MuerBT磁力搜索 BT种子搜索利器 免费下载BT种子,超5000万条种子数据

[FreeCourseSite.com] Udemy - Time Series Analysis, Forecasting, and Machine Learning

磁力链接/BT种子名称

[FreeCourseSite.com] Udemy - Time Series Analysis, Forecasting, and Machine Learning

磁力链接/BT种子简介

种子哈希:c90f51691c04a2e7064a52a1c6bdb1d6d1caedd3
文件大小: 7.0G
已经下载:6795次
下载速度:极快
收录时间:2023-12-28
最近下载:2025-09-18

移花宫入口

移花宫.com邀月.com怜星.com花无缺.comyhgbt.icuyhgbt.top

磁力链接下载

magnet:?xt=urn:btih:C90F51691C04A2E7064A52A1C6BDB1D6D1CAEDD3
推荐使用PIKPAK网盘下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看

下载BT种子文件

磁力链接 迅雷下载 PIKPAK在线播放 世界之窗 91视频 含羞草 欲漫涩 逼哩逼哩 成人快手 51品茶 抖阴破解版 极乐禁地 91短视频 暗网Xvideo TikTok成人版 PornHub 听泉鉴鲍 少女日记 草榴社区 哆哔涩漫 呦乐园 萝莉岛 悠悠禁区 悠悠禁区 拔萝卜 疯马秀

最近搜索

小侄女被小叔狠狠操的浑身发抖颤抖,每次一狠操拔出鸡巴, 小夜 realgirlsgonebad 4618261 无职转生者 jur-211 hammc 4134556 双马尾甜美 twitter+x+波斯+头巾 zoh cerene 母狗的捆绑调教 各种玩肏 上海熟女 tushy.15.08.1080p.hevc exploitedcollegegirls.22.07.07 探花 东北 rhj 038 1080p 托人 大尺度+希威社 大奶小甜妹 jumanji jungle 1080p 硬来 学生 衣服不脱 医疗调教_sha1 全裸偷拍 铁门偷拍 深信 街头搭讪 素人

