搜索
[UdemyCourseDownloader] Complete Data Science & Machine Learning Bootcamp – Python 3
磁力链接/BT种子名称
[UdemyCourseDownloader] Complete Data Science & Machine Learning Bootcamp – Python 3
磁力链接/BT种子简介
种子哈希:
d432c60e9d1dc749517171c7d3d3392d0e7e754f
文件大小:
14.16G
已经下载:
230
次
下载速度:
极快
收录时间:
2021-04-07
最近下载:
2025-01-01
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:D432C60E9D1DC749517171C7D3D3392D0E7E754F
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
少女初夜
萝莉岛
最近搜索
女同事 黑丝
ss+-072
craig jones
小洗澡
当年懵懂的女孩到婚后
择日而亡
邻家气质
步宾寻花老李
友利ほのか
tmavr00064
后面很舒服
fellatiojapan 066
esk
sora-124
漂亮小姐姐你上来
cosh-168
【miao喵酱】高定长
姐姐强上
national treasure rarbg
无码白
下半年合
mrsmaitland
nkkd 193
警花津瑜
什么时候射的
hnds -051
口舌调教
complete data science machine learning
探花
爸爸操女儿,妈妈拍摄.
文件列表
04. Introduction to Optimisation and the Gradient Descent Algorithm/8. [Python] - Advanced Functions and the Pitfalls of Optimisation (Part 1).mp4
305.5 MB
04. Introduction to Optimisation and the Gradient Descent Algorithm/6. [Python] - Loops and the Gradient Descent Algorithm.mp4
301.4 MB
10. Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/12. Model Evaluation and the Confusion Matrix.mp4
264.1 MB
05. Predict House Prices with Multivariable Linear Regression/32. Build a Valuation Tool (Part 3) Docstrings & Creating your own Python Module.mp4
256.0 MB
04. Introduction to Optimisation and the Gradient Descent Algorithm/10. Understanding the Learning Rate.mp4
248.1 MB
03. Python Programming for Data Science and Machine Learning/10. [Python] - Module Imports.mp4
243.4 MB
04. Introduction to Optimisation and the Gradient Descent Algorithm/9. [Python] - Tuples and the Pitfalls of Optimisation (Part 2).mp4
229.7 MB
05. Predict House Prices with Multivariable Linear Regression/14. Working with Seaborn Pairplots & Jupyter Microbenchmarking Techniques.mp4
224.8 MB
11. Use Tensorflow to Classify Handwritten Digits/12. Different Model Architectures Experimenting with Dropout.mp4
224.1 MB
08. Test and Evaluate a Naive Bayes Classifier Part 3/6. Visualising the Decision Boundary.mp4
215.3 MB
08. Test and Evaluate a Naive Bayes Classifier Part 3/11. A Naive Bayes Implementation using SciKit Learn.mp4
204.6 MB
04. Introduction to Optimisation and the Gradient Descent Algorithm/11. How to Create 3-Dimensional Charts.mp4
202.9 MB
10. Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/9. Use Regularisation to Prevent Overfitting Early Stopping & Dropout Techniques.mp4
200.8 MB
03. Python Programming for Data Science and Machine Learning/18. How to Make Sense of Python Documentation for Data Visualisation.mp4
179.8 MB
05. Predict House Prices with Multivariable Linear Regression/11. Visualising Correlations with a Heatmap.mp4
176.8 MB
03. Python Programming for Data Science and Machine Learning/17. [Python] - Objects - Understanding Attributes and Methods.mp4
164.4 MB
11. Use Tensorflow to Classify Handwritten Digits/11. Name Scoping and Image Visualisation in Tensorboard.mp4
162.9 MB
03. Python Programming for Data Science and Machine Learning/9. [Python & Pandas] - Dataframes and Series.mp4
160.7 MB
05. Predict House Prices with Multivariable Linear Regression/26. Residual Analysis (Part 2) Graphing and Comparing Regression Residuals.mp4
160.4 MB
05. Predict House Prices with Multivariable Linear Regression/27. Making Predictions (Part 1) MSE & R-Squared.mp4
160.1 MB
11. Use Tensorflow to Classify Handwritten Digits/6. Creating Tensors and Setting up the Neural Network Architecture.mp4
158.2 MB
05. Predict House Prices with Multivariable Linear Regression/23. Model Simiplication & Baysian Information Criterion.mp4
157.4 MB
02. Predict Movie Box Office Revenue with Linear Regression/3. Explore & Visualise the Data with Python.mp4
155.4 MB
09. Introduction to Neural Networks and How to Use Pre-Trained Models/2. Layers, Feature Generation and Learning.mp4
153.8 MB
05. Predict House Prices with Multivariable Linear Regression/22. Understanding VIF & Testing for Multicollinearity.mp4
150.8 MB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/6. Joint & Conditional Probability.mp4
148.7 MB
04. Introduction to Optimisation and the Gradient Descent Algorithm/15. Reshaping and Slicing N-Dimensional Arrays.mp4
147.7 MB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/35. Sparse Matrix (Part 2) Data Munging with Nested Loops.mp4
143.9 MB
05. Predict House Prices with Multivariable Linear Regression/4. Clean and Explore the Data (Part 2) Find Missing Values.mp4
141.6 MB
09. Introduction to Neural Networks and How to Use Pre-Trained Models/6. Making Predictions using InceptionResNet.mp4
141.1 MB
05. Predict House Prices with Multivariable Linear Regression/30. [Python] - Conditional Statements - Build a Valuation Tool (Part 2).mp4
140.9 MB
10. Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/7. Interacting with the Operating System and the Python Try-Catch Block.mp4
139.9 MB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/11. [Python] - Generator Functions & the yield Keyword.mp4
139.6 MB
04. Introduction to Optimisation and the Gradient Descent Algorithm/12. Understanding Partial Derivatives and How to use SymPy.mp4
139.3 MB
07. Train a Naive Bayes Classifier to Create a Spam Filter Part 2/2. Create a Full Matrix.mp4
138.7 MB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/28. Styling the Word Cloud with a Mask.mp4
137.8 MB
05. Predict House Prices with Multivariable Linear Regression/29. Build a Valuation Tool (Part 1) Working with Pandas Series & Numpy ndarrays.mp4
137.7 MB
04. Introduction to Optimisation and the Gradient Descent Algorithm/14. [Python] - Loops and Performance Considerations.mp4
