Variance Unknown.mp4
20.7 MB
15 - Statistics - Descriptive Statistics/009 Cross Tables and Scatter Plots.mp4
20.7 MB
58 - Case Study - Preprocessing the 'Absenteeism_data'/031 Working on _Education_, _Children_, and _Pets_.mp4
20.6 MB
12 - Probability - Distributions/009 Continuous Distributions_ The Normal Distribution.mp4
20.6 MB
55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/011 Business Case_ A Comment on the Homework.mp4
20.6 MB
06 - The Field of Data Science - Popular Data Science Tools/001 Necessary Programming Languages and Software Used in Data Science.mp4
20.5 MB
45 - Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/007 Backpropagation.mp4
20.4 MB
11 - Probability - Bayesian Inference/004 Union of Sets.mp4
20.4 MB
62 - Appendix - Additional Python Tools/004 Triple Nested For Loops.mp4
20.3 MB
15 - Statistics - Descriptive Statistics/021 Correlation Coefficient.mp4
20.3 MB
05 - The Field of Data Science - Popular Data Science Techniques/006 Real Life Examples of Business Intelligence (BI).mp4
20.3 MB
12 - Probability - Distributions/001 Fundamentals of Probability Distributions.mp4
20.2 MB
28 - Python - Sequences/003 List Slicing.mp4
20.1 MB
56 - Software Integration/001 What are Data, Servers, Clients, Requests, and Responses.mp4
20.1 MB
45 - Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/003 Digging into a Deep Net.mp4
20.1 MB
11 - Probability - Bayesian Inference/002 Ways Sets Can Interact.mp4
19.9 MB
40 - Part 6_ Mathematics/004 Arrays in Python - A Convenient Way To Represent Matrices.mp4
19.9 MB
25 - Python - Other Python Operators/002 Logical and Identity Operators.mp4
19.9 MB
10 - Probability - Combinatorics/006 Solving Combinations.mp4
19.9 MB
55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/009 Business Case_ Interpretation.mp4
19.5 MB
18 - Statistics - Inferential Statistics_ Confidence Intervals/004 Confidence Interval Clarifications.mp4
19.5 MB
36 - Advanced Statistical Methods - Logistic Regression/010 Binary Predictors in a Logistic Regression.mp4
19.4 MB
15 - Statistics - Descriptive Statistics/019 Covariance.mp4
19.3 MB
34 - Advanced Statistical Methods - Linear Regression with sklearn/016 Predicting with the Standardized Coefficients.mp4
19.2 MB
20 - Statistics - Hypothesis Testing/004 Type I Error and Type II Error.mp4
19.1 MB
58 - Case Study - Preprocessing the 'Absenteeism_data'/004 Introduction to Terms with Multiple Meanings.mp4
18.9 MB
58 - Case Study - Preprocessing the 'Absenteeism_data'/002 Importing the Absenteeism Data in Python.mp4
18.9 MB
63 - Appendix - pandas Fundamentals/008 Introduction to pandas DataFrames - Part II.mp4
18.7 MB
15 - Statistics - Descriptive Statistics/011 Mean, median and mode.mp4
18.4 MB
11 - Probability - Bayesian Inference/001 Sets and Events.mp4
18.3 MB
47 - Deep Learning - Initialization/001 What is Initialization_.mp4
18.3 MB
58 - Case Study - Preprocessing the 'Absenteeism_data'/023 Creating Checkpoints while Coding in Jupyter.mp4
18.2 MB
39 - Advanced Statistical Methods - Other Types of Clustering/002 Dendrogram.mp4
18.2 MB
53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/009 Basic NN Example with TF_ Model Output.mp4
17.9 MB
58 - Case Study - Preprocessing the 'Absenteeism_data'/032 Final Remarks of this Section.mp4
17.9 MB
34 - Advanced Statistical Methods - Linear Regression with sklearn/008 Calculating the Adjusted R-Squared in sklearn.mp4
17.7 MB
17 - Statistics - Inferential Statistics Fundamentals/002 What is a Distribution.mp4
17.7 MB
63 - Appendix - pandas Fundamentals/002 Working with Methods in Python - Part I.mp4
17.6 MB
44 - Deep Learning - TensorFlow 2.0_ Introduction/008 Customizing a TensorFlow 2 Model.mp4
17.6 MB
36 - Advanced Statistical Methods - Logistic Regression/006 An Invaluable Coding Tip.mp4
17.6 MB
54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/006 Calculating the Accuracy of the Model.mp4
17.5 MB
53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/004 TensorFlow Intro.mp4
17.4 MB
29 - Python - Iterations/006 How to Iterate over Dictionaries.mp4
17.3 MB
08 - The Field of Data Science - Debunking Common Misconceptions/001 Debunking Common Misconceptions.mp4
17.2 MB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/013 Making Predictions with the Linear Regression.mp4
17.2 MB
42 - Deep Learning - Introduction to Neural Networks/012 Optimization Algorithm_ n-Parameter Gradient Descent.mp4
17.1 MB
11 - Probability - Bayesian Inference/007 The Conditional Probability Formula.mp4
17.1 MB
21 - Statistics - Practical Example_ Hypothesis Testing/001 Practical Example_ Hypothesis Testing.mp4
17.1 MB
42 - Deep Learning - Introduction to Neural Networks/006 The Linear model with Multiple Inputs and Multiple Outputs.mp4
17.0 MB
10 - Probability - Combinatorics/009 Combinatorics in Real-Life_ The Lottery.mp4
16.9 MB
17 - Statistics - Inferential Statistics Fundamentals/003 The Normal Distribution.mp4
16.9 MB
17 - Statistics - Inferential Statistics Fundamentals/008 Estimators and Estimates.mp4
16.9 MB
12 - Probability - Distributions/014 Continuous Distributions_ The Logistic Distribution.mp4
16.7 MB
57 - Case Study - What's Next in the Course_/001 Game Plan for this Python, SQL, and Tableau Business Exercise.mp4
16.6 MB
12 - Probability - Distributions/013 Continuous Distributions_ The Exponential Distribution.mp4
16.5 MB
53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/008 Basic NN Example with TF_ Loss Function and Gradient Descent.mp4
16.5 MB
43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/003 Basic NN Example (Part 3).mp4
16.4 MB
34 - Advanced Statistical Methods - Linear Regression with sklearn/010 Feature Selection (F-regression).mp4
16.4 MB
52 - Deep Learning - Conclusion/006 An Overview of non-NN Approaches.mp4
16.4 MB
64 - Bonus Lecture/35215106-365-Data-Science-Data-Science-Interview-Questions-Guide.pdf
16.3 MB
63 - Appendix - pandas Fundamentals/004 Parameters and Arguments in pandas.mp4
16.2 MB
22 - Part 4_ Introduction to Python/006 Prerequisites for Coding in the Jupyter Notebooks.mp4
16.1 MB
57 - Case Study - What's Next in the Course_/003 Introducing the Data Set.mp4
16.0 MB
43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/002 Basic NN Example (Part 2).mp4
16.0 MB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/010 Interpreting the Coefficients of the Logistic Regression.mp4
16.0 MB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/004 Standardizing the Data.mp4
15.9 MB
44 - Deep Learning - TensorFlow 2.0_ Introduction/003 TensorFlow 1 vs TensorFlow 2.mp4
15.7 MB
44 - Deep Learning - TensorFlow 2.0_ Introduction/002 TensorFlow Outline and Comparison with Other Libraries.mp4
15.7 MB
12 - Probability - Distributions/005 Discrete Distributions_ The Bernoulli Distribution.mp4
15.5 MB
10 - Probability - Combinatorics/005 Solving Variations without Repetition.mp4
15.5 MB
12 - Probability - Distributions/007 Discrete Distributions_ The Poisson Distribution.mp4
15.3 MB
29 - Python - Iterations/003 Lists with the range() Function.mp4
15.2 MB
22 - Part 4_ Introduction to Python/001 Introduction to Programming.mp4
15.0 MB
13 - Probability - Probability in Other Fields/002 Probability in Statistics.mp4
15.0 MB
26 - Python - Conditional Statements/003 The ELIF Statement.mp4
14.9 MB
10 - Probability - Combinatorics/003 Simple Operations with Factorials.mp4
14.7 MB
10 - Probability - Combinatorics/002 Permutations and How to Use Them.mp4
14.6 MB
05 - The Field of Data Science - Popular Data Science Techniques/002 Real Life Examples of Traditional Data.mp4
14.6 MB
51 - Deep Learning - Business Case Example/006 Business Case_ Load the Preprocessed Data.mp4
14.5 MB
10 - Probability - Combinatorics/004 Solving Variations with Repetition.mp4
14.4 MB
44 - Deep Learning - TensorFlow 2.0_ Introduction/007 Interpreting the Result and Extracting the Weights and Bias.mp4
14.3 MB
40 - Part 6_ Mathematics/003 Linear Algebra and Geometry.mp4
14.2 MB
46 - Deep Learning - Overfitting/002 Underfitting and Overfitting for Classification.mp4
14.2 MB
10 - Probability - Combinatorics/007 Symmetry of Combinations.mp4
14.2 MB
17 - Statistics - Inferential Statistics Fundamentals/007 Standard error.mp4
14.0 MB
18 - Statistics - Inferential Statistics_ Confidence Intervals/005 Student's T Distribution.mp4
14.0 MB
63 - Appendix - pandas Fundamentals/006 Using .sort_values().mp4
13.8 MB
32 - Advanced Statistical Methods - Linear Regression with StatsModels/001 The Linear Regression Model.mp4
13.8 MB
01 - Part 1_ Introduction/001 A Practical Example_ What You Will Learn in This Course.mp4
13.7 MB
18 - Statistics - Inferential Statistics_ Confidence Intervals/013 Confidence intervals. Two means. Independent Samples (Part 2).mp4
13.7 MB
36 - Advanced Statistical Methods - Logistic Regression/007 Understanding Logistic Regression Tables.mp4
13.5 MB
10 - Probability - Combinatorics/008 Solving Combinations with Separate Sample Spaces.mp4
13.5 MB
15 - Statistics - Descriptive Statistics/005 Numerical Variables - Frequency Distribution Table.mp4
13.4 MB
04 - The Field of Data Science - The Benefits of Each Discipline/001 The Reason Behind These Disciplines.mp4
13.0 MB
62 - Appendix - Additional Python Tools/003 Introduction to Nested For Loops.mp4
12.9 MB
50 - Deep Learning - Classifying on the MNIST Dataset/003 MNIST_ Importing the Relevant Packages and Loading the Data.mp4
12.8 MB
58 - Case Study - Preprocessing the 'Absenteeism_data'/030 Analyzing Several _Straightforward_ Columns for this Exercise.mp4
12.8 MB
48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/004 Learning Rate Schedules, or How to Choose the Optimal Learning Rate.mp4
12.6 MB
18 - Statistics - Inferential Statistics_ Confidence Intervals/011 Confidence intervals. Two means. Independent Samples (Part 1).mp4
12.6 MB
10 - Probability - Combinatorics/010 A Recap of Combinatorics.mp4
12.6 MB
11 - Probability - Bayesian Inference/006 Dependence and Independence of Sets.mp4
12.6 MB
49 - Deep Learning - Preprocessing/003 Standardization.mp4
12.5 MB
22 - Part 4_ Introduction to Python/002 Why Python_.mp4
12.3 MB
40 - Part 6_ Mathematics/001 What is a Matrix_.mp4
12.3 MB
40 - Part 6_ Mathematics/005 What is a Tensor_.mp4
12.2 MB
18 - Statistics - Inferential Statistics_ Confidence Intervals/006 Confidence Intervals; Population Variance Unknown; T-score.mp4
12.1 MB
54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/005 MNIST_ Loss and Optimization Algorithm.mp4
12.1 MB
09 - Part 2_ Probability/004 Events and Their Complements.mp4
12.0 MB
11 - Probability - Bayesian Inference/008 The Law of Total Probability.mp4
11.9 MB
36 - Advanced Statistical Methods - Logistic Regression/009 What do the Odds Actually Mean.mp4
11.9 MB
40 - Part 6_ Mathematics/009 Dot Product.mp4
11.9 MB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/001 Exploring the Problem with a Machine Learning Mindset.mp4
11.6 MB
45 - Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/002 What is a Deep Net_.mp4
11.6 MB
12 - Probability - Distributions/012 Continuous Distributions_ The Chi-Squared Distribution.mp4
11.5 MB
38 - Advanced Statistical Methods - K-Means Clustering/008 Pros and Cons of K-Means Clustering.mp4
11.5 MB
11 - Probability - Bayesian Inference/009 The Additive Rule.mp4
11.4 MB
14 - Part 3_ Statistics/001 Population and Sample.mp4
11.4 MB
61 - Case Study - Analyzing the Predicted Outputs in Tableau/006 Analyzing Transportation Expense vs Probability in Tableau.mp4
11.4 MB
32 - Advanced Statistical Methods - Linear Regression with StatsModels/011 R-Squared.mp4
11.3 MB
37 - Advanced Statistical Methods - Cluster Analysis/001 Introduction to Cluster Analysis.mp4
11.2 MB
50 - Deep Learning - Classifying on the MNIST Dataset/009 MNIST_ Select the Loss and the Optimizer.mp4
11.2 MB
63 - Appendix - pandas Fundamentals/007 Introduction to pandas DataFrames - Part I.mp4
11.1 MB
38 - Advanced Statistical Methods - K-Means Clustering/001 K-Means Clustering.mp4
11.0 MB
38 - Advanced Statistical Methods - K-Means Clustering/009 To Standardize or not to Standardize.mp4
11.0 MB
46 - Deep Learning - Overfitting/001 What is Overfitting_.mp4
11.0 MB
42 - Deep Learning - Introduction to Neural Networks/001 Introduction to Neural Networks.mp4
10.9 MB
38 - Advanced Statistical Methods - K-Means Clustering/004 Clustering Categorical Data.mp4
10.8 MB
12 - Probability - Distributions/004 Discrete Distributions_ The Uniform Distribution.mp4
10.6 MB
15 - Statistics - Descriptive Statistics/013 Skewness.mp4
10.4 MB
58 - Case Study - Preprocessing the 'Absenteeism_data'/006 Using a Statistical Approach towards the Solution to the Exercise.mp4
10.4 MB
42 - Deep Learning - Introduction to Neural Networks/003 Types of Machine Learning.mp4
10.3 MB
34 - Advanced Statistical Methods - Linear Regression with sklearn/007 Multiple Linear Regression with sklearn.mp4
10.3 MB
45 - Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/004 Non-Linearities and their Purpose.mp4
10.2 MB
42 - Deep Learning - Introduction to Neural Networks/010 Common Objective Functions_ Cross-Entropy Loss.mp4
10.2 MB
52 - Deep Learning - Conclusion/001 Summary on What You've Learned.mp4
10.1 MB
37 - Advanced Statistical Methods - Cluster Analysis/003 Difference between Classification and Clustering.mp4
10.0 MB
28 - Python - Sequences/004 Tuples.mp4
10.0 MB
07 - The Field of Data Science - Careers in Data Science/001 Finding the Job - What to Expect and What to Look for.mp4
9.9 MB
56 - Software Integration/004 Communication between Software Products through Text Files.mp4
9.7 MB
12 - Probability - Distributions/003 Characteristics of Discrete Distributions.mp4
9.7 MB
58 - Case Study - Preprocessing the 'Absenteeism_data'/028 Extracting the Day of the Week from the _Date_ Column.mp4
9.6 MB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/007 A2_ No Endogeneity.mp4
9.4 MB
49 - Deep Learning - Preprocessing/001 Preprocessing Introduction.mp4
9.4 MB
23 - Python - Variables and Data Types/001 Variables.mp4
9.4 MB
53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/006 Types of File Formats, supporting Tensors.mp4
9.3 MB
11 - Probability - Bayesian Inference/003 Intersection of Sets.mp4
9.2 MB
54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/007 MNIST_ Batching and Early Stopping.mp4
9.1 MB
12 - Probability - Distributions/17971238-FIFA19.csv
9.1 MB
12 - Probability - Distributions/17971248-FIFA19-post.csv
9.1 MB
32 - Advanced Statistical Methods - Linear Regression with StatsModels/009 Decomposition of Variability.mp4
9.0 MB
17 - Statistics - Inferential Statistics Fundamentals/004 The Standard Normal Distribution.mp4
9.0 MB
36 - Advanced Statistical Methods - Logistic Regression/004 Building a Logistic Regression.mp4
9.0 MB
30 - Python - Advanced Python Tools/004 Importing Modules in Python.mp4
8.9 MB
45 - Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/005 Activation Functions.mp4
8.9 MB
27 - Python - Python Functions/007 Built-in Functions in Python.mp4
8.9 MB
46 - Deep Learning - Overfitting/006 Early Stopping or When to Stop Training.mp4
8.9 MB
30 - Python - Advanced Python Tools/001 Object Oriented Programming.mp4
8.8 MB
45 - Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/006 Activation Functions_ Softmax Activation.mp4
8.8 MB
40 - Part 6_ Mathematics/002 Scalars and Vectors.mp4
8.8 MB
60 - Case Study - Loading the 'absenteeism_module'/002 Deploying the 'absenteeism_module' - Part I.mp4
8.8 MB
49 - Deep Learning - Preprocessing/005 Binary and One-Hot Encoding.mp4
8.8 MB
27 - Python - Python Functions/002 How to Create a Function with a Parameter.mp4
8.7 MB
48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/006 Adaptive Learning Rate Schedules (AdaGrad and RMSprop ).mp4
8.6 MB
51 - Deep Learning - Business Case Example/011 Business Case_ Testing the Model.mp4
8.6 MB
46 - Deep Learning - Overfitting/003 What is Validation_.mp4
8.5 MB
02 - The Field of Data Science - The Various Data Science Disciplines/002 What is the difference between Analysis and Analytics.mp4
8.4 MB
22 - Part 4_ Introduction to Python/003 Why Jupyter_.mp4
8.4 MB
54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/003 MNIST_ Relevant Packages.mp4
8.3 MB
42 - Deep Learning - Introduction to Neural Networks/004 The Linear Model (Linear Algebraic Version).mp4
8.3 MB
62 - Appendix - Additional Python Tools/002 Iterating Over Range Objects.mp4
8.2 MB
42 - Deep Learning - Introduction to Neural Networks/005 The Linear Model with Multiple Inputs.mp4
8.1 MB