文件列表

  • 10. Deep Learning Recurrent Neural Networks (RNN)/9. LSTMs for Time Series Forecasting in Code.mp4 207.3 MB
  • 5. ARIMA/5. ARIMA in Code.mp4 127.5 MB
  • 16. Effective Learning Strategies for Machine Learning FAQ/4. Machine Learning and AI Prerequisite Roadmap (pt 2).mp4 113.4 MB
  • 5. ARIMA/15. Auto ARIMA in Code (Stocks).mp4 110.3 MB
  • 5. ARIMA/14. Auto ARIMA in Code.mp4 108.2 MB
  • 9. Deep Learning Convolutional Neural Networks (CNN)/7. CNN Architecture.mp4 101.5 MB
  • 12. VIP AWS Forecast/5. Code pt 2 (Uploading the data to S3).mp4 95.5 MB
  • 13. VIP Facebook Prophet/10. (The Dangers of) Prophet for Stock Price Prediction.mp4 95.4 MB
  • 8. Deep Learning Artificial Neural Networks (ANN)/5. Activation Functions.mp4 90.8 MB
  • 7. Machine Learning Methods/9. Machine Learning for Time Series Forecasting in Code (pt 1).mp4 90.4 MB
  • 10. Deep Learning Recurrent Neural Networks (RNN)/7. GRU and LSTM (pt 1).mp4 83.9 MB
  • 16. Effective Learning Strategies for Machine Learning FAQ/3. Machine Learning and AI Prerequisite Roadmap (pt 1).mp4 83.5 MB
  • 9. Deep Learning Convolutional Neural Networks (CNN)/2. What is Convolution.mp4 82.1 MB
  • 9. Deep Learning Convolutional Neural Networks (CNN)/5. Convolution on Color Images.mp4 79.3 MB
  • 8. Deep Learning Artificial Neural Networks (ANN)/8. Feedforward ANN for Time Series Forecasting Code.mp4 74.4 MB
  • 4. Exponential Smoothing and ETS Methods/8. SES Code.mp4 72.9 MB
  • 15. Extra Help With Python Coding for Beginners FAQ/4. Proof that using Jupyter Notebook is the same as not using it.mp4 72.9 MB
  • 7. Machine Learning Methods/2. Supervised Machine Learning Classification and Regression.mp4 72.3 MB
  • 3. Time Series Basics/11. Random Walks and the Random Walk Hypothesis.mp4 71.4 MB
  • 13. VIP Facebook Prophet/6. Prophet in Code Holidays and Exogenous Regressors.mp4 71.2 MB
  • 13. VIP Facebook Prophet/9. Prophet Multiplicative Seasonality, Outliers, Non-Daily Data.mp4 71.1 MB
  • 8. Deep Learning Artificial Neural Networks (ANN)/9. Feedforward ANN for Stock Return and Price Predictions Code.mp4 71.0 MB
  • 8. Deep Learning Artificial Neural Networks (ANN)/13. Human Activity Recognition Multi-Input ANN.mp4 70.8 MB
  • 5. ARIMA/17. Auto ARIMA in Code (Sales Data).mp4 68.6 MB
  • 7. Machine Learning Methods/8. Extrapolation and Stock Prices.mp4 67.9 MB
  • 13. VIP Facebook Prophet/3. Prophet Code Preparation.mp4 67.0 MB
  • 2. Getting Set Up/2. How to use Github & Extra Coding Tips (Optional).mp4 67.0 MB
  • 12. VIP AWS Forecast/4. Code pt 1 (Getting and Transforming the Data).mp4 66.4 MB
  • 6. Vector Autoregression (VAR, VMA, VARMA)/7. VARMA Econometrics Code (pt 2).mp4 64.6 MB
  • 5. ARIMA/7. Stationarity in Code.mp4 64.5 MB
  • 4. Exponential Smoothing and ETS Methods/14. Walk-Forward Validation in Code.mp4 63.2 MB
  • 6. Vector Autoregression (VAR, VMA, VARMA)/2. VAR and VARMA Theory.mp4 62.1 MB
  • 8. Deep Learning Artificial Neural Networks (ANN)/7. ANN Code Preparation.mp4 60.3 MB
  • 10. Deep Learning Recurrent Neural Networks (RNN)/6. RNNs Understanding by Implementing (Paying Attention to Shapes).mp4 58.2 MB
  • 13. VIP Facebook Prophet/5. Prophet in Code Fit, Forecast, Plot.mp4 57.9 MB
  • 5. ARIMA/6. Stationarity.mp4 57.8 MB
  • 13. VIP Facebook Prophet/4. Prophet in Code Data Preparation.mp4 57.4 MB
  • 12. VIP AWS Forecast/6. Code pt 3 (Building your Model).mp4 57.1 MB
  • 4. Exponential Smoothing and ETS Methods/4. SMA Code.mp4 56.7 MB
  • 8. Deep Learning Artificial Neural Networks (ANN)/4. The Geometrical Picture.mp4 56.6 MB
  • 5. ARIMA/2. Autoregressive Models - AR(p).mp4 55.1 MB
  • 6. Vector Autoregression (VAR, VMA, VARMA)/4. VARMA Code (pt 2).mp4 54.8 MB
  • 11. VIP GARCH/9. GARCH Code (pt 2).mp4 54.5 MB
  • 6. Vector Autoregression (VAR, VMA, VARMA)/6. VARMA Econometrics Code (pt 1).mp4 53.3 MB
  • 10. Deep Learning Recurrent Neural Networks (RNN)/8. GRU and LSTM (pt 2).mp4 52.7 MB
  • 8. Deep Learning Artificial Neural Networks (ANN)/16. How Does a Neural Network Learn.mp4 52.5 MB
  • 8. Deep Learning Artificial Neural Networks (ANN)/12. Human Activity Recognition Data Exploration.mp4 52.4 MB
  • 12. VIP AWS Forecast/7. Code pt 4 (Generating and Evaluating the Forecast).mp4 52.3 MB