137.4 MB
05. Predict House Prices with Multivariable Linear Regression/12. Techniques to Style Scatter Plots.mp4
134.8 MB
11. Use Tensorflow to Classify Handwritten Digits/9. Tensorboard Summaries and the Filewriter.mp4
134.5 MB
03. Python Programming for Data Science and Machine Learning/13. [Python] - Functions - Part 2 Arguments & Parameters.mp4
134.4 MB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/30. Styling Word Clouds with Custom Fonts.mp4
133.5 MB
05. Predict House Prices with Multivariable Linear Regression/20. Improving the Model by Transforming the Data.mp4
133.0 MB
04. Introduction to Optimisation and the Gradient Descent Algorithm/21. Plotting the Mean Squared Error (MSE) on a Surface (Part 2).mp4
130.9 MB
05. Predict House Prices with Multivariable Linear Regression/25. Residual Analysis (Part 1) Predicted vs Actual Values.mp4
130.5 MB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/13. Cleaning Data (Part 1) Check for Empty Emails & Null Entries.mp4
127.9 MB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/19. Tokenizing, Removing Stop Words and the Python Set Data Structure.mp4
123.5 MB
11. Use Tensorflow to Classify Handwritten Digits/10. Understanding the Tensorflow Graph Nodes and Edges.mp4
121.4 MB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/2. Gathering Email Data and Working with Archives & Text Editors.mp4
117.5 MB
05. Predict House Prices with Multivariable Linear Regression/10. Calculating Correlations and the Problem posed by Multicollinearity.mp4
116.9 MB
11. Use Tensorflow to Classify Handwritten Digits/13. Prediction and Model Evaluation.mp4
116.1 MB
10. Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/4. Exploring the CIFAR Data.mp4
115.7 MB
02. Predict Movie Box Office Revenue with Linear Regression/5. Analyse and Evaluate the Results.mp4
110.3 MB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/9. Reading Files (Part 2) Stream Objects and Email Structure.mp4
109.4 MB
10. Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/6. Compiling a Keras Model and Understanding the Cross Entropy Loss Function.mp4
108.6 MB
09. Introduction to Neural Networks and How to Use Pre-Trained Models/7. Coding Challenge Solution Using other Keras Models.mp4
108.6 MB
10. Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/8. Fit a Keras Model and Use Tensorboard to Visualise Learning and Spot Problems.mp4
105.3 MB
11. Use Tensorflow to Classify Handwritten Digits/8. TensorFlow Sessions and Batching Data.mp4
105.2 MB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/27. Creating your First Word Cloud.mp4
103.2 MB
02. Predict Movie Box Office Revenue with Linear Regression/2. Gather & Clean the Data.mp4
101.7 MB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/38. Checkpoint Understanding the Data.mp4
101.1 MB
07. Train a Naive Bayes Classifier to Create a Spam Filter Part 2/3. Count the Tokens to Train the Naive Bayes Model.mp4
100.9 MB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/21. Removing HTML tags with BeautifulSoup.mp4
100.5 MB
09. Introduction to Neural Networks and How to Use Pre-Trained Models/4. Preprocessing Image Data and How RGB Works.mp4
98.2 MB
10. Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/5. Pre-processing Scaling Inputs and Creating a Validation Dataset.mp4
97.7 MB
09. Introduction to Neural Networks and How to Use Pre-Trained Models/3. Costs and Disadvantages of Neural Networks.mp4
96.5 MB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/16. Data Visualisation (Part 1) Pie Charts.mp4
95.1 MB
04. Introduction to Optimisation and the Gradient Descent Algorithm/4. LaTeX Markdown and Generating Data with Numpy.mp4
94.9 MB
04. Introduction to Optimisation and the Gradient Descent Algorithm/5. Understanding the Power Rule & Creating Charts with Subplots.mp4
94.5 MB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/34. Sparse Matrix (Part 1) Split the Training and Testing Data.mp4
91.9 MB
05. Predict House Prices with Multivariable Linear Regression/3. Clean and Explore the Data (Part 1) Understand the Nature of the Dataset.mp4
91.4 MB
04. Introduction to Optimisation and the Gradient Descent Algorithm/18. Transposing and Reshaping Arrays.mp4
91.1 MB
04. Introduction to Optimisation and the Gradient Descent Algorithm/13. Implementing Batch Gradient Descent with SymPy.mp4
91.0 MB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/25. [Python] - Logical Operators to Create Subsets and Indices.mp4
90.6 MB
05. Predict House Prices with Multivariable Linear Regression/28. Making Predictions (Part 2) Standard Deviation, RMSE, and Prediction Intervals.mp4
89.0 MB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/24. Advanced Subsetting on DataFrames the apply() Function.mp4
87.4 MB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/7. Bayes Theorem.mp4
87.2 MB
03. Python Programming for Data Science and Machine Learning/15. [Python] - Functions - Part 3 Results & Return Values.mp4
86.7 MB
03. Python Programming for Data Science and Machine Learning/20. [Python] - Tips, Code Style and Naming Conventions.mp4
85.5 MB
04. Introduction to Optimisation and the Gradient Descent Algorithm/19. Implementing a MSE Cost Function.mp4
85.1 MB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/36. Sparse Matrix (Part 3) Using groupby() and Saving .txt Files.mp4
84.4 MB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/26. Word Clouds & How to install Additional Python Packages.mp4
83.4 MB
11. Use Tensorflow to Classify Handwritten Digits/7. Defining the Cross Entropy Loss Function, the Optimizer and the Metrics.mp4
78.8 MB