46 - Deep Learning - Overfitting/004 Training, Validation, and Test Datasets.mp4
8.1 MB
54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/002 MNIST_ How to Tackle the MNIST.mp4
8.1 MB
45 - Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/008 Backpropagation Picture.mp4
8.1 MB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/009 A4_ No Autocorrelation.mp4
8.0 MB
50 - Deep Learning - Classifying on the MNIST Dataset/002 MNIST_ How to Tackle the MNIST.mp4
8.0 MB
48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/001 Stochastic Gradient Descent.mp4
8.0 MB
58 - Case Study - Preprocessing the 'Absenteeism_data'/29545318-Absenteeism-Exercise-Preprocessing-LECTURES.ipynb
8.0 MB
39 - Advanced Statistical Methods - Other Types of Clustering/001 Types of Clustering.mp4
7.9 MB
20 - Statistics - Hypothesis Testing/012 Test for the mean. Independent Samples (Part 1).mp4
7.9 MB
42 - Deep Learning - Introduction to Neural Networks/002 Training the Model.mp4
7.9 MB
41 - Part 7_ Deep Learning/001 What to Expect from this Part_.mp4
7.9 MB
32 - Advanced Statistical Methods - Linear Regression with StatsModels/007 Using Seaborn for Graphs.mp4
7.7 MB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/010 A5_ No Multicollinearity.mp4
7.7 MB
24 - Python - Basic Python Syntax/001 Using Arithmetic Operators in Python.mp4
7.6 MB
36 - Advanced Statistical Methods - Logistic Regression/014 Underfitting and Overfitting.mp4
7.6 MB
44 - Deep Learning - TensorFlow 2.0_ Introduction/005 Types of File Formats Supporting TensorFlow.mp4
7.6 MB
58 - Case Study - Preprocessing the 'Absenteeism_data'/020 Reordering Columns in a Pandas DataFrame in Python.mp4
7.5 MB
02 - The Field of Data Science - The Various Data Science Disciplines/13075166-365-DataScience.png
7.3 MB
02 - The Field of Data Science - The Various Data Science Disciplines/13075168-365-DataScience.png
7.3 MB
35 - Advanced Statistical Methods - Practical Example_ Linear Regression/004 Practical Example_ Linear Regression (Part 3).mp4
7.2 MB
48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/007 Adam (Adaptive Moment Estimation).mp4
7.2 MB
57 - Case Study - What's Next in the Course_/002 The Business Task.mp4
7.1 MB
52 - Deep Learning - Conclusion/005 An Overview of RNNs.mp4
7.1 MB
27 - Python - Python Functions/003 Defining a Function in Python - Part II.mp4
6.8 MB
34 - Advanced Statistical Methods - Linear Regression with sklearn/012 Creating a Summary Table with P-values.mp4
6.8 MB
42 - Deep Learning - Introduction to Neural Networks/007 Graphical Representation of Simple Neural Networks.mp4
6.7 MB
34 - Advanced Statistical Methods - Linear Regression with sklearn/001 What is sklearn and How is it Different from Other Packages.mp4
6.5 MB
53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/005 Actual Introduction to TensorFlow.mp4
6.5 MB
27 - Python - Python Functions/005 Conditional Statements and Functions.mp4
6.3 MB
42 - Deep Learning - Introduction to Neural Networks/008 What is the Objective Function_.mp4
6.3 MB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/004 Test for Significance of the Model (F-Test).mp4
6.2 MB
63 - Appendix - pandas Fundamentals/003 Working with Methods in Python - Part II.mp4
6.1 MB
47 - Deep Learning - Initialization/002 Types of Simple Initializations.mp4
6.0 MB
34 - Advanced Statistical Methods - Linear Regression with sklearn/018 Underfitting and Overfitting.mp4
6.0 MB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/001 Multiple Linear Regression.mp4
5.8 MB
12 - Probability - Distributions/011 Continuous Distributions_ The Students' T Distribution.mp4
5.7 MB
49 - Deep Learning - Preprocessing/004 Preprocessing Categorical Data.mp4
5.6 MB
26 - Python - Conditional Statements/001 The IF Statement.mp4
5.6 MB
11 - Probability - Bayesian Inference/005 Mutually Exclusive Sets.mp4
5.5 MB
26 - Python - Conditional Statements/002 The ELSE Statement.mp4
5.5 MB
46 - Deep Learning - Overfitting/005 N-Fold Cross Validation.mp4
5.4 MB
43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/001 Basic NN Example (Part 1).mp4
5.4 MB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/005 OLS Assumptions.mp4
5.4 MB
48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/003 Momentum.mp4
5.2 MB
30 - Python - Advanced Python Tools/003 What is the Standard Library_.mp4
5.1 MB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/003 Selecting the Inputs for the Logistic Regression.mp4
4.9 MB
23 - Python - Variables and Data Types/002 Numbers and Boolean Values in Python.mp4
4.8 MB
37 - Advanced Statistical Methods - Cluster Analysis/004 Math Prerequisites.mp4
4.7 MB
42 - Deep Learning - Introduction to Neural Networks/009 Common Objective Functions_ L2-norm Loss.mp4
4.7 MB
36 - Advanced Statistical Methods - Logistic Regression/001 Introduction to Logistic Regression.mp4
4.6 MB
55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/010 Business Case_ Testing the Model.mp4
4.6 MB
22 - Part 4_ Introduction to Python/005 Understanding Jupyter's Interface - the Notebook Dashboard.mp4
4.6 MB
54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/001 MNIST_ What is the MNIST Dataset_.mp4
4.4 MB
05 - The Field of Data Science - Popular Data Science Techniques/004 Real Life Examples of Big Data.mp4
4.4 MB
47 - Deep Learning - Initialization/003 State-of-the-Art Method - (Xavier) Glorot Initialization.mp4
4.4 MB
18 - Statistics - Inferential Statistics_ Confidence Intervals/015 Confidence intervals. Two means. Independent Samples (Part 3).mp4
4.4 MB
50 - Deep Learning - Classifying on the MNIST Dataset/001 MNIST_ The Dataset.mp4
4.3 MB
34 - Advanced Statistical Methods - Linear Regression with sklearn/002 How are we Going to Approach this Section_.mp4
4.2 MB
15 - Statistics - Descriptive Statistics/007 The Histogram.mp4
4.0 MB
32 - Advanced Statistical Methods - Linear Regression with StatsModels/002 Correlation vs Regression.mp4
3.9 MB
53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/002 How to Install TensorFlow 1.mp4
3.9 MB
52 - Deep Learning - Conclusion/002 What's Further out there in terms of Machine Learning.mp4
3.9 MB
48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/002 Problems with Gradient Descent.mp4
3.7 MB
45 - Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/001 What is a Layer_.mp4
3.6 MB
40 - Part 6_ Mathematics/007 Errors when Adding Matrices.mp4
3.5 MB
26 - Python - Conditional Statements/004 A Note on Boolean Values.mp4
3.4 MB
27 - Python - Python Functions/004 How to Use a Function within a Function.mp4
3.4 MB
27 - Python - Python Functions/001 Defining a Function in Python.mp4
3.4 MB
10 - Probability - Combinatorics/001 Fundamentals of Combinatorics.mp4
3.4 MB
58 - Case Study - Preprocessing the 'Absenteeism_data'/015 More on Dummy Variables_ A Statistical Perspective.mp4
3.3 MB
25 - Python - Other Python Operators/001 Comparison Operators.mp4
3.3 MB
17 - Statistics - Inferential Statistics Fundamentals/001 Introduction.mp4
3.1 MB
31 - Part 5_ Advanced Statistical Methods in Python/001 Introduction to Regression Analysis.mp4
3.1 MB
29 - Python - Iterations/005 Conditional Statements, Functions, and Loops.mp4
3.1 MB
55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/002 Business Case_ Outlining the Solution.mp4
3.0 MB
24 - Python - Basic Python Syntax/007 Structuring with Indentation.mp4
2.9 MB
24 - Python - Basic Python Syntax/002 The Double Equality Sign.mp4
2.8 MB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/006 A1_ Linearity.mp4
2.8 MB
38 - Advanced Statistical Methods - K-Means Clustering/010 Relationship between Clustering and Regression.mp4
2.5 MB
24 - Python - Basic Python Syntax/004 Add Comments.mp4
2.5 MB
49 - Deep Learning - Preprocessing/002 Types of Basic Preprocessing.mp4
2.5 MB
24 - Python - Basic Python Syntax/006 Indexing Elements.mp4
2.5 MB
44 - Deep Learning - TensorFlow 2.0_ Introduction/004 A Note on TensorFlow 2 Syntax.mp4
2.5 MB
48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/005 Learning Rate Schedules Visualized.mp4
2.5 MB
27 - Python - Python Functions/006 Functions Containing a Few Arguments.mp4
2.4 MB
51 - Deep Learning - Business Case Example/002 Business Case_ Outlining the Solution.mp4
2.3 MB
23 - Python - Variables and Data Types/15870664-Python-Introduction-Course-Notes.pdf
2.1 MB
24 - Python - Basic Python Syntax/003 How to Reassign Values.mp4
2.0 MB
19 - Statistics - Practical Example_ Inferential Statistics/17959058-3.17.Practical-example.Confidence-intervals-exercise-solution.xlsx
1.9 MB
32 - Advanced Statistical Methods - Linear Regression with StatsModels/003 Geometrical Representation of the Linear Regression Model.mp4
1.8 MB
19 - Statistics - Practical Example_ Inferential Statistics/13056326-3.17.Practical-example.Confidence-intervals-lesson.xlsx
1.8 MB
19 - Statistics - Practical Example_ Inferential Statistics/17959056-3.17.Practical-example.Confidence-intervals-exercise.xlsx
1.8 MB
30 - Python - Advanced Python Tools/002 Modules and Packages.mp4
1.8 MB
20 - Statistics - Hypothesis Testing/16753580-Online-p-value-calculator.pdf
1.2 MB
24 - Python - Basic Python Syntax/005 Understanding Line Continuation.mp4
1.0 MB
45 - Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/13070016-Course-Notes-Section-6.pdf
958.9 kB
45 - Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/13070018-Course-Notes-Section-6.pdf
958.9 kB
11 - Probability - Bayesian Inference/17970686-CDS-2017-2018-Hamilton.pdf
865.6 kB
35 - Advanced Statistical Methods - Practical Example_ Linear Regression/29588630-sklearn-Linear-Regression-Practical-Example-Part-5-with-comments.ipynb
728.1 kB
51 - Deep Learning - Business Case Example/19664156-Audiobooks-data.csv
727.8 kB
55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/13070978-Audiobooks-data.csv
727.8 kB
55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/29591716-Audiobooks-data.csv
727.8 kB
55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/29591732-Audiobooks-data.csv
727.8 kB
55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/29591808-Audiobooks-data.csv
727.8 kB
55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/29591842-Audiobooks-data.csv
727.8 kB
55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/29591940-Audiobooks-data.csv
727.8 kB
35 - Advanced Statistical Methods - Practical Example_ Linear Regression/29588626-sklearn-Linear-Regression-Practical-Example-Part-5.ipynb
715.1 kB
20 - Statistics - Hypothesis Testing/22431075-Course-notes-hypothesis-testing.pdf
672.2 kB
20 - Statistics - Hypothesis Testing/22431079-Course-notes-hypothesis-testing.pdf
672.2 kB
43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/13070602-Shortcuts-for-Jupyter.pdf
634.0 kB
44 - Deep Learning - TensorFlow 2.0_ Introduction/13070604-Shortcuts-for-Jupyter.pdf
634.0 kB
53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/13070608-Shortcuts-for-Jupyter.pdf
634.0 kB
42 - Deep Learning - Introduction to Neural Networks/16752952-Course-Notes-Section-2.pdf
592.0 kB
42 - Deep Learning - Introduction to Neural Networks/16752958-Course-Notes-Section-2.pdf
592.0 kB
14 - Part 3_ Statistics/14812652-Course-notes-descriptive-statistics.pdf
493.8 kB
15 - Statistics - Descriptive Statistics/14812660-Course-notes-descriptive-statistics.pdf
493.8 kB
12 - Probability - Distributions/20945990-Course-Notes-Probability-Distributions.pdf
475.1 kB
35 - Advanced Statistical Methods - Practical Example_ Linear Regression/29588618-sklearn-Linear-Regression-Practical-Example-Part-4-with-comments.ipynb
417.4 kB
35 - Advanced Statistical Methods - Practical Example_ Linear Regression/29588612-sklearn-Linear-Regression-Practical-Example-Part-4.ipynb
406.8 kB
11 - Probability - Bayesian Inference/17431622-Course-Notes-Bayesian-Inference.pdf
395.3 kB
17 - Statistics - Inferential Statistics Fundamentals/13831264-Course-notes-inferential-statistics.pdf
391.5 kB
17 - Statistics - Inferential Statistics Fundamentals/13831266-Course-notes-inferential-statistics.pdf
391.5 kB
09 - Part 2_ Probability/17431614-Course-Notes-Basic-Probability.pdf
380.0 kB
35 - Advanced Statistical Methods - Practical Example_ Linear Regression/29588602-sklearn-Dummies-and-VIF-Exercise-Solution.ipynb
379.1 kB
35 - Advanced Statistical Methods - Practical Example_ Linear Regression/29588558-sklearn-Linear-Regression-Practical-Example-Part-3-with-comments.ipynb
359.9 kB
35 - Advanced Statistical Methods - Practical Example_ Linear Regression/29588604-sklearn-Dummies-and-VIF-Exercise.ipynb
352.9 kB
12 - Probability - Distributions/17431628-Solving-Integrals.pdf
352.1 kB
35 - Advanced Statistical Methods - Practical Example_ Linear Regression/29588552-sklearn-Linear-Regression-Practical-Example-Part-3.ipynb
351.8 kB
35 - Advanced Statistical Methods - Practical Example_ Linear Regression/29588466-sklearn-Linear-Regression-Practical-Example-Part-2-with-comments.ipynb
343.7 kB
36 - Advanced Statistical Methods - Logistic Regression/23412976-Course-Notes-Logistic-Regression.pdf
343.2 kB
36 - Advanced Statistical Methods - Logistic Regression/23413016-Course-Notes-Logistic-Regression.pdf
343.2 kB
35 - Advanced Statistical Methods - Practical Example_ Linear Regression/29588462-sklearn-Linear-Regression-Practical-Example-Part-2.ipynb
336.6 kB
02 - The Field of Data Science - The Various Data Science Disciplines/13075156-365-DataScience-Diagram.pdf
330.8 kB
02 - The Field of Data Science - The Various Data Science Disciplines/13075162-365-DataScience-Diagram.pdf
330.8 kB
13 - Probability - Probability in Other Fields/23224540-Probability-Cheat-Sheet.pdf
328.0 kB
31 - Part 5_ Advanced Statistical Methods in Python/22685780-Course-notes-regression-analysis.pdf
319.7 kB
32 - Advanced Statistical Methods - Linear Regression with StatsModels/22685784-Course-notes-regression-analysis.pdf
319.7 kB
01 - Part 1_ Introduction/16507136-FAQ-The-Data-Science-Course.pdf
313.4 kB
15 - Statistics - Descriptive Statistics/16753694-Statistics-PDF-with-Excel-Solutions-that-dont-visualize-properly.pdf
296.1 kB
15 - Statistics - Descriptive Statistics/16753696-Statistics-PDF-with-Excel-Solutions-that-dont-visualize-properly.pdf
296.1 kB
10 - Probability - Combinatorics/19540858-Additional-Exercises-Combinatorics-Solutions.pdf
251.6 kB
10 - Probability - Combinatorics/17431618-Course-Notes-Combinatorics.pdf
231.5 kB
35 - Advanced Statistical Methods - Practical Example_ Linear Regression/29588446-1.04.Real-life-example.csv
225.1 kB
35 - Advanced Statistical Methods - Practical Example_ Linear Regression/29588460-1.04.Real-life-example.csv
225.1 kB
35 - Advanced Statistical Methods - Practical Example_ Linear Regression/29588598-1.04.Real-life-example.csv
225.1 kB
35 - Advanced Statistical Methods - Practical Example_ Linear Regression/29588606-1.04.Real-life-example.csv
225.1 kB
35 - Advanced Statistical Methods - Practical Example_ Linear Regression/29588624-1.04.Real-life-example.csv
225.1 kB
37 - Advanced Statistical Methods - Cluster Analysis/23413656-Course-Notes-Cluster-Analysis.pdf
213.7 kB
37 - Advanced Statistical Methods - Cluster Analysis/23413662-Course-Notes-Cluster-Analysis.pdf
213.7 kB
10 - Probability - Combinatorics/17550452-Combinations-With-Repetition.pdf
212.4 kB
13 - Probability - Probability in Other Fields/19327648-Probability-in-Finance-Solutions.pdf
188.9 kB
45 - Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/21993772-Backpropagation-a-peek-into-the-Mathematics-of-Optimization.pdf
186.8 kB
35 - Advanced Statistical Methods - Practical Example_ Linear Regression/29588454-sklearn-Linear-Regression-Practical-Example-Part-1-with-comments.ipynb
175.5 kB
35 - Advanced Statistical Methods - Practical Example_ Linear Regression/29588452-sklearn-Linear-Regression-Practical-Example-Part-1.ipynb
170.9 kB
16 - Statistics - Practical Example_ Descriptive Statistics/13129220-2.13.Practical-example.Descriptive-statistics-lesson.xlsx
150.0 kB
16 - Statistics - Practical Example_ Descriptive Statistics/19527576-2.13.Practical-example.Descriptive-statistics-exercise-solution.xlsx
149.9 kB
12 - Probability - Distributions/17862366-Poisson-Expected-Value-and-Variance.pdf
149.5 kB
12 - Probability - Distributions/17550252-Normal-Distribution-Exp-and-Var.pdf
147.5 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/15271322-data-preprocessing-homework.pdf
137.7 kB
16 - Statistics - Practical Example_ Descriptive Statistics/19527574-2.13.Practical-example.Descriptive-statistics-exercise.xlsx
123.2 kB
