MuerBT磁力搜索 BT种子搜索利器 免费下载BT种子,超5000万条种子数据

[DesireCourse.Net] Udemy - Machine Learning with Javascript

磁力链接/BT种子名称

[DesireCourse.Net] Udemy - Machine Learning with Javascript

磁力链接/BT种子简介

种子哈希:d8b7432bc22c8df8fcdb7b77b42ee51238a2bef0
文件大小: 10.1G
已经下载:21次
下载速度:极快
收录时间:2022-04-28
最近下载:2024-06-26

移花宫入口

移花宫.com邀月.com怜星.com花无缺.comyhgbt.icuyhgbt.top

磁力链接下载

magnet:?xt=urn:btih:D8B7432BC22C8DF8FCDB7B77B42EE51238A2BEF0
推荐使用PIKPAK网盘下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看

下载BT种子文件

磁力链接 迅雷下载 PIKPAK在线播放 世界之窗 91视频 含羞草 欲漫涩 逼哩逼哩 成人快手 51品茶 抖阴破解版 极乐禁地 91短视频 抖音Max TikTok成人版 PornHub 听泉鉴鲍 暗网Xvideo 草榴社区 哆哔涩漫 呦乐园 萝莉岛 悠悠禁区 悠悠禁区 拔萝卜 疯马秀

最近搜索

【小月月】 mizd-213 鲜肉小弟弟 dj hot 真强 录音师教妹妹 上海最新 ssis-618 和闺蜜 1-p 大神猫先生千人斩 极品台湾 半透明的内内 超美 胸坚挺 vixen 4k 星空传媒++佳芯 fway-027 marica++vr #ooooo 小老弟 origin+2025 高级模特 “dlizi00” pans 漏 衣服掉了 +骚妇猫猫 男生女生 14-09-09 4619558