04. Introduction to Optimisation and the Gradient Descent Algorithm/23. Visualising the Optimisation on a 3D Surface.mp4
78.4 MB
04. Introduction to Optimisation and the Gradient Descent Algorithm/20. Understanding Nested Loops and Plotting the MSE Function (Part 1).mp4
76.7 MB
07. Train a Naive Bayes Classifier to Create a Spam Filter Part 2/1. Setting up the Notebook and Understanding Delimiters in a Dataset.mp4
76.0 MB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/20. Word Stemming & Removing Punctuation.mp4
74.9 MB
03. Python Programming for Data Science and Machine Learning/5. [Python] - Variables and Types.mp4
74.8 MB
04. Introduction to Optimisation and the Gradient Descent Algorithm/16. Concatenating Numpy Arrays.mp4
74.8 MB
08. Test and Evaluate a Naive Bayes Classifier Part 3/2. Joint Conditional Probability (Part 1) Dot Product.mp4
69.6 MB
04. Introduction to Optimisation and the Gradient Descent Algorithm/3. Introduction to Cost Functions.mp4
69.4 MB
09. Introduction to Neural Networks and How to Use Pre-Trained Models/5. Importing Keras Models and the Tensorflow Graph.mp4
68.6 MB
05. Predict House Prices with Multivariable Linear Regression/21. How to Interpret Coefficients using p-Values and Statistical Significance.mp4
68.6 MB
04. Introduction to Optimisation and the Gradient Descent Algorithm/17. Introduction to the Mean Squared Error (MSE).mp4
67.7 MB
05. Predict House Prices with Multivariable Linear Regression/5. Visualising Data (Part 1) Historams, Distributions & Outliers.mp4
67.7 MB
05. Predict House Prices with Multivariable Linear Regression/16. How to Shuffle and Split Training & Testing Data.mp4
67.5 MB
05. Predict House Prices with Multivariable Linear Regression/24. How to Analyse and Plot Regression Residuals.mp4
67.3 MB
08. Test and Evaluate a Naive Bayes Classifier Part 3/3. Joint Conditional Probablity (Part 2) Priors.mp4
67.1 MB
08. Test and Evaluate a Naive Bayes Classifier Part 3/7. False Positive vs False Negatives.mp4
66.3 MB
10. Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/11. Model Evaluation and the Confusion Matrix.mp4
65.8 MB
05. Predict House Prices with Multivariable Linear Regression/8. Understanding Descriptive Statistics the Mean vs the Median.mp4
65.2 MB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/14. Cleaning Data (Part 2) Working with a DataFrame Index.mp4
64.8 MB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/17. Data Visualisation (Part 2) Donut Charts.mp4
64.8 MB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/8. Reading Files (Part 1) Absolute Paths and Relative Paths.mp4
63.9 MB
05. Predict House Prices with Multivariable Linear Regression/6. Visualising Data (Part 2) Seaborn and Probability Density Functions.mp4
60.1 MB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/29. Solving the Hamlet Challenge.mp4
59.9 MB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/15. Saving a JSON File with Pandas.mp4
59.1 MB
05. Predict House Prices with Multivariable Linear Regression/17. Running a Multivariable Regression.mp4
58.3 MB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/33. Coding Challenge Find the Longest Email.mp4
57.1 MB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/22. Creating a Function for Text Processing.mp4
56.5 MB
03. Python Programming for Data Science and Machine Learning/7. [Python] - Lists and Arrays.mp4
56.1 MB
07. Train a Naive Bayes Classifier to Create a Spam Filter Part 2/5. Calculate the Token Probabilities and Save the Trained Model.mp4
56.1 MB
08. Test and Evaluate a Naive Bayes Classifier Part 3/9. The Precision Metric.mp4
55.9 MB
11. Use Tensorflow to Classify Handwritten Digits/2. Getting the Data and Loading it into Numpy Arrays.mp4
55.4 MB
03. Python Programming for Data Science and Machine Learning/2. Mac Users - Install Anaconda.mp4
55.0 MB
08. Test and Evaluate a Naive Bayes Classifier Part 3/4. Making Predictions Comparing Joint Probabilities.mp4
54.9 MB
09. Introduction to Neural Networks and How to Use Pre-Trained Models/1. The Human Brain and the Inspiration for Artificial Neural Networks.mp4
54.3 MB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/18. Introduction to Natural Language Processing (NLP).mp4
53.3 MB
03. Python Programming for Data Science and Machine Learning/1. Windows Users - Install Anaconda.mp4
52.0 MB
05. Predict House Prices with Multivariable Linear Regression/15. Understanding Multivariable Regression.mp4
51.2 MB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/12. Create a Pandas DataFrame of Email Bodies.mp4
51.0 MB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/10. Extracting the Text in the Email Body.mp4
49.7 MB
07. Train a Naive Bayes Classifier to Create a Spam Filter Part 2/4. Sum the Tokens across the Spam and Ham Subsets.mp4
49.0 MB
11. Use Tensorflow to Classify Handwritten Digits/5. What is a Tensor.mp4
47.6 MB
01. Introduction to the Course/1. What is Machine Learning.mp4
47.5 MB
01. Introduction to the Course/2. What is Data Science.mp4
44.9 MB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/1. How to Translate a Business Problem into a Machine Learning Problem.mp4
44.3 MB
03. Python Programming for Data Science and Machine Learning/3. Does LSD Make You Better at Maths.mp4
44.3 MB
10. Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/2. Installing Tensorflow and Keras for Jupyter.mp4
44.1 MB
03. Python Programming for Data Science and Machine Learning/11. [Python] - Functions - Part 1 Defining and Calling Functions.mp4
43.6 MB
08. Test and Evaluate a Naive Bayes Classifier Part 3/5. The Accuracy Metric.mp4
42.5 MB
05. Predict House Prices with Multivariable Linear Regression/1. Defining the Problem.mp4