  • 4. Exponential Smoothing and ETS Methods/12. Holt-Winters (Code).mp4 52.2 MB
  • 7. Machine Learning Methods/11. Machine Learning for Time Series Forecasting in Code (pt 2).mp4 51.8 MB
  • 6. Vector Autoregression (VAR, VMA, VARMA)/3. VARMA Code (pt 1).mp4 51.7 MB
  • 15. Extra Help With Python Coding for Beginners FAQ/3. How to Code by Yourself (part 2).mp4 51.6 MB
  • 12. VIP AWS Forecast/2. Data Model.mp4 51.3 MB
  • 9. Deep Learning Convolutional Neural Networks (CNN)/9. CNN for Time Series Forecasting in Code.mp4 51.1 MB
  • 4. Exponential Smoothing and ETS Methods/11. Holt-Winters (Theory).mp4 49.9 MB
  • 9. Deep Learning Convolutional Neural Networks (CNN)/10. CNN for Human Activity Recognition.mp4 48.6 MB
  • 11. VIP GARCH/13. A Deep Learning Approach to GARCH.mp4 48.3 MB
  • 5. ARIMA/13. Model Selection, AIC and BIC.mp4 48.1 MB
  • 6. Vector Autoregression (VAR, VMA, VARMA)/5. VARMA Code (pt 3).mp4 47.6 MB
  • 3. Time Series Basics/9. Financial Time Series Primer.mp4 47.0 MB
  • 8. Deep Learning Artificial Neural Networks (ANN)/3. Forward Propagation.mp4 47.0 MB
  • 4. Exponential Smoothing and ETS Methods/13. Walk-Forward Validation.mp4 46.5 MB
  • 10. Deep Learning Recurrent Neural Networks (RNN)/10. LSTMs for Time Series Classification in Code.mp4 46.2 MB
  • 11. VIP GARCH/10. GARCH Code (pt 3).mp4 46.1 MB
  • 8. Deep Learning Artificial Neural Networks (ANN)/2. The Neuron.mp4 46.0 MB
  • 3. Time Series Basics/8. Forecasting Metrics.mp4 45.8 MB
  • 8. Deep Learning Artificial Neural Networks (ANN)/6. Multiclass Classification.mp4 45.7 MB
  • 14. Setting Up Your Environment FAQ/2. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4 45.7 MB
  • 2. Getting Set Up/1. Get Your Hands Dirty, Practical Coding Experience, Data Links.mp4 45.7 MB
  • 12. VIP AWS Forecast/1. AWS Forecast Section Introduction.mp4 45.7 MB
  • 7. Machine Learning Methods/6. Machine Learning Algorithms Support Vector Machines.mp4 45.6 MB
  • 5. ARIMA/16. ACF and PACF for Stock Returns.mp4 45.6 MB
  • 7. Machine Learning Methods/12. Application Sales Data.mp4 44.2 MB
  • 13. VIP Facebook Prophet/7. Prophet in Code Cross-Validation.mp4 44.0 MB
  • 3. Time Series Basics/13. Naive Forecast and Forecasting Metrics in Code.mp4 43.5 MB
  • 5. ARIMA/4. ARIMA.mp4 43.4 MB
  • 5. ARIMA/10. ACF and PACF in Code (pt 1).mp4 43.3 MB
  • 11. VIP GARCH/11. GARCH Code (pt 4).mp4 43.3 MB
  • 13. VIP Facebook Prophet/2. How does Prophet work.mp4 42.7 MB
  • 4. Exponential Smoothing and ETS Methods/16. Application Stock Predictions.mp4 42.5 MB
  • 4. Exponential Smoothing and ETS Methods/20. (Optional) More About State-Space Models.mp4 42.1 MB
  • 10. Deep Learning Recurrent Neural Networks (RNN)/3. Simple RNN Elman Unit (pt 2).mp4 42.0 MB
  • 11. VIP GARCH/7. GARCH Code Preparation (pt 2).mp4 42.0 MB
  • 17. Appendix FAQ Finale/2. BONUS.mp4 41.9 MB
  • 5. ARIMA/12. Auto ARIMA and SARIMAX.mp4 41.4 MB
  • 4. Exponential Smoothing and ETS Methods/6. EWMA Code.mp4 41.3 MB
  • 16. Effective Learning Strategies for Machine Learning FAQ/2. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4 40.8 MB
  • 10. Deep Learning Recurrent Neural Networks (RNN)/2. Simple RNN Elman Unit (pt 1).mp4 40.6 MB
  • 13. VIP Facebook Prophet/8. Prophet in Code Changepoint Detection.mp4 39.8 MB
  • 5. ARIMA/18. How to Forecast with ARIMA.mp4 39.8 MB
  • 11. VIP GARCH/6. GARCH Code Preparation (pt 1).mp4 39.8 MB
  • 7. Machine Learning Methods/13. Application Predicting Stock Prices and Returns.mp4 39.2 MB
  • 6. Vector Autoregression (VAR, VMA, VARMA)/10. Converting Between Models (Optional).mp4 39.0 MB
  • 5. ARIMA/8. ACF (Autocorrelation Function).mp4 38.8 MB
  • 8. Deep Learning Artificial Neural Networks (ANN)/14. Human Activity Recognition Feature-Based Model.mp4 37.8 MB
  • 4. Exponential Smoothing and ETS Methods/5. EWMA Theory.mp4 37.6 MB
  • 4. Exponential Smoothing and ETS Methods/7. SES Theory.mp4 37.3 MB
  • 10. Deep Learning Recurrent Neural Networks (RNN)/5. RNN Code Preparation.mp4 35.8 MB
  • 5. ARIMA/11. ACF and PACF in Code (pt 2).mp4 35.5 MB
  • 3. Time Series Basics/7. Power, Log, and Box-Cox Transformations in Code.mp4 34.9 MB