文件列表

  • 05 Getting Started with Gradient Descent/068 Why a Learning Rate.mp4 196.4 MB
  • 06 Gradient Descent with Tensorflow/084 How it All Works Together.mp4 150.8 MB
  • 02 Algorithm Overview/022 Investigating Optimal K Values.mp4 135.4 MB
  • 05 Getting Started with Gradient Descent/062 Understanding Gradient Descent.mp4 132.9 MB
  • 05 Getting Started with Gradient Descent/071 Multiple Terms in Action.mp4 129.1 MB
  • 07 Increasing Performance with Vectorized Solutions/097 Moving Towards Multivariate Regression.mp4 127.3 MB
  • 05 Getting Started with Gradient Descent/066 Gradient Descent in Action.mp4 121.0 MB
  • 03 Onwards to Tensorflow JS/036 Tensor Shape and Dimension.mp4 119.8 MB
  • 01 What is Machine Learning/003 A Complete Walkthrough.mp4 114.4 MB
  • 11 Multi-Value Classification/134 A Single Instance Approach.mp4 108.6 MB
  • 06 Gradient Descent with Tensorflow/079 Interpreting Results.mp4 106.7 MB
  • 13 Performance Optimization/159 Measuring Memory Usage.mp4 101.3 MB
  • 11 Multi-Value Classification/139 Marginal vs Conditional Probability.mp4 99.8 MB
  • 05 Getting Started with Gradient Descent/063 Guessing Coefficients with MSE.mp4 98.0 MB
  • 02 Algorithm Overview/010 How K-Nearest Neighbor Works.mp4 97.9 MB
  • 04 Applications of Tensorflow/055 Normalization or Standardization.mp4 97.5 MB
  • 06 Gradient Descent with Tensorflow/083 Simplification with Matrix Multiplication.mp4 95.2 MB
  • 04 Applications of Tensorflow/052 Loading CSV Data.mp4 93.7 MB
  • 12 Image Recognition In Action/151 Debugging the Calculation Process.mp4 93.4 MB
  • 06 Gradient Descent with Tensorflow/076 Initial Gradient Descent Implementation.mp4 92.2 MB
  • 10 Natural Binary Classification/123 A Touch More Refactoring.mp4 91.7 MB
  • 04 Applications of Tensorflow/058 Debugging Calculations.mp4 90.9 MB
  • 07 Increasing Performance with Vectorized Solutions/086 Refactoring to One Equation.mp4 88.9 MB
  • 07 Increasing Performance with Vectorized Solutions/098 Refactoring for Multivariate Analysis.mp4 86.4 MB
  • 07 Increasing Performance with Vectorized Solutions/089 Calculating Model Accuracy.mp4 84.3 MB
  • 02 Algorithm Overview/031 Feature Selection with KNN.mp4 84.3 MB
  • 12 Image Recognition In Action/149 Implementing an Accuracy Gauge.mp4 83.8 MB
  • 09 Gradient Descent Alterations/110 Making Predictions with the Model.mp4 83.3 MB
  • 10 Natural Binary Classification/115 Decision Boundaries.mp4 83.0 MB
  • 02 Algorithm Overview/025 N-Dimension Distance.mp4 82.7 MB
  • 04 Applications of Tensorflow/047 KNN with Tensorflow.mp4 82.5 MB
  • 05 Getting Started with Gradient Descent/065 Derivatives.mp4 81.7 MB
  • 09 Gradient Descent Alterations/105 Batch and Stochastic Gradient Descent.mp4 81.0 MB
  • 07 Increasing Performance with Vectorized Solutions/099 Learning Rate Optimization.mp4 80.4 MB
  • 03 Onwards to Tensorflow JS/034 Lets Get Our Bearings.mp4 80.3 MB
  • 07 Increasing Performance with Vectorized Solutions/090 Implementing Coefficient of Determination.mp4 79.5 MB
  • 14 Appendix Custom CSV Loader/184 Splitting Test and Training.mp4 79.3 MB
  • 02 Algorithm Overview/028 Feature Normalization.mp4 76.4 MB
  • 07 Increasing Performance with Vectorized Solutions/085 Refactoring the Linear Regression Class.mp4 76.2 MB
  • 07 Increasing Performance with Vectorized Solutions/091 Dealing with Bad Accuracy.mp4 74.9 MB
  • 02 Algorithm Overview/026 Arbitrary Feature Spaces.mp4 74.7 MB
  • 02 Algorithm Overview/023 Updating KNN for Multiple Features.mp4 74.0 MB
  • 10 Natural Binary Classification/121 Updating Linear Regression for Logistic Regression.mp4 73.7 MB
  • 10 Natural Binary Classification/126 Variable Decision Boundaries.mp4 71.6 MB
  • 06 Gradient Descent with Tensorflow/080 Matrix Multiplication.mp4 70.7 MB
  • 09 Gradient Descent Alterations/108 Iterating Over Batches.mp4 70.7 MB
  • 06 Gradient Descent with Tensorflow/077 Calculating MSE Slopes.mp4 70.4 MB
  • 02 Algorithm Overview/029 Normalization with MinMax.mp4 70.3 MB
  • 09 Gradient Descent Alterations/109 Evaluating Batch Gradient Descent Results.mp4 69.5 MB
  • 07 Increasing Performance with Vectorized Solutions/087 A Few More Changes.mp4 69.4 MB
  • 11 Multi-Value Classification/138 Training a Multinominal Model.mp4 69.3 MB
  • 09 Gradient Descent Alterations/107 Determining Batch Size and Quantity.mp4 69.3 MB
  • 02 Algorithm Overview/032 Objective Feature Picking.mp4 69.2 MB
  • 05 Getting Started with Gradient Descent/067 Quick Breather and Review.mp4 69.0 MB
  • 02 Algorithm Overview/011 Lodash Review.mp4 68.1 MB
  • 04 Applications of Tensorflow/054 Reporting Error Percentages.mp4 67.6 MB
  • 02 Algorithm Overview/027 Magnitude Offsets in Features.mp4 67.2 MB
  • 06 Gradient Descent with Tensorflow/081 More on Matrix Multiplication.mp4 66.3 MB
  • 04 Applications of Tensorflow/049 Sorting Tensors.mp4 65.9 MB
  • 01 What is Machine Learning/002 Solving Machine Learning Problems.mp4 65.8 MB