41.9 MB
07. Train a Naive Bayes Classifier to Create a Spam Filter Part 2/6. Coding Challenge Prepare the Test Data.mp4
37.3 MB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/4. The Naive Bayes Algorithm and the Decision Boundary for a Classifier.mp4
35.0 MB
05. Predict House Prices with Multivariable Linear Regression/9. Introduction to Correlation Understanding Strength & Direction.mp4
34.7 MB
11. Use Tensorflow to Classify Handwritten Digits/3. Data Exploration and Understanding the Structure of the Input Data.mp4
34.0 MB
05. Predict House Prices with Multivariable Linear Regression/18. How to Calculate the Model Fit with R-Squared.mp4
34.0 MB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/32. Coding Challenge Check for Membership in a Collection.mp4
33.9 MB
10. Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/3. Gathering the CIFAR 10 Dataset.mp4
32.9 MB
10. Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/1. Solving a Business Problem with Image Classification.mp4
32.0 MB
02. Predict Movie Box Office Revenue with Linear Regression/1. Introduction to Linear Regression & Specifying the Problem.mp4
31.8 MB
02. Predict Movie Box Office Revenue with Linear Regression/4. The Intuition behind the Linear Regression Model.mp4
31.1 MB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/37. Coding Challenge Solution Preparing the Test Data.mp4
30.3 MB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/3. How to Add the Lesson Resources to the Project.mp4
30.3 MB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/5. Basic Probability.mp4
29.9 MB
08. Test and Evaluate a Naive Bayes Classifier Part 3/8. The Recall Metric.mp4
29.5 MB
08. Test and Evaluate a Naive Bayes Classifier Part 3/1. Set up the Testing Notebook.mp4
27.7 MB
08. Test and Evaluate a Naive Bayes Classifier Part 3/10. The F-score or F1 Metric.mp4
25.9 MB
08. Test and Evaluate a Naive Bayes Classifier Part 3/1.2 SpamData.zip.zip
23.9 MB
04. Introduction to Optimisation and the Gradient Descent Algorithm/2. How a Machine Learns.mp4
23.9 MB
07. Train a Naive Bayes Classifier to Create a Spam Filter Part 2/1.1 SpamData.zip.zip
23.4 MB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/2.1 SpamData.zip.zip
22.3 MB
04. Introduction to Optimisation and the Gradient Descent Algorithm/1. What's Coming Up.mp4
22.0 MB
05. Predict House Prices with Multivariable Linear Regression/19. Introduction to Model Evaluation.mp4
16.8 MB
11. Use Tensorflow to Classify Handwritten Digits/2.1 MNIST.zip.zip
15.5 MB
11. Use Tensorflow to Classify Handwritten Digits/1. What's coming up.mp4
7.4 MB
05. Predict House Prices with Multivariable Linear Regression/33.1 04 Multivariable Regression.ipynb.zip.zip
3.7 MB
03. Python Programming for Data Science and Machine Learning/4.1 12 Rules to Learn to Code.pdf.pdf
2.4 MB
04. Introduction to Optimisation and the Gradient Descent Algorithm/24.1 03 Gradient Descent.ipynb.zip.zip
1.2 MB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/39.1 06 Bayes Classifier - Pre-Processing.ipynb.zip.zip
1.0 MB
09. Introduction to Neural Networks and How to Use Pre-Trained Models/8.1 09 Neural Nets Pretrained Image Classification.ipynb.zip.zip
585.6 kB
09. Introduction to Neural Networks and How to Use Pre-Trained Models/4.1 TF_Keras_Classification_Images.zip.zip
513.1 kB
02. Predict Movie Box Office Revenue with Linear Regression/2.1 cost_revenue_dirty.csv.csv
383.7 kB
08. Test and Evaluate a Naive Bayes Classifier Part 3/12.2 07 Bayes Classifier - Testing, Inference & Evaluation.ipynb.zip.zip
248.9 kB
10. Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/13.1 10 Neural Nets - Keras CIFAR10 Classification.ipynb.zip.zip
123.0 kB
01. Introduction to the Course/3.1 ML Data Science Syllabus.pdf.pdf
106.5 kB
02. Predict Movie Box Office Revenue with Linear Regression/3.1 cost_revenue_clean.csv.csv
93.0 kB
02. Predict Movie Box Office Revenue with Linear Regression/6.1 01 Linear Regression (complete).ipynb.zip.zip
77.1 kB
03. Python Programming for Data Science and Machine Learning/7. [Python] - Lists and Arrays.mp4.jpg
60.4 kB
02. Predict Movie Box Office Revenue with Linear Regression/4.1 01 Linear Regression (checkpoint).ipynb.zip.zip
38.5 kB
03. Python Programming for Data Science and Machine Learning/21.1 02 Python Intro.ipynb.zip.zip
37.3 kB
04. Introduction to Optimisation and the Gradient Descent Algorithm/8. [Python] - Advanced Functions and the Pitfalls of Optimisation (Part 1).vtt
37.3 kB
04. Introduction to Optimisation and the Gradient Descent Algorithm/6. [Python] - Loops and the Gradient Descent Algorithm.vtt
36.7 kB
10. Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/12. Model Evaluation and the Confusion Matrix.vtt
36.0 kB
04. Introduction to Optimisation and the Gradient Descent Algorithm/10. Understanding the Learning Rate.vtt
32.1 kB
03. Python Programming for Data Science and Machine Learning/10. [Python] - Module Imports.vtt
31.1 kB
08. Test and Evaluate a Naive Bayes Classifier Part 3/6. Visualising the Decision Boundary.vtt
29.9 kB
08. Test and Evaluate a Naive Bayes Classifier Part 3/11. A Naive Bayes Implementation using SciKit Learn.vtt
29.9 kB
10. Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/10. Use the Model to Make Predictions.vtt
29.6 kB
04. Introduction to Optimisation and the Gradient Descent Algorithm/9. [Python] - Tuples and the Pitfalls of Optimisation (Part 2).vtt
29.2 kB
02. Predict Movie Box Office Revenue with Linear Regression/3. Explore & Visualise the Data with Python.vtt
27.0 kB
11. Use Tensorflow to Classify Handwritten Digits/12. Different Model Architectures Experimenting with Dropout.vtt
