搜索
[GigaCourse.Com] Udemy - [2022] Machine Learning and Deep Learning Bootcamp in Python
磁力链接/BT种子名称
[GigaCourse.Com] Udemy - [2022] Machine Learning and Deep Learning Bootcamp in Python
磁力链接/BT种子简介
种子哈希:
ce9f78f66c8fee6ff002f4129bc938d7d1e6cb6d
文件大小:
7.12G
已经下载:
1010
次
下载速度:
极快
收录时间:
2022-04-14
最近下载:
2024-12-02
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:CE9F78F66C8FEE6FF002F4129BC938D7D1E6CB6D
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
最近搜索
4k tamil
1093
带回家老公
gabbie+carter+
13.10
the equalizer rarbg
2024+偷拍
痛哭了
威海服装店大奶35岁欲女老板娘对话清晰,叫声淫荡大声
小姨子的姐妹情谊
裸+舞
0454.【1234vv.com】
the ewok adventure 1984
双双胞胎
monika fox
森萝财团
kirm-025
探花2500极品两姐妹
102420-001
丝袜秀
虫
2023.20
0489.【1234vv.com】
honb-104
fc2-ppv-4575350
the band 2009
pr社猫女王
on+the+roof
解禁+
ghpm-95
文件列表
54 - COURSE MATERIALS (DOWNLOADS)/001 PythonMachineLearning.zip
592.6 MB
33 - Q Learning Implementation (Tic Tac Toe)/006 Tic tac toe with Q learning implementation VI.mp4
104.3 MB
45 - You Only Look Once (YOLO) Algorithm Implementation/005 YOLO algorithm implementation V.mp4
100.5 MB
05 - Linear Regression/004 Linear regression implementation I.mp4
95.2 MB
19 - Single Layer Networks Implementation/002 Simple neural network implementation - Iris dataset.mp4
89.1 MB
09 - Naive Bayes Classifier/006 Naive Bayes example - clustering news.mp4
82.7 MB
35 - Deep Q Learning Implementation (Tic Tac Toe)/003 Tic Tac Toe with deep Q learning implementation III.mp4
77.9 MB
40 - Face Detection with Viola-Jones Method Implementation/002 Face detection implementation II - CascadeClassifier.mp4
74.1 MB
46 - Single-Shot MultiBox Detector (SSD) Theory/003 Bounding boxes and anchor boxes.mp4
74.0 MB
45 - You Only Look Once (YOLO) Algorithm Implementation/004 YOLO algorithm implementation IV.mp4
73.1 MB
38 - Computer Vision Project I - Lane Detection Problem (Self-Driving Cars)/005 Getting the useful region of the image - masking.mp4
67.9 MB
16 - Machine Learning Project I - Face Recognition/004 Understanding eigenfaces.mp4
66.0 MB
43 - Convolutional Neural Networks (CNNs) Based Approaches/002 Region proposals and convolutional neural networks (CNNs).mp4
63.6 MB
26 - Machine Learning Project III - Identifying Objects with CNNs/004 Tuning the parameters - regularization.mp4
63.4 MB
06 - Logistic Regression/004 Logistic regression example II- credit scoring.mp4
61.4 MB
25 - Convolutional Neural Networks (CNNs) Implementation/002 Handwritten digit classification II.mp4
58.3 MB
25 - Convolutional Neural Networks (CNNs) Implementation/001 Handwritten digit classification I.mp4
57.0 MB
42 - Histogram of Oriented Gradients (HOG) Implementation/001 Showing the HOG features programatically.mp4
56.0 MB
31 - Exploration vs. Exploitation Problem/003 N-armed bandit problem implementation.mp4
55.9 MB
42 - Histogram of Oriented Gradients (HOG) Implementation/003 Face detection with HOG implementation II.mp4
54.9 MB
44 - You Only Look Once (YOLO) Algorithm Theory/003 YOLO algorithm - intersection over union.mp4
53.9 MB
47 - SSD Algorithm Implementation/004 SSD implementation IV.mp4
53.0 MB
33 - Q Learning Implementation (Tic Tac Toe)/008 Tic tac toe with Q learning implementation VIII.mp4
52.2 MB
33 - Q Learning Implementation (Tic Tac Toe)/007 Tic tac toe with Q learning implementation VII.mp4
52.2 MB
30 - Markov Decision Process (MDP) Theory/003 Markov decision processes - equations.mp4
52.1 MB
08 - K-Nearest Neighbor Classifier/006 K-nearest neighbor implementation II.mp4
50.9 MB
18 - Feed-Forward Neural Network Theory/010 Backpropagation explained.mp4
48.5 MB
33 - Q Learning Implementation (Tic Tac Toe)/004 Tic tac toe with Q learning implementation IV.mp4
48.4 MB
16 - Machine Learning Project I - Face Recognition/002 Understanding the dataset.mp4
48.1 MB
05 - Linear Regression/002 Linear regression theory - optimization.mp4
47.2 MB
38 - Computer Vision Project I - Lane Detection Problem (Self-Driving Cars)/006 Detecting lines - what is Hough transformation.mp4
47.2 MB
26 - Machine Learning Project III - Identifying Objects with CNNs/003 Fitting the model.mp4
45.8 MB
46 - Single-Shot MultiBox Detector (SSD) Theory/002 Basic concept behind SSD algorithm (architecture).mp4
45.6 MB
09 - Naive Bayes Classifier/001 What is the naive Bayes classifier.mp4
44.4 MB
39 - Viola-Jones Face Detection Algorithm Theory/001 Viola-Jones algorithm.mp4
42.9 MB
11 - Decision Trees/002 Decision trees introduction - entropy.mp4
42.8 MB
35 - Deep Q Learning Implementation (Tic Tac Toe)/002 Tic Tac Toe with deep Q learning implementation II.mp4
42.6 MB
06 - Logistic Regression/001 What is logistic regression.mp4
42.2 MB
21 - Deep Neural Networks Theory/004 Gradient descent and stochastic gradient descent.mp4
42.0 MB
05 - Linear Regression/001 What is linear regression.mp4
41.9 MB
18 - Feed-Forward Neural Network Theory/008 Optimization with gradient descent.mp4
41.9 MB
05 - Linear Regression/003 Linear regression theory - gradient descent.mp4
41.4 MB
13 - Boosting/006 Boosting implementation II -wine classification.mp4
40.5 MB
09 - Naive Bayes Classifier/004 What is text clustering.mp4
40.4 MB
37 - Handling Images and Pixels/004 Why convolution is so important in image processing.mp4
40.3 MB
44 - You Only Look Once (YOLO) Algorithm Theory/002 YOLO algorithm - grid cells.mp4
40.2 MB
14 - Principal Component Analysis (PCA)/001 Principal component analysis (PCA) introduction.mp4
40.1 MB
11 - Decision Trees/003 Decision trees introduction - information gain.mp4
40.1 MB
23 - Machine Learning Project II - Smile Detector/003 Reading the images and constructing the dataset II.mp4
39.9 MB
15 - Clustering/003 K-means clustering - text clustering.mp4
39.5 MB
03 - Artificial Intelligence Basics/002 Types of artificial intelligence learning.mp4
38.8 MB
10 - Support Vector Machines (SVMs)/005 Support vector machine example I - simple.mp4
38.6 MB
13 - Boosting/004 Boosting introduction - final formula.mp4
38.6 MB
19 - Single Layer Networks Implementation/001 Simple neural network implementation - XOR problem.mp4
38.5 MB
42 - Histogram of Oriented Gradients (HOG) Implementation/004 Face detection with HOG implementation III.mp4
37.8 MB
26 - Machine Learning Project III - Identifying Objects with CNNs/001 What is the CIFAR-10 dataset.mp4
37.8 MB
25 - Convolutional Neural Networks (CNNs) Implementation/003 Handwritten digit classification III.mp4
36.9 MB
18 - Feed-Forward Neural Network Theory/005 Neural networks - the big picture.mp4
36.7 MB
37 - Handling Images and Pixels/002 Handling pixel intensities I.mp4
36.3 MB
10 - Support Vector Machines (SVMs)/004 Kernel functions.mp4
35.8 MB
41 - Histogram of Oriented Gradients (HOG) Algorithm Theory/003 Histogram of oriented gradients - magnitude and angle.mp4
35.6 MB
06 - Logistic Regression/005 Logistic regression example III - credit scoring.mp4
35.1 MB
27 - Recurrent Neural Networks (RNNs) Theory/004 Long-short term memory (LSTM) model.mp4
35.0 MB
03 - Artificial Intelligence Basics/003 Fundamentals of statistics.mp4
34.8 MB
06 - Logistic Regression/003 Logistic regression example I - sigmoid function.mp4
34.8 MB
38 - Computer Vision Project I - Lane Detection Problem (Self-Driving Cars)/008 Drawing lines on video frames.mp4
34.3 MB
11 - Decision Trees/008 Decision tree implementation III - identifying cancer.mp4
34.0 MB
42 - Histogram of Oriented Gradients (HOG) Implementation/005 Face detection with HOG implementation IV.mp4
33.9 MB
12 - Random Forest Classifier/006 Random forests example III - OCR parameter tuning.mp4