  • 11 Multi-Value Classification/140 Sigmoid vs Softmax.mp4 65.8 MB
  • 06 Gradient Descent with Tensorflow/074 Default Algorithm Options.mp4 65.7 MB
  • 07 Increasing Performance with Vectorized Solutions/101 Updating Learning Rate.mp4 65.2 MB
  • 03 Onwards to Tensorflow JS/038 Broadcasting Operations.mp4 65.1 MB
  • 12 Image Recognition In Action/148 Encoding Label Values.mp4 65.0 MB
  • 08 Plotting Data with Javascript/103 Plotting MSE Values.mp4 64.4 MB
  • 10 Natural Binary Classification/112 Logistic Regression in Action.mp4 64.0 MB
  • 10 Natural Binary Classification/127 Mean Squared Error vs Cross Entropy.mp4 63.1 MB
  • 06 Gradient Descent with Tensorflow/082 Matrix Form of Slope Equations.mp4 62.5 MB
  • 10 Natural Binary Classification/117 Project Setup for Logistic Regression.mp4 62.3 MB
  • 02 Algorithm Overview/012 Implementing KNN.mp4 62.2 MB
  • 03 Onwards to Tensorflow JS/041 Creating Slices of Data.mp4 61.8 MB
  • 03 Onwards to Tensorflow JS/037 Elementwise Operations.mp4 61.2 MB
  • 04 Applications of Tensorflow/050 Averaging Top Values.mp4 61.0 MB
  • 07 Increasing Performance with Vectorized Solutions/094 Reapplying Standardization.mp4 60.8 MB
  • 12 Image Recognition In Action/147 Flattening Image Data.mp4 60.6 MB
  • 04 Applications of Tensorflow/048 Maintaining Order Relationships.mp4 60.6 MB
  • 14 Appendix Custom CSV Loader/182 Extracting Data Columns.mp4 60.0 MB
  • 06 Gradient Descent with Tensorflow/072 Project Overview.mp4 59.8 MB
  • 03 Onwards to Tensorflow JS/044 Massaging Dimensions with ExpandDims.mp4 59.8 MB
  • 13 Performance Optimization/158 Shallow vs Retained Memory Usage.mp4 59.7 MB
  • 05 Getting Started with Gradient Descent/064 Observations Around MSE.mp4 58.8 MB
  • 13 Performance Optimization/157 The Javascript Garbage Collector.mp4 58.5 MB
  • 10 Natural Binary Classification/113 Bad Equation Fits.mp4 58.1 MB
  • 12 Image Recognition In Action/145 Greyscale Values.mp4 58.0 MB
  • 09 Gradient Descent Alterations/106 Refactoring Towards Batch Gradient Descent.mp4 57.8 MB
  • 13 Performance Optimization/174 Improving Model Accuracy.mp4 57.7 MB
  • 04 Applications of Tensorflow/045 KNN with Regression.mp4 57.6 MB
  • 10 Natural Binary Classification/125 Implementing a Test Function.mp4 57.4 MB
  • 02 Algorithm Overview/019 Gauging Accuracy.mp4 56.6 MB
  • 04 Applications of Tensorflow/056 Numerical Standardization with Tensorflow.mp4 55.6 MB
  • 04 Applications of Tensorflow/053 Running an Analysis.mp4 55.0 MB
  • 02 Algorithm Overview/021 Refactoring Accuracy Reporting.mp4 54.8 MB
  • 14 Appendix Custom CSV Loader/183 Shuffling Data via Seed Phrase.mp4 54.7 MB
  • 07 Increasing Performance with Vectorized Solutions/100 Recording MSE History.mp4 54.5 MB
  • 05 Getting Started with Gradient Descent/061 Why Linear Regression.mp4 52.8 MB
  • 02 Algorithm Overview/013 Finishing KNN Implementation.mp4 52.7 MB
  • 11 Multi-Value Classification/132 A Smart Refactor to Multinominal Analysis.mp4 52.4 MB
  • 10 Natural Binary Classification/128 Refactoring with Cross Entropy.mp4 51.8 MB
  • 10 Natural Binary Classification/129 Finishing the Cost Refactor.mp4 51.5 MB
  • 13 Performance Optimization/156 Creating Memory Snapshots.mp4 51.4 MB
  • 11 Multi-Value Classification/141 Refactoring Sigmoid to Softmax.mp4 51.2 MB
  • 03 Onwards to Tensorflow JS/035 A Plan to Move Forward.mp4 51.0 MB
  • 10 Natural Binary Classification/120 Encoding Label Values.mp4 50.9 MB
  • 11 Multi-Value Classification/135 Refactoring to Multi-Column Weights.mp4 50.8 MB
  • 11 Multi-Value Classification/136 A Problem to Test Multinominal Classification.mp4 50.8 MB
  • 01 What is Machine Learning/007 Dataset Structures.mp4 50.6 MB
  • 12 Image Recognition In Action/152 Dealing with Zero Variances.mp4 50.2 MB
  • 07 Increasing Performance with Vectorized Solutions/095 Fixing Standardization Issues.mp4 50.2 MB
  • 08 Plotting Data with Javascript/104 Plotting MSE History against B Values.mp4 50.1 MB
  • 13 Performance Optimization/170 Plotting Cost History.mp4 49.9 MB
  • 01 What is Machine Learning/009 What Type of Problem.mp4 49.3 MB
  • 13 Performance Optimization/163 Tensorflows Eager Memory Usage.mp4 49.1 MB
  • 13 Performance Optimization/172 Fixing Cost History.mp4 49.0 MB
  • 13 Performance Optimization/171 NaN in Cost History.mp4 48.6 MB
  • 13 Performance Optimization/166 Tidying the Training Loop.mp4 48.2 MB
  • 08 Plotting Data with Javascript/102 Observing Changing Learning Rate and MSE.mp4 48.1 MB
  • 10 Natural Binary Classification/114 The Sigmoid Equation.mp4 47.7 MB
  • 02 Algorithm Overview/030 Applying Normalization.mp4 47.6 MB
  • 02 Algorithm Overview/016 Test and Training Data.mp4 47.4 MB
  • 02 Algorithm Overview/014 Testing the Algorithm.mp4 47.1 MB
  • 12 Image Recognition In Action/146 Many Features.mp4 46.9 MB
  • 11 Multi-Value Classification/137 Classifying Continuous Values.mp4 46.7 MB