  • 11. VIP GARCH/8. GARCH Code (pt 1).mp4 34.9 MB
  • 4. Exponential Smoothing and ETS Methods/9. Holt's Linear Trend Model (Theory).mp4 34.8 MB
  • 3. Time Series Basics/6. Power, Log, and Box-Cox Transformations.mp4 34.2 MB
  • 1. Welcome/1. Introduction and Outline.mp4 34.1 MB
  • 7. Machine Learning Methods/3. Autoregressive Machine Learning Models.mp4 34.0 MB
  • 3. Time Series Basics/2. What is a Time Series.mp4 33.8 MB
  • 7. Machine Learning Methods/7. Machine Learning Algorithms Random Forest.mp4 33.6 MB
  • 6. Vector Autoregression (VAR, VMA, VARMA)/9. Granger Causality Code.mp4 33.6 MB
  • 11. VIP GARCH/12. GARCH Code (pt 5).mp4 33.5 MB
  • 7. Machine Learning Methods/5. Machine Learning Algorithms Logistic Regression.mp4 33.3 MB
  • 8. Deep Learning Artificial Neural Networks (ANN)/11. Human Activity Recognition Code Preparation.mp4 32.8 MB
  • 11. VIP GARCH/14. GARCH Section Summary.mp4 32.3 MB
  • 8. Deep Learning Artificial Neural Networks (ANN)/10. Human Activity Recognition Dataset.mp4 32.2 MB
  • 3. Time Series Basics/12. The Naive Forecast and the Importance of Baselines.mp4 31.6 MB
  • 9. Deep Learning Convolutional Neural Networks (CNN)/4. What is Convolution (Weight Sharing).mp4 31.3 MB
  • 3. Time Series Basics/4. Why Do We Care About Shapes.mp4 30.9 MB
  • 4. Exponential Smoothing and ETS Methods/15. Application Sales Data.mp4 30.9 MB
  • 14. Setting Up Your Environment FAQ/1. Anaconda Environment Setup.mp4 29.2 MB
  • 9. Deep Learning Convolutional Neural Networks (CNN)/8. CNN Code Preparation.mp4 28.8 MB
  • 11. VIP GARCH/5. GARCH Theory.mp4 28.8 MB
  • 3. Time Series Basics/15. Suggestion Box.mp4 28.5 MB
  • 11. VIP GARCH/3. ARCH Theory (pt 2).mp4 28.5 MB
  • 7. Machine Learning Methods/14. Application Predicting Stock Movements.mp4 27.6 MB
  • 12. VIP AWS Forecast/9. AWS Forecast Section Summary.mp4 26.7 MB
  • 5. ARIMA/9. PACF (Partial Autocorrelation Funtion).mp4 26.3 MB
  • 1. Welcome/2. Warmup (Optional).mp4 25.9 MB
  • 15. Extra Help With Python Coding for Beginners FAQ/2. How to Code by Yourself (part 1).mp4 25.8 MB
  • 9. Deep Learning Convolutional Neural Networks (CNN)/3. What is Convolution (Pattern-Matching).mp4 25.2 MB
  • 4. Exponential Smoothing and ETS Methods/2. Exponential Smoothing Intuition for Beginners.mp4 25.1 MB
  • 12. VIP AWS Forecast/3. Creating an IAM Role.mp4 25.0 MB
  • 9. Deep Learning Convolutional Neural Networks (CNN)/6. Convolution for Time Series and ARIMA.mp4 24.8 MB
  • 3. Time Series Basics/5. Types of Tasks.mp4 24.7 MB
  • 5. ARIMA/1. ARIMA Section Introduction.mp4 24.1 MB
  • 6. Vector Autoregression (VAR, VMA, VARMA)/8. Granger Causality.mp4 23.5 MB
  • 7. Machine Learning Methods/4. Machine Learning Algorithms Linear Regression.mp4 22.9 MB
  • 8. Deep Learning Artificial Neural Networks (ANN)/15. Human Activity Recognition Combined Model.mp4 21.9 MB
  • 10. Deep Learning Recurrent Neural Networks (RNN)/1. RNN Section Introduction.mp4 21.5 MB
  • 11. VIP GARCH/4. ARCH Theory (pt 3).mp4 20.5 MB
  • 11. VIP GARCH/2. ARCH Theory (pt 1).mp4 20.5 MB
  • 8. Deep Learning Artificial Neural Networks (ANN)/1. Artificial Neural Networks Section Introduction.mp4 20.4 MB
  • 4. Exponential Smoothing and ETS Methods/17. SMA Application COVID-19 Counting.mp4 20.3 MB
  • 4. Exponential Smoothing and ETS Methods/19. Exponential Smoothing Section Summary.mp4 20.0 MB
  • 4. Exponential Smoothing and ETS Methods/10. Holt's Linear Trend Model (Code).mp4 20.0 MB
  • 7. Machine Learning Methods/10. Forecasting with Differencing.mp4 19.9 MB
  • 3. Time Series Basics/1. Time Series Basics Section Introduction.mp4 19.8 MB
  • 6. Vector Autoregression (VAR, VMA, VARMA)/11. Vector Autoregression Section Summary.mp4 19.6 MB
  • 10. Deep Learning Recurrent Neural Networks (RNN)/4. Aside State Space Models vs. RNNs.mp4 19.5 MB
  • 3. Time Series Basics/10. Price Simulations in Code.mp4 19.2 MB
  • 11. VIP GARCH/1. GARCH Section Introduction.mp4 19.1 MB
  • 15. Extra Help With Python Coding for Beginners FAQ/1. Where to get the code, notebooks, and data.mp4 18.6 MB
  • 7. Machine Learning Methods/1. Machine Learning Section Introduction.mp4 18.4 MB
  • 17. Appendix FAQ Finale/1. What is the Appendix.mp4 17.2 MB