33.5 MB
24 - Convolutional Neural Networks (CNNs) Theory/007 Convolutional neural networks - illustration.mp4
33.4 MB
35 - Deep Q Learning Implementation (Tic Tac Toe)/005 Tic Tac Toe with deep Q learning implementation V.mp4
32.8 MB
13 - Boosting/005 Boosting implementation I - iris dataset.mp4
32.6 MB
47 - SSD Algorithm Implementation/001 SSD implementation I.mp4
32.4 MB
41 - Histogram of Oriented Gradients (HOG) Algorithm Theory/002 Histogram of oriented gradients - gradient kernel.mp4
32.0 MB
10 - Support Vector Machines (SVMs)/002 Linearly separable problems.mp4
31.8 MB
15 - Clustering/008 Hierarchical clustering - market segmentation.mp4
30.4 MB
27 - Recurrent Neural Networks (RNNs) Theory/002 Recurrent neural networks basics.mp4
30.0 MB
22 - Deep Neural Networks Implementation/004 Multiclass classification implementation I.mp4
29.9 MB
18 - Feed-Forward Neural Network Theory/004 Why to use activation functions.mp4
29.8 MB
30 - Markov Decision Process (MDP) Theory/004 Markov decision processes - illustration.mp4
29.6 MB
45 - You Only Look Once (YOLO) Algorithm Implementation/007 YOLO algorithm implementation VII.mp4
29.3 MB
11 - Decision Trees/001 Decision trees introduction - basics.mp4
28.7 MB
27 - Recurrent Neural Networks (RNNs) Theory/003 Vanishing and exploding gradients problem.mp4
28.5 MB
21 - Deep Neural Networks Theory/005 Hyperparameters.mp4
28.2 MB
14 - Principal Component Analysis (PCA)/002 Principal component analysis example.mp4
28.1 MB
24 - Convolutional Neural Networks (CNNs) Theory/006 Convolutional neural networks - flattening.mp4
28.1 MB
22 - Deep Neural Networks Implementation/005 Multiclass classification implementation II.mp4
28.0 MB
33 - Q Learning Implementation (Tic Tac Toe)/003 Tic tac toe with Q learning implementation III.mp4
27.5 MB
21 - Deep Neural Networks Theory/002 Activation functions revisited.mp4
27.5 MB
22 - Deep Neural Networks Implementation/003 Deep neural network implementation III.mp4
27.4 MB
51 - Appendix #3 - Data Structures in Python/015 Sets in Python.mp4
27.3 MB
01 - Introduction/001 Introduction.mp4
27.1 MB
24 - Convolutional Neural Networks (CNNs) Theory/005 Convolutional neural networks - pooling.mp4
26.8 MB
07 - Cross Validation/002 Cross validation example.mp4
26.3 MB
23 - Machine Learning Project II - Smile Detector/002 Reading the images and constructing the dataset I.mp4
26.3 MB
44 - You Only Look Once (YOLO) Algorithm Theory/004 How to train the YOLO algorithm.mp4
26.3 MB
24 - Convolutional Neural Networks (CNNs) Theory/001 Convolutional neural networks basics.mp4
26.2 MB
45 - You Only Look Once (YOLO) Algorithm Implementation/003 YOLO algorithm implementation III.mp4
25.9 MB
39 - Viola-Jones Face Detection Algorithm Theory/003 Integral images.mp4
25.7 MB
07 - Cross Validation/001 What is cross validation.mp4
25.6 MB
30 - Markov Decision Process (MDP) Theory/007 What is value iteration.mp4
25.4 MB
18 - Feed-Forward Neural Network Theory/009 Gradient descent with backpropagation.mp4
25.4 MB
18 - Feed-Forward Neural Network Theory/001 Artificial neural networks - inspiration.mp4
25.3 MB
45 - You Only Look Once (YOLO) Algorithm Implementation/002 YOLO algorithm implementation II.mp4
24.9 MB
51 - Appendix #3 - Data Structures in Python/016 Sorting.mp4
24.9 MB
16 - Machine Learning Project I - Face Recognition/003 Finding optimal number of principal components (eigenvectors).mp4
24.8 MB
39 - Viola-Jones Face Detection Algorithm Theory/004 Boosting in computer vision.mp4
24.5 MB
30 - Markov Decision Process (MDP) Theory/001 Markov decision processes basics I.mp4
24.3 MB
19 - Single Layer Networks Implementation/003 Credit scoring with simple neural networks.mp4
24.3 MB
51 - Appendix #3 - Data Structures in Python/013 Hashing and O(1) running time complexity.mp4
24.2 MB
10 - Support Vector Machines (SVMs)/003 Non-linearly separable problems.mp4
24.1 MB
16 - Machine Learning Project I - Face Recognition/001 The Olivetti dataset.mp4
23.9 MB
45 - You Only Look Once (YOLO) Algorithm Implementation/001 YOLO algorithm implementation I.mp4
23.9 MB
06 - Logistic Regression/002 Logistic regression and maximum likelihood estimation.mp4
23.8 MB
41 - Histogram of Oriented Gradients (HOG) Algorithm Theory/004 Histogram of oriented gradients - normalization.mp4
23.7 MB
14 - Principal Component Analysis (PCA)/003 Principal component analysis example II.mp4
23.4 MB
50 - Appendix #2 - Functions/003 Positional arguments and keyword arguments.mp4
23.3 MB
39 - Viola-Jones Face Detection Algorithm Theory/002 Haar-features.mp4
23.2 MB
43 - Convolutional Neural Networks (CNNs) Based Approaches/003 Detecting bounding boxes with regression.mp4
23.2 MB
10 - Support Vector Machines (SVMs)/008 Support vector machine example IV - digit recognition.mp4
23.2 MB
16 - Machine Learning Project I - Face Recognition/006 Using cross-validation.mp4
23.0 MB
53 - Appendix #5 - NumPy/007 Stacking and merging arrays.mp4
23.0 MB
08 - K-Nearest Neighbor Classifier/003 Distance metrics - Euclidean-distance.mp4
22.8 MB
33 - Q Learning Implementation (Tic Tac Toe)/005 Tic tac toe with Q learning implementation V.mp4
22.8 MB
18 - Feed-Forward Neural Network Theory/003 Artificial neural networks - the model.mp4
22.6 MB
32 - Q Learning Theory/003 Q learning illustration.mp4
22.5 MB
27 - Recurrent Neural Networks (RNNs) Theory/001 Why do recurrent neural networks are important.mp4
22.3 MB
15 - Clustering/005 DBSCAN example.mp4
22.2 MB
35 - Deep Q Learning Implementation (Tic Tac Toe)/001 Tic Tac Toe with deep Q learning implementation I.mp4
22.1 MB
51 - Appendix #3 - Data Structures in Python/011 What are linked list data structures.mp4
21.8 MB
15 - Clustering/007 Hierarchical clustering example.mp4
21.3 MB
10 - Support Vector Machines (SVMs)/001 What are Support Vector Machines (SVMs).mp4
21.1 MB
11 - Decision Trees/004 The Gini-index approach.mp4
21.1 MB
28 - Recurrent Neural Networks (RNNs) Implementation/003 Time series analysis example III.mp4
21.0 MB
44 - You Only Look Once (YOLO) Algorithm Theory/007 Why to use the so-called anchor boxes.mp4
20.9 MB
33 - Q Learning Implementation (Tic Tac Toe)/002 Tic tac toe with Q learning implementation II.mp4
20.8 MB
31 - Exploration vs. Exploitation Problem/002 N-armed bandit problem introduction.mp4
20.5 MB
15 - Clustering/002 K-means clustering example.mp4
20.5 MB
51 - Appendix #3 - Data Structures in Python/014 Dictionaries in Python.mp4
20.4 MB
41 - Histogram of Oriented Gradients (HOG) Algorithm Theory/001 Histogram of oriented gradients basics.mp4
20.2 MB
22 - Deep Neural Networks Implementation/002 Deep neural network implementation II.mp4
19.8 MB
40 - Face Detection with Viola-Jones Method Implementation/005 Face detection implementation V - detecting faces real-time.mp4
19.8 MB
47 - SSD Algorithm Implementation/003 SSD implementation III.mp4
19.8 MB
51 - Appendix #3 - Data Structures in Python/006 Lists in Python - advanced operations.mp4
19.5 MB
53 - Appendix #5 - NumPy/003 Dimension of arrays.mp4
19.3 MB
40 - Face Detection with Viola-Jones Method Implementation/003 Face detection implementation III - CascadeClassifier parameters.mp4
19.3 MB
43 - Convolutional Neural Networks (CNNs) Based Approaches/001 The standard convolutional neural network (CNN) way.mp4
19.2 MB
51 - Appendix #3 - Data Structures in Python/001 How to measure the running time of algorithms.mp4
19.2 MB
46 - Single-Shot MultiBox Detector (SSD) Theory/001 What is the SSD algorithm.mp4
18.9 MB