  • 07 Increasing Performance with Vectorized Solutions/092 Reminder on Standardization.mp4 46.6 MB
  • 13 Performance Optimization/154 Handing Large Datasets.mp4 46.6 MB
  • 02 Algorithm Overview/024 Multi-Dimensional KNN.mp4 46.4 MB
  • 05 Getting Started with Gradient Descent/070 Gradient Descent with Multiple Terms.mp4 46.3 MB
  • 03 Onwards to Tensorflow JS/042 Tensor Concatenation.mp4 46.3 MB
  • 06 Gradient Descent with Tensorflow/073 Data Loading.mp4 45.6 MB
  • 13 Performance Optimization/161 Measuring Footprint Reduction.mp4 45.4 MB
  • 10 Natural Binary Classification/130 Plotting Changing Cost History.mp4 45.0 MB
  • 04 Applications of Tensorflow/059 What Now.mp4 44.4 MB
  • 04 Applications of Tensorflow/057 Applying Standardization.mp4 43.5 MB
  • 03 Onwards to Tensorflow JS/043 Summing Values Along an Axis.mp4 43.4 MB
  • 04 Applications of Tensorflow/046 A Change in Data Structure.mp4 43.4 MB
  • 05 Getting Started with Gradient Descent/069 Answering Common Questions.mp4 42.9 MB
  • 02 Algorithm Overview/015 Interpreting Bad Results.mp4 42.7 MB
  • 02 Algorithm Overview/018 Generalizing KNN.mp4 40.9 MB
  • 10 Natural Binary Classification/119 Importing Vehicle Data.mp4 40.8 MB
  • 11 Multi-Value Classification/133 A Smarter Refactor.mp4 40.2 MB
  • 13 Performance Optimization/155 Minimizing Memory Usage.mp4 40.0 MB
  • 13 Performance Optimization/165 Implementing TF Tidy.mp4 39.4 MB
  • 07 Increasing Performance with Vectorized Solutions/093 Data Processing in a Helper Method.mp4 39.0 MB
  • 14 Appendix Custom CSV Loader/181 Custom Value Parsing.mp4 38.5 MB
  • 10 Natural Binary Classification/124 Gauging Classification Accuracy.mp4 38.5 MB
  • 07 Increasing Performance with Vectorized Solutions/096 Massaging Learning Rates.mp4 38.2 MB
  • 13 Performance Optimization/169 Final Memory Report.mp4 38.0 MB
  • 02 Algorithm Overview/017 Randomizing Test Data.mp4 37.7 MB
  • 13 Performance Optimization/160 Releasing References.mp4 37.7 MB
  • 04 Applications of Tensorflow/051 Moving to the Editor.mp4 36.0 MB
  • 01 What is Machine Learning/006 Identifying Relevant Data.mp4 35.6 MB
  • 06 Gradient Descent with Tensorflow/078 Updating Coefficients.mp4 35.5 MB
  • 07 Increasing Performance with Vectorized Solutions/088 Same Results Or Not.mp4 35.5 MB
  • 02 Algorithm Overview/020 Printing a Report.mp4 34.9 MB
  • 10 Natural Binary Classification/122 The Sigmoid Equation with Logistic Regression.mp4 34.4 MB
  • 01 What is Machine Learning/008 Recording Observation Data.mp4 34.3 MB
  • 14 Appendix Custom CSV Loader/180 Parsing Number Values.mp4 32.9 MB
  • 11 Multi-Value Classification/143 Calculating Accuracy.mp4 32.8 MB
  • 01 What is Machine Learning/005 Problem Outline.mp4 32.7 MB
  • 03 Onwards to Tensorflow JS/040 Tensor Accessors.mp4 31.9 MB
  • 11 Multi-Value Classification/142 Implementing Accuracy Gauges.mp4 30.1 MB
  • 02 Algorithm Overview/033 Evaluating Different Feature Values.mp4 29.3 MB
  • 06 Gradient Descent with Tensorflow/075 Formulating the Training Loop.mp4 29.0 MB
  • 13 Performance Optimization/168 One More Optimization.mp4 28.8 MB
  • 03 Onwards to Tensorflow JS/039 Logging Tensor Data.mp4 27.3 MB
  • 12 Image Recognition In Action/153 Backfilling Variance.mp4 27.0 MB
  • 05 Getting Started with Gradient Descent/060 Linear Regression.mp4 26.6 MB
  • 11 Multi-Value Classification/131 Multinominal Logistic Regression.mp4 26.2 MB
  • 12 Image Recognition In Action/144 Handwriting Recognition.mp4 25.9 MB
  • 13 Performance Optimization/164 Cleaning up Tensors with Tidy.mp4 25.4 MB
  • 10 Natural Binary Classification/111 Introducing Logistic Regression.mp4 24.6 MB
  • 13 Performance Optimization/173 Massaging Learning Parameters.mp4 23.6 MB
  • 14 Appendix Custom CSV Loader/178 Splitting into Columns.mp4 21.3 MB
  • 12 Image Recognition In Action/150 Unchanging Accuracy.mp4 21.3 MB
  • 01 What is Machine Learning/004 App Setup.mp4 20.2 MB
  • 14 Appendix Custom CSV Loader/177 Reading Files from Disk.mp4 19.5 MB
  • 13 Performance Optimization/162 Optimization Tensorflow Memory Usage.mp4 19.4 MB
  • 14 Appendix Custom CSV Loader/179 Dropping Trailing Columns.mp4 19.3 MB
  • 13 Performance Optimization/167 Measuring Reduced Memory Usage.mp4 19.0 MB
  • 14 Appendix Custom CSV Loader/175 Loading CSV Files.mp4 16.6 MB
  • 10 Natural Binary Classification/116 Changes for Logistic Regression.mp4 13.1 MB
  • 14 Appendix Custom CSV Loader/176 A Test Dataset.mp4 10.0 MB
  • 01 What is Machine Learning/001 Getting Started - How to Get Help.mp4 8.8 MB
  • 10 Natural Binary Classification/118 regressions.zip 35.1 kB
  • 05 Getting Started with Gradient Descent/068 Why a Learning Rate.id.srt 28.9 kB
  • 05 Getting Started with Gradient Descent/068 Why a Learning Rate.en.srt 26.6 kB
  • 06 Gradient Descent with Tensorflow/084 How it All Works Together.id.srt 22.2 kB