26.9 kB
11. Use Tensorflow to Classify Handwritten Digits/6. Creating Tensors and Setting up the Neural Network Architecture.vtt
26.0 kB
03. Python Programming for Data Science and Machine Learning/17. [Python] - Objects - Understanding Attributes and Methods.vtt
25.8 kB
10. Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/9. Use Regularisation to Prevent Overfitting Early Stopping & Dropout Techniques.vtt
25.2 kB
05. Predict House Prices with Multivariable Linear Regression/32. Build a Valuation Tool (Part 3) Docstrings & Creating your own Python Module.vtt
25.1 kB
05. Predict House Prices with Multivariable Linear Regression/14. Working with Seaborn Pairplots & Jupyter Microbenchmarking Techniques.vtt
25.0 kB
09. Introduction to Neural Networks and How to Use Pre-Trained Models/2. Layers, Feature Generation and Learning.vtt
24.8 kB
03. Python Programming for Data Science and Machine Learning/9. [Python & Pandas] - Dataframes and Series.vtt
24.6 kB
11. Use Tensorflow to Classify Handwritten Digits/11. Name Scoping and Image Visualisation in Tensorboard.vtt
23.5 kB
03. Python Programming for Data Science and Machine Learning/19. Working with Python Objects to Analyse Data.vtt
23.5 kB
04. Introduction to Optimisation and the Gradient Descent Algorithm/11. How to Create 3-Dimensional Charts.vtt
23.4 kB
03. Python Programming for Data Science and Machine Learning/18. How to Make Sense of Python Documentation for Data Visualisation.vtt
23.0 kB
05. Predict House Prices with Multivariable Linear Regression/22. Understanding VIF & Testing for Multicollinearity.vtt
22.6 kB
10. Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/7. Interacting with the Operating System and the Python Try-Catch Block.vtt
21.3 kB
05. Predict House Prices with Multivariable Linear Regression/11. Visualising Correlations with a Heatmap.vtt
21.2 kB
11. Use Tensorflow to Classify Handwritten Digits/9. Tensorboard Summaries and the Filewriter.vtt
20.8 kB
05. Predict House Prices with Multivariable Linear Regression/27. Making Predictions (Part 1) MSE & R-Squared.vtt
20.5 kB
05. Predict House Prices with Multivariable Linear Regression/23. Model Simiplication & Baysian Information Criterion.vtt
20.4 kB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/35. Sparse Matrix (Part 2) Data Munging with Nested Loops.vtt
20.3 kB
04. Introduction to Optimisation and the Gradient Descent Algorithm/22. Running Gradient Descent with a MSE Cost Function.vtt
20.1 kB
04. Introduction to Optimisation and the Gradient Descent Algorithm/15. Reshaping and Slicing N-Dimensional Arrays.vtt
19.9 kB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/11. [Python] - Generator Functions & the yield Keyword.vtt
19.8 kB
05. Predict House Prices with Multivariable Linear Regression/26. Residual Analysis (Part 2) Graphing and Comparing Regression Residuals.vtt
19.5 kB
02. Predict Movie Box Office Revenue with Linear Regression/5. Analyse and Evaluate the Results.vtt
19.3 kB
07. Train a Naive Bayes Classifier to Create a Spam Filter Part 2/2. Create a Full Matrix.vtt
19.3 kB
05. Predict House Prices with Multivariable Linear Regression/20. Improving the Model by Transforming the Data.vtt
19.1 kB
11. Use Tensorflow to Classify Handwritten Digits/10. Understanding the Tensorflow Graph Nodes and Edges.vtt
19.0 kB
05. Predict House Prices with Multivariable Linear Regression/30. [Python] - Conditional Statements - Build a Valuation Tool (Part 2).vtt
18.9 kB
05. Predict House Prices with Multivariable Linear Regression/29. Build a Valuation Tool (Part 1) Working with Pandas Series & Numpy ndarrays.vtt
18.4 kB
11. Use Tensorflow to Classify Handwritten Digits/8. TensorFlow Sessions and Batching Data.vtt
18.3 kB
05. Predict House Prices with Multivariable Linear Regression/12. Techniques to Style Scatter Plots.vtt
18.1 kB
05. Predict House Prices with Multivariable Linear Regression/7. Working with Index Data, Pandas Series, and Dummy Variables.vtt
18.0 kB
03. Python Programming for Data Science and Machine Learning/13. [Python] - Functions - Part 2 Arguments & Parameters.vtt
18.0 kB
10. Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/5. Pre-processing Scaling Inputs and Creating a Validation Dataset.vtt
17.8 kB
04. Introduction to Optimisation and the Gradient Descent Algorithm/12. Understanding Partial Derivatives and How to use SymPy.vtt
17.8 kB
09. Introduction to Neural Networks and How to Use Pre-Trained Models/3. Costs and Disadvantages of Neural Networks.vtt
17.2 kB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/6. Joint & Conditional Probability.vtt
17.2 kB
11. Use Tensorflow to Classify Handwritten Digits/13. Prediction and Model Evaluation.vtt
16.9 kB
09. Introduction to Neural Networks and How to Use Pre-Trained Models/6. Making Predictions using InceptionResNet.vtt
16.9 kB
10. Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/6. Compiling a Keras Model and Understanding the Cross Entropy Loss Function.vtt
16.7 kB
07. Train a Naive Bayes Classifier to Create a Spam Filter Part 2/3. Count the Tokens to Train the Naive Bayes Model.vtt
16.4 kB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/19. Tokenizing, Removing Stop Words and the Python Set Data Structure.vtt
16.4 kB
05. Predict House Prices with Multivariable Linear Regression/4. Clean and Explore the Data (Part 2) Find Missing Values.vtt
16.2 kB
10. Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/4. Exploring the CIFAR Data.vtt
16.2 kB
04. Introduction to Optimisation and the Gradient Descent Algorithm/14. [Python] - Loops and Performance Considerations.vtt
15.9 kB