40 - Face Detection with Viola-Jones Method Implementation/004 Face detection implementation IV - tuning the parameters.mp4
18.9 MB
10 - Support Vector Machines (SVMs)/007 Support vector machines example III - parameter tuning.mp4
18.7 MB
52 - Appendix #4 - Object Oriented Programming (OOP)/003 Using the constructor.mp4
18.7 MB
50 - Appendix #2 - Functions/009 What is recursion.mp4
18.2 MB
22 - Deep Neural Networks Implementation/001 Deep neural network implementation I.mp4
18.2 MB
52 - Appendix #4 - Object Oriented Programming (OOP)/013 Comparing objects - overriding functions.mp4
17.9 MB
53 - Appendix #5 - NumPy/006 Reshape.mp4
17.8 MB
33 - Q Learning Implementation (Tic Tac Toe)/001 Tic tac toe with Q learning implementation I.mp4
17.6 MB
53 - Appendix #5 - NumPy/002 Creating and updating arrays.mp4
17.6 MB
53 - Appendix #5 - NumPy/004 Indexes and slicing.mp4
17.5 MB
15 - Clustering/001 K-means clustering introduction.mp4
17.4 MB
15 - Clustering/006 Hierarchical clustering introduction.mp4
17.4 MB
08 - K-Nearest Neighbor Classifier/005 K-nearest neighbor implementation I.mp4
17.3 MB
38 - Computer Vision Project I - Lane Detection Problem (Self-Driving Cars)/004 What is Canny edge detection.mp4
17.2 MB
44 - You Only Look Once (YOLO) Algorithm Theory/005 YOLO algorithm - loss function.mp4
17.1 MB
52 - Appendix #4 - Object Oriented Programming (OOP)/009 What is polymorphism.mp4
17.0 MB
38 - Computer Vision Project I - Lane Detection Problem (Self-Driving Cars)/009 Testing lane detection algorithm.mp4
16.9 MB
12 - Random Forest Classifier/002 Bagging introduction.mp4
16.9 MB
49 - Appendix #1 - Python Basics/009 How to use multiple conditions.mp4
16.7 MB
13 - Boosting/001 Boosting introduction - basics.mp4
16.5 MB
12 - Random Forest Classifier/001 Pruning introduction.mp4
16.2 MB
32 - Q Learning Theory/002 Q learning introduction - the algorithm.mp4
16.2 MB
42 - Histogram of Oriented Gradients (HOG) Implementation/002 Face detection with HOG implementation I.mp4
16.2 MB
35 - Deep Q Learning Implementation (Tic Tac Toe)/004 Tic Tac Toe with deep Q learning implementation IV.mp4
16.2 MB
30 - Markov Decision Process (MDP) Theory/005 Bellman-equation.mp4
16.2 MB
21 - Deep Neural Networks Theory/003 Loss functions.mp4
16.2 MB
52 - Appendix #4 - Object Oriented Programming (OOP)/005 Private variables and name mangling.mp4
16.0 MB
08 - K-Nearest Neighbor Classifier/002 Concept of lazy learning.mp4
16.0 MB
10 - Support Vector Machines (SVMs)/006 Support vector machine example II - iris dataset.mp4
15.8 MB
47 - SSD Algorithm Implementation/005 SSD implementation V.mp4
15.7 MB
08 - K-Nearest Neighbor Classifier/004 Bias and variance trade-off.mp4
15.4 MB
52 - Appendix #4 - Object Oriented Programming (OOP)/004 Class variables and instance variables.mp4
15.4 MB
09 - Naive Bayes Classifier/005 Text clustering - inverse document frequency (TF-IDF).mp4
15.3 MB
28 - Recurrent Neural Networks (RNNs) Implementation/005 Time series analysis example V.mp4
15.3 MB
37 - Handling Images and Pixels/006 Image processing - edge detection kernel.mp4
15.3 MB
49 - Appendix #1 - Python Basics/004 Strings.mp4
15.3 MB
10 - Support Vector Machines (SVMs)/009 Support vector machine example V - digit recognition.mp4
15.2 MB
30 - Markov Decision Process (MDP) Theory/002 Markov decision processes basics II.mp4
14.8 MB
11 - Decision Trees/007 Decision trees implementation II - parameter tuning.mp4
14.8 MB
28 - Recurrent Neural Networks (RNNs) Implementation/001 Time series analysis example I.mp4
14.8 MB
03 - Artificial Intelligence Basics/001 Why to learn artificial intelligence and machine learning.mp4
14.7 MB
46 - Single-Shot MultiBox Detector (SSD) Theory/004 Feature maps and convolution layers.mp4
14.5 MB
52 - Appendix #4 - Object Oriented Programming (OOP)/010 Polymorphism and abstraction example.mp4
14.4 MB
38 - Computer Vision Project I - Lane Detection Problem (Self-Driving Cars)/002 Lane detection - handling videos.mp4
14.4 MB
08 - K-Nearest Neighbor Classifier/001 What is the k-nearest neighbor classifier.mp4
14.4 MB
12 - Random Forest Classifier/004 Random forests example I - iris dataset.mp4
14.2 MB
13 - Boosting/003 Boosting introduction - equations.mp4
14.1 MB
16 - Machine Learning Project I - Face Recognition/005 Constructing the machine learning models.mp4
14.0 MB
37 - Handling Images and Pixels/003 Handling pixel intensities II.mp4
13.9 MB
11 - Decision Trees/006 Decision trees implementation I.mp4
13.8 MB
28 - Recurrent Neural Networks (RNNs) Implementation/002 Time series analysis example II.mp4
13.7 MB
37 - Handling Images and Pixels/005 Image processing - blur operation.mp4
13.3 MB
49 - Appendix #1 - Python Basics/005 String slicing.mp4
13.3 MB
23 - Machine Learning Project II - Smile Detector/005 Evaluating and testing the model.mp4
13.1 MB
44 - You Only Look Once (YOLO) Algorithm Theory/001 What is the YOLO approach.mp4
13.0 MB
28 - Recurrent Neural Networks (RNNs) Implementation/006 Time series analysis example VI.mp4
13.0 MB
51 - Appendix #3 - Data Structures in Python/004 What are array data structures II.mp4
12.9 MB
12 - Random Forest Classifier/003 Random forest classifier introduction.mp4
12.9 MB
51 - Appendix #3 - Data Structures in Python/003 What are array data structures I.mp4
12.9 MB
05 - Linear Regression/005 Linear regression implementation II.mp4
12.8 MB
24 - Convolutional Neural Networks (CNNs) Theory/002 Feature selection.mp4
12.7 MB
31 - Exploration vs. Exploitation Problem/004 Applications AB testing in marketing.mp4
12.7 MB
18 - Feed-Forward Neural Network Theory/007 How to measure the error of the network.mp4
12.6 MB
38 - Computer Vision Project I - Lane Detection Problem (Self-Driving Cars)/003 Lane detection - first transformations.mp4
12.5 MB
32 - Q Learning Theory/001 What is Q learning.mp4
12.4 MB
51 - Appendix #3 - Data Structures in Python/012 Doubly linked list implementation in Python.mp4
12.0 MB
51 - Appendix #3 - Data Structures in Python/007 Lists in Python - list comprehension.mp4
11.9 MB
15 - Clustering/004 DBSCAN introduction.mp4
11.9 MB
13 - Boosting/002 Boosting introduction - illustration.mp4
11.7 MB
09 - Naive Bayes Classifier/003 Naive Bayes classifier implementation.mp4
11.6 MB
52 - Appendix #4 - Object Oriented Programming (OOP)/011 Modules.mp4
11.6 MB
18 - Feed-Forward Neural Network Theory/002 Artificial neural networks - layers.mp4
11.6 MB
37 - Handling Images and Pixels/001 Images and pixel intensities.mp4
11.3 MB
49 - Appendix #1 - Python Basics/007 Operators.mp4
11.2 MB
08 - K-Nearest Neighbor Classifier/007 K-nearest neighbor implementation III.mp4
11.0 MB
51 - Appendix #3 - Data Structures in Python/005 Lists in Python.mp4
11.0 MB
12 - Random Forest Classifier/005 Random forests example II - credit scoring.mp4
10.4 MB
53 - Appendix #5 - NumPy/005 Types.mp4
10.4 MB
49 - Appendix #1 - Python Basics/015 Break and continue.mp4
10.4 MB
39 - Viola-Jones Face Detection Algorithm Theory/005 Cascading.mp4
10.4 MB
02 - Environment Setup/003 Installing TensorFlow and Keras.mp4
10.2 MB
50 - Appendix #2 - Functions/002 Defining functions.mp4
10.1 MB
49 - Appendix #1 - Python Basics/011 Loops - for loop.mp4
10.0 MB
23 - Machine Learning Project II - Smile Detector/004 Building the deep neural network model.mp4
10.0 MB
34 - Deep Q Learning Theory/001 What is deep Q learning.mp4
9.7 MB
21 - Deep Neural Networks Theory/001 Deep neural networks.mp4
9.7 MB
09 - Naive Bayes Classifier/002 Naive Bayes classifier illustration.mp4
9.7 MB
50 - Appendix #2 - Functions/006 Yield operator.mp4