  • 06 Gradient Descent with Tensorflow/084 How it All Works Together.en.srt 21.4 kB
  • 05 Getting Started with Gradient Descent/062 Understanding Gradient Descent.id.srt 21.0 kB
  • 03 Onwards to Tensorflow JS/036 Tensor Shape and Dimension.id.srt 20.1 kB
  • 05 Getting Started with Gradient Descent/062 Understanding Gradient Descent.en.srt 19.9 kB
  • 05 Getting Started with Gradient Descent/066 Gradient Descent in Action.id.srt 19.9 kB
  • 07 Increasing Performance with Vectorized Solutions/097 Moving Towards Multivariate Regression.id.srt 19.6 kB
  • 03 Onwards to Tensorflow JS/036 Tensor Shape and Dimension.en.srt 19.5 kB
  • 02 Algorithm Overview/022 Investigating Optimal K Values.id.srt 19.5 kB
  • 05 Getting Started with Gradient Descent/066 Gradient Descent in Action.en.srt 18.9 kB
  • 07 Increasing Performance with Vectorized Solutions/097 Moving Towards Multivariate Regression.en.srt 18.6 kB
  • 02 Algorithm Overview/022 Investigating Optimal K Values.en.srt 18.5 kB
  • 05 Getting Started with Gradient Descent/071 Multiple Terms in Action.id.srt 17.9 kB
  • 11 Multi-Value Classification/139 Marginal vs Conditional Probability.id.srt 17.3 kB
  • 05 Getting Started with Gradient Descent/071 Multiple Terms in Action.en.srt 16.9 kB
  • 06 Gradient Descent with Tensorflow/079 Interpreting Results.id.srt 16.9 kB
  • 02 Algorithm Overview/011 Lodash Review.id.srt 16.8 kB
  • 05 Getting Started with Gradient Descent/063 Guessing Coefficients with MSE.id.srt 16.8 kB
  • 11 Multi-Value Classification/139 Marginal vs Conditional Probability.en.srt 16.4 kB
  • 02 Algorithm Overview/025 N-Dimension Distance.id.srt 16.4 kB
  • 01 What is Machine Learning/003 A Complete Walkthrough.id.srt 16.2 kB
  • 11 Multi-Value Classification/134 A Single Instance Approach.id.srt 16.1 kB
  • 04 Applications of Tensorflow/052 Loading CSV Data.id.srt 16.1 kB
  • 04 Applications of Tensorflow/047 KNN with Tensorflow.id.srt 16.0 kB
  • 06 Gradient Descent with Tensorflow/079 Interpreting Results.en.srt 15.8 kB
  • 05 Getting Started with Gradient Descent/063 Guessing Coefficients with MSE.en.srt 15.8 kB
  • 11 Multi-Value Classification/134 A Single Instance Approach.en.srt 15.7 kB
  • 02 Algorithm Overview/025 N-Dimension Distance.en.srt 15.6 kB
  • 02 Algorithm Overview/011 Lodash Review.en.srt 15.6 kB
  • 06 Gradient Descent with Tensorflow/083 Simplification with Matrix Multiplication.id.srt 15.6 kB
  • 01 What is Machine Learning/003 A Complete Walkthrough.en.srt 15.5 kB
  • 04 Applications of Tensorflow/052 Loading CSV Data.en.srt 15.4 kB
  • 04 Applications of Tensorflow/047 KNN with Tensorflow.en.srt 15.3 kB
  • 06 Gradient Descent with Tensorflow/076 Initial Gradient Descent Implementation.id.srt 15.2 kB
  • 07 Increasing Performance with Vectorized Solutions/086 Refactoring to One Equation.id.srt 15.1 kB
  • 13 Performance Optimization/159 Measuring Memory Usage.id.srt 15.0 kB
  • 06 Gradient Descent with Tensorflow/083 Simplification with Matrix Multiplication.en.srt 14.8 kB
  • 06 Gradient Descent with Tensorflow/076 Initial Gradient Descent Implementation.en.srt 14.6 kB
  • 07 Increasing Performance with Vectorized Solutions/086 Refactoring to One Equation.en.srt 14.2 kB
  • 02 Algorithm Overview/026 Arbitrary Feature Spaces.id.srt 14.2 kB
  • 13 Performance Optimization/159 Measuring Memory Usage.en.srt 14.2 kB
  • 07 Increasing Performance with Vectorized Solutions/089 Calculating Model Accuracy.id.srt 14.1 kB
  • 02 Algorithm Overview/031 Feature Selection with KNN.id.srt 14.0 kB
  • 04 Applications of Tensorflow/058 Debugging Calculations.id.srt 13.9 kB
  • 02 Algorithm Overview/010 How K-Nearest Neighbor Works.id.srt 13.7 kB
  • 12 Image Recognition In Action/151 Debugging the Calculation Process.id.srt 13.7 kB
  • 02 Algorithm Overview/026 Arbitrary Feature Spaces.en.srt 13.7 kB
  • 07 Increasing Performance with Vectorized Solutions/099 Learning Rate Optimization.id.srt 13.7 kB
  • 07 Increasing Performance with Vectorized Solutions/089 Calculating Model Accuracy.en.srt 13.6 kB
  • 04 Applications of Tensorflow/058 Debugging Calculations.en.srt 13.3 kB
  • 02 Algorithm Overview/010 How K-Nearest Neighbor Works.en.srt 13.3 kB
  • 12 Image Recognition In Action/151 Debugging the Calculation Process.en.srt 13.3 kB
  • 06 Gradient Descent with Tensorflow/074 Default Algorithm Options.id.srt 13.3 kB
  • 04 Applications of Tensorflow/049 Sorting Tensors.id.srt 13.2 kB
  • 03 Onwards to Tensorflow JS/044 Massaging Dimensions with ExpandDims.id.srt 13.2 kB
  • 03 Onwards to Tensorflow JS/037 Elementwise Operations.id.srt 13.1 kB
  • 03 Onwards to Tensorflow JS/034 Lets Get Our Bearings.id.srt 13.1 kB
  • 02 Algorithm Overview/031 Feature Selection with KNN.en.srt 13.0 kB
  • 06 Gradient Descent with Tensorflow/074 Default Algorithm Options.en.srt 13.0 kB
  • 14 Appendix Custom CSV Loader/184 Splitting Test and Training.id.srt 13.0 kB
  • 09 Gradient Descent Alterations/108 Iterating Over Batches.id.srt 12.9 kB