  • 10. Deep Learning Recurrent Neural Networks (RNN)/12. RNN Section Summary.mp4 16.7 MB
  • 10. Deep Learning Recurrent Neural Networks (RNN)/11. The Unreasonable Ineffectiveness of Recurrent Neural Networks.mp4 16.2 MB
  • 9. Deep Learning Convolutional Neural Networks (CNN)/11. CNN Section Summary.mp4 16.2 MB
  • 4. Exponential Smoothing and ETS Methods/3. SMA Theory.mp4 16.0 MB
  • 13. VIP Facebook Prophet/1. Prophet Section Introduction.mp4 15.2 MB
  • 9. Deep Learning Convolutional Neural Networks (CNN)/1. CNN Section Introduction.mp4 15.0 MB
  • 12. VIP AWS Forecast/8. AWS Forecast Exercise.mp4 14.4 MB
  • 4. Exponential Smoothing and ETS Methods/1. Exponential Smoothing Section Introduction.mp4 14.2 MB
  • 3. Time Series Basics/3. Modeling vs. Predicting.mp4 14.1 MB
  • 13. VIP Facebook Prophet/11. Prophet Section Summary.mp4 14.1 MB
  • 5. ARIMA/20. ARIMA Section Summary.mp4 13.4 MB
  • 16. Effective Learning Strategies for Machine Learning FAQ/1. How to Succeed in this Course (Long Version).mp4 13.2 MB
  • 6. Vector Autoregression (VAR, VMA, VARMA)/1. Vector Autoregression Section Introduction.mp4 12.9 MB
  • 3. Time Series Basics/14. Time Series Basics Section Summary.mp4 12.7 MB
  • 4. Exponential Smoothing and ETS Methods/18. SMA Application Algorithmic Trading.mp4 12.2 MB
  • 8. Deep Learning Artificial Neural Networks (ANN)/17. Artificial Neural Networks Section Summary.mp4 11.5 MB
  • 5. ARIMA/3. Moving Average Models - MA(q).mp4 11.4 MB
  • 7. Machine Learning Methods/15. Machine Learning Section Summary.mp4 10.9 MB
  • 5. ARIMA/19. Forecasting Out-Of-Sample.mp4 7.1 MB
  • 10. Deep Learning Recurrent Neural Networks (RNN)/9. LSTMs for Time Series Forecasting in Code.srt 35.2 kB
  • 9. Deep Learning Convolutional Neural Networks (CNN)/7. CNN Architecture.srt 32.8 kB
  • 16. Effective Learning Strategies for Machine Learning FAQ/2. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.srt 32.6 kB
  • 16. Effective Learning Strategies for Machine Learning FAQ/4. Machine Learning and AI Prerequisite Roadmap (pt 2).srt 24.1 kB
  • 5. ARIMA/5. ARIMA in Code.srt 23.4 kB
  • 8. Deep Learning Artificial Neural Networks (ANN)/5. Activation Functions.srt 23.4 kB
  • 10. Deep Learning Recurrent Neural Networks (RNN)/7. GRU and LSTM (pt 1).srt 23.4 kB
  • 15. Extra Help With Python Coding for Beginners FAQ/2. How to Code by Yourself (part 1).srt 23.2 kB
  • 9. Deep Learning Convolutional Neural Networks (CNN)/5. Convolution on Color Images.srt 21.5 kB
  • 9. Deep Learning Convolutional Neural Networks (CNN)/2. What is Convolution.srt 21.2 kB
  • 14. Setting Up Your Environment FAQ/1. Anaconda Environment Setup.srt 20.8 kB
  • 3. Time Series Basics/11. Random Walks and the Random Walk Hypothesis.srt 19.8 kB
  • 7. Machine Learning Methods/2. Supervised Machine Learning Classification and Regression.srt 19.4 kB
  • 6. Vector Autoregression (VAR, VMA, VARMA)/2. VAR and VARMA Theory.srt 18.2 kB
  • 5. ARIMA/6. Stationarity.srt 18.0 kB
  • 5. ARIMA/15. Auto ARIMA in Code (Stocks).srt 17.5 kB
  • 16. Effective Learning Strategies for Machine Learning FAQ/3. Machine Learning and AI Prerequisite Roadmap (pt 1).srt 17.2 kB
  • 5. ARIMA/2. Autoregressive Models - AR(p).srt 17.1 kB
  • 12. VIP AWS Forecast/5. Code pt 2 (Uploading the data to S3).srt 16.8 kB
  • 8. Deep Learning Artificial Neural Networks (ANN)/7. ANN Code Preparation.srt 16.7 kB
  • 13. VIP Facebook Prophet/3. Prophet Code Preparation.srt 16.6 kB
  • 5. ARIMA/14. Auto ARIMA in Code.srt 16.1 kB
  • 2. Getting Set Up/2. How to use Github & Extra Coding Tips (Optional).srt 16.1 kB
  • 3. Time Series Basics/8. Forecasting Metrics.srt 15.6 kB
  • 11. VIP GARCH/13. A Deep Learning Approach to GARCH.srt 15.4 kB
  • 3. Time Series Basics/9. Financial Time Series Primer.srt 15.4 kB
  • 4. Exponential Smoothing and ETS Methods/11. Holt-Winters (Theory).srt 15.4 kB
  • 7. Machine Learning Methods/9. Machine Learning for Time Series Forecasting in Code (pt 1).srt 15.3 kB
  • 10. Deep Learning Recurrent Neural Networks (RNN)/8. GRU and LSTM (pt 2).srt 15.2 kB
  • 6. Vector Autoregression (VAR, VMA, VARMA)/10. Converting Between Models (Optional).srt 15.1 kB