9.6 MB
52 - Appendix #4 - Object Oriented Programming (OOP)/007 The super keyword.mp4
9.6 MB
44 - You Only Look Once (YOLO) Algorithm Theory/006 YOLO algorithm - non-max suppression.mp4
9.6 MB
37 - Handling Images and Pixels/007 Image processing - sharpen operation.mp4
9.5 MB
24 - Convolutional Neural Networks (CNNs) Theory/003 Convolutional neural networks - kernel.mp4
9.3 MB
24 - Convolutional Neural Networks (CNNs) Theory/004 Convolutional neural networks - kernel II.mp4
9.3 MB
51 - Appendix #3 - Data Structures in Python/010 Mutability and immutability.mp4
9.1 MB
36 - ### COMPUTER VISION ###/001 Evolution of computer vision related algorithms.mp4
9.1 MB
49 - Appendix #1 - Python Basics/008 Conditional statements.mp4
9.0 MB
28 - Recurrent Neural Networks (RNNs) Implementation/004 Time series analysis example IV.mp4
8.9 MB
49 - Appendix #1 - Python Basics/006 Type casting.mp4
8.6 MB
53 - Appendix #5 - NumPy/001 What is the key advantage of NumPy.mp4
8.6 MB
52 - Appendix #4 - Object Oriented Programming (OOP)/006 What is inheritance in OOP.mp4
8.5 MB
50 - Appendix #2 - Functions/001 What are functions.mp4
8.5 MB
49 - Appendix #1 - Python Basics/010 Logical operators.mp4
8.4 MB
20 - Deep Learning/001 Types of neural networks.mp4
8.4 MB
41 - Histogram of Oriented Gradients (HOG) Algorithm Theory/005 Histogram of oriented gradients - big picture.mp4
8.2 MB
50 - Appendix #2 - Functions/010 Local vs global variables.mp4
8.2 MB
49 - Appendix #1 - Python Basics/002 What are the basic data types.mp4
8.1 MB
49 - Appendix #1 - Python Basics/014 Enumerate.mp4
8.1 MB
52 - Appendix #4 - Object Oriented Programming (OOP)/012 The __str__ function.mp4
8.0 MB
26 - Machine Learning Project III - Identifying Objects with CNNs/002 Preprocessing the data.mp4
8.0 MB
53 - Appendix #5 - NumPy/008 Filter.mp4
8.0 MB
31 - Exploration vs. Exploitation Problem/001 Exploration vs exploitation problem.mp4
8.0 MB
40 - Face Detection with Viola-Jones Method Implementation/001 Face detection implementation I - installing OpenCV.mp4
8.0 MB
50 - Appendix #2 - Functions/008 What are the most relevant built-in functions.mp4
8.0 MB
49 - Appendix #1 - Python Basics/012 Loops - while loop.mp4
7.9 MB
51 - Appendix #3 - Data Structures in Python/009 What are tuples.mp4
7.9 MB
49 - Appendix #1 - Python Basics/001 First steps in Python.mp4
7.7 MB
50 - Appendix #2 - Functions/011 The __main__ function.mp4
7.7 MB
45 - You Only Look Once (YOLO) Algorithm Implementation/006 YOLO algorithm implementation VI.mp4
7.7 MB
34 - Deep Q Learning Theory/003 Remember and replay.mp4
7.3 MB
30 - Markov Decision Process (MDP) Theory/008 What is policy iteration.mp4
7.3 MB
13 - Boosting/007 Boosting vs. bagging.mp4
7.2 MB
46 - Single-Shot MultiBox Detector (SSD) Theory/006 Regularization (data augmentation) and non-max suppression during training.mp4
7.2 MB
51 - Appendix #3 - Data Structures in Python/002 Data structures introduction.mp4
7.0 MB
29 - ### REINFORCEMENT LEARNING ###/002 Applications of reinforcement learning.mp4
6.9 MB
52 - Appendix #4 - Object Oriented Programming (OOP)/008 Function (method) override.mp4
6.8 MB
43 - Convolutional Neural Networks (CNNs) Based Approaches/004 What is the Fast R-CNN model.mp4
6.7 MB
27 - Recurrent Neural Networks (RNNs) Theory/005 Gated recurrent units (GRUs).mp4
6.7 MB
47 - SSD Algorithm Implementation/002 SSD implementation II.mp4
6.7 MB
46 - Single-Shot MultiBox Detector (SSD) Theory/005 Hard negative mining during training.mp4
6.4 MB
50 - Appendix #2 - Functions/005 Returning multiple values.mp4
6.3 MB
10 - Support Vector Machines (SVMs)/010 Advantages and disadvantages.mp4
6.3 MB
49 - Appendix #1 - Python Basics/013 What are nested loops.mp4
6.2 MB
11 - Decision Trees/005 Decision trees introduction - pros and cons.mp4
6.0 MB
30 - Markov Decision Process (MDP) Theory/006 How to solve MDP problems.mp4
6.0 MB
52 - Appendix #4 - Object Oriented Programming (OOP)/002 Class and objects basics.mp4
5.6 MB
52 - Appendix #4 - Object Oriented Programming (OOP)/001 What is object oriented programming (OOP).mp4
5.5 MB
23 - Machine Learning Project II - Smile Detector/001 Understanding the classification problem.mp4
5.0 MB
38 - Computer Vision Project I - Lane Detection Problem (Self-Driving Cars)/001 Lane detection - the problem.mp4
4.6 MB
18 - Feed-Forward Neural Network Theory/006 Using bias nodes in the neural network.mp4
4.5 MB
50 - Appendix #2 - Functions/007 Local and global variables.mp4
4.5 MB
50 - Appendix #2 - Functions/004 Returning values.mp4
4.3 MB
49 - Appendix #1 - Python Basics/016 Calculating Fibonacci-numbers.mp4
4.2 MB
43 - Convolutional Neural Networks (CNNs) Based Approaches/005 What is the Faster R-CNN model.mp4
4.2 MB
48 - ### PYTHON PROGRAMMING CRASH COURSE ###/001 Python crash course introduction.mp4
4.2 MB
49 - Appendix #1 - Python Basics/003 Booleans.mp4
3.7 MB
09 - Naive Bayes Classifier/006 Naive Bayes example - clustering news_en.srt
18.9 kB
10 - Support Vector Machines (SVMs)/002 Linearly separable problems_en.srt
18.8 kB
05 - Linear Regression/004 Linear regression implementation I_en.srt
18.8 kB
19 - Single Layer Networks Implementation/001 Simple neural network implementation - XOR problem_en.srt
18.2 kB
19 - Single Layer Networks Implementation/002 Simple neural network implementation - Iris dataset_en.srt
18.2 kB
38 - Computer Vision Project I - Lane Detection Problem (Self-Driving Cars)/005 Getting the useful region of the image - masking_en.srt
17.9 kB
37 - Handling Images and Pixels/004 Why convolution is so important in image processing_en.srt
17.4 kB
25 - Convolutional Neural Networks (CNNs) Implementation/002 Handwritten digit classification II_en.srt
17.2 kB
42 - Histogram of Oriented Gradients (HOG) Implementation/003 Face detection with HOG implementation II_en.srt
17.2 kB
33 - Q Learning Implementation (Tic Tac Toe)/006 Tic tac toe with Q learning implementation VI_en.srt
16.6 kB
06 - Logistic Regression/001 What is logistic regression_en.srt
16.5 kB
18 - Feed-Forward Neural Network Theory/010 Backpropagation explained_en.srt
16.5 kB
45 - You Only Look Once (YOLO) Algorithm Implementation/004 YOLO algorithm implementation IV_en.srt
16.3 kB
25 - Convolutional Neural Networks (CNNs) Implementation/001 Handwritten digit classification I_en.srt
15.8 kB
31 - Exploration vs. Exploitation Problem/003 N-armed bandit problem implementation_en.srt
15.5 kB
38 - Computer Vision Project I - Lane Detection Problem (Self-Driving Cars)/006 Detecting lines - what is Hough transformation_en.srt
15.2 kB
39 - Viola-Jones Face Detection Algorithm Theory/001 Viola-Jones algorithm_en.srt
15.2 kB
13 - Boosting/006 Boosting implementation II -wine classification_en.srt
15.2 kB
45 - You Only Look Once (YOLO) Algorithm Implementation/005 YOLO algorithm implementation V_en.srt
15.1 kB
06 - Logistic Regression/003 Logistic regression example I - sigmoid function_en.srt
15.1 kB
30 - Markov Decision Process (MDP) Theory/003 Markov decision processes - equations_en.srt
15.1 kB
32 - Q Learning Theory/003 Q learning illustration_en.srt
15.1 kB
15 - Clustering/001 K-means clustering introduction_en.srt
14.9 kB
10 - Support Vector Machines (SVMs)/005 Support vector machine example I - simple_en.srt
14.8 kB
51 - Appendix #3 - Data Structures in Python/001 How to measure the running time of algorithms_en.srt
14.7 kB
06 - Logistic Regression/004 Logistic regression example II- credit scoring_en.srt
14.6 kB
14 - Principal Component Analysis (PCA)/002 Principal component analysis example_en.srt
