搜索
Udemy - A deep understanding of deep learning (with Python intro) 7-2023
磁力链接/BT种子名称
Udemy - A deep understanding of deep learning (with Python intro) 7-2023
磁力链接/BT种子简介
种子哈希:
ca1ecaffafe6a30afa413d2399728a0d1cd7a426
文件大小:
16.04G
已经下载:
1069
次
下载速度:
极快
收录时间:
2024-02-15
最近下载:
2024-11-05
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:CA1ECAFFAFE6A30AFA413D2399728A0D1CD7A426
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
最近搜索
ben 10 protector of the earth
顶臀
家政婦 uncensored
casting couch-x
男友
妇 拳
【极品泄密】真实调教厦航空姐+带上金主的口球绑起来玩弄
近景
2024年合集
台模
tomato vpn android
女号
sm调教
希瑞
最牛真实下药
www.98t
谷肉
alison prod
coreldraw++2022
探花
大梦归离18
清纯+cd
灌醉大长腿极品姐姐后续+插b足交+附泄密照,这次拍了多次爆插姐姐的多视频,时间长
91学院派
刘老师合集
太子
the chi
曝光
ntk-881
dass-185
文件列表
19 - Understand and design CNNs/005 Examine feature map activations.mp4
263.6 MB
22 - Style transfer/004 Transferring the screaming bathtub.mp4
220.6 MB
19 - Understand and design CNNs/004 Classify Gaussian blurs.mp4
184.6 MB
07 - ANNs (Artificial Neural Networks)/009 Learning rates comparison.mp4
176.8 MB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/005 CodeChallenge sine wave extrapolation.mp4
174.7 MB
18 - Convolution and transformations/003 Convolution in code.mp4
173.8 MB
14 - FFN milestone projects/004 Project 2 My solution.mp4
163.3 MB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/004 Predicting alternating sequences.mp4
161.2 MB
19 - Understand and design CNNs/002 CNN to classify MNIST digits.mp4
151.9 MB
19 - Understand and design CNNs/012 The EMNIST dataset (letter recognition).mp4
150.9 MB
07 - ANNs (Artificial Neural Networks)/013 Multi-output ANN (iris dataset).mp4
148.9 MB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/009 Lorem ipsum.mp4
148.5 MB
16 - Autoencoders/004 AEs for occlusion.mp4
144.9 MB
26 - Where to go from here/002 How to read academic DL papers.mp4
144.0 MB
19 - Understand and design CNNs/011 Discover the Gaussian parameters.mp4
143.3 MB
21 - Transfer learning/007 Pretraining with autoencoders.mp4
142.6 MB
16 - Autoencoders/006 Autoencoder with tied weights.mp4
137.9 MB
23 - Generative adversarial networks/004 CNN GAN with Gaussians.mp4
137.8 MB
09 - Regularization/004 Dropout regularization in practice.mp4
137.1 MB
07 - ANNs (Artificial Neural Networks)/008 ANN for classifying qwerties.mp4
136.7 MB
19 - Understand and design CNNs/008 Do autoencoders clean Gaussians.mp4
135.1 MB
21 - Transfer learning/005 Transfer learning with ResNet-18.mp4
134.5 MB
18 - Convolution and transformations/011 Image transforms.mp4
130.7 MB
10 - Metaparameters (activations, optimizers)/002 The wine quality dataset.mp4
130.7 MB
23 - Generative adversarial networks/002 Linear GAN with MNIST.mp4
127.4 MB
08 - Overfitting and cross-validation/006 Cross-validation -- DataLoader.mp4
127.1 MB
12 - More on data/003 CodeChallenge unbalanced data.mp4
123.6 MB
16 - Autoencoders/005 The latent code of MNIST.mp4
123.5 MB
11 - FFNs (Feed-Forward Networks)/003 FFN to classify digits.mp4
123.0 MB
07 - ANNs (Artificial Neural Networks)/018 Model depth vs. breadth.mp4
120.5 MB
12 - More on data/007 Data feature augmentation.mp4
119.9 MB
19 - Understand and design CNNs/006 CodeChallenge Softcode internal parameters.mp4
119.2 MB
15 - Weight inits and investigations/006 CodeChallenge Xavier vs. Kaiming.mp4
114.8 MB
21 - Transfer learning/008 CIFAR10 with autoencoder-pretrained model.mp4
114.2 MB
15 - Weight inits and investigations/009 Learning-related changes in weights.mp4
113.2 MB
08 - Overfitting and cross-validation/005 Cross-validation -- scikitlearn.mp4
111.0 MB
07 - ANNs (Artificial Neural Networks)/010 Multilayer ANN.mp4
110.4 MB
09 - Regularization/003 Dropout regularization.mp4
108.7 MB
10 - Metaparameters (activations, optimizers)/003 CodeChallenge Minibatch size in the wine dataset.mp4
108.6 MB
13 - Measuring model performance/004 APRF example 1 wine quality.mp4
108.0 MB
18 - Convolution and transformations/012 Creating and using custom DataLoaders.mp4
107.4 MB
10 - Metaparameters (activations, optimizers)/015 Loss functions in PyTorch.mp4
106.7 MB
07 - ANNs (Artificial Neural Networks)/007 CodeChallenge manipulate regression slopes.mp4
106.0 MB
12 - More on data/001 Anatomy of a torch dataset and dataloader.mp4
105.7 MB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/007 GRU and LSTM.mp4
105.2 MB
16 - Autoencoders/003 CodeChallenge How many units.mp4
104.9 MB
06 - Gradient descent/007 Parametric experiments on g.d.mp4
103.5 MB
19 - Understand and design CNNs/010 CodeChallenge Custom loss functions.mp4
103.5 MB
07 - ANNs (Artificial Neural Networks)/016 Depth vs. breadth number of parameters.mp4
102.4 MB
12 - More on data/002 Data size and network size.mp4
102.0 MB
06 - Gradient descent/005 Gradient descent in 2D.mp4
101.1 MB
15 - Weight inits and investigations/005 Xavier and Kaiming initializations.mp4
101.0 MB
13 - Measuring model performance/005 APRF example 2 MNIST.mp4
99.1 MB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/006 More on RNNs Hidden states, embeddings.mp4
98.8 MB
19 - Understand and design CNNs/007 CodeChallenge How wide the FC.mp4
95.0 MB
11 - FFNs (Feed-Forward Networks)/007 CodeChallenge MNIST and breadth vs. depth.mp4
94.8 MB
12 - More on data/010 Save the best-performing model.mp4
94.5 MB