  • 16. Effective Learning Strategies for Machine Learning FAQ/1. How to Succeed in this Course (Long Version).srt 15.0 kB
  • 4. Exponential Smoothing and ETS Methods/5. EWMA Theory.srt 14.9 kB
  • 4. Exponential Smoothing and ETS Methods/8. SES Code.srt 14.9 kB
  • 4. Exponential Smoothing and ETS Methods/20. (Optional) More About State-Space Models.srt 14.6 kB
  • 14. Setting Up Your Environment FAQ/2. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.srt 14.6 kB
  • 8. Deep Learning Artificial Neural Networks (ANN)/16. How Does a Neural Network Learn.srt 14.5 kB
  • 15. Extra Help With Python Coding for Beginners FAQ/4. Proof that using Jupyter Notebook is the same as not using it.srt 14.4 kB
  • 13. VIP Facebook Prophet/10. (The Dangers of) Prophet for Stock Price Prediction.srt 14.3 kB
  • 4. Exponential Smoothing and ETS Methods/7. SES Theory.srt 14.2 kB
  • 5. ARIMA/4. ARIMA.srt 14.1 kB
  • 5. ARIMA/13. Model Selection, AIC and BIC.srt 13.8 kB
  • 8. Deep Learning Artificial Neural Networks (ANN)/13. Human Activity Recognition Multi-Input ANN.srt 13.8 kB
  • 15. Extra Help With Python Coding for Beginners FAQ/3. How to Code by Yourself (part 2).srt 13.5 kB
  • 7. Machine Learning Methods/6. Machine Learning Algorithms Support Vector Machines.srt 13.5 kB
  • 5. ARIMA/8. ACF (Autocorrelation Function).srt 13.3 kB
  • 10. Deep Learning Recurrent Neural Networks (RNN)/3. Simple RNN Elman Unit (pt 2).srt 13.2 kB
  • 12. VIP AWS Forecast/4. Code pt 1 (Getting and Transforming the Data).srt 13.2 kB
  • 8. Deep Learning Artificial Neural Networks (ANN)/2. The Neuron.srt 13.0 kB
  • 8. Deep Learning Artificial Neural Networks (ANN)/3. Forward Propagation.srt 12.8 kB
  • 4. Exponential Smoothing and ETS Methods/13. Walk-Forward Validation.srt 12.6 kB
  • 5. ARIMA/12. Auto ARIMA and SARIMAX.srt 12.6 kB
  • 12. VIP AWS Forecast/2. Data Model.srt 12.5 kB
  • 5. ARIMA/18. How to Forecast with ARIMA.srt 12.4 kB
  • 2. Getting Set Up/1. Get Your Hands Dirty, Practical Coding Experience, Data Links.srt 12.3 kB
  • 8. Deep Learning Artificial Neural Networks (ANN)/4. The Geometrical Picture.srt 12.0 kB
  • 10. Deep Learning Recurrent Neural Networks (RNN)/2. Simple RNN Elman Unit (pt 1).srt 11.8 kB
  • 13. VIP Facebook Prophet/6. Prophet in Code Holidays and Exogenous Regressors.srt 11.6 kB
  • 10. Deep Learning Recurrent Neural Networks (RNN)/5. RNN Code Preparation.srt 11.4 kB
  • 8. Deep Learning Artificial Neural Networks (ANN)/6. Multiclass Classification.srt 11.4 kB
  • 13. VIP Facebook Prophet/2. How does Prophet work.srt 11.1 kB
  • 5. ARIMA/7. Stationarity in Code.srt 11.0 kB
  • 8. Deep Learning Artificial Neural Networks (ANN)/8. Feedforward ANN for Time Series Forecasting Code.srt 11.0 kB
  • 12. VIP AWS Forecast/1. AWS Forecast Section Introduction.srt 10.9 kB
  • 11. VIP GARCH/6. GARCH Code Preparation (pt 1).srt 10.7 kB
  • 6. Vector Autoregression (VAR, VMA, VARMA)/7. VARMA Econometrics Code (pt 2).srt 10.7 kB
  • 11. VIP GARCH/7. GARCH Code Preparation (pt 2).srt 10.6 kB
  • 5. ARIMA/17. Auto ARIMA in Code (Sales Data).srt 10.4 kB
  • 7. Machine Learning Methods/3. Autoregressive Machine Learning Models.srt 10.4 kB
  • 4. Exponential Smoothing and ETS Methods/9. Holt's Linear Trend Model (Theory).srt 10.3 kB
  • 4. Exponential Smoothing and ETS Methods/14. Walk-Forward Validation in Code.srt 10.3 kB
  • 10. Deep Learning Recurrent Neural Networks (RNN)/6. RNNs Understanding by Implementing (Paying Attention to Shapes).srt 10.2 kB
  • 7. Machine Learning Methods/8. Extrapolation and Stock Prices.srt 10.0 kB
  • 6. Vector Autoregression (VAR, VMA, VARMA)/6. VARMA Econometrics Code (pt 1).srt 9.9 kB
  • 4. Exponential Smoothing and ETS Methods/4. SMA Code.srt 9.9 kB
  • 13. VIP Facebook Prophet/4. Prophet in Code Data Preparation.srt 9.9 kB
  • 13. VIP Facebook Prophet/9. Prophet Multiplicative Seasonality, Outliers, Non-Daily Data.srt 9.9 kB
  • 11. VIP GARCH/5. GARCH Theory.srt 9.8 kB
  • 11. VIP GARCH/3. ARCH Theory (pt 2).srt 9.8 kB
  • 4. Exponential Smoothing and ETS Methods/6. EWMA Code.srt 9.8 kB
  • 4. Exponential Smoothing and ETS Methods/12. Holt-Winters (Code).srt 9.8 kB
  • 5. ARIMA/10. ACF and PACF in Code (pt 1).srt 9.6 kB
  • 13. VIP Facebook Prophet/5. Prophet in Code Fit, Forecast, Plot.srt 9.5 kB
