搜索
[Tutorialsplanet.NET] Udemy - Deep Learning Prerequisites Logistic Regression in Python
磁力链接/BT种子名称
[Tutorialsplanet.NET] Udemy - Deep Learning Prerequisites Logistic Regression in Python
磁力链接/BT种子简介
种子哈希:
d400aafcecda6b103c67e4c29daacdbb6482c188
文件大小:
1.13G
已经下载:
1002
次
下载速度:
极快
收录时间:
2022-01-10
最近下载:
2024-10-27
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:D400AAFCECDA6B103C67E4C29DAACDBB6482C188
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
最近搜索
人人社区地址2048 虎牙
gigi sweets
lana+rain+public
超长道具
candy crush
日本幼图
九十九芽衣
£cmct风潇潇
linsey dawn mcansie
dragonfly ai
一脸呆萌
okal 2004
gvh-699
bring
王竹子
黑丝 黑人
和谐性生活
sky-167
village
七天高端外围11-30
lara croft pl
连裤袜
天津小女友特辑
爆乳半糖
幼女写真
伪娘ts
偷拍小朋友
推特博主【我的枪好长啊】持久肌肉体育生联合单男3p爆操羞辱极品身材
放課後の優等生
20.mp4
文件列表
8/1. Anaconda Environment Setup.mp4
195.3 MB
9. Extra Help With Python Coding for Beginners (FAQ by Student Request)/4. Proof that using Jupyter Notebook is the same as not using it.mp4
82.1 MB
1. Start Here/3. Statistics vs. Machine Learning.mp4
58.4 MB
8/2. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4
46.0 MB
1. Start Here/2. How to Succeed in this Course.mp4
45.9 MB
1. Start Here/1. Introduction and Outline.mp4
41.3 MB
10/2. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4
40.9 MB
11. Appendix FAQ Finale/2. BONUS.srt
39.7 MB
11. Appendix FAQ Finale/2. BONUS.mp4
39.7 MB
10/4. Machine Learning and AI Prerequisite Roadmap (pt 2).mp4
39.4 MB
10/3. Machine Learning and AI Prerequisite Roadmap (pt 1).mp4
30.7 MB
2/5. Interpretation of Logistic Regression Output.mp4
29.3 MB
3. Solving for the optimal weights/7. Maximizing the likelihood.mp4
26.4 MB
4. Practical concerns/8. The donut problem.mp4
25.9 MB
9. Extra Help With Python Coding for Beginners (FAQ by Student Request)/2. How to Code by Yourself (part 1).mp4
25.7 MB
6. Project Facial Expression Recognition/5. Facial Expression Recognition in Code.mp4
25.2 MB
4. Practical concerns/10. Why Divide by Square Root of D.mp4
24.6 MB
7. Background Review/1. Gradient Descent Tutorial.mp4
23.9 MB
6. Project Facial Expression Recognition/2. Facial Expression Recognition Problem Description.mp4
22.5 MB
3. Solving for the optimal weights/10. E-Commerce Course Project Training the Logistic Model.mp4
17.9 MB
2/10. Suggestion Box.mp4
16.9 MB
2/3. How do we calculate the output of a neuron logistic classifier - Theory.mp4
16.0 MB
9. Extra Help With Python Coding for Beginners (FAQ by Student Request)/3. How to Code by Yourself (part 2).mp4
15.5 MB
1. Start Here/5. Introduction to the E-Commerce Course Project.mp4
15.5 MB
4. Practical concerns/3. L2 Regularization - Theory.mp4
15.4 MB
4. Practical concerns/9. The XOR problem.mp4
14.9 MB
6. Project Facial Expression Recognition/4. Utilities walkthrough.mp4
14.1 MB
10/1. How to Succeed in this Course (Long Version).mp4
13.6 MB
4. Practical concerns/6. L1 Regularization - Code.mp4
12.6 MB
5. Checkpoint and applications How to make sure you know your stuff/1. BONUS Sentiment Analysis.mp4
12.0 MB
2/6. E-Commerce Course Project Pre-Processing the Data.mp4
11.7 MB
6. Project Facial Expression Recognition/3. The class imbalance problem.mp4
10.6 MB
6. Project Facial Expression Recognition/1. Facial Expression Recognition Project Introduction.mp4
10.3 MB
2/2. Biological inspiration - the neuron.mp4
9.8 MB
3. Solving for the optimal weights/8. Updating the weights using gradient descent - Theory.mp4