11 - FFNs (Feed-Forward Networks)/006 Distributions of weights pre- and post-learning.mp4
94.0 MB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/003 The RNN class in PyTorch.mp4
94.0 MB
10 - Metaparameters (activations, optimizers)/013 CodeChallenge Predict sugar.mp4
93.7 MB
12 - More on data/005 Data oversampling in MNIST.mp4
93.6 MB
11 - FFNs (Feed-Forward Networks)/002 The MNIST dataset.mp4
93.0 MB
18 - Convolution and transformations/001 Convolution concepts.mp4
92.7 MB
15 - Weight inits and investigations/008 Freezing weights during learning.mp4
92.5 MB
06 - Gradient descent/003 Gradient descent in 1D.mp4
92.1 MB
03 - Concepts in deep learning/003 The role of DL in science and knowledge.mp4
92.0 MB
16 - Autoencoders/002 Denoising MNIST.mp4
90.7 MB
15 - Weight inits and investigations/002 A surprising demo of weight initializations.mp4
90.1 MB
10 - Metaparameters (activations, optimizers)/009 Activation functions.mp4
89.0 MB
21 - Transfer learning/003 CodeChallenge letters to numbers.mp4
89.0 MB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/008 The LSTM and GRU classes.mp4
88.4 MB
06 - Gradient descent/008 CodeChallenge fixed vs. dynamic learning rate.mp4
88.1 MB
09 - Regularization/012 CodeChallenge Effects of mini-batch size.mp4
87.3 MB
07 - ANNs (Artificial Neural Networks)/014 CodeChallenge more qwerties!.mp4
85.8 MB
20 - CNN milestone projects/002 Project 1 My solution.mp4
85.2 MB
19 - Understand and design CNNs/009 CodeChallenge AEs and occluded Gaussians.mp4
82.4 MB
09 - Regularization/007 L2 regularization in practice.mp4
82.3 MB
21 - Transfer learning/002 Transfer learning MNIST - FMNIST.mp4
82.0 MB
30 - Python intro Flow control/010 Function error checking and handling.mp4
80.7 MB
20 - CNN milestone projects/005 Project 4 Psychometric functions in CNNs.mp4
80.2 MB
09 - Regularization/010 Batch training in action.mp4
80.1 MB
12 - More on data/006 Data noise augmentation (with devset+test).mp4
79.8 MB
18 - Convolution and transformations/005 The Conv2 class in PyTorch.mp4
79.2 MB
03 - Concepts in deep learning/004 Running experiments to understand DL.mp4
78.5 MB
07 - ANNs (Artificial Neural Networks)/006 ANN for regression.mp4
77.8 MB
15 - Weight inits and investigations/003 Theory Why and how to initialize weights.mp4
77.2 MB
15 - Weight inits and investigations/004 CodeChallenge Weight variance inits.mp4
76.4 MB
10 - Metaparameters (activations, optimizers)/016 More practice with multioutput ANNs.mp4
75.4 MB
31 - Python intro Text and plots/006 Images.mp4
74.5 MB
11 - FFNs (Feed-Forward Networks)/005 CodeChallenge Data normalization.mp4
74.4 MB
09 - Regularization/008 L1 regularization in practice.mp4
74.4 MB
19 - Understand and design CNNs/013 Dropout in CNNs.mp4
74.1 MB
10 - Metaparameters (activations, optimizers)/011 Activation functions comparison.mp4
74.0 MB
13 - Measuring model performance/007 Computation time.mp4
73.9 MB
08 - Overfitting and cross-validation/004 Cross-validation -- manual separation.mp4
73.8 MB
05 - Math, numpy, PyTorch/009 Softmax.mp4
73.6 MB
14 - FFN milestone projects/002 Project 1 My solution.mp4
73.2 MB
18 - Convolution and transformations/007 Transpose convolution.mp4
72.8 MB
10 - Metaparameters (activations, optimizers)/023 Learning rate decay.mp4
72.4 MB
10 - Metaparameters (activations, optimizers)/014 Loss functions.mp4
71.9 MB
19 - Understand and design CNNs/015 CodeChallenge Varying number of channels.mp4
70.6 MB
10 - Metaparameters (activations, optimizers)/010 Activation functions in PyTorch.mp4
70.3 MB
22 - Style transfer/002 The Gram matrix (feature activation covariance).mp4
69.7 MB
07 - ANNs (Artificial Neural Networks)/017 Defining models using sequential vs. class.mp4
69.0 MB
15 - Weight inits and investigations/007 CodeChallenge Identically random weights.mp4
68.4 MB
10 - Metaparameters (activations, optimizers)/012 CodeChallenge Compare relu variants.mp4
67.1 MB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/001 Leveraging sequences in deep learning.mp4
67.0 MB
13 - Measuring model performance/002 Accuracy, precision, recall, F1.mp4
66.8 MB
10 - Metaparameters (activations, optimizers)/018 SGD with momentum.mp4
65.1 MB
10 - Metaparameters (activations, optimizers)/020 Optimizers comparison.mp4
64.8 MB
09 - Regularization/001 Regularization Concept and methods.mp4
64.5 MB
25 - Ethics of deep learning/005 Accountability and making ethical AI.mp4
64.2 MB
29 - Python intro Functions/003 Python libraries (pandas).mp4
63.8 MB
29 - Python intro Functions/008 Classes and object-oriented programming.mp4
63.6 MB
11 - FFNs (Feed-Forward Networks)/009 Scrambled MNIST.mp4
63.1 MB
05 - Math, numpy, PyTorch/016 The t-test.mp4
62.6 MB
15 - Weight inits and investigations/001 Explanation of weight matrix sizes.mp4
62.5 MB
13 - Measuring model performance/006 CodeChallenge MNIST with unequal groups.mp4
61.9 MB
31 - Python intro Text and plots/004 Making the graphs look nicer.mp4
61.9 MB
05 - Math, numpy, PyTorch/011 Entropy and cross-entropy.mp4
61.6 MB
30 - Python intro Flow control/004 Enumerate and zip.mp4
61.4 MB
23 - Generative adversarial networks/003 CodeChallenge Linear GAN with FMNIST.mp4
61.4 MB
25 - Ethics of deep learning/003 Some other possible ethical scenarios.mp4
61.1 MB