  • 12. VIP AWS Forecast/6. Code pt 3 (Building your Model).srt 9.5 kB
  • 3. Time Series Basics/12. The Naive Forecast and the Importance of Baselines.srt 9.4 kB
  • 7. Machine Learning Methods/7. Machine Learning Algorithms Random Forest.srt 9.3 kB
  • 8. Deep Learning Artificial Neural Networks (ANN)/9. Feedforward ANN for Stock Return and Price Predictions Code.srt 9.2 kB
  • 7. Machine Learning Methods/5. Machine Learning Algorithms Logistic Regression.srt 9.2 kB
  • 3. Time Series Basics/5. Types of Tasks.srt 9.1 kB
  • 11. VIP GARCH/14. GARCH Section Summary.srt 8.9 kB
  • 11. VIP GARCH/9. GARCH Code (pt 2).srt 8.9 kB
  • 12. VIP AWS Forecast/7. Code pt 4 (Generating and Evaluating the Forecast).srt 8.9 kB
  • 8. Deep Learning Artificial Neural Networks (ANN)/12. Human Activity Recognition Data Exploration.srt 8.8 kB
  • 6. Vector Autoregression (VAR, VMA, VARMA)/3. VARMA Code (pt 1).srt 8.7 kB
  • 3. Time Series Basics/13. Naive Forecast and Forecasting Metrics in Code.srt 8.5 kB
  • 3. Time Series Basics/6. Power, Log, and Box-Cox Transformations.srt 8.3 kB
  • 9. Deep Learning Convolutional Neural Networks (CNN)/4. What is Convolution (Weight Sharing).srt 8.3 kB
  • 5. ARIMA/11. ACF and PACF in Code (pt 2).srt 8.2 kB
  • 5. ARIMA/9. PACF (Partial Autocorrelation Funtion).srt 8.2 kB
  • 9. Deep Learning Convolutional Neural Networks (CNN)/8. CNN Code Preparation.srt 8.1 kB
  • 8. Deep Learning Artificial Neural Networks (ANN)/11. Human Activity Recognition Code Preparation.srt 8.1 kB
  • 17. Appendix FAQ Finale/2. BONUS.srt 8.1 kB
  • 3. Time Series Basics/4. Why Do We Care About Shapes.srt 7.8 kB
  • 1. Welcome/1. Introduction and Outline.srt 7.8 kB
  • 5. ARIMA/16. ACF and PACF for Stock Returns.srt 7.7 kB
  • 6. Vector Autoregression (VAR, VMA, VARMA)/5. VARMA Code (pt 3).srt 7.6 kB
  • 8. Deep Learning Artificial Neural Networks (ANN)/10. Human Activity Recognition Dataset.srt 7.4 kB
  • 4. Exponential Smoothing and ETS Methods/2. Exponential Smoothing Intuition for Beginners.srt 7.4 kB
  • 9. Deep Learning Convolutional Neural Networks (CNN)/3. What is Convolution (Pattern-Matching).srt 7.4 kB
  • 5. ARIMA/1. ARIMA Section Introduction.srt 7.3 kB
  • 11. VIP GARCH/10. GARCH Code (pt 3).srt 7.3 kB
  • 6. Vector Autoregression (VAR, VMA, VARMA)/4. VARMA Code (pt 2).srt 7.2 kB
  • 9. Deep Learning Convolutional Neural Networks (CNN)/9. CNN for Time Series Forecasting in Code.srt 7.0 kB
  • 3. Time Series Basics/7. Power, Log, and Box-Cox Transformations in Code.srt 7.0 kB
  • 12. VIP AWS Forecast/9. AWS Forecast Section Summary.srt 7.0 kB
  • 7. Machine Learning Methods/11. Machine Learning for Time Series Forecasting in Code (pt 2).srt 6.8 kB
  • 11. VIP GARCH/4. ARCH Theory (pt 3).srt 6.8 kB
  • 7. Machine Learning Methods/4. Machine Learning Algorithms Linear Regression.srt 6.6 kB
  • 9. Deep Learning Convolutional Neural Networks (CNN)/10. CNN for Human Activity Recognition.srt 6.6 kB
  • 9. Deep Learning Convolutional Neural Networks (CNN)/6. Convolution for Time Series and ARIMA.srt 6.6 kB
  • 10. Deep Learning Recurrent Neural Networks (RNN)/1. RNN Section Introduction.srt 6.5 kB
  • 3. Time Series Basics/2. What is a Time Series.srt 6.5 kB
  • 11. VIP GARCH/2. ARCH Theory (pt 1).srt 6.5 kB
  • 4. Exponential Smoothing and ETS Methods/16. Application Stock Predictions.srt 6.5 kB
  • 3. Time Series Basics/1. Time Series Basics Section Introduction.srt 6.4 kB
  • 1. Welcome/2. Warmup (Optional).srt 6.3 kB
  • 11. VIP GARCH/8. GARCH Code (pt 1).srt 6.3 kB
  • 13. VIP Facebook Prophet/7. Prophet in Code Cross-Validation.srt 6.2 kB
  • 11. VIP GARCH/11. GARCH Code (pt 4).srt 6.0 kB
  • 8. Deep Learning Artificial Neural Networks (ANN)/14. Human Activity Recognition Feature-Based Model.srt 5.6 kB
  • 10. Deep Learning Recurrent Neural Networks (RNN)/10. LSTMs for Time Series Classification in Code.srt 5.6 kB
  • 4. Exponential Smoothing and ETS Methods/19. Exponential Smoothing Section Summary.srt 5.5 kB
  • 7. Machine Learning Methods/1. Machine Learning Section Introduction.srt 5.5 kB
  • 7. Machine Learning Methods/12. Application Sales Data.srt 5.5 kB
  • 6. Vector Autoregression (VAR, VMA, VARMA)/8. Granger Causality.srt 5.4 kB