36 - Advanced Statistical Methods - Logistic Regression/29588898-Testing-the-Model-Solution.ipynb
113.8 kB
13 - Probability - Probability in Other Fields/19327638-Probability-in-Finance-Homework.pdf
113.3 kB
10 - Probability - Combinatorics/17756226-Additional-Exercises-Combinatorics.pdf
109.1 kB
10 - Probability - Combinatorics/17431624-Symmetry-Explained.pdf
87.1 kB
44 - Deep Learning - TensorFlow 2.0_ Introduction/29589836-TensorFlow-Minimal-Example-Exercise-3-Solution.ipynb
86.5 kB
43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/29589288-Minimal-example-Exercise-3.d.Solution.ipynb
86.2 kB
44 - Deep Learning - TensorFlow 2.0_ Introduction/29589828-TensorFlow-Minimal-Example-Exercise-2-1-Solution.ipynb
85.7 kB
44 - Deep Learning - TensorFlow 2.0_ Introduction/29589822-TensorFlow-Minimal-example-All-exercises.ipynb
85.6 kB
44 - Deep Learning - TensorFlow 2.0_ Introduction/29589808-TensorFlow-Minimal-example-complete-with-comments.ipynb
84.3 kB
36 - Advanced Statistical Methods - Logistic Regression/29588856-Calculating-the-Accuracy-of-the-Model-Solution.ipynb
83.2 kB
44 - Deep Learning - TensorFlow 2.0_ Introduction/29589834-TensorFlow-Minimal-Example-Exercise-2-2-Solution.ipynb
79.4 kB
44 - Deep Learning - TensorFlow 2.0_ Introduction/29589804-TensorFlow-Minimal-example-complete.ipynb
78.7 kB
44 - Deep Learning - TensorFlow 2.0_ Introduction/29589788-TensorFlow-Minimal-example-Part3.ipynb
78.4 kB
43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/29589280-Minimal-example-Exercise-3.c.Solution.ipynb
71.8 kB
43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/29589266-Minimal-example-Exercise-1-Solution.ipynb
70.7 kB
43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/29589298-Minimal-example-Exercise-5-Solution.ipynb
70.5 kB
43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/29589274-Minimal-example-Exercise-3.a.Solution.ipynb
69.5 kB
43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/29589278-Minimal-example-Exercise-3.b.Solution.ipynb
69.3 kB
43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/29589294-Minimal-example-Exercise-4-Solution.ipynb
68.1 kB
60 - Case Study - Loading the 'absenteeism_module'/29545372-Absenteeism-Exercise-Integration.ipynb
63.8 kB
43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/29589302-Minimal-example-Exercise-6.ipynb
63.2 kB
43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/29589304-Minimal-example-Exercise-6-Solution.ipynb
63.2 kB
43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/29589272-Minimal-example-Exercise-2-Solution.ipynb
62.9 kB
21 - Statistics - Practical Example_ Hypothesis Testing/27047254-4.10.Hypothesis-testing-section-practical-example.xlsx
53.1 kB
53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/29591454-TensorFlow-Minimal-Example-Exercise-2-3-Solution.ipynb
51.2 kB
21 - Statistics - Practical Example_ Hypothesis Testing/27047334-4.10.Hypothesis-testing-section-practical-example-exercise-solution.xlsx
45.3 kB
21 - Statistics - Practical Example_ Hypothesis Testing/27047330-4.10.Hypothesis-testing-section-practical-example-exercise.xlsx
44.7 kB
42 - Deep Learning - Introduction to Neural Networks/17187788-GD-function-example.xlsx
43.4 kB
15 - Statistics - Descriptive Statistics/13055414-2.3.Categorical-variables.Visualization-techniques-exercise-solution.xlsx
42.1 kB
15 - Statistics - Descriptive Statistics/13055464-2.6.Cross-table-and-scatter-plot-exercise-solution.xlsx
41.4 kB
15 - Statistics - Descriptive Statistics/13055492-2.8.Skewness-lesson.xlsx
35.5 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/15271310-Absenteeism-data.csv
32.8 kB
15 - Statistics - Descriptive Statistics/13055774-2.3.Categorical-variables.Visualization-techniques-lesson.xlsx
31.5 kB
11 - Probability - Bayesian Inference/18886392-Bayesian-Homework-Solutions.pdf
31.1 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/29588416-sklearn-Making-Predictions-with-the-Standardized-Coefficients.ipynb
30.5 kB
15 - Statistics - Descriptive Statistics/13055824-2.11.Covariance-exercise-solution.xlsx
30.2 kB
15 - Statistics - Descriptive Statistics/13055838-2.12.Correlation-exercise-solution.xlsx
30.2 kB
15 - Statistics - Descriptive Statistics/13055834-2.12.Correlation-exercise.xlsx
30.0 kB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/15364076-Absenteeism-preprocessed.csv
29.8 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/15271330-df-preprocessed.csv
29.8 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/29588208-sklearn-Simple-Linear-Regression-with-comments.ipynb
29.0 kB
44 - Deep Learning - TensorFlow 2.0_ Introduction/29589824-TensorFlow-Minimal-example-Exercise-1-Solution.ipynb
28.6 kB
11 - Probability - Bayesian Inference/18886388-Bayesian-Homework.pdf
27.9 kB
53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/29591468-TensorFlow-Minimal-Example-Exercise-4-Solution.ipynb
27.6 kB
53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/29591464-TensorFlow-Minimal-Example-Exercise-3-Solution.ipynb
27.4 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/33130186-Simple-Linear-Regression-with-sklearn-Exercise-Solution.ipynb
27.2 kB
15 - Statistics - Descriptive Statistics/13055456-2.6.Cross-table-and-scatter-plot.xlsx
26.7 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/29588206-sklearn-Simple-Linear-Regression.ipynb
26.7 kB
18 - Statistics - Inferential Statistics_ Confidence Intervals/16413674-3.9.The-z-table.xlsx
26.2 kB
18 - Statistics - Inferential Statistics_ Confidence Intervals/16413678-3.9.The-z-table.xlsx
26.2 kB
53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/29591442-TensorFlow-Minimal-Example-Exercise-2-1-Solution.ipynb
26.2 kB
53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/29591444-TensorFlow-Minimal-Example-Exercise-2-2-Solution.ipynb
26.1 kB
62 - Appendix - Additional Python Tools/29535546-Additional-Python-Tools-Solutions.ipynb
26.1 kB
62 - Appendix - Additional Python Tools/29535554-Additional-Python-Tools-Solutions.ipynb
26.1 kB
15 - Statistics - Descriptive Statistics/13055814-2.11.Covariance-lesson.xlsx
25.5 kB
17 - Statistics - Inferential Statistics Fundamentals/14171118-3.4.Standard-normal-distribution-exercise-solution.xlsx
24.6 kB
53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/29591432-TensorFlow-Minimal-Example-Exercise-1-Solution.ipynb
24.2 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/29588422-sklearn-Making-Predictions-with-the-Standardized-Coefficients-with-comments.ipynb
22.6 kB
53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/29591458-TensorFlow-Minimal-Example-Exercise-2-4-Solution.ipynb
22.3 kB
01 - Part 1_ Introduction/003 Download All Resources and Important FAQ.html
21.9 kB
16 - Statistics - Practical Example_ Descriptive Statistics/001 Practical Example_ Descriptive Statistics__en.srt
21.4 kB
50 - Deep Learning - Classifying on the MNIST Dataset/29589934-8.TensorFlow-MNIST-Learning-rate-Part-1-Solution.ipynb
21.1 kB
12 - Probability - Distributions/015 A Practical Example of Probability Distributions__en.srt
20.8 kB
14 - Part 3_ Statistics/15762096-Statistics-Glossary.xlsx
20.8 kB
15 - Statistics - Descriptive Statistics/13055822-2.11.Covariance-exercise.xlsx
20.7 kB
12 - Probability - Distributions/17971260-Daily-Views-post.xlsx
20.7 kB
15 - Statistics - Descriptive Statistics/18029224-Glossary.xlsx
20.4 kB
15 - Statistics - Descriptive Statistics/13055502-2.8.Skewness-exercise-solution.xlsx
20.2 kB
11 - Probability - Bayesian Inference/012 A Practical Example of Bayesian Inference__en.srt
20.2 kB
51 - Deep Learning - Business Case Example/29590002-TensorFlow-Audiobooks-Machine-Learning-Part2-with-comments.ipynb
20.2 kB
36 - Advanced Statistical Methods - Logistic Regression/15451889-Bank-data.csv
20.0 kB
36 - Advanced Statistical Methods - Logistic Regression/15451939-Bank-data.csv
20.0 kB
36 - Advanced Statistical Methods - Logistic Regression/15451967-Bank-data.csv
20.0 kB
36 - Advanced Statistical Methods - Logistic Regression/15452033-Bank-data.csv
20.0 kB
17 - Statistics - Inferential Statistics Fundamentals/13055898-3.2.What-is-a-distribution-lesson.xlsx
19.9 kB
15 - Statistics - Descriptive Statistics/13055440-2.5.The-Histogram-lesson.xlsx
19.1 kB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/29588124-Multiple-Linear-Regression-with-Dummies-Exercise-Solution.ipynb
18.4 kB
39 - Advanced Statistical Methods - Other Types of Clustering/29589070-Heatmaps-with-comments.ipynb
18.1 kB
54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/29591694-TensorFlow-MNIST-around-98-percent-accuracy.ipynb
18.1 kB
15 - Statistics - Descriptive Statistics/13055790-2.5.The-Histogram-exercise-solution.xlsx
17.5 kB
54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/29591654-3.TensorFlow-MNIST-Width-and-Depth-Solution.ipynb
17.2 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/29588412-SKLEAR-1.IPY
17.2 kB
50 - Deep Learning - Classifying on the MNIST Dataset/29589948-TensorFlow-MNIST-All-Exercises.ipynb
17.1 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/29588372-sklearn-Multiple-Linear-Regression-Summary-Table-with-comments.ipynb
17.0 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/29588432-sklearn-Feature-Scaling-Exercise-Solution.ipynb
16.7 kB
15 - Statistics - Descriptive Statistics/13055460-2.6.Cross-table-and-scatter-plot-exercise.xlsx
16.7 kB
18 - Statistics - Inferential Statistics_ Confidence Intervals/13056216-3.11.The-t-table.xlsx
16.2 kB
18 - Statistics - Inferential Statistics_ Confidence Intervals/21198408-3.11.The-t-table.xlsx
16.2 kB
50 - Deep Learning - Classifying on the MNIST Dataset/29589940-9.TensorFlow-MNIST-Learning-rate-Part-2-Solution.ipynb
16.2 kB
12 - Probability - Distributions/17971268-Customers-Membership-post.xlsx
16.0 kB
15 - Statistics - Descriptive Statistics/13055786-2.5.The-Histogram-exercise.xlsx
15.9 kB
54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/29591622-TensorFlow-MNIST-Exercises-All.ipynb
15.8 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/29588380-sklearn-Multiple-Linear-Regression-Exercise-Solution.ipynb
15.8 kB
50 - Deep Learning - Classifying on the MNIST Dataset/29589904-2.TensorFlow-MNIST-Depth-Solution.ipynb
15.7 kB
50 - Deep Learning - Classifying on the MNIST Dataset/29589908-3.TensorFlow-MNIST-Width-and-Depth-Solution.ipynb
15.7 kB
38 - Advanced Statistical Methods - K-Means Clustering/29589056-Species-Segmentation-with-Cluster-Analysis-Part-2-Solution.ipynb
15.7 kB
15 - Statistics - Descriptive Statistics/13055412-2.3.Categorical-variables.Visualization-techniques-exercise.xlsx
15.6 kB
54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/29591690-9.TensorFlow-MNIST-Learning-rate-Part-2-Solution.ipynb
15.6 kB
50 - Deep Learning - Classifying on the MNIST Dataset/29589932-7.TensorFlow-MNIST-Batch-size-Part-2-Solution.ipynb
15.5 kB
50 - Deep Learning - Classifying on the MNIST Dataset/29589928-6.TensorFlow-MNIST-Batch-size-Part-1-Solution.ipynb
15.5 kB
50 - Deep Learning - Classifying on the MNIST Dataset/29589912-4.TensorFlow-MNIST-Activation-functions-Part-1-Solution.ipynb
15.5 kB
50 - Deep Learning - Classifying on the MNIST Dataset/29589952-TensorFlow-MNIST-around-98-percent-accuracy.ipynb
15.4 kB
35 - Advanced Statistical Methods - Practical Example_ Linear Regression/001 Practical Example_ Linear Regression (Part 1)__en.srt
15.3 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/29588400-sklearn-Feature-Selection-through-Feature-Scaling-Standardization-Part-2.ipynb
15.3 kB
54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/29591650-2.TensorFlow-MNIST-Depth-Solution.ipynb
15.2 kB
50 - Deep Learning - Classifying on the MNIST Dataset/29589896-1.TensorFlow-MNIST-Width-Solution.ipynb
15.2 kB
50 - Deep Learning - Classifying on the MNIST Dataset/29589920-5.TensorFlow-MNIST-Activation-functions-Part-2-Solution.ipynb
15.1 kB
20 - Statistics - Hypothesis Testing/13737052-4.6.Test-for-the-mean.Population-variance-unknown-lesson.xlsx
14.9 kB
50 - Deep Learning - Classifying on the MNIST Dataset/29589960-TensorFlow-MNIST-complete-with-comments.ipynb
14.9 kB
20 - Statistics - Hypothesis Testing/13056718-4.7.Test-for-the-mean.Dependent-samples-exercise-solution.xlsx
14.7 kB
55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/29591812-TensorFlow-Audiobooks-Machine-learning-Homework.ipynb
14.7 kB
55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/29591844-TensorFlow-Audiobooks-Machine-learning-Homework.ipynb
14.7 kB
54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/29591658-4.TensorFlow-MNIST-Activation-functions-Part-1-Solution.ipynb
14.7 kB
54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/29591668-6.TensorFlow-MNIST-Batch-size-Part-1-Solution.ipynb
14.6 kB
18 - Statistics - Inferential Statistics_ Confidence Intervals/13056252-3.13.Confidence-intervals.Two-means.Dependent-samples-exercise-solution.xlsx
14.6 kB
54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/29591682-7.TensorFlow-MNIST-Batch-size-Part-2-Solution.ipynb
14.5 kB
10 - Probability - Combinatorics/011 A Practical Example of Combinatorics__en.srt
14.4 kB
54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/29591686-8.TensorFlow-MNIST-Learning-rate-Part-1-Solution.ipynb
14.4 kB
54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/29591642-1.TensorFlow-MNIST-Width-Solution.ipynb
14.3 kB
54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/29591632-0.TensorFlow-MNIST-take-note-of-time-Solution.ipynb
14.3 kB
53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/29591428-TensorFlow-Minimal-Example-All-Exercises.ipynb
14.3 kB
54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/29591660-5.TensorFlow-MNIST-Activation-functions-Part-2-Solution.ipynb
14.3 kB
18 - Statistics - Inferential Statistics_ Confidence Intervals/13056246-3.13.Confidence-intervals.Two-means.Dependent-samples-exercise.xlsx
14.1 kB
19 - Statistics - Practical Example_ Inferential Statistics/001 Practical Example_ Inferential Statistics__en.srt
14.1 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/29588370-sklearn-Multiple-Linear-Regression-Summary-Table.ipynb
14.0 kB
62 - Appendix - Additional Python Tools/29535536-Additional-Python-Tools-Lectures.ipynb
13.8 kB
62 - Appendix - Additional Python Tools/29535548-Additional-Python-Tools-Lectures.ipynb
13.8 kB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/29588068-Multiple-Linear-Regression-Exercise-Solution.ipynb
13.7 kB
15 - Statistics - Descriptive Statistics/23038654-2.4.Numerical-variables.Frequency-distribution-table-exercise-solution.xlsx
13.5 kB
54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/29591550-12.9.TensorFlow-MNIST-with-comments.ipynb
13.3 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/29588342-sklearn-Feature-Selection-with-F-regression-with-comments.ipynb
13.3 kB
43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/29589260-Minimal-example-All-Exercises.ipynb
13.2 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/29588394-SKLEAR-1.IPY
13.2 kB
20 - Statistics - Hypothesis Testing/13056716-4.7.Test-for-the-mean.Dependent-samples-exercise.xlsx
13.1 kB
55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/29591892-TensorFlow-Audiobooks-optimizing-the-algorithm-with-comments.ipynb
13.0 kB
55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/29591900-TensorFlow-Audiobooks-optimizing-the-algorithm-with-comments.ipynb
13.0 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/29588358-sklearn-How-to-properly-include-p-values.ipynb
13.0 kB
20 - Statistics - Hypothesis Testing/17710210-4.6.Test-for-the-mean.Population-variance-unknown-exercise-solution.xlsx
12.9 kB
15 - Statistics - Descriptive Statistics/19880123-2.10.Standard-deviation-and-coefficient-of-variation-exercise-solution.xlsx
12.9 kB
50 - Deep Learning - Classifying on the MNIST Dataset/29589892-TensorFlow-MNIST-Part6-with-comments.ipynb
12.8 kB
40 - Part 6_ Mathematics/011 Why is Linear Algebra Useful___en.srt
12.7 kB
62 - Appendix - Additional Python Tools/005 List Comprehensions__en.srt
12.6 kB
62 - Appendix - Additional Python Tools/001 Using the .format() Method__en.srt
12.6 kB
53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/29591408-5.6.TensorFlow-Minimal-example-complete.ipynb
12.4 kB
17 - Statistics - Inferential Statistics Fundamentals/14171114-3.4.Standard-normal-distribution-exercise.xlsx
12.3 kB
02 - The Field of Data Science - The Various Data Science Disciplines/004 Continuing with BI, ML, and AI__en.srt
12.2 kB
51 - Deep Learning - Business Case Example/29590012-TensorFlow-Audiobooks-Machine-Learning-with-comments.ipynb