11 - FFNs (Feed-Forward Networks)/010 Shifted MNIST.mp4
60.1 MB
06 - Gradient descent/004 CodeChallenge unfortunate starting value.mp4
59.8 MB
03 - Concepts in deep learning/005 Are artificial neurons like biological neurons.mp4
59.0 MB
08 - Overfitting and cross-validation/007 Splitting data into train, devset, test.mp4
59.0 MB
01 - Introduction/001 How to learn from this course.mp4
57.6 MB
08 - Overfitting and cross-validation/001 What is overfitting and is it as bad as they say.mp4
56.9 MB
30 - Python intro Flow control/002 If-else statements, part 2.mp4
56.3 MB
18 - Convolution and transformations/002 Feature maps and convolution kernels.mp4
56.2 MB
11 - FFNs (Feed-Forward Networks)/011 CodeChallenge The mystery of the missing 7.mp4
56.0 MB
14 - FFN milestone projects/006 Project 3 My solution.mp4
55.5 MB
07 - ANNs (Artificial Neural Networks)/021 Reflection Are DL models understandable yet.mp4
54.2 MB
09 - Regularization/011 The importance of equal batch sizes.mp4
53.8 MB
23 - Generative adversarial networks/005 CodeChallenge Gaussians with fewer layers.mp4
53.8 MB
18 - Convolution and transformations/008 Maxmean pooling.mp4
53.7 MB
22 - Style transfer/005 CodeChallenge Style transfer with AlexNet.mp4
53.4 MB
17 - Running models on a GPU/001 What is a GPU and why use it.mp4
52.8 MB
09 - Regularization/006 Weight regularization (L1L2) math.mp4
51.7 MB
18 - Convolution and transformations/010 To pool or to stride.mp4
51.6 MB
05 - Math, numpy, PyTorch/015 Reproducible randomness via seeding.mp4
51.5 MB
08 - Overfitting and cross-validation/002 Cross-validation.mp4
51.4 MB
31 - Python intro Text and plots/003 Subplot geometry.mp4
51.1 MB
30 - Python intro Flow control/008 while loops.mp4
50.5 MB
10 - Metaparameters (activations, optimizers)/005 The importance of data normalization.mp4
50.1 MB
31 - Python intro Text and plots/001 Printing and string interpolation.mp4
49.5 MB
23 - Generative adversarial networks/006 CNN GAN with FMNIST.mp4
49.2 MB
30 - Python intro Flow control/006 Initializing variables.mp4
48.7 MB
27 - Python intro Data types/007 Booleans.mp4
48.3 MB
05 - Math, numpy, PyTorch/012 Minmax and argminargmax.mp4
47.9 MB
05 - Math, numpy, PyTorch/008 Matrix multiplication.mp4
47.7 MB
10 - Metaparameters (activations, optimizers)/004 Data normalization.mp4
47.6 MB
10 - Metaparameters (activations, optimizers)/007 Batch normalization in practice.mp4
47.4 MB
30 - Python intro Flow control/003 For loops.mp4
46.9 MB
18 - Convolution and transformations/009 Pooling in PyTorch.mp4
46.4 MB
30 - Python intro Flow control/007 Single-line loops (list comprehension).mp4
46.2 MB
05 - Math, numpy, PyTorch/003 Spectral theories in mathematics.mp4
46.0 MB
23 - Generative adversarial networks/007 CodeChallenge CNN GAN with CIFAR.mp4
45.3 MB
10 - Metaparameters (activations, optimizers)/017 Optimizers (minibatch, momentum).mp4
44.3 MB
19 - Understand and design CNNs/003 CNN on shifted MNIST.mp4
43.4 MB
05 - Math, numpy, PyTorch/014 Random sampling and sampling variability.mp4
43.3 MB
27 - Python intro Data types/002 Variables.mp4
43.1 MB
21 - Transfer learning/001 Transfer learning What, why, and when.mp4
42.4 MB
29 - Python intro Functions/005 Creating functions.mp4
42.1 MB
06 - Gradient descent/001 Overview of gradient descent.mp4
42.0 MB
10 - Metaparameters (activations, optimizers)/022 CodeChallenge Adam with L2 regularization.mp4
41.9 MB
10 - Metaparameters (activations, optimizers)/008 CodeChallenge Batch-normalize the qwerties.mp4
41.8 MB
17 - Running models on a GPU/002 Implementation.mp4
41.6 MB
29 - Python intro Functions/006 Global and local variable scopes.mp4
41.1 MB
19 - Understand and design CNNs/014 CodeChallenge How low can you go.mp4
41.1 MB
10 - Metaparameters (activations, optimizers)/006 Batch normalization.mp4
41.0 MB
12 - More on data/009 Save and load trained models.mp4
40.6 MB
23 - Generative adversarial networks/001 GAN What, why, and how.mp4
40.6 MB
25 - Ethics of deep learning/002 Example case studies.mp4
40.3 MB
13 - Measuring model performance/003 APRF in code.mp4
40.0 MB
09 - Regularization/005 Dropout example 2.mp4
40.0 MB
10 - Metaparameters (activations, optimizers)/019 Optimizers (RMSprop, Adam).mp4
39.9 MB
31 - Python intro Text and plots/007 Export plots in low and high resolution.mp4
39.2 MB
07 - ANNs (Artificial Neural Networks)/004 ANN math part 2 (errors, loss, cost).mp4
39.1 MB
07 - ANNs (Artificial Neural Networks)/001 The perceptron and ANN architecture.mp4
38.9 MB
30 - Python intro Flow control/009 Broadcasting in numpy.mp4
38.9 MB
17 - Running models on a GPU/003 CodeChallenge Run an experiment on the GPU.mp4
38.7 MB
07 - ANNs (Artificial Neural Networks)/011 Linear solutions to linear problems.mp4
38.5 MB
20 - CNN milestone projects/001 Project 1 Import and classify CIFAR10.mp4
38.4 MB
10 - Metaparameters (activations, optimizers)/021 CodeChallenge Optimizers and... something.mp4
38.3 MB
07 - ANNs (Artificial Neural Networks)/019 CodeChallenge convert sequential to class.mp4
38.3 MB
27 - Python intro Data types/003 Math and printing.mp4
37.7 MB
03 - Concepts in deep learning/002 How models learn.mp4
37.1 MB
31 - Python intro Text and plots/005 Seaborn.mp4
36.0 MB
25 - Ethics of deep learning/004 Will deep learning take our jobs.mp4
35.5 MB