  • 04 Applications of Tensorflow/050 Averaging Top Values.id.srt 12.8 kB
  • 07 Increasing Performance with Vectorized Solutions/099 Learning Rate Optimization.en.srt 12.8 kB
  • 10 Natural Binary Classification/115 Decision Boundaries.id.srt 12.8 kB
  • 07 Increasing Performance with Vectorized Solutions/098 Refactoring for Multivariate Analysis.id.srt 12.8 kB
  • 10 Natural Binary Classification/123 A Touch More Refactoring.id.srt 12.8 kB
  • 07 Increasing Performance with Vectorized Solutions/091 Dealing with Bad Accuracy.id.srt 12.7 kB
  • 09 Gradient Descent Alterations/110 Making Predictions with the Model.id.srt 12.7 kB
  • 03 Onwards to Tensorflow JS/044 Massaging Dimensions with ExpandDims.en.srt 12.6 kB
  • 03 Onwards to Tensorflow JS/034 Lets Get Our Bearings.en.srt 12.6 kB
  • 07 Increasing Performance with Vectorized Solutions/085 Refactoring the Linear Regression Class.id.srt 12.6 kB
  • 04 Applications of Tensorflow/056 Numerical Standardization with Tensorflow.id.srt 12.5 kB
  • 02 Algorithm Overview/028 Feature Normalization.id.srt 12.5 kB
  • 07 Increasing Performance with Vectorized Solutions/090 Implementing Coefficient of Determination.id.srt 12.5 kB
  • 10 Natural Binary Classification/126 Variable Decision Boundaries.id.srt 12.4 kB
  • 09 Gradient Descent Alterations/108 Iterating Over Batches.en.srt 12.4 kB
  • 04 Applications of Tensorflow/049 Sorting Tensors.en.srt 12.4 kB
  • 12 Image Recognition In Action/149 Implementing an Accuracy Gauge.id.srt 12.4 kB
  • 04 Applications of Tensorflow/055 Normalization or Standardization.id.srt 12.3 kB
  • 14 Appendix Custom CSV Loader/184 Splitting Test and Training.en.srt 12.3 kB
  • 09 Gradient Descent Alterations/105 Batch and Stochastic Gradient Descent.id.srt 12.3 kB
  • 07 Increasing Performance with Vectorized Solutions/098 Refactoring for Multivariate Analysis.en.srt 12.2 kB
  • 10 Natural Binary Classification/115 Decision Boundaries.en.srt 12.2 kB
  • 03 Onwards to Tensorflow JS/037 Elementwise Operations.en.srt 12.2 kB
  • 09 Gradient Descent Alterations/110 Making Predictions with the Model.en.srt 12.2 kB
  • 07 Increasing Performance with Vectorized Solutions/091 Dealing with Bad Accuracy.en.srt 12.2 kB
  • 04 Applications of Tensorflow/056 Numerical Standardization with Tensorflow.en.srt 12.1 kB
  • 10 Natural Binary Classification/123 A Touch More Refactoring.en.srt 12.1 kB
  • 03 Onwards to Tensorflow JS/041 Creating Slices of Data.id.srt 12.1 kB
  • 10 Natural Binary Classification/121 Updating Linear Regression for Logistic Regression.id.srt 12.1 kB
  • 04 Applications of Tensorflow/050 Averaging Top Values.en.srt 12.1 kB
  • 06 Gradient Descent with Tensorflow/080 Matrix Multiplication.id.srt 12.1 kB
  • 04 Applications of Tensorflow/055 Normalization or Standardization.en.srt 12.0 kB
  • 07 Increasing Performance with Vectorized Solutions/090 Implementing Coefficient of Determination.en.srt 12.0 kB
  • 02 Algorithm Overview/028 Feature Normalization.en.srt 11.9 kB
  • 07 Increasing Performance with Vectorized Solutions/085 Refactoring the Linear Regression Class.en.srt 11.9 kB
  • 03 Onwards to Tensorflow JS/041 Creating Slices of Data.en.srt 11.9 kB
  • 09 Gradient Descent Alterations/105 Batch and Stochastic Gradient Descent.en.srt 11.7 kB
  • 12 Image Recognition In Action/149 Implementing an Accuracy Gauge.en.srt 11.7 kB
  • 10 Natural Binary Classification/126 Variable Decision Boundaries.en.srt 11.7 kB
  • 06 Gradient Descent with Tensorflow/080 Matrix Multiplication.en.srt 11.6 kB
  • 05 Getting Started with Gradient Descent/065 Derivatives.id.srt 11.6 kB
  • 02 Algorithm Overview/012 Implementing KNN.id.srt 11.5 kB
  • 04 Applications of Tensorflow/048 Maintaining Order Relationships.id.srt 11.4 kB
  • 10 Natural Binary Classification/112 Logistic Regression in Action.id.srt 11.4 kB
  • 10 Natural Binary Classification/121 Updating Linear Regression for Logistic Regression.en.srt 11.4 kB
  • 03 Onwards to Tensorflow JS/038 Broadcasting Operations.id.srt 11.3 kB
  • 02 Algorithm Overview/029 Normalization with MinMax.id.srt 11.2 kB
  • 05 Getting Started with Gradient Descent/065 Derivatives.en.srt 11.2 kB
  • 10 Natural Binary Classification/112 Logistic Regression in Action.en.srt 11.1 kB
  • 07 Increasing Performance with Vectorized Solutions/101 Updating Learning Rate.id.srt 11.0 kB
  • 07 Increasing Performance with Vectorized Solutions/087 A Few More Changes.id.srt 11.0 kB
  • 03 Onwards to Tensorflow JS/038 Broadcasting Operations.en.srt 11.0 kB
  • 04 Applications of Tensorflow/048 Maintaining Order Relationships.en.srt 10.9 kB
  • 13 Performance Optimization/157 The Javascript Garbage Collector.id.srt 10.9 kB
  • 02 Algorithm Overview/023 Updating KNN for Multiple Features.id.srt 10.8 kB
  • 12 Image Recognition In Action/152 Dealing with Zero Variances.id.srt 10.8 kB
  • 02 Algorithm Overview/012 Implementing KNN.en.srt 10.8 kB