12.2 kB
51 - Deep Learning - Business Case Example/29590020-TensorFlow-Audiobooks-Machine-Learning-with-comments.ipynb
12.2 kB
35 - Advanced Statistical Methods - Practical Example_ Linear Regression/006 Practical Example_ Linear Regression (Part 4)__en.srt
12.0 kB
55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/004 Business Case_ Preprocessing_en.vtt
12.0 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/29588392-sklearn-Feature-Selection-through-Feature-Scaling-Standardization-Part-1.ipynb
12.0 kB
51 - Deep Learning - Business Case Example/004 Business Case_ Preprocessing the Data_en.vtt
12.0 kB
36 - Advanced Statistical Methods - Logistic Regression/29588842-Accuracy-with-comments.ipynb
12.0 kB
15 - Statistics - Descriptive Statistics/19880121-2.10.Standard-deviation-and-coefficient-of-variation-exercise.xlsx
11.9 kB
54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/29591538-12.8.TensorFlow-MNIST-with-comments-Part-6.ipynb
11.8 kB
15 - Statistics - Descriptive Statistics/14679830-2.4.Numerical-variables.Frequency-distribution-table-lesson.xlsx
11.7 kB
43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/29589236-Minimal-example-Part-4-Complete.ipynb
11.7 kB
20 - Statistics - Hypothesis Testing/16190542-4.9.Test-for-the-mean.Independent-samples-Part-2-exercise-2-solution.xlsx
11.7 kB
62 - Appendix - Additional Python Tools/29535540-Additional-Python-Tools-Exercises.ipynb
11.6 kB
62 - Appendix - Additional Python Tools/29535552-Additional-Python-Tools-Exercises.ipynb
11.6 kB
15 - Statistics - Descriptive Statistics/13055486-2.7.Mean-median-and-mode-exercise-solution.xlsx
11.6 kB
20 - Statistics - Hypothesis Testing/13056708-4.6.Test-for-the-mean.Population-variance-unknown-exercise.xlsx
11.6 kB
05 - The Field of Data Science - Popular Data Science Techniques/007 Techniques for Working with Traditional Methods__en.srt
11.6 kB
20 - Statistics - Hypothesis Testing/18041220-4.8.Test-for-the-mean.Independent-samples-Part-1-exercise-solution.xlsx
11.5 kB
20 - Statistics - Hypothesis Testing/13056688-4.4.Test-for-the-mean.Population-variance-known-exercise-solution.xlsx
11.5 kB
18 - Statistics - Inferential Statistics_ Confidence Intervals/13056180-3.9.Population-variance-known-z-score-lesson.xlsx
11.5 kB
51 - Deep Learning - Business Case Example/29589978-TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb
11.5 kB
55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/29591738-TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb
11.5 kB
55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/29591820-TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb
11.5 kB
55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/29591846-TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb
11.5 kB
18 - Statistics - Inferential Statistics_ Confidence Intervals/13056200-3.9.Population-variance-known-z-score-exercise-solution.xlsx
11.4 kB
18 - Statistics - Inferential Statistics_ Confidence Intervals/13056228-3.11.Population-variance-unknown-t-score-exercise-solution.xlsx
11.4 kB
15 - Statistics - Descriptive Statistics/13055520-2.9.Variance-exercise-solution.xlsx
11.3 kB
20 - Statistics - Hypothesis Testing/13056684-4.4.Test-for-the-mean.Population-variance-known-exercise.xlsx
11.3 kB
02 - The Field of Data Science - The Various Data Science Disciplines/003 Business Analytics, Data Analytics, and Data Science_ An Introduction__en.srt
11.3 kB
50 - Deep Learning - Classifying on the MNIST Dataset/29589888-TensorFlow-MNIST-Part5-with-comments.ipynb
11.2 kB
15 - Statistics - Descriptive Statistics/13055800-2.10.Standard-deviation-and-coefficient-of-variation-lesson.xlsx
11.2 kB
20 - Statistics - Hypothesis Testing/13056520-4.4.Test-for-the-mean.Population-variance-known-lesson.xlsx
11.2 kB
15 - Statistics - Descriptive Statistics/13055484-2.7.Mean-median-and-mode-exercise.xlsx
11.1 kB
18 - Statistics - Inferential Statistics_ Confidence Intervals/13056196-3.9.Population-variance-known-z-score-exercise.xlsx
11.1 kB
15 - Statistics - Descriptive Statistics/13055516-2.9.Variance-exercise.xlsx
11.1 kB
18 - Statistics - Inferential Statistics_ Confidence Intervals/13056212-3.11.Population-variance-unknown-t-score-lesson.xlsx
11.0 kB
20 - Statistics - Hypothesis Testing/16200120-4.8.Test-for-the-mean.Independent-samples-Part-1-exercise.xlsx
11.0 kB
38 - Advanced Statistical Methods - K-Means Clustering/29589052-Species-Segmentation-with-Cluster-Analysis-Part-2-Exercise.ipynb
11.0 kB
05 - The Field of Data Science - Popular Data Science Techniques/001 Techniques for Working with Traditional Data__en.srt
11.0 kB
63 - Appendix - pandas Fundamentals/001 Introduction to pandas Series__en.srt
10.9 kB
55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/29591888-TensorFlow-Audiobooks-optimizing-the-algorithm.ipynb
10.9 kB
55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/29591894-TensorFlow-Audiobooks-optimizing-the-algorithm.ipynb
10.9 kB
55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/001 Business Case_ Getting Acquainted with the Dataset__en.srt
10.9 kB
18 - Statistics - Inferential Statistics_ Confidence Intervals/13056226-3.11.Population-variance-unknown-t-score-exercise.xlsx
10.9 kB
56 - Software Integration/003 Taking a Closer Look at APIs__en.srt
10.9 kB
43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/004 Basic NN Example (Part 4)__en.srt
10.8 kB
20 - Statistics - Hypothesis Testing/16190540-4.9.Test-for-the-mean.Independent-samples-Part-2-exercise-2.xlsx
10.8 kB
51 - Deep Learning - Business Case Example/001 Business Case_ Exploring the Dataset and Identifying Predictors__en.srt
10.8 kB
15 - Statistics - Descriptive Statistics/13055474-2.7.Mean-median-and-mode-lesson.xlsx
10.7 kB
50 - Deep Learning - Classifying on the MNIST Dataset/29589884-TensorFlow-MNIST-Part4-with-comments.ipynb
10.7 kB
18 - Statistics - Inferential Statistics_ Confidence Intervals/13056236-3.13.Confidence-intervals.Two-means.Dependent-samples-lesson.xlsx
10.7 kB
05 - The Field of Data Science - Popular Data Science Techniques/010 Types of Machine Learning__en.srt
10.7 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/29588340-sklearn-Feature-Selection-with-F-regression.ipynb
10.7 kB
35 - Advanced Statistical Methods - Practical Example_ Linear Regression/008 Practical Example_ Linear Regression (Part 5)__en.srt
10.7 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/29588312-sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-with-comments.ipynb
10.7 kB
17 - Statistics - Inferential Statistics Fundamentals/13055942-3.4.Standard-normal-distribution-lesson.xlsx
10.6 kB
55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/29591910-TensorFlow-Audiobooks-Outlining-the-model-with-comments.ipynb
10.6 kB
38 - Advanced Statistical Methods - K-Means Clustering/15452987-Categorical.csv
10.6 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/29588324-sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-Exercise-Solution.ipynb
10.6 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/011 Obtaining Dummies from a Single Feature__en.srt
10.5 kB
18 - Statistics - Inferential Statistics_ Confidence Intervals/002 Confidence Intervals; Population Variance Known; Z-score__en.srt
10.5 kB
61 - Case Study - Analyzing the Predicted Outputs in Tableau/002 Analyzing Age vs Probability in Tableau__en.srt
10.5 kB
18 - Statistics - Inferential Statistics_ Confidence Intervals/13056292-3.14.Confidence-intervals.Two-means.Independent-samples-Part-1-exercise-solution.xlsx
10.4 kB
15 - Statistics - Descriptive Statistics/13055510-2.9.Variance-lesson.xlsx
10.3 kB
51 - Deep Learning - Business Case Example/29590006-TensorFlow-Audiobooks-Machine-Learning-Part3-with-comments.ipynb
10.3 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/016 Classifying the Various Reasons for Absence__en.srt
10.3 kB
28 - Python - Sequences/001 Lists__en.srt
10.3 kB
63 - Appendix - pandas Fundamentals/010 Data Selection in pandas DataFrames__en.srt
10.3 kB
51 - Deep Learning - Business Case Example/29589992-TensorFlow-Audiobooks-Preprocessing-Exercise-Solution.ipynb
10.3 kB
55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/29591948-TensorFlow-Audiobooks-Preprocessing-Exercise-Solution.ipynb
10.3 kB
54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/008 MNIST_ Learning__en.srt
10.2 kB
62 - Appendix - Additional Python Tools/006 Anonymous (Lambda) Functions__en.srt
10.1 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/29588328-sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-Exercise.ipynb
10.1 kB
18 - Statistics - Inferential Statistics_ Confidence Intervals/13056280-3.14.Confidence-intervals.Two-means.Independent-samples-Part-1-lesson.xlsx
10.1 kB
18 - Statistics - Inferential Statistics_ Confidence Intervals/13056290-3.14.Confidence-intervals.Two-means.Independent-samples-Part-1-exercise.xlsx
10.1 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/019 Train - Test Split Explained__en.srt
10.1 kB
13 - Probability - Probability in Other Fields/001 Probability in Finance__en.srt
10.0 kB
18 - Statistics - Inferential Statistics_ Confidence Intervals/13056318-3.15.Confidence-intervals.Two-means.Independent-samples-Part-2-exercise-solution.xlsx
10.0 kB
20 - Statistics - Hypothesis Testing/13056712-4.7.Test-for-the-mean.Dependent-samples-lesson.xlsx
10.0 kB
12 - Probability - Distributions/002 Types of Probability Distributions__en.srt
10.0 kB
12 - Probability - Distributions/17971264-Customers-Membership.xlsx
9.9 kB
61 - Case Study - Analyzing the Predicted Outputs in Tableau/004 Analyzing Reasons vs Probability in Tableau__en.srt
9.9 kB
20 - Statistics - Hypothesis Testing/13056720-4.8.Test-for-the-mean.Independent-samples-Part-1-lesson.xlsx
9.9 kB
40 - Part 6_ Mathematics/010 Dot Product of Matrices__en.srt
9.8 kB
12 - Probability - Distributions/17971258-Daily-Views.xlsx
9.8 kB
18 - Statistics - Inferential Statistics_ Confidence Intervals/13056308-3.15.Confidence-intervals.Two-means.Independent-samples-Part-2-lesson.xlsx
9.7 kB
50 - Deep Learning - Classifying on the MNIST Dataset/006 MNIST_ Preprocess the Data - Shuffle and Batch__en.srt
9.7 kB
15 - Statistics - Descriptive Statistics/13055500-2.8.Skewness-exercise.xlsx
9.7 kB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/29588142-Making-predictions-with-comments.ipynb
9.6 kB
55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/29591906-TensorFlow-Audiobooks-Outlining-the-model.ipynb
9.6 kB
20 - Statistics - Hypothesis Testing/13056726-4.9.Test-for-the-mean.Independent-samples-Part-2-lesson.xlsx
9.5 kB
38 - Advanced Statistical Methods - K-Means Clustering/012 Market Segmentation with Cluster Analysis (Part 2)__en.srt
9.5 kB
18 - Statistics - Inferential Statistics_ Confidence Intervals/13056316-3.15.Confidence-intervals.Two-means.Independent-samples-Part-2-exercise.xlsx
9.4 kB
03 - The Field of Data Science - Connecting the Data Science Disciplines/001 Applying Traditional Data, Big Data, BI, Traditional Data Science and ML__en.srt
9.4 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/29588310-sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared.ipynb
9.3 kB
22 - Part 4_ Introduction to Python/004 Installing Python and Jupyter__en.srt
9.3 kB
20 - Statistics - Hypothesis Testing/003 Rejection Region and Significance Level__en.srt
9.3 kB
28 - Python - Sequences/005 Dictionaries__en.srt
9.3 kB
44 - Deep Learning - TensorFlow 2.0_ Introduction/29589782-TensorFlow-Minimal-example-Part2.ipynb
9.3 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/29588440-sklearn-Train-Test-Split-with-comments.ipynb
9.3 kB
09 - Part 2_ Probability/001 The Basic Probability Formula__en.srt
9.3 kB
54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/004 MNIST_ Model Outline__en.srt
9.2 kB
05 - The Field of Data Science - Popular Data Science Techniques/009 Machine Learning (ML) Techniques__en.srt
9.2 kB
05 - The Field of Data Science - Popular Data Science Techniques/005 Business Intelligence (BI) Techniques__en.srt
9.1 kB
12 - Probability - Distributions/008 Characteristics of Continuous Distributions__en.srt
9.1 kB
42 - Deep Learning - Introduction to Neural Networks/011 Optimization Algorithm_ 1-Parameter Gradient Descent__en.srt
9.0 kB
21 - Statistics - Practical Example_ Hypothesis Testing/001 Practical Example_ Hypothesis Testing__en.srt
8.9 kB
12 - Probability - Distributions/006 Discrete Distributions_ The Binomial Distribution__en.srt
8.9 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/29588246-sklearn-Multiple-Linear-Regression-with-comments.ipynb
8.9 kB
53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/29591380-5.5.TensorFlow-Minimal-example-Part-3.ipynb
8.9 kB
13 - Probability - Probability in Other Fields/002 Probability in Statistics__en.srt
8.8 kB
50 - Deep Learning - Classifying on the MNIST Dataset/29589878-TensorFlow-MNIST-Part3-with-comments.ipynb
8.8 kB
51 - Deep Learning - Business Case Example/29589984-TensorFlow-Audiobooks-Preprocessing-Exercise.ipynb
8.8 kB
55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/29591944-TensorFlow-Audiobooks-Preprocessing-Exercise.ipynb
8.8 kB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/002 Creating the Targets for the Logistic Regression__en.srt
8.8 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/026 Analyzing the Dates from the Initial Data Set__en.srt
8.8 kB
54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/29591520-12.7.TensorFlow-MNIST-with-comments-Part-5.ipynb
8.7 kB
56 - Software Integration/002 What are Data Connectivity, APIs, and Endpoints___en.srt
8.7 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/29545334-Absenteeism-Exercise-Preprocessing-df-preprocessed.ipynb
8.7 kB
38 - Advanced Statistical Methods - K-Means Clustering/29589008-How-to-Choose-the-Number-of-Clusters-Solution.ipynb
8.7 kB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/005 Splitting the Data for Training and Testing__en.srt
8.7 kB
28 - Python - Sequences/002 Using Methods__en.srt
8.6 kB
54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/009 MNIST_ Results and Testing__en.srt
8.5 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/29545316-Absenteeism-Exercise-Removing-the-Date-Column-SOLUTION.ipynb
8.5 kB
20 - Statistics - Hypothesis Testing/005 Test for the Mean. Population Variance Known__en.srt
8.5 kB
62 - Appendix - Additional Python Tools/003 Introduction to Nested For Loops__en.srt
8.5 kB
36 - Advanced Statistical Methods - Logistic Regression/15452035-Bank-data-testing.csv
8.5 kB
38 - Advanced Statistical Methods - K-Means Clustering/15453017-Countries-exercise.csv
8.5 kB
38 - Advanced Statistical Methods - K-Means Clustering/29588950-Countries-exercise.csv
8.5 kB
38 - Advanced Statistical Methods - K-Means Clustering/002 A Simple Example of Clustering_en.vtt
8.5 kB
18 - Statistics - Inferential Statistics_ Confidence Intervals/009 Confidence intervals. Two means. Dependent samples__en.srt
8.4 kB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/011 Dealing with Categorical Data - Dummy Variables__en.srt
8.4 kB
63 - Appendix - pandas Fundamentals/011 pandas DataFrames - Indexing with .iloc[]__en.srt
8.3 kB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/008 Interpreting the Coefficients for Our Problem__en.srt
8.2 kB
29 - Python - Iterations/003 Lists with the range() Function__en.srt
8.2 kB
62 - Appendix - Additional Python Tools/004 Triple Nested For Loops__en.srt
8.2 kB
44 - Deep Learning - TensorFlow 2.0_ Introduction/006 Outlining the Model with TensorFlow 2__en.srt
8.2 kB
32 - Advanced Statistical Methods - Linear Regression with StatsModels/005 First Regression in Python__en.srt
8.1 kB
51 - Deep Learning - Business Case Example/009 Business Case_ Setting an Early Stopping Mechanism__en.srt
8.1 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/027 Extracting the Month Value from the _Date_ Column__en.srt
8.1 kB
12 - Probability - Distributions/001 Fundamentals of Probability Distributions__en.srt
8.1 kB
54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/29591514-12.6.TensorFlow-MNIST-with-comments-Part-4.ipynb
8.1 kB
15 - Statistics - Descriptive Statistics/015 Variance__en.srt
8.1 kB
50 - Deep Learning - Classifying on the MNIST Dataset/010 MNIST_ Learning__en.srt
8.1 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/29588244-sklearn-Multiple-Linear-Regression.ipynb
8.0 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/014 Feature Scaling (Standardization)__en.srt
8.0 kB