  • 7. Machine Learning Methods/10. Forecasting with Differencing.srt 5.4 kB
  • 4. Exponential Smoothing and ETS Methods/15. Application Sales Data.srt 5.3 kB
  • 11. VIP GARCH/1. GARCH Section Introduction.srt 5.3 kB
  • 4. Exponential Smoothing and ETS Methods/3. SMA Theory.srt 5.0 kB
  • 7. Machine Learning Methods/13. Application Predicting Stock Prices and Returns.srt 4.9 kB
  • 12. VIP AWS Forecast/3. Creating an IAM Role.srt 4.9 kB
  • 3. Time Series Basics/15. Suggestion Box.srt 4.9 kB
  • 6. Vector Autoregression (VAR, VMA, VARMA)/11. Vector Autoregression Section Summary.srt 4.8 kB
  • 5. ARIMA/20. ARIMA Section Summary.srt 4.7 kB
  • 13. VIP Facebook Prophet/11. Prophet Section Summary.srt 4.6 kB
  • 7. Machine Learning Methods/14. Application Predicting Stock Movements.srt 4.6 kB
  • 8. Deep Learning Artificial Neural Networks (ANN)/1. Artificial Neural Networks Section Introduction.srt 4.5 kB
  • 10. Deep Learning Recurrent Neural Networks (RNN)/4. Aside State Space Models vs. RNNs.srt 4.5 kB
  • 3. Time Series Basics/14. Time Series Basics Section Summary.srt 4.4 kB
  • 15. Extra Help With Python Coding for Beginners FAQ/1. Where to get the code, notebooks, and data.srt 4.4 kB
  • 5. ARIMA/3. Moving Average Models - MA(q).srt 4.3 kB
  • 13. VIP Facebook Prophet/8. Prophet in Code Changepoint Detection.srt 4.3 kB
  • 4. Exponential Smoothing and ETS Methods/17. SMA Application COVID-19 Counting.srt 4.3 kB
  • 10. Deep Learning Recurrent Neural Networks (RNN)/11. The Unreasonable Ineffectiveness of Recurrent Neural Networks.srt 4.3 kB
  • 9. Deep Learning Convolutional Neural Networks (CNN)/11. CNN Section Summary.srt 4.3 kB
  • 13. VIP Facebook Prophet/1. Prophet Section Introduction.srt 4.2 kB
  • 11. VIP GARCH/12. GARCH Code (pt 5).srt 4.2 kB
  • 9. Deep Learning Convolutional Neural Networks (CNN)/1. CNN Section Introduction.srt 4.1 kB
  • 4. Exponential Smoothing and ETS Methods/1. Exponential Smoothing Section Introduction.srt 4.0 kB
  • 10. Deep Learning Recurrent Neural Networks (RNN)/12. RNN Section Summary.srt 3.9 kB
  • 17. Appendix FAQ Finale/1. What is the Appendix.srt 3.9 kB
  • 12. VIP AWS Forecast/8. AWS Forecast Exercise.srt 3.7 kB
  • 6. Vector Autoregression (VAR, VMA, VARMA)/9. Granger Causality Code.srt 3.6 kB
  • 4. Exponential Smoothing and ETS Methods/10. Holt's Linear Trend Model (Code).srt 3.5 kB
  • 3. Time Series Basics/10. Price Simulations in Code.srt 3.5 kB
  • 3. Time Series Basics/3. Modeling vs. Predicting.srt 3.4 kB
  • 6. Vector Autoregression (VAR, VMA, VARMA)/1. Vector Autoregression Section Introduction.srt 3.2 kB
  • 8. Deep Learning Artificial Neural Networks (ANN)/15. Human Activity Recognition Combined Model.srt 3.1 kB
  • 7. Machine Learning Methods/15. Machine Learning Section Summary.srt 3.1 kB
  • 4. Exponential Smoothing and ETS Methods/18. SMA Application Algorithmic Trading.srt 2.9 kB
  • 8. Deep Learning Artificial Neural Networks (ANN)/17. Artificial Neural Networks Section Summary.srt 2.9 kB
  • 5. ARIMA/19. Forecasting Out-Of-Sample.srt 1.7 kB
  • 15. Extra Help With Python Coding for Beginners FAQ/1.2 Data Links.html 157 Bytes
  • 2. Getting Set Up/1.1 Data Links.html 157 Bytes
  • 15. Extra Help With Python Coding for Beginners FAQ/1.3 Github Link.html 143 Bytes
  • 2. Getting Set Up/1.2 Github Links.html 143 Bytes
  • 0. Websites you may like/[FreeCourseSite.com].url 127 Bytes
  • 9. Deep Learning Convolutional Neural Networks (CNN)/0. Websites you may like/[FreeCourseSite.com].url 127 Bytes
  • 15. Extra Help With Python Coding for Beginners FAQ/1.1 Code Link.html 125 Bytes
  • 9. Deep Learning Convolutional Neural Networks (CNN)/11.1 Convert a Time Series Into an Image with Gramian Angular Fields and Markov Transition Fields.html 123 Bytes
  • 0. Websites you may like/[CourseClub.Me].url 122 Bytes
  • 9. Deep Learning Convolutional Neural Networks (CNN)/0. Websites you may like/[CourseClub.Me].url 122 Bytes
  • 0. Websites you may like/[GigaCourse.Com].url 49 Bytes
  • 9. Deep Learning Convolutional Neural Networks (CNN)/0. Websites you may like/[GigaCourse.Com].url 49 Bytes

随机展示

相关说明

本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!