05. Predict House Prices with Multivariable Linear Regression/25. Residual Analysis (Part 1) Predicted vs Actual Values.vtt
15.8 kB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/31. Create the Vocabulary for the Spam Classifier.vtt
15.7 kB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/13. Cleaning Data (Part 1) Check for Empty Emails & Null Entries.vtt
15.7 kB
04. Introduction to Optimisation and the Gradient Descent Algorithm/21. Plotting the Mean Squared Error (MSE) on a Surface (Part 2).vtt
15.7 kB
05. Predict House Prices with Multivariable Linear Regression/10. Calculating Correlations and the Problem posed by Multicollinearity.vtt
15.6 kB
04. Introduction to Optimisation and the Gradient Descent Algorithm/5. Understanding the Power Rule & Creating Charts with Subplots.vtt
15.6 kB
04. Introduction to Optimisation and the Gradient Descent Algorithm/4. LaTeX Markdown and Generating Data with Numpy.vtt
15.1 kB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/28. Styling the Word Cloud with a Mask.vtt
14.6 kB
03. Python Programming for Data Science and Machine Learning/5. [Python] - Variables and Types.vtt
14.5 kB
03. Python Programming for Data Science and Machine Learning/20. [Python] - Tips, Code Style and Naming Conventions.vtt
14.5 kB
09. Introduction to Neural Networks and How to Use Pre-Trained Models/4. Preprocessing Image Data and How RGB Works.vtt
14.5 kB
03. Python Programming for Data Science and Machine Learning/15. [Python] - Functions - Part 3 Results & Return Values.vtt
14.4 kB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/16. Data Visualisation (Part 1) Pie Charts.vtt
14.2 kB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/34. Sparse Matrix (Part 1) Split the Training and Testing Data.vtt
13.8 kB
05. Predict House Prices with Multivariable Linear Regression/3. Clean and Explore the Data (Part 1) Understand the Nature of the Dataset.vtt
13.6 kB
08. Test and Evaluate a Naive Bayes Classifier Part 3/12.1 08 Naive Bayes with scikit-learn.ipynb.zip.zip
13.6 kB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/7. Bayes Theorem.vtt
13.1 kB
05. Predict House Prices with Multivariable Linear Regression/28. Making Predictions (Part 2) Standard Deviation, RMSE, and Prediction Intervals.vtt
13.0 kB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/30. Styling Word Clouds with Custom Fonts.vtt
12.9 kB
11. Use Tensorflow to Classify Handwritten Digits/7. Defining the Cross Entropy Loss Function, the Optimizer and the Metrics.vtt
12.7 kB
05. Predict House Prices with Multivariable Linear Regression/24. How to Analyse and Plot Regression Residuals.vtt
12.7 kB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/9. Reading Files (Part 2) Stream Objects and Email Structure.vtt
12.7 kB
10. Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/8. Fit a Keras Model and Use Tensorboard to Visualise Learning and Spot Problems.vtt
12.7 kB
05. Predict House Prices with Multivariable Linear Regression/5. Visualising Data (Part 1) Historams, Distributions & Outliers.vtt
12.3 kB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/38. Checkpoint Understanding the Data.vtt
12.3 kB
04. Introduction to Optimisation and the Gradient Descent Algorithm/20. Understanding Nested Loops and Plotting the MSE Function (Part 1).vtt
12.2 kB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/2. Gathering Email Data and Working with Archives & Text Editors.vtt
12.2 kB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/27. Creating your First Word Cloud.vtt
12.2 kB
04. Introduction to Optimisation and the Gradient Descent Algorithm/18. Transposing and Reshaping Arrays.vtt
12.1 kB
02. Predict Movie Box Office Revenue with Linear Regression/2. Gather & Clean the Data.vtt
12.0 kB
04. Introduction to Optimisation and the Gradient Descent Algorithm/19. Implementing a MSE Cost Function.vtt
11.9 kB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/24. Advanced Subsetting on DataFrames the apply() Function.vtt
11.9 kB
09. Introduction to Neural Networks and How to Use Pre-Trained Models/7. Coding Challenge Solution Using other Keras Models.vtt
11.7 kB
04. Introduction to Optimisation and the Gradient Descent Algorithm/13. Implementing Batch Gradient Descent with SymPy.vtt
11.5 kB
08. Test and Evaluate a Naive Bayes Classifier Part 3/7. False Positive vs False Negatives.vtt
11.5 kB
08. Test and Evaluate a Naive Bayes Classifier Part 3/2. Joint Conditional Probability (Part 1) Dot Product.vtt
11.4 kB
11. Use Tensorflow to Classify Handwritten Digits/4. Data Preprocessing One-Hot Encoding and Creating the Validation Dataset.vtt
11.4 kB
04. Introduction to Optimisation and the Gradient Descent Algorithm/17. Introduction to the Mean Squared Error (MSE).vtt
11.1 kB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/36. Sparse Matrix (Part 3) Using groupby() and Saving .txt Files.vtt
10.9 kB
03. Python Programming for Data Science and Machine Learning/7. [Python] - Lists and Arrays.vtt
10.7 kB
05. Predict House Prices with Multivariable Linear Regression/8. Understanding Descriptive Statistics the Mean vs the Median.vtt
10.7 kB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/26. Word Clouds & How to install Additional Python Packages.vtt
10.4 kB
09. Introduction to Neural Networks and How to Use Pre-Trained Models/5. Importing Keras Models and the Tensorflow Graph.vtt
10.4 kB
05. Predict House Prices with Multivariable Linear Regression/16. How to Shuffle and Split Training & Testing Data.vtt
10.3 kB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/8. Reading Files (Part 1) Absolute Paths and Relative Paths.vtt
10.3 kB