55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/006 Creating a Data Provider__en.srt
8.0 kB
42 - Deep Learning - Introduction to Neural Networks/012 Optimization Algorithm_ n-Parameter Gradient Descent__en.srt
7.9 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/007 Dropping a Column from a DataFrame in Python__en.srt
7.9 kB
53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/009 Basic NN Example with TF_ Model Output__en.srt
7.9 kB
29 - Python - Iterations/004 Conditional Statements and Loops__en.srt
7.9 kB
22 - Part 4_ Introduction to Python/006 Prerequisites for Coding in the Jupyter Notebooks__en.srt
7.8 kB
63 - Appendix - pandas Fundamentals/008 Introduction to pandas DataFrames - Part II__en.srt
7.8 kB
29 - Python - Iterations/006 How to Iterate over Dictionaries__en.srt
7.8 kB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/002 Adjusted R-Squared__en.srt
7.8 kB
53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/007 Basic NN Example with TF_ Inputs, Outputs, Targets, Weights, Biases__en.srt
7.7 kB
36 - Advanced Statistical Methods - Logistic Regression/29588876-Testing-the-model-with-comments.ipynb
7.7 kB
23 - Python - Variables and Data Types/29544578-Strings-Lecture-Py3.ipynb
7.7 kB
11 - Probability - Bayesian Inference/011 Bayes' Law__en.srt
7.7 kB
38 - Advanced Statistical Methods - K-Means Clustering/29589000-Selecting-the-number-of-clusters-with-comments.ipynb
7.7 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/015 Feature Selection through Standardization of Weights__en.srt
7.6 kB
38 - Advanced Statistical Methods - K-Means Clustering/006 How to Choose the Number of Clusters__en.srt
7.6 kB
61 - Case Study - Analyzing the Predicted Outputs in Tableau/006 Analyzing Transportation Expense vs Probability in Tableau__en.srt
7.5 kB
38 - Advanced Statistical Methods - K-Means Clustering/29589048-Species-Segmentation-with-Cluster-Analysis-Part-1-Solution.ipynb
7.5 kB
06 - The Field of Data Science - Popular Data Science Tools/001 Necessary Programming Languages and Software Used in Data Science__en.srt
7.5 kB
20 - Statistics - Hypothesis Testing/001 Null vs Alternative Hypothesis__en.srt
7.5 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/29545314-Absenteeism-Exercise-Preprocessing-ChP-df-date-reason-mod.ipynb
7.5 kB
38 - Advanced Statistical Methods - K-Means Clustering/011 Market Segmentation with Cluster Analysis (Part 1)__en.srt
7.5 kB
54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/29591504-12.5.TensorFlow-MNIST-with-comments-Part-3.ipynb
7.5 kB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/010 Interpreting the Coefficients of the Logistic Regression__en.srt
7.5 kB
39 - Advanced Statistical Methods - Other Types of Clustering/002 Dendrogram__en.srt
7.5 kB
50 - Deep Learning - Classifying on the MNIST Dataset/008 MNIST_ Outline the Model__en.srt
7.4 kB
28 - Python - Sequences/004 Tuples__en.srt
7.4 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/29588436-sklearn-Train-Test-Split.ipynb
7.4 kB
09 - Part 2_ Probability/004 Events and Their Complements__en.srt
7.3 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/003 Checking the Content of the Data Set__en.srt
7.3 kB
35 - Advanced Statistical Methods - Practical Example_ Linear Regression/002 Practical Example_ Linear Regression (Part 2)_en.vtt
7.3 kB
23 - Python - Variables and Data Types/003 Python Strings__en.srt
7.3 kB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/29588120-Dummy-variables-with-comments.ipynb
7.3 kB
55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/007 Business Case_ Model Outline__en.srt
7.3 kB
63 - Appendix - pandas Fundamentals/007 Introduction to pandas DataFrames - Part I__en.srt
7.2 kB
22 - Part 4_ Introduction to Python/001 Introduction to Programming__en.srt
7.1 kB
63 - Appendix - pandas Fundamentals/002 Working with Methods in Python - Part I__en.srt
7.1 kB
43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/002 Basic NN Example (Part 2)__en.srt
7.1 kB
56 - Software Integration/005 Software Integration - Explained__en.srt
7.0 kB
22 - Part 4_ Introduction to Python/002 Why Python___en.srt
7.0 kB
32 - Advanced Statistical Methods - Linear Regression with StatsModels/001 The Linear Regression Model__en.srt
7.0 kB
38 - Advanced Statistical Methods - K-Means Clustering/29589038-Market-segmentation-example-Part2-with-comments.ipynb
7.0 kB
43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/29589230-Minimal-example-Part-3.ipynb
7.0 kB
46 - Deep Learning - Overfitting/006 Early Stopping or When to Stop Training__en.srt
7.0 kB
36 - Advanced Statistical Methods - Logistic Regression/29588894-Testing-the-Model-Exercise.ipynb
7.0 kB
20 - Statistics - Hypothesis Testing/010 Test for the Mean. Dependent Samples__en.srt
6.9 kB
50 - Deep Learning - Classifying on the MNIST Dataset/29589956-TensorFlow-MNIST-complete.ipynb
6.9 kB
02 - The Field of Data Science - The Various Data Science Disciplines/001 Data Science and Business Buzzwords_ Why are there so Many___en.srt
6.9 kB
60 - Case Study - Loading the 'absenteeism_module'/003 Deploying the 'absenteeism_module' - Part II_en.vtt
6.9 kB
45 - Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/003 Digging into a Deep Net__en.srt
6.9 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/010 Feature Selection (F-regression)__en.srt
6.9 kB
32 - Advanced Statistical Methods - Linear Regression with StatsModels/011 R-Squared__en.srt
6.9 kB
09 - Part 2_ Probability/002 Computing Expected Values__en.srt
6.9 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/003 Simple Linear Regression with sklearn_en.vtt
6.9 kB
52 - Deep Learning - Conclusion/004 An overview of CNNs__en.srt
6.9 kB
15 - Statistics - Descriptive Statistics/009 Cross Tables and Scatter Plots__en.srt
6.9 kB
29 - Python - Iterations/001 For Loops__en.srt
6.9 kB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/007 Creating a Summary Table with the Coefficients and Intercept__en.srt
6.8 kB
13 - Probability - Probability in Other Fields/003 Probability in Data Science__en.srt
6.8 kB
15 - Statistics - Descriptive Statistics/017 Standard Deviation and Coefficient of Variation__en.srt
6.8 kB
60 - Case Study - Loading the 'absenteeism_module'/29545374-absenteeism-module.py
6.8 kB
50 - Deep Learning - Classifying on the MNIST Dataset/004 MNIST_ Preprocess the Data - Create a Validation Set and Scale It__en.srt
6.8 kB
26 - Python - Conditional Statements/003 The ELIF Statement__en.srt
6.8 kB
12 - Probability - Distributions/007 Discrete Distributions_ The Poisson Distribution__en.srt
6.8 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/008 Calculating the Adjusted R-Squared in sklearn__en.srt
6.8 kB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/008 A3_ Normality and Homoscedasticity__en.srt
6.7 kB
32 - Advanced Statistical Methods - Linear Regression with StatsModels/008 How to Interpret the Regression Table__en.srt
6.7 kB
04 - The Field of Data Science - The Benefits of Each Discipline/001 The Reason Behind These Disciplines__en.srt
6.7 kB
38 - Advanced Statistical Methods - K-Means Clustering/013 How is Clustering Useful___en.srt
6.7 kB
44 - Deep Learning - TensorFlow 2.0_ Introduction/001 How to Install TensorFlow 2.0__en.srt
6.7 kB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/012 Testing the Model We Created__en.srt
6.7 kB
38 - Advanced Statistical Methods - K-Means Clustering/001 K-Means Clustering__en.srt
6.6 kB
55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/008 Business Case_ Optimization__en.srt
6.6 kB
36 - Advanced Statistical Methods - Logistic Regression/015 Testing the Model__en.srt
6.6 kB
15 - Statistics - Descriptive Statistics/003 Categorical Variables - Visualization Techniques__en.srt
6.6 kB
01 - Part 1_ Introduction/001 A Practical Example_ What You Will Learn in This Course__en.srt
6.6 kB
50 - Deep Learning - Classifying on the MNIST Dataset/29589876-TensorFlow-MNIST-Part2-with-comments.ipynb
6.5 kB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/006 Fitting the Model and Assessing its Accuracy_en.vtt
6.5 kB
09 - Part 2_ Probability/003 Frequency__en.srt
6.4 kB
51 - Deep Learning - Business Case Example/008 Business Case_ Learning and Interpreting the Result__en.srt
6.4 kB
18 - Statistics - Inferential Statistics_ Confidence Intervals/008 Margin of Error__en.srt
6.4 kB
44 - Deep Learning - TensorFlow 2.0_ Introduction/007 Interpreting the Result and Extracting the Weights and Bias__en.srt
6.4 kB
63 - Appendix - pandas Fundamentals/009 pandas DataFrames - Common Attributes__en.srt
6.4 kB
39 - Advanced Statistical Methods - Other Types of Clustering/003 Heatmaps__en.srt
6.4 kB
36 - Advanced Statistical Methods - Logistic Regression/15451783-Example-bank-data.csv
6.4 kB
49 - Deep Learning - Preprocessing/003 Standardization__en.srt
6.4 kB
20 - Statistics - Hypothesis Testing/008 Test for the Mean. Population Variance Unknown__en.srt
6.3 kB
37 - Advanced Statistical Methods - Cluster Analysis/002 Some Examples of Clusters__en.srt
6.3 kB
29 - Python - Iterations/002 While Loops and Incrementing__en.srt
6.3 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/010 Analyzing the Reasons for Absence__en.srt
6.3 kB
53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/29590046-5.4.TensorFlow-Minimal-example-Part-2.ipynb
6.3 kB
28 - Python - Sequences/29544994-Dictionaries-Solution-Py3.ipynb
6.3 kB
15 - Statistics - Descriptive Statistics/001 Types of Data__en.srt
6.3 kB
17 - Statistics - Inferential Statistics Fundamentals/002 What is a Distribution__en.srt
6.3 kB
48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/004 Learning Rate Schedules, or How to Choose the Optimal Learning Rate__en.srt
6.3 kB
54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/29591494-12.4.TensorFlow-MNIST-with-comments-Part-2.ipynb
6.2 kB
30 - Python - Advanced Python Tools/001 Object Oriented Programming__en.srt
6.2 kB
18 - Statistics - Inferential Statistics_ Confidence Intervals/011 Confidence intervals. Two means. Independent Samples (Part 1)__en.srt
6.2 kB
42 - Deep Learning - Introduction to Neural Networks/001 Introduction to Neural Networks__en.srt
6.2 kB
11 - Probability - Bayesian Inference/004 Union of Sets__en.srt
6.2 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/004 Simple Linear Regression with sklearn - A StatsModels-like Summary Table_en.vtt
6.2 kB
38 - Advanced Statistical Methods - K-Means Clustering/009 To Standardize or not to Standardize__en.srt
6.2 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/29588434-sklearn-Feature-Scaling-Exercise.ipynb
6.2 kB
50 - Deep Learning - Classifying on the MNIST Dataset/012 MNIST_ Testing the Model__en.srt
6.2 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/29588166-sklearn-Simple-Linear-Regression-with-comments.ipynb
6.2 kB
62 - Appendix - Additional Python Tools/002 Iterating Over Range Objects__en.srt
6.2 kB
40 - Part 6_ Mathematics/004 Arrays in Python - A Convenient Way To Represent Matrices__en.srt
6.2 kB
15 - Statistics - Descriptive Statistics/011 Mean, median and mode__en.srt
6.1 kB
25 - Python - Other Python Operators/002 Logical and Identity Operators__en.srt
6.1 kB
56 - Software Integration/001 What are Data, Servers, Clients, Requests, and Responses__en.srt
6.1 kB
36 - Advanced Statistical Methods - Logistic Regression/002 A Simple Example in Python__en.srt
6.0 kB
38 - Advanced Statistical Methods - K-Means Clustering/29589022-Market-segmentation-example-with-comments.ipynb
6.0 kB
25 - Python - Other Python Operators/29544754-Logical-and-Identity-Operators-Lecture-Py3.ipynb
6.0 kB
25 - Python - Other Python Operators/29544770-Logical-and-Identity-Operators-Lecture-Py3.ipynb
6.0 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/016 Predicting with the Standardized Coefficients__en.srt
6.0 kB
18 - Statistics - Inferential Statistics_ Confidence Intervals/004 Confidence Interval Clarifications__en.srt
5.9 kB
38 - Advanced Statistical Methods - K-Means Clustering/29588940-Country-clusters-with-comments.ipynb
5.9 kB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/29588138-Making-predictions.ipynb
5.9 kB
36 - Advanced Statistical Methods - Logistic Regression/29588864-Testing-the-model.ipynb
5.9 kB
05 - The Field of Data Science - Popular Data Science Techniques/003 Techniques for Working with Big Data__en.srt
5.9 kB
46 - Deep Learning - Overfitting/001 What is Overfitting___en.srt
5.9 kB
10 - Probability - Combinatorics/006 Solving Combinations__en.srt
5.9 kB
40 - Part 6_ Mathematics/008 Transpose of a Matrix__en.srt
5.8 kB
36 - Advanced Statistical Methods - Logistic Regression/010 Binary Predictors in a Logistic Regression__en.srt
5.8 kB
17 - Statistics - Inferential Statistics Fundamentals/006 Central Limit Theorem__en.srt
5.8 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/29588382-sklearn-Multiple-Linear-Regression-Exercise.ipynb
5.8 kB
18 - Statistics - Inferential Statistics_ Confidence Intervals/006 Confidence Intervals; Population Variance Unknown; T-score__en.srt
5.8 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/031 Working on _Education_, _Children_, and _Pets___en.srt
5.8 kB
42 - Deep Learning - Introduction to Neural Networks/010 Common Objective Functions_ Cross-Entropy Loss__en.srt
5.8 kB
38 - Advanced Statistical Methods - K-Means Clustering/29588968-Categorical-data-with-comments.ipynb
5.8 kB
14 - Part 3_ Statistics/001 Population and Sample__en.srt
5.7 kB
63 - Appendix - pandas Fundamentals/005 Using .unique() and .nunique()__en.srt
5.7 kB
51 - Deep Learning - Business Case Example/29589970-TensorFlow-Audiobooks-Preprocessing.ipynb
5.7 kB
55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/29591734-TensorFlow-Audiobooks-Preprocessing.ipynb
5.7 kB
20 - Statistics - Hypothesis Testing/012 Test for the mean. Independent Samples (Part 1)__en.srt
5.7 kB
38 - Advanced Statistical Methods - K-Means Clustering/29589006-How-to-Choose-the-Number-of-Clusters-Exercise.ipynb
5.7 kB
63 - Appendix - pandas Fundamentals/006 Using .sort_values()__en.srt
5.7 kB
57 - Case Study - What's Next in the Course_/001 Game Plan for this Python, SQL, and Tableau Business Exercise__en.srt
5.7 kB
27 - Python - Python Functions/29544926-Notable-Built-In-Functions-in-Python-Solution-Py3.ipynb
5.7 kB
36 - Advanced Statistical Methods - Logistic Regression/007 Understanding Logistic Regression Tables__en.srt
5.7 kB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/016 Preparing the Deployment of the Model through a Module__en.srt
5.6 kB
63 - Appendix - pandas Fundamentals/012 pandas DataFrames - Indexing with .loc[]__en.srt
5.6 kB
56 - Software Integration/004 Communication between Software Products through Text Files__en.srt
5.6 kB
63 - Appendix - pandas Fundamentals/004 Parameters and Arguments in pandas__en.srt
5.6 kB
20 - Statistics - Hypothesis Testing/014 Test for the mean. Independent Samples (Part 2)__en.srt
5.6 kB
23 - Python - Variables and Data Types/29544586-Strings-Solution-Py3.ipynb
5.6 kB
08 - The Field of Data Science - Debunking Common Misconceptions/001 Debunking Common Misconceptions__en.srt
5.6 kB
12 - Probability - Distributions/014 Continuous Distributions_ The Logistic Distribution__en.srt
5.5 kB
42 - Deep Learning - Introduction to Neural Networks/006 The Linear model with Multiple Inputs and Multiple Outputs__en.srt
5.5 kB
12 - Probability - Distributions/010 Continuous Distributions_ The Standard Normal Distribution__en.srt
5.5 kB
36 - Advanced Statistical Methods - Logistic Regression/29588854-Calculating-the-Accuracy-of-the-Model-Exercise.ipynb
5.5 kB
11 - Probability - Bayesian Inference/001 Sets and Events__en.srt
5.5 kB
20 - Statistics - Hypothesis Testing/007 p-value__en.srt
5.5 kB
54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/006 Calculating the Accuracy of the Model__en.srt
5.5 kB
45 - Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/005 Activation Functions__en.srt
5.5 kB
36 - Advanced Statistical Methods - Logistic Regression/29588644-Admittance-with-comments.ipynb
5.4 kB
42 - Deep Learning - Introduction to Neural Networks/003 Types of Machine Learning__en.srt
5.4 kB
52 - Deep Learning - Conclusion/006 An Overview of non-NN Approaches__en.srt
5.4 kB
11 - Probability - Bayesian Inference/007 The Conditional Probability Formula__en.srt
5.4 kB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/007 A2_ No Endogeneity__en.srt
5.4 kB
20 - Statistics - Hypothesis Testing/004 Type I Error and Type II Error__en.srt
5.4 kB
52 - Deep Learning - Conclusion/001 Summary on What You've Learned__en.srt