02 - Download all course materials/001 Downloading and using the code.mp4
35.3 MB
11 - FFNs (Feed-Forward Networks)/008 CodeChallenge Optimizers and MNIST.mp4
34.8 MB
05 - Math, numpy, PyTorch/013 Mean and variance.mp4
34.5 MB
07 - ANNs (Artificial Neural Networks)/003 ANN math part 1 (forward prop).mp4
34.4 MB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/002 How RNNs work.mp4
34.2 MB
05 - Math, numpy, PyTorch/017 Derivatives intuition and polynomials.mp4
33.7 MB
12 - More on data/008 Getting data into colab.mp4
33.5 MB
07 - ANNs (Artificial Neural Networks)/015 Comparing the number of hidden units.mp4
33.4 MB
30 - Python intro Flow control/001 If-else statements.mp4
31.6 MB
07 - ANNs (Artificial Neural Networks)/002 A geometric view of ANNs.mp4
31.3 MB
03 - Concepts in deep learning/001 What is an artificial neural network.mp4
30.8 MB
20 - CNN milestone projects/003 Project 2 CIFAR-autoencoder.mp4
30.7 MB
28 - Python intro Indexing, slicing/002 Slicing.mp4
30.4 MB
31 - Python intro Text and plots/002 Plotting dots and lines.mp4
30.3 MB
11 - FFNs (Feed-Forward Networks)/004 CodeChallenge Binarized MNIST images.mp4
30.1 MB
12 - More on data/011 Where to find online datasets.mp4
29.8 MB
07 - ANNs (Artificial Neural Networks)/005 ANN math part 3 (backprop).mp4
29.3 MB
29 - Python intro Functions/002 Python libraries (numpy).mp4
29.3 MB
06 - Gradient descent/006 CodeChallenge 2D gradient ascent.mp4
29.2 MB
18 - Convolution and transformations/004 Convolution parameters (stride, padding).mp4
28.7 MB
22 - Style transfer/003 The style transfer algorithm.mp4
28.0 MB
08 - Overfitting and cross-validation/008 Cross-validation on regression.mp4
27.6 MB
14 - FFN milestone projects/001 Project 1 A gratuitously complex adding machine.mp4
27.2 MB
05 - Math, numpy, PyTorch/019 Derivatives product and chain rules.mp4
27.1 MB
01 - Introduction/002 Using Udemy like a pro.mp4
26.9 MB
06 - Gradient descent/002 What about local minima.mp4
26.9 MB
10 - Metaparameters (activations, optimizers)/024 How to pick the right metaparameters.mp4
26.8 MB
27 - Python intro Data types/004 Lists (1 of 2).mp4
26.1 MB
29 - Python intro Functions/004 Getting help on functions.mp4
26.0 MB
11 - FFNs (Feed-Forward Networks)/012 Universal approximation theorem.mp4
25.4 MB
09 - Regularization/009 Training in mini-batches.mp4
25.3 MB
25 - Ethics of deep learning/001 Will AI save us or destroy us.mp4
25.0 MB
19 - Understand and design CNNs/001 The canonical CNN architecture.mp4
25.0 MB
14 - FFN milestone projects/003 Project 2 Predicting heart disease.mp4
24.8 MB
27 - Python intro Data types/005 Lists (2 of 2).mp4
24.7 MB
28 - Python intro Indexing, slicing/001 Indexing.mp4
24.5 MB
27 - Python intro Data types/008 Dictionaries.mp4
24.4 MB
06 - Gradient descent/009 Vanishing and exploding gradients.mp4
23.4 MB
21 - Transfer learning/004 Famous CNN architectures.mp4
23.3 MB
16 - Autoencoders/001 What are autoencoders and what do they do.mp4
22.2 MB
05 - Math, numpy, PyTorch/010 Logarithms.mp4
21.9 MB
21 - Transfer learning/006 CodeChallenge VGG-16.mp4
21.3 MB
05 - Math, numpy, PyTorch/007 OMG it's the dot product!.mp4
20.8 MB
14 - FFN milestone projects/005 Project 3 FFN for missing data interpolation.mp4
20.6 MB
20 - CNN milestone projects/004 Project 3 FMNIST.mp4
20.4 MB
07 - ANNs (Artificial Neural Networks)/012 Why multilayer linear models don't exist.mp4
20.2 MB
18 - Convolution and transformations/006 CodeChallenge Choose the parameters.mp4
19.9 MB
13 - Measuring model performance/001 Two perspectives of the world.mp4
19.8 MB
12 - More on data/004 What to do about unbalanced designs.mp4
19.7 MB
05 - Math, numpy, PyTorch/018 Derivatives find minima.mp4
19.6 MB
13 - Measuring model performance/008 Better performance in test than train.mp4
19.1 MB
05 - Math, numpy, PyTorch/006 Vector and matrix transpose.mp4
18.7 MB
26 - Where to go from here/001 How to learn topic _X_ in deep learning.mp4
18.3 MB
22 - Style transfer/001 What is style transfer and how does it work.mp4
17.6 MB
05 - Math, numpy, PyTorch/004 Terms and datatypes in math and computers.mp4
16.6 MB
09 - Regularization/002 train() and eval() modes.mp4
16.4 MB
27 - Python intro Data types/006 Tuples.mp4
16.1 MB
06 - Gradient descent/010 Tangent Notebook revision history.mp4
15.5 MB
30 - Python intro Flow control/005 Continue.mp4
15.0 MB
29 - Python intro Functions/001 Inputs and outputs.mp4
14.1 MB
05 - Math, numpy, PyTorch/005 Converting reality to numbers.mp4
14.1 MB
08 - Overfitting and cross-validation/003 Generalization.mp4
13.9 MB
11 - FFNs (Feed-Forward Networks)/001 What are fully-connected and feedforward networks.mp4
13.3 MB
10 - Metaparameters (activations, optimizers)/001 What are metaparameters.mp4
13.0 MB
27 - Python intro Data types/001 How to learn from the Python tutorial.mp4
12.9 MB
15 - Weight inits and investigations/010 Use default inits or apply your own.mp4
11.5 MB
29 - Python intro Functions/007 Copies and referents of variables.mp4
11.2 MB
04 - About the Python tutorial/001 Should you watch the Python tutorial.mp4
9.8 MB
19 - Understand and design CNNs/016 So many possibilities! How to create a CNN.mp4
9.7 MB
05 - Math, numpy, PyTorch/002 Introduction to this section.mp4
4.7 MB
02 - Download all course materials/002 My policy on code-sharing.mp4