14.6 kB
09 - Naive Bayes Classifier/001 What is the naive Bayes classifier_en.srt
14.5 kB
27 - Recurrent Neural Networks (RNNs) Theory/004 Long-short term memory (LSTM) model_en.srt
14.3 kB
35 - Deep Q Learning Implementation (Tic Tac Toe)/003 Tic Tac Toe with deep Q learning implementation III_en.srt
14.3 kB
42 - Histogram of Oriented Gradients (HOG) Implementation/001 Showing the HOG features programatically_en.srt
14.2 kB
43 - Convolutional Neural Networks (CNNs) Based Approaches/002 Region proposals and convolutional neural networks (CNNs)_en.srt
14.0 kB
46 - Single-Shot MultiBox Detector (SSD) Theory/003 Bounding boxes and anchor boxes_en.srt
13.8 kB
15 - Clustering/003 K-means clustering - text clustering_en.srt
13.5 kB
12 - Random Forest Classifier/006 Random forests example III - OCR parameter tuning_en.srt
13.4 kB
10 - Support Vector Machines (SVMs)/004 Kernel functions_en.srt
13.3 kB
51 - Appendix #3 - Data Structures in Python/016 Sorting_en.srt
13.2 kB
50 - Appendix #2 - Functions/003 Positional arguments and keyword arguments_en.srt
13.1 kB
26 - Machine Learning Project III - Identifying Objects with CNNs/004 Tuning the parameters - regularization_en.srt
13.1 kB
40 - Face Detection with Viola-Jones Method Implementation/002 Face detection implementation II - CascadeClassifier_en.srt
12.9 kB
15 - Clustering/008 Hierarchical clustering - market segmentation_en.srt
12.8 kB
21 - Deep Neural Networks Theory/002 Activation functions revisited_en.srt
12.7 kB
10 - Support Vector Machines (SVMs)/008 Support vector machine example IV - digit recognition_en.srt
12.7 kB
11 - Decision Trees/004 The Gini-index approach_en.srt
12.7 kB
05 - Linear Regression/001 What is linear regression_en.srt
12.6 kB
18 - Feed-Forward Neural Network Theory/005 Neural networks - the big picture_en.srt
12.6 kB
53 - Appendix #5 - NumPy/003 Dimension of arrays_en.srt
12.5 kB
14 - Principal Component Analysis (PCA)/003 Principal component analysis example II_en.srt
12.4 kB
51 - Appendix #3 - Data Structures in Python/014 Dictionaries in Python_en.srt
12.3 kB
44 - You Only Look Once (YOLO) Algorithm Theory/003 YOLO algorithm - intersection over union_en.srt
12.3 kB
27 - Recurrent Neural Networks (RNNs) Theory/003 Vanishing and exploding gradients problem_en.srt
12.2 kB
45 - You Only Look Once (YOLO) Algorithm Implementation/002 YOLO algorithm implementation II_en.srt
12.2 kB
38 - Computer Vision Project I - Lane Detection Problem (Self-Driving Cars)/008 Drawing lines on video frames_en.srt
12.1 kB
27 - Recurrent Neural Networks (RNNs) Theory/002 Recurrent neural networks basics_en.srt
12.1 kB
15 - Clustering/005 DBSCAN example_en.srt
12.1 kB
03 - Artificial Intelligence Basics/002 Types of artificial intelligence learning_en.srt
12.0 kB
51 - Appendix #3 - Data Structures in Python/011 What are linked list data structures_en.srt
12.0 kB
50 - Appendix #2 - Functions/009 What is recursion_en.srt
11.8 kB
45 - You Only Look Once (YOLO) Algorithm Implementation/003 YOLO algorithm implementation III_en.srt
11.7 kB
18 - Feed-Forward Neural Network Theory/008 Optimization with gradient descent_en.srt
11.6 kB
05 - Linear Regression/002 Linear regression theory - optimization_en.srt
11.6 kB
08 - K-Nearest Neighbor Classifier/006 K-nearest neighbor implementation II_en.srt
11.4 kB
51 - Appendix #3 - Data Structures in Python/013 Hashing and O(1) running time complexity_en.srt
11.4 kB
14 - Principal Component Analysis (PCA)/001 Principal component analysis (PCA) introduction_en.srt
11.3 kB
09 - Naive Bayes Classifier/004 What is text clustering_en.srt
11.2 kB
51 - Appendix #3 - Data Structures in Python/015 Sets in Python_en.srt
11.2 kB
11 - Decision Trees/002 Decision trees introduction - entropy_en.srt
11.1 kB
31 - Exploration vs. Exploitation Problem/002 N-armed bandit problem introduction_en.srt
11.1 kB
22 - Deep Neural Networks Implementation/004 Multiclass classification implementation I_en.srt
11.0 kB
05 - Linear Regression/003 Linear regression theory - gradient descent_en.srt
11.0 kB
39 - Viola-Jones Face Detection Algorithm Theory/002 Haar-features_en.srt
10.9 kB
13 - Boosting/004 Boosting introduction - final formula_en.srt
10.8 kB
47 - SSD Algorithm Implementation/004 SSD implementation IV_en.srt
10.8 kB
15 - Clustering/007 Hierarchical clustering example_en.srt
10.8 kB
15 - Clustering/002 K-means clustering example_en.srt
10.8 kB
11 - Decision Trees/003 Decision trees introduction - information gain_en.srt
10.8 kB
53 - Appendix #5 - NumPy/004 Indexes and slicing_en.srt
10.8 kB
33 - Q Learning Implementation (Tic Tac Toe)/002 Tic tac toe with Q learning implementation II_en.srt
10.6 kB
11 - Decision Trees/001 Decision trees introduction - basics_en.srt
10.6 kB
03 - Artificial Intelligence Basics/003 Fundamentals of statistics_en.srt
10.6 kB
41 - Histogram of Oriented Gradients (HOG) Algorithm Theory/003 Histogram of oriented gradients - magnitude and angle_en.srt
10.6 kB
16 - Machine Learning Project I - Face Recognition/001 The Olivetti dataset_en.srt
10.5 kB
16 - Machine Learning Project I - Face Recognition/004 Understanding eigenfaces_en.srt
10.4 kB
41 - Histogram of Oriented Gradients (HOG) Algorithm Theory/002 Histogram of oriented gradients - gradient kernel_en.srt
10.4 kB
52 - Appendix #4 - Object Oriented Programming (OOP)/013 Comparing objects - overriding functions_en.srt
10.4 kB
12 - Random Forest Classifier/002 Bagging introduction_en.srt
10.3 kB
53 - Appendix #5 - NumPy/006 Reshape_en.srt
10.3 kB
49 - Appendix #1 - Python Basics/009 How to use multiple conditions_en.srt
10.3 kB
44 - You Only Look Once (YOLO) Algorithm Theory/004 How to train the YOLO algorithm_en.srt
10.3 kB
33 - Q Learning Implementation (Tic Tac Toe)/004 Tic tac toe with Q learning implementation IV_en.srt
10.2 kB
49 - Appendix #1 - Python Basics/004 Strings_en.srt
10.1 kB
46 - Single-Shot MultiBox Detector (SSD) Theory/002 Basic concept behind SSD algorithm (architecture)_en.srt
10.0 kB
51 - Appendix #3 - Data Structures in Python/004 What are array data structures II_en.srt
9.8 kB
15 - Clustering/006 Hierarchical clustering introduction_en.srt
9.8 kB
51 - Appendix #3 - Data Structures in Python/006 Lists in Python - advanced operations_en.srt
9.8 kB
42 - Histogram of Oriented Gradients (HOG) Implementation/005 Face detection with HOG implementation IV_en.srt
9.8 kB
53 - Appendix #5 - NumPy/002 Creating and updating arrays_en.srt
9.8 kB
33 - Q Learning Implementation (Tic Tac Toe)/003 Tic tac toe with Q learning implementation III_en.srt
9.8 kB
10 - Support Vector Machines (SVMs)/007 Support vector machines example III - parameter tuning_en.srt
9.8 kB
21 - Deep Neural Networks Theory/004 Gradient descent and stochastic gradient descent_en.srt
9.7 kB
15 - Clustering/004 DBSCAN introduction_en.srt
9.7 kB
30 - Markov Decision Process (MDP) Theory/004 Markov decision processes - illustration_en.srt
9.6 kB
32 - Q Learning Theory/002 Q learning introduction - the algorithm_en.srt
9.5 kB
08 - K-Nearest Neighbor Classifier/003 Distance metrics - Euclidean-distance_en.srt
9.5 kB
10 - Support Vector Machines (SVMs)/003 Non-linearly separable problems_en.srt
9.4 kB
43 - Convolutional Neural Networks (CNNs) Based Approaches/003 Detecting bounding boxes with regression_en.srt
9.4 kB
51 - Appendix #3 - Data Structures in Python/003 What are array data structures I_en.srt
9.4 kB
18 - Feed-Forward Neural Network Theory/004 Why to use activation functions_en.srt
9.3 kB