5.4 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/017 Using .concat() in Python__en.srt
5.4 kB
48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/006 Adaptive Learning Rate Schedules (AdaGrad and RMSprop )__en.srt
5.3 kB
28 - Python - Sequences/003 List Slicing__en.srt
5.3 kB
02 - The Field of Data Science - The Various Data Science Disciplines/005 A Breakdown of our Data Science Infographic__en.srt
5.3 kB
01 - Part 1_ Introduction/002 What Does the Course Cover__en.srt
5.2 kB
36 - Advanced Statistical Methods - Logistic Regression/009 What do the Odds Actually Mean__en.srt
5.2 kB
02 - The Field of Data Science - The Various Data Science Disciplines/002 What is the difference between Analysis and Analytics__en.srt
5.2 kB
28 - Python - Sequences/29544952-List-Slicing-Lecture-Py3.ipynb
5.1 kB
17 - Statistics - Inferential Statistics Fundamentals/003 The Normal Distribution__en.srt
5.1 kB
35 - Advanced Statistical Methods - Practical Example_ Linear Regression/002 Practical Example_ Linear Regression (Part 2)__en.srt
5.1 kB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/009 Standardizing only the Numerical Variables (Creating a Custom Scaler)__en.srt
5.1 kB
15 - Statistics - Descriptive Statistics/019 Covariance__en.srt
5.1 kB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/013 Saving the Model and Preparing it for Deployment_en.vtt
5.1 kB
12 - Probability - Distributions/009 Continuous Distributions_ The Normal Distribution__en.srt
5.0 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/29588164-sklearn-Simple-Linear-Regression.ipynb
5.0 kB
38 - Advanced Statistical Methods - K-Means Clustering/29588986-Clustering-Categorical-Data-Solution.ipynb
5.0 kB
46 - Deep Learning - Overfitting/003 What is Validation___en.srt
5.0 kB
36 - Advanced Statistical Methods - Logistic Regression/003 Logistic vs Logit Function__en.srt
5.0 kB
36 - Advanced Statistical Methods - Logistic Regression/014 Underfitting and Overfitting__en.srt
5.0 kB
60 - Case Study - Loading the 'absenteeism_module'/002 Deploying the 'absenteeism_module' - Part I__en.srt
5.0 kB
51 - Deep Learning - Business Case Example/006 Business Case_ Load the Preprocessed Data__en.srt
4.9 kB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/009 A4_ No Autocorrelation__en.srt
4.9 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/29545298-Absenteeism-Exercise-Preprocessing-df-reason-mod.ipynb
4.9 kB
55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/011 Business Case_ A Comment on the Homework__en.srt
4.9 kB
18 - Statistics - Inferential Statistics_ Confidence Intervals/013 Confidence intervals. Two means. Independent Samples (Part 2)__en.srt
4.9 kB
36 - Advanced Statistical Methods - Logistic Regression/29588700-Understanding-Logistic-Regression-Tables-Solution.ipynb
4.9 kB
49 - Deep Learning - Preprocessing/005 Binary and One-Hot Encoding__en.srt
4.9 kB
37 - Advanced Statistical Methods - Cluster Analysis/001 Introduction to Cluster Analysis__en.srt
4.9 kB
53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/008 Basic NN Example with TF_ Loss Function and Gradient Descent__en.srt
4.9 kB
15 - Statistics - Descriptive Statistics/021 Correlation Coefficient__en.srt
4.9 kB
39 - Advanced Statistical Methods - Other Types of Clustering/001 Types of Clustering__en.srt
4.9 kB
48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/001 Stochastic Gradient Descent__en.srt
4.9 kB
10 - Probability - Combinatorics/005 Solving Variations without Repetition__en.srt
4.9 kB
32 - Advanced Statistical Methods - Linear Regression with StatsModels/004 Python Packages Installation_en.vtt
4.9 kB
44 - Deep Learning - TensorFlow 2.0_ Introduction/002 TensorFlow Outline and Comparison with Other Libraries_en.vtt
4.8 kB
51 - Deep Learning - Business Case Example/003 Business Case_ Balancing the Dataset__en.srt
4.8 kB
55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/003 The Importance of Working with a Balanced Dataset__en.srt
4.8 kB
15 - Statistics - Descriptive Statistics/002 Levels of Measurement__en.srt
4.8 kB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/010 A5_ No Multicollinearity__en.srt
4.8 kB
38 - Advanced Statistical Methods - K-Means Clustering/29589036-Market-segmentation-example-Part2.ipynb
4.8 kB
11 - Probability - Bayesian Inference/010 The Multiplication Law__en.srt
4.8 kB
38 - Advanced Statistical Methods - K-Means Clustering/29588954-A-Simple-Example-of-Clustering-Solution.ipynb
4.8 kB
55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/011 Business Case_ A Comment on the Homework_en.vtt
4.8 kB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/001 Exploring the Problem with a Machine Learning Mindset__en.srt
4.7 kB
22 - Part 4_ Introduction to Python/003 Why Jupyter___en.srt
4.7 kB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/29588094-Dummy-Variables.ipynb
4.7 kB
51 - Deep Learning - Business Case Example/29590000-TensorFlow-Audiobooks-Machine-Learning-Part1-with-comments.ipynb
4.7 kB
41 - Part 7_ Deep Learning/001 What to Expect from this Part___en.srt
4.7 kB
53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/004 TensorFlow Intro_en.vtt
4.7 kB
28 - Python - Sequences/29544978-Tuples-Solution-Py3.ipynb
4.7 kB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/011 Backward Elimination or How to Simplify Your Model_en.vtt
4.7 kB
32 - Advanced Statistical Methods - Linear Regression with StatsModels/004 Python Packages Installation__en.srt
4.7 kB
40 - Part 6_ Mathematics/29589122-Scalars-Vectors-and-Matrices.ipynb
4.7 kB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/013 Making Predictions with the Linear Regression__en.srt
4.7 kB
38 - Advanced Statistical Methods - K-Means Clustering/29588998-Selecting-the-number-of-clusters.ipynb
4.6 kB
23 - Python - Variables and Data Types/001 Variables__en.srt
4.6 kB
43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/001 Basic NN Example (Part 1)__en.srt
4.6 kB
27 - Python - Python Functions/29544922-Notable-Built-In-Functions-in-Python-Lecture-Py3.ipynb
4.6 kB
45 - Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/006 Activation Functions_ Softmax Activation__en.srt
4.6 kB
36 - Advanced Statistical Methods - Logistic Regression/29588832-Binary-Predictors-in-a-Logistic-Regression-Solution.ipynb
4.6 kB
45 - Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/007 Backpropagation__en.srt
4.6 kB
38 - Advanced Statistical Methods - K-Means Clustering/29589044-Species-Segmentation-with-Cluster-Analysis-Part-1-Exercise.ipynb
4.6 kB
30 - Python - Advanced Python Tools/004 Importing Modules in Python__en.srt
4.6 kB
36 - Advanced Statistical Methods - Logistic Regression/29588678-Building-a-Logistic-Regression-Solution.ipynb
4.5 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/030 Analyzing Several _Straightforward_ Columns for this Exercise__en.srt
4.5 kB
40 - Part 6_ Mathematics/001 What is a Matrix___en.srt
4.5 kB
42 - Deep Learning - Introduction to Neural Networks/002 Training the Model__en.srt
4.5 kB
36 - Advanced Statistical Methods - Logistic Regression/012 Calculating the Accuracy of the Model__en.srt
4.5 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/028 Extracting the Day of the Week from the _Date_ Column__en.srt
4.5 kB
11 - Probability - Bayesian Inference/002 Ways Sets Can Interact__en.srt
4.5 kB
43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/003 Basic NN Example (Part 3)__en.srt
4.5 kB
28 - Python - Sequences/29544938-Help-Yourself-with-Methods-Lecture-Py3.ipynb
4.5 kB
15 - Statistics - Descriptive Statistics/005 Numerical Variables - Frequency Distribution Table__en.srt
4.5 kB
28 - Python - Sequences/29544988-Dictionaries-Lecture-Py3.ipynb
4.5 kB
07 - The Field of Data Science - Careers in Data Science/001 Finding the Job - What to Expect and What to Look for__en.srt
4.4 kB
40 - Part 6_ Mathematics/009 Dot Product__en.srt
4.4 kB
27 - Python - Python Functions/002 How to Create a Function with a Parameter__en.srt
4.4 kB
12 - Probability - Distributions/005 Discrete Distributions_ The Bernoulli Distribution__en.srt
4.4 kB
27 - Python - Python Functions/007 Built-in Functions in Python__en.srt
4.4 kB
46 - Deep Learning - Overfitting/005 N-Fold Cross Validation__en.srt
4.4 kB
24 - Python - Basic Python Syntax/001 Using Arithmetic Operators in Python__en.srt
4.4 kB
45 - Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/008 Backpropagation Picture__en.srt
4.4 kB
28 - Python - Sequences/29544960-List-Slicing-Solution-Py3.ipynb
4.4 kB
18 - Statistics - Inferential Statistics_ Confidence Intervals/005 Student's T Distribution__en.srt
4.3 kB
24 - Python - Basic Python Syntax/29544620-Arithmetic-Operators-Solution-Py3.ipynb
4.3 kB
10 - Probability - Combinatorics/002 Permutations and How to Use Them__en.srt
4.3 kB
10 - Probability - Combinatorics/007 Symmetry of Combinations__en.srt
4.3 kB
12 - Probability - Distributions/013 Continuous Distributions_ The Exponential Distribution__en.srt
4.3 kB
32 - Advanced Statistical Methods - Linear Regression with StatsModels/009 Decomposition of Variability__en.srt
4.3 kB
44 - Deep Learning - TensorFlow 2.0_ Introduction/008 Customizing a TensorFlow 2 Model__en.srt
4.3 kB
35 - Advanced Statistical Methods - Practical Example_ Linear Regression/004 Practical Example_ Linear Regression (Part 3)__en.srt
4.3 kB
37 - Advanced Statistical Methods - Cluster Analysis/004 Math Prerequisites__en.srt
4.3 kB
10 - Probability - Combinatorics/009 Combinatorics in Real-Life_ The Lottery__en.srt
4.3 kB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/004 Standardizing the Data__en.srt
4.3 kB
17 - Statistics - Inferential Statistics Fundamentals/004 The Standard Normal Distribution__en.srt
4.2 kB
57 - Case Study - What's Next in the Course_/003 Introducing the Data Set__en.srt
4.2 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/29545338-Absenteeism-Exercise-EXERCISES-and-SOLUTIONS.ipynb
4.2 kB
36 - Advanced Statistical Methods - Logistic Regression/29588660-Admittance-regression-tables-fixed-error.ipynb
4.2 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/004 Introduction to Terms with Multiple Meanings__en.srt
4.2 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/33130182-Simple-Linear-Regression-with-sklearn-Exercise.ipynb
4.2 kB
40 - Part 6_ Mathematics/003 Linear Algebra and Geometry__en.srt
4.2 kB
38 - Advanced Statistical Methods - K-Means Clustering/008 Pros and Cons of K-Means Clustering_en.vtt
4.2 kB
32 - Advanced Statistical Methods - Linear Regression with StatsModels/29588016-Simple-linear-regression-with-comments.ipynb
4.2 kB
40 - Part 6_ Mathematics/006 Addition and Subtraction of Matrices__en.srt
4.1 kB
50 - Deep Learning - Classifying on the MNIST Dataset/29589868-TensorFlow-MNIST-Part1-with-comments.ipynb
4.1 kB
42 - Deep Learning - Introduction to Neural Networks/004 The Linear Model (Linear Algebraic Version)__en.srt
4.0 kB
54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/29591484-12.3.TensorFlow-MNIST-with-comments-Part-1.ipynb
4.0 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/002 Importing the Absenteeism Data in Python__en.srt
4.0 kB
17 - Statistics - Inferential Statistics Fundamentals/008 Estimators and Estimates__en.srt
4.0 kB
40 - Part 6_ Mathematics/002 Scalars and Vectors__en.srt
3.9 kB
47 - Deep Learning - Initialization/002 Types of Simple Initializations__en.srt
3.9 kB
10 - Probability - Combinatorics/008 Solving Combinations with Separate Sample Spaces__en.srt
3.9 kB
49 - Deep Learning - Preprocessing/001 Preprocessing Introduction__en.srt
3.9 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/007 Multiple Linear Regression with sklearn_en.vtt
3.9 kB
38 - Advanced Statistical Methods - K-Means Clustering/29589020-Market-segmentation-example.ipynb
3.9 kB
32 - Advanced Statistical Methods - Linear Regression with StatsModels/010 What is the OLS___en.srt
3.9 kB
45 - Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/004 Non-Linearities and their Purpose__en.srt
3.9 kB
32 - Advanced Statistical Methods - Linear Regression with StatsModels/29587976-Simple-linear-regression.ipynb
3.9 kB
23 - Python - Variables and Data Types/29544612-Variables-Solution-Py3.ipynb
3.9 kB
38 - Advanced Statistical Methods - K-Means Clustering/29588982-Clustering-Categorical-Data-Exercise.ipynb
3.9 kB
50 - Deep Learning - Classifying on the MNIST Dataset/002 MNIST_ How to Tackle the MNIST__en.srt
3.9 kB
52 - Deep Learning - Conclusion/005 An Overview of RNNs__en.srt
3.9 kB
44 - Deep Learning - TensorFlow 2.0_ Introduction/003 TensorFlow 1 vs TensorFlow 2__en.srt
3.8 kB
10 - Probability - Combinatorics/010 A Recap of Combinatorics__en.srt
3.8 kB
54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/002 MNIST_ How to Tackle the MNIST__en.srt
3.8 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/023 Creating Checkpoints while Coding in Jupyter__en.srt
3.8 kB
57 - Case Study - What's Next in the Course_/002 The Business Task__en.srt
3.8 kB
22 - Part 4_ Introduction to Python/005 Understanding Jupyter's Interface - the Notebook Dashboard__en.srt
3.8 kB
40 - Part 6_ Mathematics/005 What is a Tensor___en.srt
3.8 kB
47 - Deep Learning - Initialization/003 State-of-the-Art Method - (Xavier) Glorot Initialization__en.srt
3.8 kB
30 - Python - Advanced Python Tools/003 What is the Standard Library___en.srt
3.7 kB
27 - Python - Python Functions/29544924-Notable-Built-In-Functions-in-Python-Exercise-Py3.ipynb
3.7 kB
43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/29589218-Minimal-example-Part-2.ipynb
3.7 kB
10 - Probability - Combinatorics/004 Solving Variations with Repetition__en.srt
3.7 kB
15 - Statistics - Descriptive Statistics/013 Skewness__en.srt
3.7 kB
36 - Advanced Statistical Methods - Logistic Regression/29588838-Accuracy.ipynb
3.7 kB
38 - Advanced Statistical Methods - K-Means Clustering/15453059-iris-with-answers.csv
3.7 kB
38 - Advanced Statistical Methods - K-Means Clustering/29588952-A-Simple-Example-of-Clustering-Exercise.ipynb
3.7 kB
23 - Python - Variables and Data Types/002 Numbers and Boolean Values in Python__en.srt
3.7 kB
27 - Python - Python Functions/005 Conditional Statements and Functions__en.srt
3.7 kB
23 - Python - Variables and Data Types/29544526-Variables-Lecture-Py3.ipynb
3.7 kB
40 - Part 6_ Mathematics/29589194-Dot-product-Part-2.ipynb
3.7 kB
63 - Appendix - pandas Fundamentals/003 Working with Methods in Python - Part II__en.srt
3.7 kB
47 - Deep Learning - Initialization/001 What is Initialization___en.srt
3.7 kB
54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/005 MNIST_ Loss and Optimization Algorithm__en.srt
3.7 kB
48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/003 Momentum__en.srt
3.7 kB
32 - Advanced Statistical Methods - Linear Regression with StatsModels/29588024-Simple-Linear-Regression-Exercise-Solution.ipynb
3.7 kB
44 - Deep Learning - TensorFlow 2.0_ Introduction/005 Types of File Formats Supporting TensorFlow__en.srt
3.6 kB
10 - Probability - Combinatorics/003 Simple Operations with Factorials__en.srt
3.6 kB
36 - Advanced Statistical Methods - Logistic Regression/29588642-Admittance.ipynb
3.6 kB
26 - Python - Conditional Statements/001 The IF Statement__en.srt
3.6 kB
05 - The Field of Data Science - Popular Data Science Techniques/008 Real Life Examples of Traditional Methods__en.srt
3.6 kB
24 - Python - Basic Python Syntax/29544616-Arithmetic-Operators-Lecture-Py3.ipynb
3.6 kB
54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/001 MNIST_ What is the MNIST Dataset___en.srt
3.6 kB
50 - Deep Learning - Classifying on the MNIST Dataset/001 MNIST_ The Dataset__en.srt
3.6 kB
11 - Probability - Bayesian Inference/006 Dependence and Independence of Sets__en.srt
3.5 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/018 Underfitting and Overfitting__en.srt
3.5 kB
36 - Advanced Statistical Methods - Logistic Regression/004 Building a Logistic Regression__en.srt
3.5 kB
25 - Python - Other Python Operators/29544776-Logical-and-Identity-Operators-Solution-Py3.ipynb
3.5 kB
48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/007 Adam (Adaptive Moment Estimation)__en.srt
3.5 kB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/003 Selecting the Inputs for the Logistic Regression__en.srt
3.5 kB
46 - Deep Learning - Overfitting/004 Training, Validation, and Test Datasets__en.srt
3.5 kB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/29588130-real-estate-price-size-year-view.csv
3.5 kB
11 - Probability - Bayesian Inference/008 The Law of Total Probability__en.srt
