搜索
[DesireCourse.Net] Udemy - Beginning with Machine Learning & Data Science in Python
磁力链接/BT种子名称
[DesireCourse.Net] Udemy - Beginning with Machine Learning & Data Science in Python
磁力链接/BT种子简介
种子哈希:
c4db89131dae7b02aeff820353dd60dd92cade21
文件大小:
542.73M
已经下载:
785
次
下载速度:
极快
收录时间:
2021-03-06
最近下载:
2024-09-21
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:C4DB89131DAE7B02AEFF820353DD60DD92CADE21
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
少女初夜
萝莉岛
最近搜索
如此漂亮
最新狂性调教
tbb+84
传媒++合集
일베 인증
甜森
namihameru2
狗 道具自慰
台湾超强炮王「宇宙列车」「spacetrain7654
2021.10.1
020324-001
真实家教
大叔找熟女技师服务
模特老姐姐
bushiyishu
dber-027-c
网红『妮可』高顔值性爱私拍
黑客破解家庭网络偷拍
风丝袜
start 243
行人露出
破处大神内射
ktv口交
探花大神 老王
+300mium
金牌小可
图图兔
designated.survivor.
fc2りお
小玉酱
文件列表
2. Understanding Data Wrangling/7. Cleaning Messy Data.mp4
33.6 MB
2. Understanding Data Wrangling/3. Selecting data and finding the most common complaint type.mp4
26.3 MB
6. Regularization/6. Regularization using scikit-learn.mp4
24.0 MB
3. Linear Regression/5. Simple Linear Regression.mp4
23.0 MB
2. Understanding Data Wrangling/6. Which month was the snowiest.mp4
21.4 MB
3. Linear Regression/11. Handling categorical features.mp4
20.8 MB
2. Understanding Data Wrangling/4. Which borough has the most noise complaints.mp4
20.4 MB
1. Working with Machine Learning/5. Python and Jupyter Demo.mp4
18.5 MB
2. Understanding Data Wrangling/5. Which weekday do people bike the most.mp4
17.8 MB
6. Regularization/4. Regularizing linear models.mp4
17.7 MB
2. Understanding Data Wrangling/8. How to deal with timestamps.mp4
17.2 MB
4. Logistic Regression/8. Interpreting logistic regression.mp4
17.1 MB
2. Understanding Data Wrangling/2. Reading from a CSV.mp4
16.8 MB
5. Cross Validation/4. Cross-validation continued.mp4
16.7 MB
4. Logistic Regression/4. Predicting a categorical response.mp4
16.5 MB
3. Linear Regression/8. Multiple linear regression.mp4
16.1 MB
4. Logistic Regression/6. Probability, odds, log-odds.mp4
15.8 MB
2. Understanding Data Wrangling/9. Loading data from SQL databases.mp4
14.1 MB
6. Regularization/8. Pipeline and GridSearchCV.mp4
13.2 MB
6. Regularization/3. Overfitting with linear models.mp4
13.1 MB
4. Logistic Regression/2. Predicting a continuous response.mp4
12.1 MB
4. Logistic Regression/5. Using logistic regression.mp4
11.9 MB
6. Regularization/7. Regularizing logistic models.mp4
11.7 MB
4. Logistic Regression/7. What is logistic regression.mp4
11.4 MB
3. Linear Regression/10. Model evaluation.mp4
11.2 MB
6. Regularization/5. Ridge and Lasso Regularization.mp4
9.3 MB
1. Working with Machine Learning/3. Install Anaconda.mp4
9.2 MB
2. Understanding Data Wrangling/2.2 311-service-requests.zip.zip
8.7 MB
5. Cross Validation/3. K-fold cross-validation.mp4
8.4 MB
3. Linear Regression/6. Hypothesis testing and p-values.mp4
8.2 MB
5. Cross Validation/2. Traintest split.mp4
7.8 MB
1. Working with Machine Learning/1. Exploring Machine Learning and its Types.mp4
7.7 MB
4. Logistic Regression/9. Using logistic regression with categorical features.mp4
7.6 MB
3. Linear Regression/9. Model and feature selection.mp4
7.4 MB
3. Linear Regression/3. The advertising dataset.mp4
7.4 MB
3. Linear Regression/7. R squared.mp4
6.0 MB
3. Linear Regression/12. Summary.mp4
5.7 MB
4. Logistic Regression/3. Quick refresher on linear regression.mp4
5.1 MB
5. Cross Validation/5. Summary.mp4
5.1 MB
3. Linear Regression/4. EDA questions on advertising data.mp4
4.9 MB
6. Regularization/2. Overfitting.mp4
4.9 MB
6. Regularization/9. Comparing regularized with unregularized models.mp4
3.4 MB
3. Linear Regression/2. What is linear regression.mp4
3.0 MB
3. Linear Regression/1. Introduction.mp4
1.8 MB
4. Logistic Regression/2.1 logistic regression.zip.zip
1.4 MB
6. Regularization/1. Introduction.mp4
1.2 MB
4. Logistic Regression/10. Summary.mp4
918.4 kB
5. Cross Validation/1. Introduction.mp4
913.1 kB
4. Logistic Regression/1. Introduction.mp4
912.7 kB
2. Understanding Data Wrangling/10. Summary.mp4
552.4 kB
2. Understanding Data Wrangling/1. Introduction.mp4
510.5 kB
2. Understanding Data Wrangling/9.2 weather_2012.csv.csv
503.8 kB
2. Understanding Data Wrangling/2.1 Chapter 1 - Reading from a CSV.ipynb.zip.zip
405.1 kB
6. Regularization/2.1 regularization.zip.zip
375.5 kB
2. Understanding Data Wrangling/8.2 popularity-contest.tsv.tsv
189.7 kB
3. Linear Regression/3.1 linear regression.zip.zip
180.5 kB
1. Working with Machine Learning/5.1 A quick tour of IPython Notebook.zip.zip
105.3 kB