08 - K-Nearest Neighbor Classifier/005 K-nearest neighbor implementation I_en.srt
9.3 kB
22 - Deep Neural Networks Implementation/001 Deep neural network implementation I_en.srt
9.2 kB
28 - Recurrent Neural Networks (RNNs) Implementation/003 Time series analysis example III_en.srt
9.2 kB
38 - Computer Vision Project I - Lane Detection Problem (Self-Driving Cars)/004 What is Canny edge detection_en.srt
9.2 kB
13 - Boosting/003 Boosting introduction - equations_en.srt
9.2 kB
44 - You Only Look Once (YOLO) Algorithm Theory/002 YOLO algorithm - grid cells_en.srt
9.2 kB
35 - Deep Q Learning Implementation (Tic Tac Toe)/002 Tic Tac Toe with deep Q learning implementation II_en.srt
9.1 kB
45 - You Only Look Once (YOLO) Algorithm Implementation/001 YOLO algorithm implementation I_en.srt
9.1 kB
33 - Q Learning Implementation (Tic Tac Toe)/008 Tic tac toe with Q learning implementation VIII_en.srt
9.0 kB
44 - You Only Look Once (YOLO) Algorithm Theory/007 Why to use the so-called anchor boxes_en.srt
9.0 kB
13 - Boosting/005 Boosting implementation I - iris dataset_en.srt
9.0 kB
12 - Random Forest Classifier/001 Pruning introduction_en.srt
9.0 kB
22 - Deep Neural Networks Implementation/002 Deep neural network implementation II_en.srt
8.9 kB
10 - Support Vector Machines (SVMs)/006 Support vector machine example II - iris dataset_en.srt
8.7 kB
53 - Appendix #5 - NumPy/007 Stacking and merging arrays_en.srt
8.6 kB
18 - Feed-Forward Neural Network Theory/009 Gradient descent with backpropagation_en.srt
8.6 kB
30 - Markov Decision Process (MDP) Theory/002 Markov decision processes basics II_en.srt
8.6 kB
30 - Markov Decision Process (MDP) Theory/007 What is value iteration_en.srt
8.5 kB
49 - Appendix #1 - Python Basics/005 String slicing_en.srt
8.4 kB
37 - Handling Images and Pixels/002 Handling pixel intensities I_en.srt
8.4 kB
43 - Convolutional Neural Networks (CNNs) Based Approaches/001 The standard convolutional neural network (CNN) way_en.srt
8.4 kB
39 - Viola-Jones Face Detection Algorithm Theory/004 Boosting in computer vision_en.srt
8.3 kB
33 - Q Learning Implementation (Tic Tac Toe)/007 Tic tac toe with Q learning implementation VII_en.srt
8.3 kB
26 - Machine Learning Project III - Identifying Objects with CNNs/001 What is the CIFAR-10 dataset_en.srt
8.2 kB
39 - Viola-Jones Face Detection Algorithm Theory/003 Integral images_en.srt
8.2 kB
07 - Cross Validation/001 What is cross validation_en.srt
8.1 kB
08 - K-Nearest Neighbor Classifier/001 What is the k-nearest neighbor classifier_en.srt
8.1 kB
24 - Convolutional Neural Networks (CNNs) Theory/005 Convolutional neural networks - pooling_en.srt
8.1 kB
24 - Convolutional Neural Networks (CNNs) Theory/001 Convolutional neural networks basics_en.srt
8.1 kB
16 - Machine Learning Project I - Face Recognition/002 Understanding the dataset_en.srt
8.0 kB
16 - Machine Learning Project I - Face Recognition/003 Finding optimal number of principal components (eigenvectors)_en.srt
8.0 kB
49 - Appendix #1 - Python Basics/011 Loops - for loop_en.srt
7.9 kB
21 - Deep Neural Networks Theory/003 Loss functions_en.srt
7.9 kB
42 - Histogram of Oriented Gradients (HOG) Implementation/002 Face detection with HOG implementation I_en.srt
7.9 kB
03 - Artificial Intelligence Basics/001 Why to learn artificial intelligence and machine learning_en.srt
7.9 kB
47 - SSD Algorithm Implementation/001 SSD implementation I_en.srt
7.8 kB
11 - Decision Trees/006 Decision trees implementation I_en.srt
7.8 kB
24 - Convolutional Neural Networks (CNNs) Theory/004 Convolutional neural networks - kernel II_en.srt
7.8 kB
23 - Machine Learning Project II - Smile Detector/002 Reading the images and constructing the dataset I_en.srt
7.8 kB
44 - You Only Look Once (YOLO) Algorithm Theory/001 What is the YOLO approach_en.srt
7.8 kB
52 - Appendix #4 - Object Oriented Programming (OOP)/003 Using the constructor_en.srt
7.7 kB
22 - Deep Neural Networks Implementation/005 Multiclass classification implementation II_en.srt
7.7 kB
52 - Appendix #4 - Object Oriented Programming (OOP)/011 Modules_en.srt
7.7 kB
25 - Convolutional Neural Networks (CNNs) Implementation/003 Handwritten digit classification III_en.srt
7.7 kB
38 - Computer Vision Project I - Lane Detection Problem (Self-Driving Cars)/002 Lane detection - handling videos_en.srt
7.7 kB
37 - Handling Images and Pixels/006 Image processing - edge detection kernel_en.srt
7.7 kB
28 - Recurrent Neural Networks (RNNs) Implementation/002 Time series analysis example II_en.srt
7.6 kB
10 - Support Vector Machines (SVMs)/001 What are Support Vector Machines (SVMs)_en.srt
7.6 kB
26 - Machine Learning Project III - Identifying Objects with CNNs/003 Fitting the model_en.srt
7.6 kB
35 - Deep Q Learning Implementation (Tic Tac Toe)/004 Tic Tac Toe with deep Q learning implementation IV_en.srt
7.5 kB
13 - Boosting/002 Boosting introduction - illustration_en.srt
7.4 kB
51 - Appendix #3 - Data Structures in Python/005 Lists in Python_en.srt
7.4 kB
49 - Appendix #1 - Python Basics/001 First steps in Python_en.srt
7.4 kB
37 - Handling Images and Pixels/003 Handling pixel intensities II_en.srt
7.4 kB
21 - Deep Neural Networks Theory/005 Hyperparameters_en.srt
7.3 kB
30 - Markov Decision Process (MDP) Theory/001 Markov decision processes basics I_en.srt
7.3 kB
10 - Support Vector Machines (SVMs)/009 Support vector machine example V - digit recognition_en.srt
7.3 kB
30 - Markov Decision Process (MDP) Theory/005 Bellman-equation_en.srt
7.3 kB
18 - Feed-Forward Neural Network Theory/001 Artificial neural networks - inspiration_en.srt
7.3 kB
12 - Random Forest Classifier/003 Random forest classifier introduction_en.srt
7.3 kB
06 - Logistic Regression/005 Logistic regression example III - credit scoring_en.srt
7.3 kB
37 - Handling Images and Pixels/005 Image processing - blur operation_en.srt
7.2 kB
51 - Appendix #3 - Data Structures in Python/007 Lists in Python - list comprehension_en.srt
7.2 kB
49 - Appendix #1 - Python Basics/015 Break and continue_en.srt
7.2 kB
40 - Face Detection with Viola-Jones Method Implementation/005 Face detection implementation V - detecting faces real-time_en.srt
7.1 kB
07 - Cross Validation/002 Cross validation example_en.srt
7.1 kB
32 - Q Learning Theory/001 What is Q learning_en.srt
7.1 kB
37 - Handling Images and Pixels/001 Images and pixel intensities_en.srt
7.1 kB
50 - Appendix #2 - Functions/002 Defining functions_en.srt
7.1 kB
21 - Deep Neural Networks Theory/001 Deep neural networks_en.srt
7.0 kB
51 - Appendix #3 - Data Structures in Python/012 Doubly linked list implementation in Python_en.srt
7.0 kB
22 - Deep Neural Networks Implementation/003 Deep neural network implementation III_en.srt
7.0 kB
44 - You Only Look Once (YOLO) Algorithm Theory/005 YOLO algorithm - loss function_en.srt
6.9 kB
06 - Logistic Regression/002 Logistic regression and maximum likelihood estimation_en.srt
6.8 kB
18 - Feed-Forward Neural Network Theory/002 Artificial neural networks - layers_en.srt
6.8 kB
11 - Decision Trees/008 Decision tree implementation III - identifying cancer_en.srt
6.8 kB
47 - SSD Algorithm Implementation/003 SSD implementation III_en.srt
6.8 kB
49 - Appendix #1 - Python Basics/007 Operators_en.srt
6.8 kB
52 - Appendix #4 - Object Oriented Programming (OOP)/010 Polymorphism and abstraction example_en.srt
6.8 kB
24 - Convolutional Neural Networks (CNNs) Theory/006 Convolutional neural networks - flattening_en.srt
6.8 kB
18 - Feed-Forward Neural Network Theory/003 Artificial neural networks - the model_en.srt
6.8 kB