3.5 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/001 What is sklearn and How is it Different from Other Packages__en.srt
3.5 kB
23 - Python - Variables and Data Types/29544572-Numbers-and-Boolean-Values-Lecture-Py3.ipynb
3.4 kB
53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/29590038-5.3.TensorFlow-Minimal-example-Part-1.ipynb
3.4 kB
38 - Advanced Statistical Methods - K-Means Clustering/29588960-Categorical-data.ipynb
3.4 kB
37 - Advanced Statistical Methods - Cluster Analysis/003 Difference between Classification and Clustering__en.srt
3.4 kB
38 - Advanced Statistical Methods - K-Means Clustering/004 Clustering Categorical Data__en.srt
3.4 kB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/001 Multiple Linear Regression__en.srt
3.4 kB
38 - Advanced Statistical Methods - K-Means Clustering/29588936-Country-clusters.ipynb
3.4 kB
45 - Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/002 What is a Deep Net___en.srt
3.4 kB
53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/006 Types of File Formats, supporting Tensors__en.srt
3.4 kB
27 - Python - Python Functions/29544866-Another-Way-to-Define-a-Function-Lecture-Py3.ipynb
3.4 kB
18 - Statistics - Inferential Statistics_ Confidence Intervals/001 What are Confidence Intervals___en.srt
3.4 kB
26 - Python - Conditional Statements/29544814-Else-If-for-Brief-Elif-Lecture-Py3.ipynb
3.3 kB
23 - Python - Variables and Data Types/29544594-Numbers-and-Boolean-Values-Solution-Py3.ipynb
3.3 kB
40 - Part 6_ Mathematics/29589134-Adding-and-subtracting-matrices.ipynb
3.3 kB
42 - Deep Learning - Introduction to Neural Networks/005 The Linear Model with Multiple Inputs__en.srt
3.3 kB
50 - Deep Learning - Classifying on the MNIST Dataset/009 MNIST_ Select the Loss and the Optimizer__en.srt
3.3 kB
28 - Python - Sequences/29544932-Lists-Solution-Py3.ipynb
3.3 kB
40 - Part 6_ Mathematics/29589174-Errors-when-adding-scalars-vectors-and-matrices-in-Python.ipynb
3.2 kB
36 - Advanced Statistical Methods - Logistic Regression/29588694-Understanding-Logistic-Regression-Tables-Exercise.ipynb
3.2 kB
36 - Advanced Statistical Methods - Logistic Regression/006 An Invaluable Coding Tip__en.srt
3.2 kB
15 - Statistics - Descriptive Statistics/007 The Histogram__en.srt
3.2 kB
26 - Python - Conditional Statements/002 The ELSE Statement__en.srt
3.2 kB
24 - Python - Basic Python Syntax/29544648-Reassign-Values-Lecture-Py3.ipynb
3.2 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/012 Creating a Summary Table with P-values__en.srt
3.1 kB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/29588128-Multiple-Linear-Regression-with-Dummies-Exercise.ipynb
3.1 kB
50 - Deep Learning - Classifying on the MNIST Dataset/003 MNIST_ Importing the Relevant Packages and Loading the Data__en.srt
3.1 kB
12 - Probability - Distributions/011 Continuous Distributions_ The Students' T Distribution__en.srt
3.0 kB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/005 OLS Assumptions__en.srt
3.0 kB
29 - Python - Iterations/29545074-Use-Conditional-Statements-and-Loops-Together-Solution-Py3.ipynb
3.0 kB
05 - The Field of Data Science - Popular Data Science Techniques/011 Real Life Examples of Machine Learning (ML)__en.srt
3.0 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/006 Using a Statistical Approach towards the Solution to the Exercise__en.srt
3.0 kB
28 - Python - Sequences/29544992-Dictionaries-Exercise-Py3.ipynb
3.0 kB
36 - Advanced Statistical Methods - Logistic Regression/29588676-Building-a-Logistic-Regression-Exercise.ipynb
3.0 kB
48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/002 Problems with Gradient Descent__en.srt
3.0 kB
55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/009 Business Case_ Interpretation__en.srt
3.0 kB
26 - Python - Conditional Statements/004 A Note on Boolean Values__en.srt
3.0 kB
53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/002 How to Install TensorFlow 1_en.vtt
3.0 kB
28 - Python - Sequences/29544972-Tuples-Lecture-Py3.ipynb
3.0 kB
12 - Probability - Distributions/012 Continuous Distributions_ The Chi-Squared Distribution__en.srt
3.0 kB
40 - Part 6_ Mathematics/29589180-Tranpose-of-a-matrix.ipynb
3.0 kB
27 - Python - Python Functions/003 Defining a Function in Python - Part II__en.srt
2.9 kB
29 - Python - Iterations/29545120-Iterating-over-Dictionaries-Solution-Py3.ipynb
2.9 kB
49 - Deep Learning - Preprocessing/004 Preprocessing Categorical Data__en.srt
2.9 kB
64 - Bonus Lecture/001 Bonus Lecture_ Next Steps.html
2.9 kB
12 - Probability - Distributions/004 Discrete Distributions_ The Uniform Distribution__en.srt
2.9 kB
54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/007 MNIST_ Batching and Early Stopping__en.srt
2.9 kB
42 - Deep Learning - Introduction to Neural Networks/007 Graphical Representation of Simple Neural Networks__en.srt
2.9 kB
28 - Python - Sequences/29544946-Help-Yourself-with-Methods-Solution-Py3.ipynb
2.9 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/005 What's Regression Analysis - a Quick Refresher.html
2.9 kB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/29588066-Multiple-linear-regression-and-Adjusted-R-squared-with-comments.ipynb
2.9 kB
11 - Probability - Bayesian Inference/009 The Additive Rule__en.srt
2.9 kB
28 - Python - Sequences/29544956-List-Slicing-Exercise-Py3.ipynb
2.9 kB
32 - Advanced Statistical Methods - Linear Regression with StatsModels/29588026-Simple-Linear-Regression-Exercise.ipynb
2.8 kB
42 - Deep Learning - Introduction to Neural Networks/009 Common Objective Functions_ L2-norm Loss__en.srt
2.8 kB
53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/002 How to Install TensorFlow 1__en.srt
2.8 kB
55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/010 Business Case_ Testing the Model__en.srt
2.8 kB
28 - Python - Sequences/29544928-Lists-Lecture-Py3.ipynb
2.8 kB
46 - Deep Learning - Overfitting/002 Underfitting and Overfitting for Classification__en.srt
2.8 kB
11 - Probability - Bayesian Inference/005 Mutually Exclusive Sets__en.srt
2.7 kB
52 - Deep Learning - Conclusion/002 What's Further out there in terms of Machine Learning__en.srt
2.7 kB
38 - Advanced Statistical Methods - K-Means Clustering/008 Pros and Cons of K-Means Clustering__en.srt
2.7 kB
24 - Python - Basic Python Syntax/29544618-Arithmetic-Operators-Exercise-Py3.ipynb
2.7 kB
23 - Python - Variables and Data Types/29544582-Strings-Exercise-Py3.ipynb
2.7 kB
40 - Part 6_ Mathematics/007 Errors when Adding Matrices__en.srt
2.7 kB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/004 Test for Significance of the Model (F-Test)__en.srt
2.6 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/002 How are we Going to Approach this Section__en.vtt
2.6 kB
36 - Advanced Statistical Methods - Logistic Regression/29588712-2.02.Binary-predictors.csv
2.6 kB
36 - Advanced Statistical Methods - Logistic Regression/29588826-Binary-Predictors-in-a-Logistic-Regression-Exercise.ipynb
2.6 kB
25 - Python - Other Python Operators/29544734-Comparison-Operators-Lecture-Py3.ipynb
2.6 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/032 Final Remarks of this Section__en.srt
2.6 kB
12 - Probability - Distributions/003 Characteristics of Discrete Distributions__en.srt
2.6 kB
55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/002 Business Case_ Outlining the Solution__en.srt
2.6 kB
25 - Python - Other Python Operators/001 Comparison Operators__en.srt
2.6 kB
11 - Probability - Bayesian Inference/003 Intersection of Sets__en.srt
2.5 kB
36 - Advanced Statistical Methods - Logistic Regression/29588668-Admittance-regression-summary-error.ipynb
2.5 kB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/29588072-Multiple-Linear-Regression-Exercise.ipynb
2.5 kB
45 - Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/001 What is a Layer___en.srt
2.5 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/001 What to Expect from the Following Sections_.html
2.5 kB
27 - Python - Python Functions/001 Defining a Function in Python__en.srt
2.5 kB
36 - Advanced Statistical Methods - Logistic Regression/29588716-Binary-predictors.ipynb
2.5 kB
25 - Python - Other Python Operators/29544744-Comparison-Operators-Solution-Py3.ipynb
2.5 kB
38 - Advanced Statistical Methods - K-Means Clustering/15453029-iris-dataset.csv
2.5 kB
38 - Advanced Statistical Methods - K-Means Clustering/15453055-iris-dataset.csv
2.5 kB
26 - Python - Conditional Statements/29544822-Else-If-for-Brief-Elif-Solution-Py3.ipynb
2.5 kB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/006 A1_ Linearity__en.srt
2.4 kB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/29588076-real-estate-price-size-year.csv
2.4 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/29588378-real-estate-price-size-year.csv
2.4 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/29588430-real-estate-price-size-year.csv
2.4 kB
29 - Python - Iterations/005 Conditional Statements, Functions, and Loops__en.srt
2.4 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/014 Dropping a Dummy Variable from the Data Set.html
2.4 kB
53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/005 Actual Introduction to TensorFlow__en.srt
2.3 kB
23 - Python - Variables and Data Types/29544590-Numbers-and-Boolean-Values-Exercise-Py3.ipynb
2.3 kB
53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/003 A Note on Installing Packages in Anaconda.html
2.3 kB
29 - Python - Iterations/29545048-Create-Lists-with-the-range-Function-Solution-Py3.ipynb
2.3 kB
38 - Advanced Statistical Methods - K-Means Clustering/010 Relationship between Clustering and Regression__en.srt
2.3 kB
54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/003 MNIST_ Relevant Packages__en.srt
2.3 kB
20 - Statistics - Hypothesis Testing/002 Further Reading on Null and Alternative Hypothesis.html
2.3 kB
23 - Python - Variables and Data Types/29544602-Variables-Exercise-Py3.ipynb
2.3 kB
54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/011 MNIST_ Solutions.html
2.3 kB
05 - The Field of Data Science - Popular Data Science Techniques/002 Real Life Examples of Traditional Data__en.srt
2.3 kB
31 - Part 5_ Advanced Statistical Methods in Python/001 Introduction to Regression Analysis__en.srt
2.3 kB
51 - Deep Learning - Business Case Example/011 Business Case_ Testing the Model__en.srt
2.3 kB
26 - Python - Conditional Statements/29544792-Introduction-to-the-If-Statement-Solution-Py3.ipynb
2.2 kB
29 - Python - Iterations/29545118-Iterating-over-Dictionaries-Exercise-Py3.ipynb
2.2 kB
24 - Python - Basic Python Syntax/007 Structuring with Indentation__en.srt
2.2 kB
24 - Python - Basic Python Syntax/29544694-Indexing-Elements-Solution-Py3.ipynb
2.2 kB
54 - Appendix_ Deep Learning - TensorFlow 1_ Classifying on the MNIST Dataset/010 MNIST_ Exercises.html
2.2 kB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/29588064-Multiple-linear-regression-and-Adjusted-R-squared.ipynb
2.2 kB
28 - Python - Sequences/29544930-Lists-Exercise-Py3.ipynb
2.2 kB
48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/005 Learning Rate Schedules Visualized__en.srt
2.2 kB
05 - The Field of Data Science - Popular Data Science Techniques/006 Real Life Examples of Business Intelligence (BI)__en.srt
2.2 kB
42 - Deep Learning - Introduction to Neural Networks/008 What is the Objective Function___en.srt
2.2 kB
40 - Part 6_ Mathematics/29589188-Dot-product.ipynb
2.2 kB
24 - Python - Basic Python Syntax/29544658-Reassign-Values-Solution-Py3.ipynb
2.2 kB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/014 ARTICLE - A Note on 'pickling'.html
2.2 kB
61 - Case Study - Analyzing the Predicted Outputs in Tableau/24453624-Absenteeism-predictions.csv
2.2 kB
61 - Case Study - Analyzing the Predicted Outputs in Tableau/29545266-Absenteeism-predictions.csv
2.2 kB
29 - Python - Iterations/29545070-Use-Conditional-Statements-and-Loops-Together-Exercise-Py3.ipynb
2.1 kB
36 - Advanced Statistical Methods - Logistic Regression/29588666-Admittance-regression.ipynb
2.1 kB
40 - Part 6_ Mathematics/29589126-Tensors.ipynb
2.1 kB
27 - Python - Python Functions/004 How to Use a Function within a Function__en.srt
2.1 kB
28 - Python - Sequences/29544976-Tuples-Exercise-Py3.ipynb
2.1 kB
32 - Advanced Statistical Methods - Linear Regression with StatsModels/002 Correlation vs Regression__en.srt
2.1 kB
27 - Python - Python Functions/29544874-Another-Way-to-Define-a-Function-Solution-Py3.ipynb
2.0 kB
50 - Deep Learning - Classifying on the MNIST Dataset/011 MNIST - Exercises.html
2.0 kB
29 - Python - Iterations/29545058-Use-Conditional-Statements-and-Loops-Together-Lecture-Py3.ipynb
2.0 kB
18 - Statistics - Inferential Statistics_ Confidence Intervals/015 Confidence intervals. Two means. Independent Samples (Part 3)__en.srt
2.0 kB
51 - Deep Learning - Business Case Example/002 Business Case_ Outlining the Solution__en.srt
2.0 kB
17 - Statistics - Inferential Statistics Fundamentals/007 Standard error__en.srt
2.0 kB
28 - Python - Sequences/29544942-Help-Yourself-with-Methods-Exercise-Py3.ipynb
2.0 kB
05 - The Field of Data Science - Popular Data Science Techniques/004 Real Life Examples of Big Data__en.srt
1.9 kB
29 - Python - Iterations/29545102-All-In-Solution-Py3.ipynb
1.9 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/020 Reordering Columns in a Pandas DataFrame in Python__en.srt
1.9 kB
60 - Case Study - Loading the 'absenteeism_module'/29545382-Absenteeism-new-data.csv
1.9 kB
60 - Case Study - Loading the 'absenteeism_module'/29545388-scaler
1.9 kB
32 - Advanced Statistical Methods - Linear Regression with StatsModels/29588022-real-estate-price-size.csv
1.9 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/33130180-real-estate-price-size.csv
1.9 kB
39 - Advanced Statistical Methods - Other Types of Clustering/29589066-Heatmaps.ipynb
1.9 kB
29 - Python - Iterations/29545018-For-Loops-Solution-Py3.ipynb
1.8 kB
24 - Python - Basic Python Syntax/004 Add Comments__en.srt
1.8 kB
27 - Python - Python Functions/29544850-Creating-a-Function-with-a-Parameter-Solution-Py3.ipynb
1.8 kB
24 - Python - Basic Python Syntax/002 The Double Equality Sign__en.srt
1.8 kB
26 - Python - Conditional Statements/29544796-Add-an-Else-Statement-Lecture-Py3.ipynb
1.8 kB
26 - Python - Conditional Statements/29544818-Else-If-for-Brief-Elif-Exercise-Py3.ipynb
1.8 kB
29 - Python - Iterations/29545032-While-Loops-and-Incrementing-Solution-Py3.ipynb
1.8 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/015 More on Dummy Variables_ A Statistical Perspective__en.srt
1.8 kB
27 - Python - Python Functions/29544920-Creating-Functions-Containing-a-Few-Arguments-Lecture-Py3.ipynb
1.8 kB
49 - Deep Learning - Preprocessing/002 Types of Basic Preprocessing__en.srt
1.8 kB
36 - Advanced Statistical Methods - Logistic Regression/001 Introduction to Logistic Regression__en.srt
1.7 kB
24 - Python - Basic Python Syntax/29544656-Reassign-Values-Exercise-Py3.ipynb
1.7 kB
44 - Deep Learning - TensorFlow 2.0_ Introduction/29589774-TensorFlow-Minimal-example-Part1.ipynb
1.7 kB
32 - Advanced Statistical Methods - Linear Regression with StatsModels/003 Geometrical Representation of the Linear Regression Model__en.srt
1.7 kB
43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/005 Basic NN Example Exercises.html
1.7 kB
27 - Python - Python Functions/29544910-Combining-Conditional-Statements-and-Functions-Solution-Py3.ipynb
1.7 kB
24 - Python - Basic Python Syntax/006 Indexing Elements__en.srt
1.7 kB
17 - Statistics - Inferential Statistics Fundamentals/001 Introduction__en.srt
1.7 kB
29 - Python - Iterations/29545092-All-In-Lecture-Py3.ipynb
1.7 kB
25 - Python - Other Python Operators/29544738-Comparison-Operators-Exercise-Py3.ipynb
1.6 kB
27 - Python - Python Functions/29544890-0.6.4-Using-a-Function-in-another-Function-Solution-Py3.ipynb
1.6 kB
27 - Python - Python Functions/29544846-Creating-a-Function-with-a-Parameter-Lecture-Py3.ipynb
1.6 kB
36 - Advanced Statistical Methods - Logistic Regression/29588638-2.01.Admittance.csv
1.6 kB
53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/010 Basic NN Example with TF Exercises.html
1.6 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/002 How are we Going to Approach this Section___en.srt
1.6 kB
32 - Advanced Statistical Methods - Linear Regression with StatsModels/007 Using Seaborn for Graphs__en.srt
1.6 kB
26 - Python - Conditional Statements/29544788-Introduction-to-the-If-Statement-Exercise-Py3.ipynb
1.6 kB
44 - Deep Learning - TensorFlow 2.0_ Introduction/002 TensorFlow Outline and Comparison with Other Libraries__en.srt