07. Train a Naive Bayes Classifier to Create a Spam Filter Part 2/1. Setting up the Notebook and Understanding Delimiters in a Dataset.vtt
10.0 kB
09. Introduction to Neural Networks and How to Use Pre-Trained Models/1. The Human Brain and the Inspiration for Artificial Neural Networks.vtt
9.8 kB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/21. Removing HTML tags with BeautifulSoup.vtt
9.7 kB
05. Predict House Prices with Multivariable Linear Regression/21. How to Interpret Coefficients using p-Values and Statistical Significance.vtt
9.7 kB
10. Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/11. Model Evaluation and the Confusion Matrix.vtt
9.6 kB
08. Test and Evaluate a Naive Bayes Classifier Part 3/3. Joint Conditional Probablity (Part 2) Priors.vtt
9.6 kB
04. Introduction to Optimisation and the Gradient Descent Algorithm/23. Visualising the Optimisation on a 3D Surface.vtt
9.4 kB
02. Predict Movie Box Office Revenue with Linear Regression/4. The Intuition behind the Linear Regression Model.vtt
9.4 kB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/20. Word Stemming & Removing Punctuation.vtt
9.2 kB
03. Python Programming for Data Science and Machine Learning/11. [Python] - Functions - Part 1 Defining and Calling Functions.vtt
9.1 kB
08. Test and Evaluate a Naive Bayes Classifier Part 3/4. Making Predictions Comparing Joint Probabilities.vtt
8.7 kB
05. Predict House Prices with Multivariable Linear Regression/17. Running a Multivariable Regression.vtt
8.6 kB
08. Test and Evaluate a Naive Bayes Classifier Part 3/9. The Precision Metric.vtt
8.5 kB
07. Train a Naive Bayes Classifier to Create a Spam Filter Part 2/5. Calculate the Token Probabilities and Save the Trained Model.vtt
8.4 kB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/1. How to Translate a Business Problem into a Machine Learning Problem.vtt
8.4 kB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/14. Cleaning Data (Part 2) Working with a DataFrame Index.vtt
8.3 kB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/17. Data Visualisation (Part 2) Donut Charts.vtt
8.3 kB
11. Use Tensorflow to Classify Handwritten Digits/5. What is a Tensor.vtt
8.1 kB
11. Use Tensorflow to Classify Handwritten Digits/2. Getting the Data and Loading it into Numpy Arrays.vtt
8.1 kB
04. Introduction to Optimisation and the Gradient Descent Algorithm/3. Introduction to Cost Functions.vtt
8.1 kB
05. Predict House Prices with Multivariable Linear Regression/6. Visualising Data (Part 2) Seaborn and Probability Density Functions.vtt
7.9 kB
04. Introduction to Optimisation and the Gradient Descent Algorithm/16. Concatenating Numpy Arrays.vtt
7.8 kB
03. Python Programming for Data Science and Machine Learning/1. Windows Users - Install Anaconda.vtt
7.6 kB
05. Predict House Prices with Multivariable Linear Regression/2. Gathering the Boston House Price Data.vtt
7.5 kB
02. Predict Movie Box Office Revenue with Linear Regression/1. Introduction to Linear Regression & Specifying the Problem.vtt
7.5 kB
05. Predict House Prices with Multivariable Linear Regression/9. Introduction to Correlation Understanding Strength & Direction.vtt
7.3 kB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/18. Introduction to Natural Language Processing (NLP).vtt
7.2 kB
07. Train a Naive Bayes Classifier to Create a Spam Filter Part 2/4. Sum the Tokens across the Spam and Ham Subsets.vtt
7.1 kB
03. Python Programming for Data Science and Machine Learning/2. Mac Users - Install Anaconda.vtt
7.0 kB
08. Test and Evaluate a Naive Bayes Classifier Part 3/5. The Accuracy Metric.vtt
6.9 kB
11. Use Tensorflow to Classify Handwritten Digits/14.1 11 Neural Networks - TF Handwriting Recognition.ipynb.zip.zip
6.8 kB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/33. Coding Challenge Find the Longest Email.vtt
6.7 kB
05. Predict House Prices with Multivariable Linear Regression/15. Understanding Multivariable Regression.vtt
6.5 kB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/12. Create a Pandas DataFrame of Email Bodies.vtt
6.4 kB
03. Python Programming for Data Science and Machine Learning/3. Does LSD Make You Better at Maths.vtt
6.4 kB
04. Introduction to Optimisation and the Gradient Descent Algorithm/2. How a Machine Learns.vtt
6.2 kB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/15. Saving a JSON File with Pandas.vtt
6.2 kB
07. Train a Naive Bayes Classifier to Create a Spam Filter Part 2/7.1 07 Bayes Classifier - Training.ipynb.zip.zip
6.0 kB
01. Introduction to the Course/1. What is Machine Learning.vtt
5.9 kB
11. Use Tensorflow to Classify Handwritten Digits/3. Data Exploration and Understanding the Structure of the Input Data.vtt
5.9 kB
08. Test and Evaluate a Naive Bayes Classifier Part 3/8. The Recall Metric.vtt
5.9 kB
10. Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/2. Installing Tensorflow and Keras for Jupyter.vtt
5.9 kB
05. Predict House Prices with Multivariable Linear Regression/1. Defining the Problem.vtt
5.6 kB
10. Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/3. Gathering the CIFAR 10 Dataset.vtt
5.5 kB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/29. Solving the Hamlet Challenge.vtt
5.4 kB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/4. The Naive Bayes Algorithm and the Decision Boundary for a Classifier.vtt
5.3 kB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/10. Extracting the Text in the Email Body.vtt
5.3 kB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/32. Coding Challenge Check for Membership in a Collection.vtt
5.2 kB
01. Introduction to the Course/2. What is Data Science.vtt
5.0 kB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/5. Basic Probability.vtt
4.6 kB