4.1 MB
02 - Download all course materials/001 DUDL-PythonCode.zip
1.4 MB
19 - Understand and design CNNs/005 Examine feature map activations_en.srt
39.9 kB
07 - ANNs (Artificial Neural Networks)/013 Multi-output ANN (iris dataset)_en.srt
39.6 kB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/005 CodeChallenge sine wave extrapolation_en.srt
38.9 kB
19 - Understand and design CNNs/002 CNN to classify MNIST digits_en.srt
37.5 kB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/009 Lorem ipsum_en.srt
36.9 kB
07 - ANNs (Artificial Neural Networks)/009 Learning rates comparison_en.srt
35.7 kB
19 - Understand and design CNNs/012 The EMNIST dataset (letter recognition)_en.srt
35.6 kB
07 - ANNs (Artificial Neural Networks)/006 ANN for regression_en.srt
35.3 kB
16 - Autoencoders/006 Autoencoder with tied weights_en.srt
34.3 kB
07 - ANNs (Artificial Neural Networks)/008 ANN for classifying qwerties_en.srt
34.1 kB
19 - Understand and design CNNs/004 Classify Gaussian blurs_en.srt
33.8 kB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/007 GRU and LSTM_en.srt
32.9 kB
09 - Regularization/004 Dropout regularization in practice_en.srt
32.9 kB
11 - FFNs (Feed-Forward Networks)/003 FFN to classify digits_en.srt
32.4 kB
15 - Weight inits and investigations/009 Learning-related changes in weights_en.srt
32.3 kB
18 - Convolution and transformations/001 Convolution concepts_en.srt
31.9 kB
22 - Style transfer/004 Transferring the screaming bathtub_en.srt
31.8 kB
09 - Regularization/003 Dropout regularization_en.srt
31.1 kB
16 - Autoencoders/005 The latent code of MNIST_en.srt
30.9 kB
07 - ANNs (Artificial Neural Networks)/018 Model depth vs. breadth_en.srt
30.4 kB
29 - Python intro Functions/005 Creating functions_en.srt
30.4 kB
18 - Convolution and transformations/003 Convolution in code_en.srt
30.1 kB
08 - Overfitting and cross-validation/005 Cross-validation -- scikitlearn_en.srt
30.0 kB
19 - Understand and design CNNs/010 CodeChallenge Custom loss functions_en.srt
29.5 kB
07 - ANNs (Artificial Neural Networks)/010 Multilayer ANN_en.srt
29.0 kB
12 - More on data/003 CodeChallenge unbalanced data_en.srt
28.9 kB
08 - Overfitting and cross-validation/006 Cross-validation -- DataLoader_en.srt
28.5 kB
16 - Autoencoders/003 CodeChallenge How many units_en.srt
28.5 kB
27 - Python intro Data types/007 Booleans_en.srt
28.4 kB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/004 Predicting alternating sequences_en.srt
28.4 kB
21 - Transfer learning/007 Pretraining with autoencoders_en.srt
28.4 kB
12 - More on data/007 Data feature augmentation_en.srt
28.2 kB
07 - ANNs (Artificial Neural Networks)/007 CodeChallenge manipulate regression slopes_en.srt
27.9 kB
07 - ANNs (Artificial Neural Networks)/001 The perceptron and ANN architecture_en.srt
27.6 kB
30 - Python intro Flow control/008 while loops_en.srt
27.5 kB
05 - Math, numpy, PyTorch/009 Softmax_en.srt
27.4 kB
14 - FFN milestone projects/004 Project 2 My solution_en.srt
27.3 kB
10 - Metaparameters (activations, optimizers)/017 Optimizers (minibatch, momentum)_en.srt
27.0 kB
27 - Python intro Data types/002 Variables_en.srt
26.8 kB
06 - Gradient descent/007 Parametric experiments on g.d_en.srt
26.8 kB
09 - Regularization/006 Weight regularization (L1L2) math_en.srt
26.7 kB
31 - Python intro Text and plots/004 Making the graphs look nicer_en.srt
26.6 kB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/003 The RNN class in PyTorch_en.srt
26.6 kB
10 - Metaparameters (activations, optimizers)/015 Loss functions in PyTorch_en.srt
26.5 kB
27 - Python intro Data types/003 Math and printing_en.srt
26.4 kB
18 - Convolution and transformations/008 Maxmean pooling_en.srt
26.3 kB
29 - Python intro Functions/008 Classes and object-oriented programming_en.srt
26.2 kB
10 - Metaparameters (activations, optimizers)/009 Activation functions_en.srt
26.1 kB
12 - More on data/001 Anatomy of a torch dataset and dataloader_en.srt
26.0 kB
18 - Convolution and transformations/012 Creating and using custom DataLoaders_en.srt
26.0 kB
16 - Autoencoders/004 AEs for occlusion_en.srt
25.5 kB
21 - Transfer learning/008 CIFAR10 with autoencoder-pretrained model_en.srt
25.5 kB
10 - Metaparameters (activations, optimizers)/002 The wine quality dataset_en.srt
25.4 kB
31 - Python intro Text and plots/006 Images_en.srt
25.4 kB
07 - ANNs (Artificial Neural Networks)/016 Depth vs. breadth number of parameters_en.srt
25.3 kB
30 - Python intro Flow control/006 Initializing variables_en.srt
25.2 kB
26 - Where to go from here/002 How to read academic DL papers_en.srt
25.1 kB
05 - Math, numpy, PyTorch/011 Entropy and cross-entropy_en.srt
25.0 kB
30 - Python intro Flow control/010 Function error checking and handling_en.srt
25.0 kB
30 - Python intro Flow control/003 For loops_en.srt
24.9 kB
19 - Understand and design CNNs/006 CodeChallenge Softcode internal parameters_en.srt
24.8 kB
10 - Metaparameters (activations, optimizers)/013 CodeChallenge Predict sugar_en.srt
24.6 kB
08 - Overfitting and cross-validation/002 Cross-validation_en.srt
24.6 kB
21 - Transfer learning/001 Transfer learning What, why, and when_en.srt
24.4 kB
06 - Gradient descent/003 Gradient descent in 1D_en.srt
24.3 kB
15 - Weight inits and investigations/006 CodeChallenge Xavier vs. Kaiming_en.srt