1.5 kB
24 - Python - Basic Python Syntax/29544716-Line-Continuation-Solution-Py3.ipynb
1.5 kB
24 - Python - Basic Python Syntax/29544728-Structure-Your-Code-with-Indentation-Solution-Py3.ipynb
1.5 kB
29 - Python - Iterations/29545046-Create-Lists-with-the-range-Function-Exercise-Py3.ipynb
1.5 kB
24 - Python - Basic Python Syntax/29544624-The-Double-Equality-Sign-Lecture-Py3.ipynb
1.5 kB
44 - Deep Learning - TensorFlow 2.0_ Introduction/004 A Note on TensorFlow 2 Syntax__en.srt
1.4 kB
26 - Python - Conditional Statements/29544804-Add-an-Else-Statement-Solution-Py3.ipynb
1.4 kB
24 - Python - Basic Python Syntax/003 How to Reassign Values__en.srt
1.4 kB
53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/004 TensorFlow Intro__en.srt
1.4 kB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/006 Fitting the Model and Assessing its Accuracy__en.srt
1.4 kB
10 - Probability - Combinatorics/001 Fundamentals of Combinatorics__en.srt
1.4 kB
24 - Python - Basic Python Syntax/29544684-Indexing-Elements-Exercise-Py3.ipynb
1.4 kB
30 - Python - Advanced Python Tools/002 Modules and Packages__en.srt
1.4 kB
29 - Python - Iterations/29545042-Create-Lists-with-the-range-Function-Lecture-Py3.ipynb
1.4 kB
27 - Python - Python Functions/006 Functions Containing a Few Arguments__en.srt
1.4 kB
24 - Python - Basic Python Syntax/29544682-Indexing-Elements-Lecture-Py3.ipynb
1.3 kB
32 - Advanced Statistical Methods - Linear Regression with StatsModels/006 First Regression in Python Exercise.html
1.3 kB
29 - Python - Iterations/29545100-All-In-Exercise-Py3.ipynb
1.3 kB
27 - Python - Python Functions/29544904-Combining-Conditional-Statements-and-Functions-Lecture-Py3.ipynb
1.3 kB
44 - Deep Learning - TensorFlow 2.0_ Introduction/009 Basic NN with TensorFlow_ Exercises.html
1.3 kB
29 - Python - Iterations/29545010-For-Loops-Exercise-Py3.ipynb
1.3 kB
29 - Python - Iterations/29545008-For-Loops-Lecture-Py3.ipynb
1.3 kB
27 - Python - Python Functions/29544868-Another-Way-to-Define-a-Function-Exercise-Py3.ipynb
1.3 kB
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/013 Saving the Model and Preparing it for Deployment__en.srt
1.3 kB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/29588090-1.03.Dummies.csv
1.2 kB
43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/29589208-Minimal-example-Part-1.ipynb
1.2 kB
27 - Python - Python Functions/29544848-Creating-a-Function-with-a-Parameter-Exercise-Py3.ipynb
1.2 kB
24 - Python - Basic Python Syntax/005 Understanding Line Continuation__en.srt
1.2 kB
26 - Python - Conditional Statements/29544784-Introduction-to-the-If-Statement-Lecture-Py3.ipynb
1.2 kB
24 - Python - Basic Python Syntax/29544632-The-Double-Equality-Sign-Solution-Py3.ipynb
1.2 kB
58 - Case Study - Preprocessing the 'Absenteeism_data'/029 EXERCISE - Removing the _Date_ Column.html
1.2 kB
24 - Python - Basic Python Syntax/29544714-Line-Continuation-Exercise-Py3.ipynb
1.2 kB
29 - Python - Iterations/29545030-While-Loops-and-Incrementing-Exercise-Py3.ipynb
1.1 kB
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/29588058-1.02.Multiple-linear-regression.csv
1.1 kB
29 - Python - Iterations/29545028-While-Loops-and-Incrementing-Lecture-Py3.ipynb
1.1 kB
29 - Python - Iterations/29545116-Iterating-over-Dictionaries-Lecture-Py3.ipynb
1.1 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/29588240-1.02.Multiple-linear-regression.csv
1.1 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/29588306-1.02.Multiple-linear-regression.csv
1.1 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/29588320-1.02.Multiple-linear-regression.csv
1.1 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/29588334-1.02.Multiple-linear-regression.csv
1.1 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/29588350-1.02.Multiple-linear-regression.csv
1.1 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/29588366-1.02.Multiple-linear-regression.csv
1.1 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/29588388-1.02.Multiple-linear-regression.csv
1.1 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/29588398-1.02.Multiple-linear-regression.csv
1.1 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/29588414-1.02.Multiple-linear-regression.csv
1.1 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/003 Simple Linear Regression with sklearn__en.srt
1.1 kB
27 - Python - Python Functions/29544906-Combining-Conditional-Statements-and-Functions-Exercise-Py3.ipynb
1.1 kB
27 - Python - Python Functions/29544888-0.6.4-Using-a-Function-in-another-Function-Exercise-Py3.ipynb
1.1 kB
52 - Deep Learning - Conclusion/003 DeepMind and Deep Learning.html
1.1 kB
24 - Python - Basic Python Syntax/29544678-Add-Comments-Lecture-Py3.ipynb
1.1 kB
26 - Python - Conditional Statements/29544802-Add-an-Else-Statement-Exercise-Py3.ipynb
1.0 kB
60 - Case Study - Loading the 'absenteeism_module'/29545384-model
1.0 kB
27 - Python - Python Functions/29544880-0.6.4-Using-a-Function-in-another-Function-Lecture-Py3.ipynb
1.0 kB
34 - Advanced Statistical Methods - Linear Regression with sklearn/007 Multiple Linear Regression with sklearn__en.srt
1.0 kB
60 - Case Study - Loading the 'absenteeism_module'/29545348-Absenteeism-Exercise-Deploying-the-absenteeism-module.ipynb
973 Bytes
60 - Case Study - Loading the 'absenteeism_module'/004 Exporting the Obtained Data Set as a _.csv.html
964 Bytes
24 - Python - Basic Python Syntax/29544720-Structure-Your-Code-with-Indentation-Lecture-Py3.ipynb
958 Bytes
24 - Python - Basic Python Syntax/29544724-Structure-Your-Code-with-Indentation-Exercise-Py3.ipynb
956 Bytes
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/011 Backward Elimination or How to Simplify Your Model__en.srt
925 Bytes
32 - Advanced Statistical Methods - Linear Regression with StatsModels/29587970-1.01.Simple-linear-regression.csv
922 Bytes
34 - Advanced Statistical Methods - Linear Regression with sklearn/29588160-1.01.Simple-linear-regression.csv
922 Bytes
34 - Advanced Statistical Methods - Linear Regression with sklearn/29588200-1.01.Simple-linear-regression.csv
922 Bytes
38 - Advanced Statistical Methods - K-Means Clustering/002 A Simple Example of Clustering__en.srt
902 Bytes
58 - Case Study - Preprocessing the 'Absenteeism_data'/033 A Note on Exporting Your Data as a _.csv File.html
880 Bytes
27 - Python - Python Functions/29544842-Defining-a-Function-in-Python-Lecture-Py3.ipynb
868 Bytes
58 - Case Study - Preprocessing the 'Absenteeism_data'/008 EXERCISE - Dropping a Column from a DataFrame in Python.html
864 Bytes
35 - Advanced Statistical Methods - Practical Example_ Linear Regression/003 A Note on Multicollinearity.html
849 Bytes
24 - Python - Basic Python Syntax/29544630-The-Double-Equality-Sign-Exercise-Py3.ipynb
838 Bytes
26 - Python - Conditional Statements/29544828-A-Note-on-Boolean-Values-Lecture-Py3.ipynb
791 Bytes
24 - Python - Basic Python Syntax/29544712-Line-Continuation-Lecture-Py3.ipynb
779 Bytes
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/external-assets-links.txt
774 Bytes
34 - Advanced Statistical Methods - Linear Regression with sklearn/005 A Note on Normalization.html
729 Bytes
35 - Advanced Statistical Methods - Practical Example_ Linear Regression/007 Dummy Variables - Exercise.html
705 Bytes
53 - Appendix_ Deep Learning - TensorFlow 1_ Introduction/001 READ ME____.html
564 Bytes
45 - Deep Learning - Digging Deeper into NNs_ Introducing Deep Neural Networks/009 Backpropagation - A Peek into the Mathematics of Optimization.html
539 Bytes
61 - Case Study - Analyzing the Predicted Outputs in Tableau/005 EXERCISE - Transportation Expense vs Probability.html
529 Bytes
15 - Statistics - Descriptive Statistics/016 Variance Exercise.html
522 Bytes
60 - Case Study - Loading the 'absenteeism_module'/001 Are You Sure You're All Set_.html
513 Bytes
35 - Advanced Statistical Methods - Practical Example_ Linear Regression/009 Linear Regression - Exercise.html
497 Bytes
58 - Case Study - Preprocessing the 'Absenteeism_data'/022 SOLUTION - Reordering Columns in a Pandas DataFrame in Python.html
478 Bytes
55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/012 Business Case_ Final Exercise.html
441 Bytes
51 - Deep Learning - Business Case Example/012 Business Case_ Final Exercise.html
433 Bytes
60 - Case Study - Loading the 'absenteeism_module'/003 Deploying the 'absenteeism_module' - Part II__en.srt
429 Bytes
61 - Case Study - Analyzing the Predicted Outputs in Tableau/003 EXERCISE - Reasons vs Probability.html
385 Bytes
55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/005 Business Case_ Preprocessing Exercise.html
379 Bytes
34 - Advanced Statistical Methods - Linear Regression with sklearn/011 A Note on Calculation of P-values with sklearn.html
370 Bytes
51 - Deep Learning - Business Case Example/005 Business Case_ Preprocessing the Data - Exercise.html
370 Bytes
61 - Case Study - Analyzing the Predicted Outputs in Tableau/001 EXERCISE - Age vs Probability.html
367 Bytes
51 - Deep Learning - Business Case Example/004 Business Case_ Preprocessing the Data__en.srt
348 Bytes
55 - Appendix_ Deep Learning - TensorFlow 1_ Business Case/004 Business Case_ Preprocessing__en.srt
348 Bytes
36 - Advanced Statistical Methods - Logistic Regression/29588872-2.03.Test-dataset.csv
322 Bytes
59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/015 EXERCISE - Saving the Model (and Scaler).html
284 Bytes
38 - Advanced Statistical Methods - K-Means Clustering/29589028-3.12.Example.csv
283 Bytes
39 - Advanced Statistical Methods - Other Types of Clustering/29589074-Country-clusters-standardized.csv
244 Bytes
38 - Advanced Statistical Methods - K-Means Clustering/29588934-3.01.Country-clusters.csv
200 Bytes
51 - Deep Learning - Business Case Example/010 Setting an Early Stopping Mechanism - Exercise.html
192 Bytes
58 - Case Study - Preprocessing the 'Absenteeism_data'/018 EXERCISE - Using .concat() in Python.html
189 Bytes
58 - Case Study - Preprocessing the 'Absenteeism_data'/021 EXERCISE - Reordering Columns in a Pandas DataFrame in Python.html
161 Bytes
58 - Case Study - Preprocessing the 'Absenteeism_data'/019 SOLUTION - Using .concat() in Python.html
143 Bytes
58 - Case Study - Preprocessing the 'Absenteeism_data'/024 EXERCISE - Creating Checkpoints while Coding in Jupyter.html
137 Bytes
0. Websites you may like/[FCS Forum].url
133 Bytes
35 - Advanced Statistical Methods - Practical Example_ Linear Regression/external-assets-links.txt
130 Bytes
0. Websites you may like/[FreeCourseSite.com].url
127 Bytes
58 - Case Study - Preprocessing the 'Absenteeism_data'/012 EXERCISE - Obtaining Dummies from a Single Feature.html
123 Bytes
0. Websites you may like/[CourseClub.ME].url
122 Bytes
58 - Case Study - Preprocessing the 'Absenteeism_data'/025 SOLUTION - Creating Checkpoints while Coding in Jupyter.html
118 Bytes
58 - Case Study - Preprocessing the 'Absenteeism_data'/013 SOLUTION - Obtaining Dummies from a Single Feature.html
117 Bytes
58 - Case Study - Preprocessing the 'Absenteeism_data'/009 SOLUTION - Dropping a Column from a DataFrame in Python.html
114 Bytes
01 - Part 1_ Introduction/external-assets-links.txt
101 Bytes
36 - Advanced Statistical Methods - Logistic Regression/005 Building a Logistic Regression - Exercise.html
87 Bytes
36 - Advanced Statistical Methods - Logistic Regression/008 Understanding Logistic Regression Tables - Exercise.html
87 Bytes
36 - Advanced Statistical Methods - Logistic Regression/011 Binary Predictors in a Logistic Regression - Exercise.html
87 Bytes
36 - Advanced Statistical Methods - Logistic Regression/013 Calculating the Accuracy of the Model.html
87 Bytes
36 - Advanced Statistical Methods - Logistic Regression/016 Testing the Model - Exercise.html
87 Bytes
38 - Advanced Statistical Methods - K-Means Clustering/003 A Simple Example of Clustering - Exercise.html
87 Bytes
38 - Advanced Statistical Methods - K-Means Clustering/005 Clustering Categorical Data - Exercise.html
87 Bytes
38 - Advanced Statistical Methods - K-Means Clustering/007 How to Choose the Number of Clusters - Exercise.html
87 Bytes
38 - Advanced Statistical Methods - K-Means Clustering/014 EXERCISE_ Species Segmentation with Cluster Analysis (Part 1).html
87 Bytes
38 - Advanced Statistical Methods - K-Means Clustering/015 EXERCISE_ Species Segmentation with Cluster Analysis (Part 2).html
87 Bytes
15 - Statistics - Descriptive Statistics/004 Categorical Variables Exercise.html
81 Bytes
15 - Statistics - Descriptive Statistics/006 Numerical Variables Exercise.html
81 Bytes
15 - Statistics - Descriptive Statistics/008 Histogram Exercise.html
81 Bytes
15 - Statistics - Descriptive Statistics/010 Cross Tables and Scatter Plots Exercise.html
81 Bytes
15 - Statistics - Descriptive Statistics/012 Mean, Median and Mode Exercise.html
81 Bytes
15 - Statistics - Descriptive Statistics/014 Skewness Exercise.html
81 Bytes
15 - Statistics - Descriptive Statistics/018 Standard Deviation and Coefficient of Variation Exercise.html
81 Bytes
15 - Statistics - Descriptive Statistics/020 Covariance Exercise.html
81 Bytes
15 - Statistics - Descriptive Statistics/022 Correlation Coefficient Exercise.html
81 Bytes
16 - Statistics - Practical Example_ Descriptive Statistics/002 Practical Example_ Descriptive Statistics Exercise.html
81 Bytes
17 - Statistics - Inferential Statistics Fundamentals/005 The Standard Normal Distribution Exercise.html
81 Bytes
18 - Statistics - Inferential Statistics_ Confidence Intervals/003 Confidence Intervals; Population Variance Known; Z-score; Exercise.html
81 Bytes
18 - Statistics - Inferential Statistics_ Confidence Intervals/007 Confidence Intervals; Population Variance Unknown; T-score; Exercise.html
81 Bytes
18 - Statistics - Inferential Statistics_ Confidence Intervals/010 Confidence intervals. Two means. Dependent samples Exercise.html
81 Bytes
18 - Statistics - Inferential Statistics_ Confidence Intervals/012 Confidence intervals. Two means. Independent Samples (Part 1). Exercise.html
81 Bytes
18 - Statistics - Inferential Statistics_ Confidence Intervals/014 Confidence intervals. Two means. Independent Samples (Part 2). Exercise.html
81 Bytes
19 - Statistics - Practical Example_ Inferential Statistics/002 Practical Example_ Inferential Statistics Exercise.html
81 Bytes
20 - Statistics - Hypothesis Testing/006 Test for the Mean. Population Variance Known Exercise.html
81 Bytes
20 - Statistics - Hypothesis Testing/009 Test for the Mean. Population Variance Unknown Exercise.html
81 Bytes
20 - Statistics - Hypothesis Testing/011 Test for the Mean. Dependent Samples Exercise.html
81 Bytes
20 - Statistics - Hypothesis Testing/013 Test for the mean. Independent Samples (Part 1). Exercise.html
81 Bytes
20 - Statistics - Hypothesis Testing/015 Test for the mean. Independent Samples (Part 2). Exercise.html
81 Bytes
21 - Statistics - Practical Example_ Hypothesis Testing/002 Practical Example_ Hypothesis Testing Exercise.html
81 Bytes
50 - Deep Learning - Classifying on the MNIST Dataset/005 MNIST_ Preprocess the Data - Scale the Test Data - Exercise.html
79 Bytes
50 - Deep Learning - Classifying on the MNIST Dataset/007 MNIST_ Preprocess the Data - Shuffle and Batch - Exercise.html
79 Bytes
51 - Deep Learning - Business Case Example/007 Business Case_ Load the Preprocessed Data - Exercise.html
79 Bytes
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/003 Multiple Linear Regression Exercise.html
76 Bytes
33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/012 Dealing with Categorical Data - Dummy Variables.html
76 Bytes
34 - Advanced Statistical Methods - Linear Regression with sklearn/006 Simple Linear Regression with sklearn - Exercise.html
76 Bytes
34 - Advanced Statistical Methods - Linear Regression with sklearn/009 Calculating the Adjusted R-Squared in sklearn - Exercise.html
76 Bytes
34 - Advanced Statistical Methods - Linear Regression with sklearn/013 Multiple Linear Regression - Exercise.html
76 Bytes
34 - Advanced Statistical Methods - Linear Regression with sklearn/017 Feature Scaling (Standardization) - Exercise.html
76 Bytes
35 - Advanced Statistical Methods - Practical Example_ Linear Regression/005 Dummies and Variance Inflation Factor - Exercise.html
76 Bytes
0. Websites you may like/[GigaCourse.Com].url
49 Bytes
34 - Advanced Statistical Methods - Linear Regression with sklearn/004 Simple Linear Regression with sklearn - A StatsModels-like Summary Table__en.srt
0 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>