9.8 MB
3. Solving for the optimal weights/2. A closed-form solution to the Bayes classifier.mp4
9.5 MB
3. Solving for the optimal weights/5. The cross-entropy error function - Code.mp4
9.5 MB
9. Extra Help With Python Coding for Beginners (FAQ by Student Request)/5. Python 2 vs Python 3.mp4
8.2 MB
2/1. Linear Classification.mp4
7.9 MB
3. Solving for the optimal weights/9. Updating the weights using gradient descent - Code.mp4
7.6 MB
3. Solving for the optimal weights/3. What do all these symbols mean X, Y, N, D, L, J, P(Y=1X), etc..mp4
6.7 MB
4. Practical concerns/2. Interpreting the Weights.mp4
6.6 MB
2/4. How do we calculate the output of a neuron logistic classifier - Code.mp4
6.1 MB
2/7. E-Commerce Course Project Making Predictions.mp4
6.0 MB
11. Appendix FAQ Finale/1. What is the Appendix.mp4
5.7 MB
9. Extra Help With Python Coding for Beginners (FAQ by Student Request)/1. How to Uncompress a .tar.gz file.mp4
5.7 MB
3. Solving for the optimal weights/6. Visualizing the linear discriminant Bayes classifier Gaussian clouds.mp4
5.5 MB
5. Checkpoint and applications How to make sure you know your stuff/2. BONUS Exercises + how to get good at this.mp4
5.5 MB
4. Practical concerns/7. L1 vs L2 Regularization.mp4
5.0 MB
4. Practical concerns/1. Practical Section Introduction.mp4
5.0 MB
3. Solving for the optimal weights/4. The cross-entropy error function - Theory.mp4
4.7 MB
4. Practical concerns/4. L2 Regularization - Code.mp4
4.7 MB
4. Practical concerns/5. L1 Regularization - Theory.mp4
4.6 MB
4. Practical concerns/11. Practical Section Summary.mp4
3.6 MB
3. Solving for the optimal weights/11. Training Section Summary.mp4
3.6 MB
1. Start Here/4. Review of the classification problem.mp4
3.1 MB
6. Project Facial Expression Recognition/6. Facial Expression Recognition Project Summary.mp4
3.0 MB
3. Solving for the optimal weights/1. Training Section Introduction.mp4
2.9 MB
2/8. Feedforward Quiz.mp4
2.4 MB
2/9. Prediction Section Summary.mp4
2.3 MB
10/2. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.srt
32.5 kB
10/4. Machine Learning and AI Prerequisite Roadmap (pt 2).srt
23.6 kB
9. Extra Help With Python Coding for Beginners (FAQ by Student Request)/2. How to Code by Yourself (part 1).srt
23.3 kB
8/1. Anaconda Environment Setup.srt
20.6 kB
10/3. Machine Learning and AI Prerequisite Roadmap (pt 1).srt
16.4 kB
6. Project Facial Expression Recognition/2. Facial Expression Recognition Problem Description.srt
16.4 kB
1. Start Here/3. Statistics vs. Machine Learning.srt
15.1 kB
10/1. How to Succeed in this Course (Long Version).srt
15.0 kB
8/2. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.srt
14.8 kB
9. Extra Help With Python Coding for Beginners (FAQ by Student Request)/4. Proof that using Jupyter Notebook is the same as not using it.srt
14.5 kB
1. Start Here/5. Introduction to the E-Commerce Course Project.srt
14.3 kB
9. Extra Help With Python Coding for Beginners (FAQ by Student Request)/3. How to Code by Yourself (part 2).srt
13.6 kB
4. Practical concerns/3. L2 Regularization - Theory.srt
11.8 kB
1. Start Here/1. Introduction and Outline.srt
10.8 kB
4. Practical concerns/10. Why Divide by Square Root of D.srt
8.9 kB
1. Start Here/2. How to Succeed in this Course.srt
8.5 kB
3. Solving for the optimal weights/8. Updating the weights using gradient descent - Theory.srt
8.3 kB