24.3 kB
21 - Transfer learning/005 Transfer learning with ResNet-18_en.srt
24.2 kB
11 - FFNs (Feed-Forward Networks)/005 CodeChallenge Data normalization_en.srt
24.1 kB
19 - Understand and design CNNs/008 Do autoencoders clean Gaussians_en.srt
24.1 kB
05 - Math, numpy, PyTorch/017 Derivatives intuition and polynomials_en.srt
24.0 kB
10 - Metaparameters (activations, optimizers)/014 Loss functions_en.srt
24.0 kB
31 - Python intro Text and plots/001 Printing and string interpolation_en.srt
24.0 kB
03 - Concepts in deep learning/005 Are artificial neurons like biological neurons_en.srt
23.8 kB
12 - More on data/005 Data oversampling in MNIST_en.srt
23.8 kB
30 - Python intro Flow control/002 If-else statements, part 2_en.srt
23.7 kB
15 - Weight inits and investigations/002 A surprising demo of weight initializations_en.srt
23.6 kB
18 - Convolution and transformations/011 Image transforms_en.srt
23.4 kB
23 - Generative adversarial networks/001 GAN What, why, and how_en.srt
23.2 kB
06 - Gradient descent/008 CodeChallenge fixed vs. dynamic learning rate_en.srt
23.1 kB
12 - More on data/002 Data size and network size_en.srt
23.1 kB
03 - Concepts in deep learning/003 The role of DL in science and knowledge_en.srt
23.0 kB
19 - Understand and design CNNs/011 Discover the Gaussian parameters_en.srt
22.9 kB
31 - Python intro Text and plots/003 Subplot geometry_en.srt
22.8 kB
10 - Metaparameters (activations, optimizers)/003 CodeChallenge Minibatch size in the wine dataset_en.srt
22.8 kB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/006 More on RNNs Hidden states, embeddings_en.srt
22.6 kB
16 - Autoencoders/002 Denoising MNIST_en.srt
22.5 kB
05 - Math, numpy, PyTorch/013 Mean and variance_en.srt
22.3 kB
15 - Weight inits and investigations/005 Xavier and Kaiming initializations_en.srt
22.2 kB
17 - Running models on a GPU/001 What is a GPU and why use it_en.srt
22.1 kB
07 - ANNs (Artificial Neural Networks)/003 ANN math part 1 (forward prop)_en.srt
21.9 kB
23 - Generative adversarial networks/004 CNN GAN with Gaussians_en.srt
21.8 kB
10 - Metaparameters (activations, optimizers)/019 Optimizers (RMSprop, Adam)_en.srt
21.8 kB
12 - More on data/010 Save the best-performing model_en.srt
21.7 kB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/002 How RNNs work_en.srt
21.5 kB
11 - FFNs (Feed-Forward Networks)/006 Distributions of weights pre- and post-learning_en.srt
21.4 kB
30 - Python intro Flow control/007 Single-line loops (list comprehension)_en.srt
21.4 kB
30 - Python intro Flow control/001 If-else statements_en.srt
21.3 kB
21 - Transfer learning/003 CodeChallenge letters to numbers_en.srt
21.3 kB
06 - Gradient descent/005 Gradient descent in 2D_en.srt
21.2 kB
03 - Concepts in deep learning/001 What is an artificial neural network_en.srt
21.1 kB
30 - Python intro Flow control/009 Broadcasting in numpy_en.srt
21.0 kB
06 - Gradient descent/001 Overview of gradient descent_en.srt
20.6 kB
05 - Math, numpy, PyTorch/008 Matrix multiplication_en.srt
20.3 kB
27 - Python intro Data types/004 Lists (1 of 2)_en.srt
20.1 kB
10 - Metaparameters (activations, optimizers)/016 More practice with multioutput ANNs_en.srt
20.0 kB
29 - Python intro Functions/003 Python libraries (pandas)_en.srt
20.0 kB
18 - Convolution and transformations/009 Pooling in PyTorch_en.srt
19.8 kB
29 - Python intro Functions/002 Python libraries (numpy)_en.srt
19.7 kB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/008 The LSTM and GRU classes_en.srt
19.7 kB
18 - Convolution and transformations/007 Transpose convolution_en.srt
19.6 kB
10 - Metaparameters (activations, optimizers)/004 Data normalization_en.srt
19.4 kB
19 - Understand and design CNNs/015 CodeChallenge Varying number of channels_en.srt
19.4 kB
29 - Python intro Functions/006 Global and local variable scopes_en.srt
19.4 kB
07 - ANNs (Artificial Neural Networks)/002 A geometric view of ANNs_en.srt
19.2 kB
05 - Math, numpy, PyTorch/016 The t-test_en.srt
19.1 kB
15 - Weight inits and investigations/008 Freezing weights during learning_en.srt
19.0 kB
13 - Measuring model performance/004 APRF example 1 wine quality_en.srt
19.0 kB
03 - Concepts in deep learning/004 Running experiments to understand DL_en.srt
18.9 kB
09 - Regularization/001 Regularization Concept and methods_en.srt
18.8 kB
09 - Regularization/007 L2 regularization in practice_en.srt
18.7 kB
18 - Convolution and transformations/005 The Conv2 class in PyTorch_en.srt
18.7 kB
24 - RNNs (Recurrent Neural Networks) (and GRULSTM)/001 Leveraging sequences in deep learning_en.srt
18.6 kB
03 - Concepts in deep learning/002 How models learn_en.srt
18.5 kB
10 - Metaparameters (activations, optimizers)/006 Batch normalization_en.srt
18.4 kB
12 - More on data/006 Data noise augmentation (with devset+test)_en.srt
18.4 kB
08 - Overfitting and cross-validation/004 Cross-validation -- manual separation_en.srt
18.3 kB
15 - Weight inits and investigations/004 CodeChallenge Weight variance inits_en.srt
18.2 kB
11 - FFNs (Feed-Forward Networks)/002 The MNIST dataset_en.srt
18.1 kB
15 - Weight inits and investigations/003 Theory Why and how to initialize weights_en.srt
18.0 kB
05 - Math, numpy, PyTorch/012 Minmax and argminargmax_en.srt
17.9 kB
09 - Regularization/012 CodeChallenge Effects of mini-batch size_en.srt