18 - Feed-Forward Neural Network Theory/007 How to measure the error of the network_en.srt
6.7 kB
42 - Histogram of Oriented Gradients (HOG) Implementation/004 Face detection with HOG implementation III_en.srt
6.6 kB
41 - Histogram of Oriented Gradients (HOG) Algorithm Theory/004 Histogram of oriented gradients - normalization_en.srt
6.6 kB
09 - Naive Bayes Classifier/005 Text clustering - inverse document frequency (TF-IDF)_en.srt
6.6 kB
50 - Appendix #2 - Functions/006 Yield operator_en.srt
6.5 kB
35 - Deep Q Learning Implementation (Tic Tac Toe)/005 Tic Tac Toe with deep Q learning implementation V_en.srt
6.5 kB
49 - Appendix #1 - Python Basics/002 What are the basic data types_en.srt
6.5 kB
46 - Single-Shot MultiBox Detector (SSD) Theory/004 Feature maps and convolution layers_en.srt
6.5 kB
33 - Q Learning Implementation (Tic Tac Toe)/005 Tic tac toe with Q learning implementation V_en.srt
6.4 kB
09 - Naive Bayes Classifier/002 Naive Bayes classifier illustration_en.srt
6.4 kB
40 - Face Detection with Viola-Jones Method Implementation/004 Face detection implementation IV - tuning the parameters_en.srt
6.4 kB
34 - Deep Q Learning Theory/001 What is deep Q learning_en.srt
6.3 kB
51 - Appendix #3 - Data Structures in Python/010 Mutability and immutability_en.srt
6.2 kB
11 - Decision Trees/007 Decision trees implementation II - parameter tuning_en.srt
6.0 kB
52 - Appendix #4 - Object Oriented Programming (OOP)/009 What is polymorphism_en.srt
6.0 kB
23 - Machine Learning Project II - Smile Detector/003 Reading the images and constructing the dataset II_en.srt
6.0 kB
38 - Computer Vision Project I - Lane Detection Problem (Self-Driving Cars)/003 Lane detection - first transformations_en.srt
6.0 kB
13 - Boosting/001 Boosting introduction - basics_en.srt
6.0 kB
53 - Appendix #5 - NumPy/001 What is the key advantage of NumPy_en.srt
5.9 kB
53 - Appendix #5 - NumPy/005 Types_en.srt
5.9 kB
28 - Recurrent Neural Networks (RNNs) Implementation/006 Time series analysis example VI_en.srt
5.9 kB
50 - Appendix #2 - Functions/001 What are functions_en.srt
5.9 kB
28 - Recurrent Neural Networks (RNNs) Implementation/001 Time series analysis example I_en.srt
5.9 kB
27 - Recurrent Neural Networks (RNNs) Theory/001 Why do recurrent neural networks are important_en.srt
5.8 kB
28 - Recurrent Neural Networks (RNNs) Implementation/005 Time series analysis example V_en.srt
5.8 kB
52 - Appendix #4 - Object Oriented Programming (OOP)/004 Class variables and instance variables_en.srt
5.8 kB
52 - Appendix #4 - Object Oriented Programming (OOP)/005 Private variables and name mangling_en.srt
5.8 kB
05 - Linear Regression/005 Linear regression implementation II_en.srt
5.8 kB
31 - Exploration vs. Exploitation Problem/004 Applications AB testing in marketing_en.srt
5.8 kB
24 - Convolutional Neural Networks (CNNs) Theory/003 Convolutional neural networks - kernel_en.srt
5.8 kB
16 - Machine Learning Project I - Face Recognition/005 Constructing the machine learning models_en.srt
5.8 kB
52 - Appendix #4 - Object Oriented Programming (OOP)/007 The super keyword_en.srt
5.7 kB
12 - Random Forest Classifier/004 Random forests example I - iris dataset_en.srt
5.7 kB
39 - Viola-Jones Face Detection Algorithm Theory/005 Cascading_en.srt
5.7 kB
49 - Appendix #1 - Python Basics/012 Loops - while loop_en.srt
5.7 kB
19 - Single Layer Networks Implementation/003 Credit scoring with simple neural networks_en.srt
5.7 kB
50 - Appendix #2 - Functions/008 What are the most relevant built-in functions_en.srt
5.6 kB
24 - Convolutional Neural Networks (CNNs) Theory/002 Feature selection_en.srt
5.6 kB
08 - K-Nearest Neighbor Classifier/007 K-nearest neighbor implementation III_en.srt
5.5 kB
40 - Face Detection with Viola-Jones Method Implementation/003 Face detection implementation III - CascadeClassifier parameters_en.srt
5.5 kB
49 - Appendix #1 - Python Basics/008 Conditional statements_en.srt
5.5 kB
50 - Appendix #2 - Functions/010 Local vs global variables_en.srt
5.5 kB
49 - Appendix #1 - Python Basics/006 Type casting_en.srt
5.4 kB
35 - Deep Q Learning Implementation (Tic Tac Toe)/001 Tic Tac Toe with deep Q learning implementation I_en.srt
5.4 kB
46 - Single-Shot MultiBox Detector (SSD) Theory/001 What is the SSD algorithm_en.srt
5.4 kB
09 - Naive Bayes Classifier/003 Naive Bayes classifier implementation_en.srt
5.3 kB
08 - K-Nearest Neighbor Classifier/004 Bias and variance trade-off_en.srt
5.3 kB
33 - Q Learning Implementation (Tic Tac Toe)/001 Tic tac toe with Q learning implementation I_en.srt
5.3 kB
30 - Markov Decision Process (MDP) Theory/008 What is policy iteration_en.srt
5.2 kB
08 - K-Nearest Neighbor Classifier/002 Concept of lazy learning_en.srt
5.2 kB
01 - Introduction/001 Introduction_en.srt
5.2 kB
36 - ### COMPUTER VISION ###/001 Evolution of computer vision related algorithms_en.srt
5.1 kB
51 - Appendix #3 - Data Structures in Python/009 What are tuples_en.srt
5.1 kB
41 - Histogram of Oriented Gradients (HOG) Algorithm Theory/001 Histogram of oriented gradients basics_en.srt
5.1 kB
49 - Appendix #1 - Python Basics/014 Enumerate_en.srt
5.1 kB
20 - Deep Learning/001 Types of neural networks_en.srt
5.0 kB
23 - Machine Learning Project II - Smile Detector/005 Evaluating and testing the model_en.srt
4.9 kB
31 - Exploration vs. Exploitation Problem/001 Exploration vs exploitation problem_en.srt
4.8 kB
52 - Appendix #4 - Object Oriented Programming (OOP)/006 What is inheritance in OOP_en.srt
4.8 kB
53 - Appendix #5 - NumPy/008 Filter_en.srt
4.8 kB
34 - Deep Q Learning Theory/003 Remember and replay_en.srt
4.8 kB
45 - You Only Look Once (YOLO) Algorithm Implementation/007 YOLO algorithm implementation VII_en.srt
4.7 kB
47 - SSD Algorithm Implementation/005 SSD implementation V_en.srt
4.7 kB
37 - Handling Images and Pixels/007 Image processing - sharpen operation_en.srt
4.7 kB
50 - Appendix #2 - Functions/011 The __main__ function_en.srt
4.7 kB
27 - Recurrent Neural Networks (RNNs) Theory/005 Gated recurrent units (GRUs)_en.srt
4.6 kB
51 - Appendix #3 - Data Structures in Python/002 Data structures introduction_en.srt
4.6 kB
49 - Appendix #1 - Python Basics/010 Logical operators_en.srt
4.6 kB
12 - Random Forest Classifier/005 Random forests example II - credit scoring_en.srt
4.5 kB
23 - Machine Learning Project II - Smile Detector/004 Building the deep neural network model_en.srt
4.5 kB
41 - Histogram of Oriented Gradients (HOG) Algorithm Theory/005 Histogram of oriented gradients - big picture_en.srt
4.5 kB
34 - Deep Q Learning Theory/002 Deep Q learning and ε-greedy strategy_en.srt
4.3 kB
44 - You Only Look Once (YOLO) Algorithm Theory/006 YOLO algorithm - non-max suppression_en.srt
4.2 kB
13 - Boosting/007 Boosting vs. bagging_en.srt
4.2 kB
52 - Appendix #4 - Object Oriented Programming (OOP)/012 The __str__ function_en.srt
4.1 kB
50 - Appendix #2 - Functions/005 Returning multiple values_en.srt
3.9 kB
52 - Appendix #4 - Object Oriented Programming (OOP)/002 Class and objects basics_en.srt
3.8 kB
10 - Support Vector Machines (SVMs)/010 Advantages and disadvantages_en.srt
3.8 kB
16 - Machine Learning Project I - Face Recognition/006 Using cross-validation_en.srt
3.7 kB
29 - ### REINFORCEMENT LEARNING ###/002 Applications of reinforcement learning_en.srt
3.6 kB
24 - Convolutional Neural Networks (CNNs) Theory/007 Convolutional neural networks - illustration_en.srt
3.6 kB
26 - Machine Learning Project III - Identifying Objects with CNNs/002 Preprocessing the data_en.srt
3.6 kB