6. Project Facial Expression Recognition/5. Facial Expression Recognition in Code.srt
8.3 kB
6. Project Facial Expression Recognition/3. The class imbalance problem.srt
8.1 kB
4. Practical concerns/8. The donut problem.srt
7.5 kB
3. Solving for the optimal weights/2. A closed-form solution to the Bayes classifier.srt
7.5 kB
6. Project Facial Expression Recognition/1. Facial Expression Recognition Project Introduction.srt
6.6 kB
5. Checkpoint and applications How to make sure you know your stuff/1. BONUS Sentiment Analysis.srt
6.6 kB
2/5. Interpretation of Logistic Regression Output.srt
6.5 kB
9. Extra Help With Python Coding for Beginners (FAQ by Student Request)/5. Python 2 vs Python 3.srt
6.2 kB
4. Practical concerns/9. The XOR problem.srt
6.2 kB
6. Project Facial Expression Recognition/4. Utilities walkthrough.srt
6.0 kB
7. Background Review/1. Gradient Descent Tutorial.srt
5.6 kB
3. Solving for the optimal weights/10. E-Commerce Course Project Training the Logistic Model.srt
5.4 kB
3. Solving for the optimal weights/3. What do all these symbols mean X, Y, N, D, L, J, P(Y=1X), etc..srt
5.3 kB
2/1. Linear Classification.srt
5.3 kB
2/6. E-Commerce Course Project Pre-Processing the Data.srt
5.3 kB
4. Practical concerns/2. Interpreting the Weights.srt
4.8 kB
2/10. Suggestion Box.srt
4.8 kB
4. Practical concerns/6. L1 Regularization - Code.srt
4.7 kB
2/4. How do we calculate the output of a neuron logistic classifier - Code.srt
4.6 kB
3. Solving for the optimal weights/4. The cross-entropy error function - Theory.srt
4.5 kB
2/2. Biological inspiration - the neuron.srt
4.5 kB
4. Practical concerns/7. L1 vs L2 Regularization.srt
4.4 kB
9. Extra Help With Python Coding for Beginners (FAQ by Student Request)/1. How to Uncompress a .tar.gz file.srt
4.3 kB
3. Solving for the optimal weights/7. Maximizing the likelihood.srt
4.1 kB
3. Solving for the optimal weights/5. The cross-entropy error function - Code.srt
4.0 kB
2/3. How do we calculate the output of a neuron logistic classifier - Theory.srt
4.0 kB
5. Checkpoint and applications How to make sure you know your stuff/2. BONUS Exercises + how to get good at this.srt
3.9 kB
4. Practical concerns/5. L1 Regularization - Theory.srt
3.8 kB
11. Appendix FAQ Finale/1. What is the Appendix.srt
3.8 kB
4. Practical concerns/1. Practical Section Introduction.srt
3.6 kB
2/7. E-Commerce Course Project Making Predictions.srt
3.1 kB
4. Practical concerns/11. Practical Section Summary.srt
2.7 kB
3. Solving for the optimal weights/11. Training Section Summary.srt
2.6 kB
3. Solving for the optimal weights/9. Updating the weights using gradient descent - Code.srt
2.5 kB
3. Solving for the optimal weights/6. Visualizing the linear discriminant Bayes classifier Gaussian clouds.srt
2.3 kB
1. Start Here/4. Review of the classification problem.srt
2.3 kB
3. Solving for the optimal weights/1. Training Section Introduction.srt
2.1 kB
2/8. Feedforward Quiz.srt
1.7 kB
4. Practical concerns/4. L2 Regularization - Code.srt
1.7 kB
6. Project Facial Expression Recognition/6. Facial Expression Recognition Project Summary.srt
1.7 kB
2/9. Prediction Section Summary.srt
1.5 kB
1. Start Here/6. Easy first quiz.html
152 Bytes
1. Start Here/[Tutorialsplanet.NET].url
128 Bytes
7. Background Review/[Tutorialsplanet.NET].url
128 Bytes
[Tutorialsplanet.NET].url
128 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>