17.8 kB
18 - Convolution and transformations/004 Convolution parameters (stride, padding)_en.srt
17.8 kB
08 - Overfitting and cross-validation/001 What is overfitting and is it as bad as they say_en.srt
17.8 kB
28 - Python intro Indexing, slicing/001 Indexing_en.srt
17.8 kB
13 - Measuring model performance/002 Accuracy, precision, recall, F1_en.srt
17.7 kB
15 - Weight inits and investigations/007 CodeChallenge Identically random weights_en.srt
17.7 kB
31 - Python intro Text and plots/002 Plotting dots and lines_en.srt
17.7 kB
10 - Metaparameters (activations, optimizers)/023 Learning rate decay_en.srt
17.6 kB
07 - ANNs (Artificial Neural Networks)/014 CodeChallenge more qwerties!_en.srt
17.5 kB
11 - FFNs (Feed-Forward Networks)/007 CodeChallenge MNIST and breadth vs. depth_en.srt
17.5 kB
09 - Regularization/008 L1 regularization in practice_en.srt
17.2 kB
20 - CNN milestone projects/002 Project 1 My solution_en.srt
17.0 kB
15 - Weight inits and investigations/001 Explanation of weight matrix sizes_en.srt
17.0 kB
06 - Gradient descent/002 What about local minima_en.srt
16.9 kB
13 - Measuring model performance/005 APRF example 2 MNIST_en.srt
16.9 kB
27 - Python intro Data types/008 Dictionaries_en.srt
16.8 kB
10 - Metaparameters (activations, optimizers)/010 Activation functions in PyTorch_en.srt
16.7 kB
19 - Understand and design CNNs/007 CodeChallenge How wide the FC_en.srt
16.7 kB
14 - FFN milestone projects/002 Project 1 My solution_en.srt
16.7 kB
16 - Autoencoders/001 What are autoencoders and what do they do_en.srt
16.7 kB
20 - CNN milestone projects/005 Project 4 Psychometric functions in CNNs_en.srt
16.7 kB
10 - Metaparameters (activations, optimizers)/024 How to pick the right metaparameters_en.srt
16.6 kB
09 - Regularization/009 Training in mini-batches_en.srt
16.6 kB
22 - Style transfer/002 The Gram matrix (feature activation covariance)_en.srt
16.6 kB
11 - FFNs (Feed-Forward Networks)/010 Shifted MNIST_en.srt
16.5 kB
25 - Ethics of deep learning/005 Accountability and making ethical AI_en.srt
16.5 kB
05 - Math, numpy, PyTorch/014 Random sampling and sampling variability_en.srt
16.1 kB
30 - Python intro Flow control/004 Enumerate and zip_en.srt
15.8 kB
06 - Gradient descent/004 CodeChallenge unfortunate starting value_en.srt
15.7 kB
31 - Python intro Text and plots/005 Seaborn_en.srt
15.7 kB
11 - FFNs (Feed-Forward Networks)/011 CodeChallenge The mystery of the missing 7_en.srt
15.5 kB
19 - Understand and design CNNs/001 The canonical CNN architecture_en.srt
15.5 kB
09 - Regularization/010 Batch training in action_en.srt
15.4 kB
07 - ANNs (Artificial Neural Networks)/005 ANN math part 3 (backprop)_en.srt
15.1 kB
25 - Ethics of deep learning/003 Some other possible ethical scenarios_en.srt
15.0 kB
10 - Metaparameters (activations, optimizers)/020 Optimizers comparison_en.srt
14.6 kB
17 - Running models on a GPU/002 Implementation_en.srt
14.6 kB
07 - ANNs (Artificial Neural Networks)/015 Comparing the number of hidden units_en.srt
14.4 kB
21 - Transfer learning/002 Transfer learning MNIST - FMNIST_en.srt
14.4 kB
18 - Convolution and transformations/010 To pool or to stride_en.srt
14.3 kB
27 - Python intro Data types/005 Lists (2 of 2)_en.srt
14.3 kB
14 - FFN milestone projects/005 Project 3 FFN for missing data interpolation_en.srt
14.2 kB
25 - Ethics of deep learning/001 Will AI save us or destroy us_en.srt
14.2 kB
13 - Measuring model performance/007 Computation time_en.srt
14.1 kB
19 - Understand and design CNNs/013 Dropout in CNNs_en.srt
14.0 kB
05 - Math, numpy, PyTorch/019 Derivatives product and chain rules_en.srt
13.9 kB
19 - Understand and design CNNs/009 CodeChallenge AEs and occluded Gaussians_en.srt
13.8 kB
18 - Convolution and transformations/002 Feature maps and convolution kernels_en.srt
13.8 kB
05 - Math, numpy, PyTorch/007 OMG it's the dot product!_en.srt
13.8 kB
23 - Generative adversarial networks/003 CodeChallenge Linear GAN with FMNIST_en.srt
13.7 kB
07 - ANNs (Artificial Neural Networks)/004 ANN math part 2 (errors, loss, cost)_en.srt
13.7 kB
08 - Overfitting and cross-validation/007 Splitting data into train, devset, test_en.srt
13.6 kB
10 - Metaparameters (activations, optimizers)/005 The importance of data normalization_en.srt
13.6 kB
10 - Metaparameters (activations, optimizers)/011 Activation functions comparison_en.srt
13.4 kB
05 - Math, numpy, PyTorch/003 Spectral theories in mathematics_en.srt
13.4 kB
01 - Introduction/001 How to learn from this course_en.srt
12.8 kB
13 - Measuring model performance/006 CodeChallenge MNIST with unequal groups_en.srt
12.8 kB
07 - ANNs (Artificial Neural Networks)/021 Reflection Are DL models understandable yet_en.srt
12.4 kB
26 - Where to go from here/001 How to learn topic _X_ in deep learning_en.srt
12.2 kB
05 - Math, numpy, PyTorch/018 Derivatives find minima_en.srt
12.1 kB
01 - Introduction/002 Using Udemy like a pro_en.srt
12.1 kB
07 - ANNs (Artificial Neural Networks)/011 Linear solutions to linear problems_en.srt
12.0 kB
19 - Understand and design CNNs/003 CNN on shifted MNIST_en.srt
11.9 kB
27 - Python intro Data types/006 Tuples_en.srt
11.8 kB
13 - Measuring model performance/008 Better performance in test than train_en.srt
11.8 kB
08 - Overfitting and cross-validation/008 Cross-validation on regression_en.srt