  • 02 Algorithm Overview/029 Normalization with MinMax.en.srt 10.6 kB
  • 02 Algorithm Overview/023 Updating KNN for Multiple Features.en.srt 10.5 kB
  • 11 Multi-Value Classification/138 Training a Multinominal Model.id.srt 10.5 kB
  • 11 Multi-Value Classification/140 Sigmoid vs Softmax.id.srt 10.5 kB
  • 06 Gradient Descent with Tensorflow/077 Calculating MSE Slopes.id.srt 10.4 kB
  • 13 Performance Optimization/157 The Javascript Garbage Collector.en.srt 10.4 kB
  • 06 Gradient Descent with Tensorflow/082 Matrix Form of Slope Equations.id.srt 10.4 kB
  • 07 Increasing Performance with Vectorized Solutions/087 A Few More Changes.en.srt 10.3 kB
  • 07 Increasing Performance with Vectorized Solutions/101 Updating Learning Rate.en.srt 10.3 kB
  • 12 Image Recognition In Action/152 Dealing with Zero Variances.en.srt 10.2 kB
  • 02 Algorithm Overview/032 Objective Feature Picking.id.srt 10.2 kB
  • 04 Applications of Tensorflow/054 Reporting Error Percentages.id.srt 10.2 kB
  • 05 Getting Started with Gradient Descent/067 Quick Breather and Review.id.srt 10.1 kB
  • 11 Multi-Value Classification/138 Training a Multinominal Model.en.srt 10.1 kB
  • 11 Multi-Value Classification/140 Sigmoid vs Softmax.en.srt 10.1 kB
  • 06 Gradient Descent with Tensorflow/081 More on Matrix Multiplication.id.srt 10.1 kB
  • 09 Gradient Descent Alterations/109 Evaluating Batch Gradient Descent Results.id.srt 10.0 kB
  • 01 What is Machine Learning/002 Solving Machine Learning Problems.id.srt 10.0 kB
  • 04 Applications of Tensorflow/053 Running an Analysis.id.srt 9.9 kB
  • 05 Getting Started with Gradient Descent/064 Observations Around MSE.id.srt 9.9 kB
  • 06 Gradient Descent with Tensorflow/072 Project Overview.id.srt 9.9 kB
  • 06 Gradient Descent with Tensorflow/077 Calculating MSE Slopes.en.srt 9.9 kB
  • 06 Gradient Descent with Tensorflow/082 Matrix Form of Slope Equations.en.srt 9.8 kB
  • 10 Natural Binary Classification/117 Project Setup for Logistic Regression.id.srt 9.8 kB
  • 13 Performance Optimization/158 Shallow vs Retained Memory Usage.id.srt 9.8 kB
  • 01 What is Machine Learning/007 Dataset Structures.id.srt 9.7 kB
  • 06 Gradient Descent with Tensorflow/072 Project Overview.en.srt 9.7 kB
  • 06 Gradient Descent with Tensorflow/081 More on Matrix Multiplication.en.srt 9.7 kB
  • 02 Algorithm Overview/032 Objective Feature Picking.en.srt 9.6 kB
  • 07 Increasing Performance with Vectorized Solutions/095 Fixing Standardization Issues.id.srt 9.6 kB
  • 02 Algorithm Overview/013 Finishing KNN Implementation.id.srt 9.6 kB
  • 04 Applications of Tensorflow/053 Running an Analysis.en.srt 9.6 kB
  • 04 Applications of Tensorflow/054 Reporting Error Percentages.en.srt 9.5 kB
  • 05 Getting Started with Gradient Descent/064 Observations Around MSE.en.srt 9.5 kB
  • 10 Natural Binary Classification/127 Mean Squared Error vs Cross Entropy.id.srt 9.5 kB
  • 01 What is Machine Learning/002 Solving Machine Learning Problems.en.srt 9.5 kB
  • 10 Natural Binary Classification/117 Project Setup for Logistic Regression.en.srt 9.5 kB
  • 12 Image Recognition In Action/147 Flattening Image Data.id.srt 9.5 kB
  • 01 What is Machine Learning/007 Dataset Structures.en.srt 9.4 kB
  • 05 Getting Started with Gradient Descent/067 Quick Breather and Review.en.srt 9.4 kB
  • 10 Natural Binary Classification/113 Bad Equation Fits.id.srt 9.4 kB
  • 09 Gradient Descent Alterations/107 Determining Batch Size and Quantity.id.srt 9.4 kB
  • 13 Performance Optimization/158 Shallow vs Retained Memory Usage.en.srt 9.3 kB
  • 09 Gradient Descent Alterations/109 Evaluating Batch Gradient Descent Results.en.srt 9.3 kB
  • 07 Increasing Performance with Vectorized Solutions/094 Reapplying Standardization.id.srt 9.3 kB
  • 10 Natural Binary Classification/125 Implementing a Test Function.id.srt 9.2 kB
  • 03 Onwards to Tensorflow JS/040 Tensor Accessors.id.srt 9.2 kB
  • 02 Algorithm Overview/027 Magnitude Offsets in Features.id.srt 9.2 kB
  • 14 Appendix Custom CSV Loader/183 Shuffling Data via Seed Phrase.id.srt 9.2 kB
  • 12 Image Recognition In Action/148 Encoding Label Values.id.srt 9.2 kB
  • 07 Increasing Performance with Vectorized Solutions/095 Fixing Standardization Issues.en.srt 9.2 kB
  • 10 Natural Binary Classification/127 Mean Squared Error vs Cross Entropy.en.srt 9.1 kB
  • 12 Image Recognition In Action/147 Flattening Image Data.en.srt 9.0 kB
  • 08 Plotting Data with Javascript/103 Plotting MSE Values.id.srt 9.0 kB
  • 02 Algorithm Overview/013 Finishing KNN Implementation.en.srt 9.0 kB
  • 09 Gradient Descent Alterations/107 Determining Batch Size and Quantity.en.srt 9.0 kB
  • 03 Onwards to Tensorflow JS/042 Tensor Concatenation.id.srt 9.0 kB
  • 11 Multi-Value Classification/132 A Smart Refactor to Multinominal Analysis.id.srt 9.0 kB
  • 02 Algorithm Overview/027 Magnitude Offsets in Features.en.srt 8.9 kB