2. Understanding Data Wrangling/6.1 Chapter 5 - String Operations- Which month was the snowiest.ipynb.zip.zip
80.2 kB
2. Understanding Data Wrangling/5.1 Chapter 4 - Find out on which weekday people bike the most with groupby and aggregate.ipynb.zip.zip
79.6 kB
2. Understanding Data Wrangling/3.1 Chapter 2 - Selecting data finding the most common complaint type.ipynb.zip.zip
39.7 kB
5. Cross Validation/2.1 cross validation.zip.zip
24.4 kB
2. Understanding Data Wrangling/4.1 Chapter 3 - Which borough has the most noise complaints (or, more selecting data).ipynb.zip.zip
18.5 kB
2. Understanding Data Wrangling/5.2 bikes.csv.csv
13.8 kB
2. Understanding Data Wrangling/7.1 Chapter 6 - Cleaning up messy data.ipynb.zip.zip
11.4 kB
3. Linear Regression/5. Simple Linear Regression.vtt
10.1 kB
2. Understanding Data Wrangling/7. Cleaning Messy Data.vtt
9.7 kB
1. Working with Machine Learning/5. Python and Jupyter Demo.vtt
9.5 kB
3. Linear Regression/11. Handling categorical features.vtt
8.7 kB
2. Understanding Data Wrangling/9. Loading data from SQL databases.vtt
7.6 kB
5. Cross Validation/4. Cross-validation continued.vtt
7.2 kB
6. Regularization/4. Regularizing linear models.vtt
7.1 kB
2. Understanding Data Wrangling/3. Selecting data and finding the most common complaint type.vtt
6.8 kB
2. Understanding Data Wrangling/6. Which month was the snowiest.vtt
6.7 kB
4. Logistic Regression/8. Interpreting logistic regression.vtt
6.4 kB
2. Understanding Data Wrangling/4. Which borough has the most noise complaints.vtt
6.4 kB
6. Regularization/3. Overfitting with linear models.vtt
6.2 kB
2. Understanding Data Wrangling/2. Reading from a CSV.vtt
6.0 kB
1. Working with Machine Learning/1. Exploring Machine Learning and its Types.vtt
6.0 kB
4. Logistic Regression/4. Predicting a categorical response.vtt
5.9 kB
2. Understanding Data Wrangling/5. Which weekday do people bike the most.vtt
5.9 kB
6. Regularization/6. Regularization using scikit-learn.vtt
5.8 kB
1. Working with Machine Learning/3. Install Anaconda.vtt
5.7 kB
4. Logistic Regression/6. Probability, odds, log-odds.vtt
5.7 kB
3. Linear Regression/8. Multiple linear regression.vtt
5.4 kB
3. Linear Regression/10. Model evaluation.vtt
4.9 kB
4. Logistic Regression/7. What is logistic regression.vtt
4.9 kB
2. Understanding Data Wrangling/8.1 Chapter 7 - How to deal with timestamps.ipynb.zip.zip
4.5 kB
2. Understanding Data Wrangling/8. How to deal with timestamps.vtt
4.5 kB
2. Understanding Data Wrangling/9.1 Chapter 8 - Loading data from SQL databases.ipynb.zip.zip
4.3 kB
4. Logistic Regression/2. Predicting a continuous response.vtt
4.2 kB
6. Regularization/8. Pipeline and GridSearchCV.vtt
4.0 kB
4. Logistic Regression/5. Using logistic regression.vtt
4.0 kB
5. Cross Validation/3. K-fold cross-validation.vtt
3.8 kB
5. Cross Validation/2. Traintest split.vtt
3.7 kB
6. Regularization/5. Ridge and Lasso Regularization.vtt
3.5 kB
3. Linear Regression/9. Model and feature selection.vtt
3.4 kB
3. Linear Regression/3. The advertising dataset.vtt
3.1 kB
3. Linear Regression/6. Hypothesis testing and p-values.vtt
3.0 kB
3. Linear Regression/12. Summary.vtt
2.9 kB
4. Logistic Regression/9. Using logistic regression with categorical features.vtt
2.7 kB
3. Linear Regression/7. R squared.vtt
2.7 kB
6. Regularization/2. Overfitting.vtt
2.4 kB
6. Regularization/7. Regularizing logistic models.vtt
2.1 kB
5. Cross Validation/5. Summary.vtt
2.1 kB
6. Regularization/9. Comparing regularized with unregularized models.vtt
1.9 kB
3. Linear Regression/4. EDA questions on advertising data.vtt
1.8 kB
3. Linear Regression/2. What is linear regression.vtt
1.7 kB
2. Understanding Data Wrangling/9.3 weather_2012_sqlite.zip.zip
1.4 kB
4. Logistic Regression/3. Quick refresher on linear regression.vtt
1.3 kB
3. Linear Regression/1. Introduction.vtt
1.2 kB
6. Regularization/1. Introduction.vtt
668 Bytes
4. Logistic Regression/1. Introduction.vtt
469 Bytes
5. Cross Validation/1. Introduction.vtt
457 Bytes
2. Understanding Data Wrangling/10. Summary.vtt
396 Bytes
4. Logistic Regression/10. Summary.vtt
371 Bytes
2. Understanding Data Wrangling/1. Introduction.vtt
281 Bytes
1. Working with Machine Learning/2. Machine Learning Foundations.html
159 Bytes
1. Working with Machine Learning/4. Python Versions.html
159 Bytes
1. Working with Machine Learning/6. Python Basics.html
159 Bytes
[DesireCourse.Net].url
51 Bytes
[CourseClub.Me].url
48 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>