11.8 kB
14 - FFN milestone projects/006 Project 3 My solution_en.srt
11.7 kB
05 - Math, numpy, PyTorch/015 Reproducible randomness via seeding_en.srt
11.6 kB
11 - FFNs (Feed-Forward Networks)/012 Universal approximation theorem_en.srt
11.5 kB
23 - Generative adversarial networks/007 CodeChallenge CNN GAN with CIFAR_en.srt
11.5 kB
10 - Metaparameters (activations, optimizers)/018 SGD with momentum_en.srt
11.4 kB
10 - Metaparameters (activations, optimizers)/007 Batch normalization in practice_en.srt
11.4 kB
05 - Math, numpy, PyTorch/010 Logarithms_en.srt
11.3 kB
31 - Python intro Text and plots/007 Export plots in low and high resolution_en.srt
11.2 kB
10 - Metaparameters (activations, optimizers)/012 CodeChallenge Compare relu variants_en.srt
11.1 kB
11 - FFNs (Feed-Forward Networks)/009 Scrambled MNIST_en.srt
11.0 kB
12 - More on data/004 What to do about unbalanced designs_en.srt
11.0 kB
29 - Python intro Functions/004 Getting help on functions_en.srt
10.9 kB
14 - FFN milestone projects/003 Project 2 Predicting heart disease_en.srt
10.8 kB
14 - FFN milestone projects/001 Project 1 A gratuitously complex adding machine_en.srt
10.6 kB
05 - Math, numpy, PyTorch/004 Terms and datatypes in math and computers_en.srt
10.5 kB
20 - CNN milestone projects/001 Project 1 Import and classify CIFAR10_en.srt
10.5 kB
29 - Python intro Functions/001 Inputs and outputs_en.srt
10.4 kB
22 - Style transfer/005 CodeChallenge Style transfer with AlexNet_en.srt
10.3 kB
10 - Metaparameters (activations, optimizers)/022 CodeChallenge Adam with L2 regularization_en.srt
10.2 kB
13 - Measuring model performance/001 Two perspectives of the world_en.srt
10.2 kB
09 - Regularization/002 train() and eval() modes_en.srt
10.1 kB
18 - Convolution and transformations/006 CodeChallenge Choose the parameters_en.srt
10.0 kB
30 - Python intro Flow control/005 Continue_en.srt
9.9 kB
05 - Math, numpy, PyTorch/006 Vector and matrix transpose_en.srt
9.9 kB
19 - Understand and design CNNs/014 CodeChallenge How low can you go_en.srt
9.8 kB
11 - FFNs (Feed-Forward Networks)/008 CodeChallenge Optimizers and MNIST_en.srt
9.8 kB
17 - Running models on a GPU/003 CodeChallenge Run an experiment on the GPU_en.srt
9.7 kB
07 - ANNs (Artificial Neural Networks)/019 CodeChallenge convert sequential to class_en.srt
9.6 kB
10 - Metaparameters (activations, optimizers)/021 CodeChallenge Optimizers and... something_en.srt
9.4 kB
05 - Math, numpy, PyTorch/005 Converting reality to numbers_en.srt
9.4 kB
09 - Regularization/011 The importance of equal batch sizes_en.srt
9.3 kB
02 - Download all course materials/001 Downloading and using the code_en.srt
9.3 kB
13 - Measuring model performance/003 APRF in code_en.srt
9.2 kB
23 - Generative adversarial networks/006 CNN GAN with FMNIST_en.srt
9.1 kB
07 - ANNs (Artificial Neural Networks)/012 Why multilayer linear models don't exist_en.srt
9.1 kB
06 - Gradient descent/009 Vanishing and exploding gradients_en.srt
9.1 kB
09 - Regularization/005 Dropout example 2_en.srt
9.0 kB
25 - Ethics of deep learning/002 Example case studies_en.srt
9.0 kB
12 - More on data/009 Save and load trained models_en.srt
8.8 kB
23 - Generative adversarial networks/005 CodeChallenge Gaussians with fewer layers_en.srt
8.8 kB
12 - More on data/008 Getting data into colab_en.srt
8.8 kB
08 - Overfitting and cross-validation/003 Generalization_en.srt
8.7 kB
21 - Transfer learning/004 Famous CNN architectures_en.srt
8.6 kB
12 - More on data/011 Where to find online datasets_en.srt
8.3 kB
06 - Gradient descent/006 CodeChallenge 2D gradient ascent_en.srt
7.4 kB
10 - Metaparameters (activations, optimizers)/008 CodeChallenge Batch-normalize the qwerties_en.srt
7.4 kB
11 - FFNs (Feed-Forward Networks)/004 CodeChallenge Binarized MNIST images_en.srt
7.3 kB
10 - Metaparameters (activations, optimizers)/001 What are metaparameters_en.srt
7.3 kB
29 - Python intro Functions/007 Copies and referents of variables_en.srt
7.1 kB
20 - CNN milestone projects/003 Project 2 CIFAR-autoencoder_en.srt
6.9 kB
11 - FFNs (Feed-Forward Networks)/001 What are fully-connected and feedforward networks_en.srt
6.9 kB
19 - Understand and design CNNs/016 So many possibilities! How to create a CNN_en.srt
6.4 kB
15 - Weight inits and investigations/010 Use default inits or apply your own_en.srt
6.3 kB
22 - Style transfer/001 What is style transfer and how does it work_en.srt
6.3 kB
04 - About the Python tutorial/001 Should you watch the Python tutorial_en.srt
6.1 kB
20 - CNN milestone projects/004 Project 3 FMNIST_en.srt
5.1 kB
21 - Transfer learning/006 CodeChallenge VGG-16_en.srt
5.0 kB
32 - Bonus section/001 Bonus content.html
4.7 kB
05 - Math, numpy, PyTorch/002 Introduction to this section_en.srt
2.9 kB
06 - Gradient descent/010 Tangent Notebook revision history_en.srt
2.7 kB
02 - Download all course materials/002 My policy on code-sharing_en.srt
2.5 kB
05 - Math, numpy, PyTorch/001 PyTorch or TensorFlow.html
1.1 kB
07 - ANNs (Artificial Neural Networks)/020 Diversity of ANN visual representations.html
517 Bytes
Readme.txt
144 Bytes
02 - Download all course materials/external-links.txt
93 Bytes
02 - Download all course materials/001 Code-on-my-github-site.url
85 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>