49 - Appendix #1 - Python Basics/013 What are nested loops_en.srt
3.6 kB
28 - Recurrent Neural Networks (RNNs) Implementation/004 Time series analysis example IV_en.srt
3.6 kB
40 - Face Detection with Viola-Jones Method Implementation/001 Face detection implementation I - installing OpenCV_en.srt
3.6 kB
43 - Convolutional Neural Networks (CNNs) Based Approaches/004 What is the Fast R-CNN model_en.srt
3.5 kB
46 - Single-Shot MultiBox Detector (SSD) Theory/005 Hard negative mining during training_en.srt
3.4 kB
38 - Computer Vision Project I - Lane Detection Problem (Self-Driving Cars)/009 Testing lane detection algorithm_en.srt
3.4 kB
49 - Appendix #1 - Python Basics/016 Calculating Fibonacci-numbers_en.srt
3.3 kB
52 - Appendix #4 - Object Oriented Programming (OOP)/001 What is object oriented programming (OOP)_en.srt
3.3 kB
52 - Appendix #4 - Object Oriented Programming (OOP)/008 Function (method) override_en.srt
3.2 kB
11 - Decision Trees/005 Decision trees introduction - pros and cons_en.srt
3.2 kB
48 - ### PYTHON PROGRAMMING CRASH COURSE ###/001 Python crash course introduction_en.srt
3.2 kB
47 - SSD Algorithm Implementation/002 SSD implementation II_en.srt
3.2 kB
50 - Appendix #2 - Functions/004 Returning values_en.srt
3.1 kB
30 - Markov Decision Process (MDP) Theory/006 How to solve MDP problems_en.srt
3.1 kB
46 - Single-Shot MultiBox Detector (SSD) Theory/006 Regularization (data augmentation) and non-max suppression during training_en.srt
3.1 kB
23 - Machine Learning Project II - Smile Detector/001 Understanding the classification problem_en.srt
3.1 kB
02 - Environment Setup/003 Installing TensorFlow and Keras_en.srt
2.9 kB
50 - Appendix #2 - Functions/007 Local and global variables_en.srt
2.7 kB
45 - You Only Look Once (YOLO) Algorithm Implementation/006 YOLO algorithm implementation VI_en.srt
2.6 kB
43 - Convolutional Neural Networks (CNNs) Based Approaches/005 What is the Faster R-CNN model_en.srt
2.6 kB
38 - Computer Vision Project I - Lane Detection Problem (Self-Driving Cars)/001 Lane detection - the problem_en.srt
2.5 kB
49 - Appendix #1 - Python Basics/003 Booleans_en.srt
2.5 kB
18 - Feed-Forward Neural Network Theory/006 Using bias nodes in the neural network_en.srt
2.3 kB
02 - Environment Setup/002 Installing PyCharm and Python on Mac.html
1.6 kB
02 - Environment Setup/001 Installing PyCharm and Python on Windows.html
1.6 kB
53 - Appendix #5 - NumPy/009 Running time comparison arrays and lists.html
1.4 kB
29 - ### REINFORCEMENT LEARNING ###/001 What is reinforcement learning.html
899 Bytes
15 - Clustering/009 Mathematical formulation of clustering.html
629 Bytes
51 - Appendix #3 - Data Structures in Python/008 (!!!) Python lists and arrays.html
628 Bytes
04 - ### MACHINE LEARNING ###/001 Machine learning section.html
471 Bytes
43 - Convolutional Neural Networks (CNNs) Based Approaches/006 Original academic research articles.html
453 Bytes
10 - Support Vector Machines (SVMs)/011 Mathematical formulation of Support Vector Machines (SVMs).html
419 Bytes
11 - Decision Trees/009 Mathematical formulation of decision trees.html
356 Bytes
17 - ### NEURAL NETWORKS AND DEEP LEARNING ###/001 Neural networks and deep learning section.html
346 Bytes
41 - Histogram of Oriented Gradients (HOG) Algorithm Theory/006 Original academic research article.html
318 Bytes
39 - Viola-Jones Face Detection Algorithm Theory/006 Original academic research articles.html
311 Bytes
13 - Boosting/008 Mathematical formulation of boosting.html
290 Bytes
21 - Deep Neural Networks Theory/006 Mathematical formulation of deep neural networks.html
290 Bytes
24 - Convolutional Neural Networks (CNNs) Theory/008 Mathematical formulation of convolution neural networks.html
290 Bytes
14 - Principal Component Analysis (PCA)/004 Mathematical formulation of principle component analysis (PCA).html
282 Bytes
08 - K-Nearest Neighbor Classifier/008 Mathematical formulation of k-nearest neighbor classifier.html
276 Bytes
05 - Linear Regression/006 Mathematical formulation of linear regression.html
275 Bytes
34 - Deep Q Learning Theory/004 Mathematical formulation of deep Q learning.html
272 Bytes
44 - You Only Look Once (YOLO) Algorithm Theory/008 Original academic research article.html
266 Bytes
06 - Logistic Regression/006 Mathematical formulation of logistic regression.html
263 Bytes
12 - Random Forest Classifier/007 Mathematical formulation of random forest classifiers.html
263 Bytes
32 - Q Learning Theory/004 Mathematical formulation of Q learning.html
262 Bytes
18 - Feed-Forward Neural Network Theory/011 Mathematical formulation of feed-forward neural networks.html
261 Bytes
27 - Recurrent Neural Networks (RNNs) Theory/006 Mathematical formulation of recurrent neural networks.html
258 Bytes
30 - Markov Decision Process (MDP) Theory/009 Mathematical formulation of reinforcement learning.html
255 Bytes
09 - Naive Bayes Classifier/007 Mathematical formulation of naive Bayes classifier.html
246 Bytes
46 - Single-Shot MultiBox Detector (SSD) Theory/007 Original academic research article.html
241 Bytes
38 - Computer Vision Project I - Lane Detection Problem (Self-Driving Cars)/007 Hough transformation illustration.html
191 Bytes
0. Websites you may like/[CourseClub.Me].url
122 Bytes
02 - Environment Setup/[CourseClub.Me].url
122 Bytes
08 - K-Nearest Neighbor Classifier/[CourseClub.Me].url
122 Bytes
14 - Principal Component Analysis (PCA)/[CourseClub.Me].url
122 Bytes
22 - Deep Neural Networks Implementation/[CourseClub.Me].url
122 Bytes
29 - ### REINFORCEMENT LEARNING ###/[CourseClub.Me].url
122 Bytes
36 - ### COMPUTER VISION ###/[CourseClub.Me].url
122 Bytes
43 - Convolutional Neural Networks (CNNs) Based Approaches/[CourseClub.Me].url
122 Bytes
46 - Single-Shot MultiBox Detector (SSD) Theory/[CourseClub.Me].url
122 Bytes
52 - Appendix #4 - Object Oriented Programming (OOP)/[CourseClub.Me].url
122 Bytes
[CourseClub.Me].url
122 Bytes
54 - COURSE MATERIALS (DOWNLOADS)/001 Course materials (source code and slides).html
66 Bytes
0. Websites you may like/[FreeAllCourse.Com].url
55 Bytes
02 - Environment Setup/[FreeAllCourse.Com].url
55 Bytes
08 - K-Nearest Neighbor Classifier/[FreeAllCourse.Com].url
55 Bytes
14 - Principal Component Analysis (PCA)/[FreeAllCourse.Com].url
55 Bytes
22 - Deep Neural Networks Implementation/[FreeAllCourse.Com].url
55 Bytes
29 - ### REINFORCEMENT LEARNING ###/[FreeAllCourse.Com].url
55 Bytes
36 - ### COMPUTER VISION ###/[FreeAllCourse.Com].url
55 Bytes
43 - Convolutional Neural Networks (CNNs) Based Approaches/[FreeAllCourse.Com].url
55 Bytes
46 - Single-Shot MultiBox Detector (SSD) Theory/[FreeAllCourse.Com].url
55 Bytes
52 - Appendix #4 - Object Oriented Programming (OOP)/[FreeAllCourse.Com].url
55 Bytes
[FreeAllCourse.Com].url
55 Bytes
0. Websites you may like/[GigaCourse.Com].url
49 Bytes
02 - Environment Setup/[GigaCourse.Com].url
49 Bytes
08 - K-Nearest Neighbor Classifier/[GigaCourse.Com].url
49 Bytes
14 - Principal Component Analysis (PCA)/[GigaCourse.Com].url
49 Bytes
22 - Deep Neural Networks Implementation/[GigaCourse.Com].url
49 Bytes
29 - ### REINFORCEMENT LEARNING ###/[GigaCourse.Com].url
49 Bytes
36 - ### COMPUTER VISION ###/[GigaCourse.Com].url
49 Bytes
43 - Convolutional Neural Networks (CNNs) Based Approaches/[GigaCourse.Com].url
49 Bytes
46 - Single-Shot MultiBox Detector (SSD) Theory/[GigaCourse.Com].url
49 Bytes
52 - Appendix #4 - Object Oriented Programming (OOP)/[GigaCourse.Com].url
49 Bytes
[GigaCourse.Com].url
49 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>