07. Train a Naive Bayes Classifier to Create a Spam Filter Part 2/6. Coding Challenge Prepare the Test Data.vtt
4.6 kB
10. Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/1. Solving a Business Problem with Image Classification.vtt
4.5 kB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/37. Coding Challenge Solution Preparing the Test Data.vtt
4.4 kB
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/3. How to Add the Lesson Resources to the Project.vtt
4.2 kB
08. Test and Evaluate a Naive Bayes Classifier Part 3/10. The F-score or F1 Metric.vtt
4.1 kB
12. Next Steps/1. Where next.html
4.0 kB
05. Predict House Prices with Multivariable Linear Regression/18. How to Calculate the Model Fit with R-Squared.vtt
3.9 kB
08. Test and Evaluate a Naive Bayes Classifier Part 3/1. Set up the Testing Notebook.vtt
3.4 kB
04. Introduction to Optimisation and the Gradient Descent Algorithm/1. What's Coming Up.vtt
3.3 kB
05. Predict House Prices with Multivariable Linear Regression/19. Introduction to Model Evaluation.vtt
3.3 kB
05. Predict House Prices with Multivariable Linear Regression/33.2 04 Valuation Tool.ipynb.zip.zip
3.0 kB
11. Use Tensorflow to Classify Handwritten Digits/1. What's coming up.vtt
2.3 kB
01. Introduction to the Course/4. Top Tips for Succeeding on this Course.html
2.1 kB
03. Python Programming for Data Science and Machine Learning/4. Download the 12 Rules to Learn to Code.html
1.2 kB
01. Introduction to the Course/5. Course Resources List.html
1.2 kB
12. Next Steps/3. Stay in Touch!.html
1.1 kB
01. Introduction to the Course/3. Download the Syllabus.html
1.1 kB
02. Predict Movie Box Office Revenue with Linear Regression/7. Join the Student Community.html
730 Bytes
05. Predict House Prices with Multivariable Linear Regression/13. A Note for the Next Lesson.html
476 Bytes
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/23. A Note for the Next Lesson.html
476 Bytes
12. Next Steps/2. What Modules Do You Want to See.html
431 Bytes
09. Introduction to Neural Networks and How to Use Pre-Trained Models/8. Download the Complete Notebook Here.html
264 Bytes
02. Predict Movie Box Office Revenue with Linear Regression/6. Download the Complete Notebook Here.html
242 Bytes
03. Python Programming for Data Science and Machine Learning/21. Download the Complete Notebook Here.html
242 Bytes
04. Introduction to Optimisation and the Gradient Descent Algorithm/24. Download the Complete Notebook Here.html
242 Bytes
05. Predict House Prices with Multivariable Linear Regression/33. Download the Complete Notebook Here.html
242 Bytes
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/39. Download the Complete Notebook Here.html
242 Bytes
07. Train a Naive Bayes Classifier to Create a Spam Filter Part 2/7. Download the Complete Notebook Here.html
242 Bytes
08. Test and Evaluate a Naive Bayes Classifier Part 3/12. Download the Complete Notebook Here.html
242 Bytes
10. Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/13. Download the Complete Notebook Here.html
242 Bytes
11. Use Tensorflow to Classify Handwritten Digits/14. Download the Complete Notebook Here.html
242 Bytes
03. Python Programming for Data Science and Machine Learning/7. [Python] - Lists and Arrays.txt
235 Bytes
03. Python Programming for Data Science and Machine Learning/9.1 lsd_math_score_data.csv.csv
155 Bytes
03. Python Programming for Data Science and Machine Learning/6. Python Variable Coding Exercise.html
149 Bytes
03. Python Programming for Data Science and Machine Learning/8. Python Lists Coding Exercise.html
149 Bytes
03. Python Programming for Data Science and Machine Learning/12. Python Functions Coding Exercise - Part 1.html
149 Bytes
03. Python Programming for Data Science and Machine Learning/14. Python Functions Coding Exercise - Part 2.html
149 Bytes
03. Python Programming for Data Science and Machine Learning/16. Python Functions Coding Exercise - Part 3.html
149 Bytes
04. Introduction to Optimisation and the Gradient Descent Algorithm/7. Python Loops Coding Exercise.html
149 Bytes
05. Predict House Prices with Multivariable Linear Regression/31. Python Conditional Statement Coding Exercise.html
149 Bytes
01. Introduction to the Course/4.1 App Brewery Cornell Notes Template.html
141 Bytes
udemycoursedownloader.com.url
132 Bytes
02. Predict Movie Box Office Revenue with Linear Regression/1.1 Course Resources.html
122 Bytes
03. Python Programming for Data Science and Machine Learning/1.1 Course Resources.html
122 Bytes
03. Python Programming for Data Science and Machine Learning/2.1 Course Resources.html
122 Bytes
04. Introduction to Optimisation and the Gradient Descent Algorithm/1.1 Course Resources.html
122 Bytes
05. Predict House Prices with Multivariable Linear Regression/1.1 Course Resources.html
122 Bytes
06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/1.1 Course Resources.html
122 Bytes
07. Train a Naive Bayes Classifier to Create a Spam Filter Part 2/1.2 Course Resources.html
122 Bytes
08. Test and Evaluate a Naive Bayes Classifier Part 3/1.1 Course Resources.html
122 Bytes
09. Introduction to Neural Networks and How to Use Pre-Trained Models/1.1 Course Resources.html
122 Bytes
10. Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/1.1 Course Resources.html
122 Bytes
11. Use Tensorflow to Classify Handwritten Digits/1.1 Course Resources.html
122 Bytes
02. Predict Movie Box Office Revenue with Linear Regression/2.2 The-Numbers Movie Budgets.html
102 Bytes
Udemy Course downloader.txt
94 Bytes
02. Predict Movie Box Office Revenue with Linear Regression/3.2 Try Jupyter in your Browser.html
85 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>