  • 03 Onwards to Tensorflow JS/043 Summing Values Along an Axis.id.srt 8.9 kB
  • 10 Natural Binary Classification/113 Bad Equation Fits.en.srt 8.8 kB
  • 13 Performance Optimization/156 Creating Memory Snapshots.id.srt 8.8 kB
  • 07 Increasing Performance with Vectorized Solutions/100 Recording MSE History.id.srt 8.8 kB
  • 10 Natural Binary Classification/125 Implementing a Test Function.en.srt 8.8 kB
  • 03 Onwards to Tensorflow JS/040 Tensor Accessors.en.srt 8.8 kB
  • 02 Algorithm Overview/019 Gauging Accuracy.id.srt 8.7 kB
  • 03 Onwards to Tensorflow JS/042 Tensor Concatenation.en.srt 8.7 kB
  • 07 Increasing Performance with Vectorized Solutions/094 Reapplying Standardization.en.srt 8.7 kB
  • 10 Natural Binary Classification/128 Refactoring with Cross Entropy.id.srt 8.7 kB
  • 12 Image Recognition In Action/148 Encoding Label Values.en.srt 8.7 kB
  • 14 Appendix Custom CSV Loader/183 Shuffling Data via Seed Phrase.en.srt 8.7 kB
  • 09 Gradient Descent Alterations/106 Refactoring Towards Batch Gradient Descent.id.srt 8.5 kB
  • 12 Image Recognition In Action/145 Greyscale Values.id.srt 8.5 kB
  • 03 Onwards to Tensorflow JS/043 Summing Values Along an Axis.en.srt 8.5 kB
  • 03 Onwards to Tensorflow JS/035 A Plan to Move Forward.id.srt 8.4 kB
  • 11 Multi-Value Classification/132 A Smart Refactor to Multinominal Analysis.en.srt 8.4 kB
  • 08 Plotting Data with Javascript/103 Plotting MSE Values.en.srt 8.4 kB
  • 04 Applications of Tensorflow/045 KNN with Regression.id.srt 8.4 kB
  • 10 Natural Binary Classification/128 Refactoring with Cross Entropy.en.srt 8.4 kB
  • 06 Gradient Descent with Tensorflow/073 Data Loading.id.srt 8.4 kB
  • 13 Performance Optimization/156 Creating Memory Snapshots.en.srt 8.4 kB
  • 07 Increasing Performance with Vectorized Solutions/100 Recording MSE History.en.srt 8.3 kB
  • 02 Algorithm Overview/021 Refactoring Accuracy Reporting.id.srt 8.3 kB
  • 14 Appendix Custom CSV Loader/182 Extracting Data Columns.id.srt 8.3 kB
  • 09 Gradient Descent Alterations/106 Refactoring Towards Batch Gradient Descent.en.srt 8.2 kB
  • 05 Getting Started with Gradient Descent/061 Why Linear Regression.id.srt 8.2 kB
  • 04 Applications of Tensorflow/045 KNN with Regression.en.srt 8.2 kB
  • 02 Algorithm Overview/019 Gauging Accuracy.en.srt 8.2 kB
  • 12 Image Recognition In Action/145 Greyscale Values.en.srt 8.1 kB
  • 11 Multi-Value Classification/141 Refactoring Sigmoid to Softmax.id.srt 8.1 kB
  • 11 Multi-Value Classification/135 Refactoring to Multi-Column Weights.id.srt 8.1 kB
  • 05 Getting Started with Gradient Descent/070 Gradient Descent with Multiple Terms.id.srt 8.1 kB
  • 01 What is Machine Learning/009 What Type of Problem.id.srt 8.0 kB
  • 13 Performance Optimization/155 Minimizing Memory Usage.id.srt 8.0 kB
  • 06 Gradient Descent with Tensorflow/073 Data Loading.en.srt 8.0 kB
  • 14 Appendix Custom CSV Loader/182 Extracting Data Columns.en.srt 7.9 kB
  • 03 Onwards to Tensorflow JS/035 A Plan to Move Forward.en.srt 7.9 kB
  • 10 Natural Binary Classification/114 The Sigmoid Equation.id.srt 7.9 kB
  • 11 Multi-Value Classification/135 Refactoring to Multi-Column Weights.en.srt 7.8 kB
  • 13 Performance Optimization/172 Fixing Cost History.id.srt 7.8 kB
  • 05 Getting Started with Gradient Descent/061 Why Linear Regression.en.srt 7.8 kB
  • 02 Algorithm Overview/021 Refactoring Accuracy Reporting.en.srt 7.8 kB
  • 01 What is Machine Learning/009 What Type of Problem.en.srt 7.8 kB
  • 13 Performance Optimization/154 Handing Large Datasets.id.srt 7.8 kB
  • 11 Multi-Value Classification/136 A Problem to Test Multinominal Classification.id.srt 7.7 kB
  • 11 Multi-Value Classification/141 Refactoring Sigmoid to Softmax.en.srt 7.7 kB
  • 13 Performance Optimization/155 Minimizing Memory Usage.en.srt 7.7 kB
  • 02 Algorithm Overview/014 Testing the Algorithm.id.srt 7.6 kB
  • 05 Getting Started with Gradient Descent/070 Gradient Descent with Multiple Terms.en.srt 7.6 kB
  • 11 Multi-Value Classification/137 Classifying Continuous Values.id.srt 7.6 kB
  • 02 Algorithm Overview/030 Applying Normalization.id.srt 7.5 kB
  • 13 Performance Optimization/163 Tensorflows Eager Memory Usage.id.srt 7.5 kB
  • 08 Plotting Data with Javascript/104 Plotting MSE History against B Values.id.srt 7.5 kB
  • 07 Increasing Performance with Vectorized Solutions/092 Reminder on Standardization.id.srt 7.5 kB
  • 13 Performance Optimization/171 NaN in Cost History.id.srt 7.5 kB
  • 10 Natural Binary Classification/114 The Sigmoid Equation.en.srt 7.4 kB
  • 10 Natural Binary Classification/129 Finishing the Cost Refactor.id.srt 7.4 kB
  • 08 Plotting Data with Javascript/102 Observing Changing Learning Rate and MSE.id.srt 7.4 kB
  • 13 Performance Optimization/174 Improving Model Accuracy.id.srt 7.4 kB
  • 11 Multi-Value Classification/136 A Problem to Test Multinominal Classification.en.srt 7.3 kB
  • 13 Performance Optimization/172 Fixing Cost History.en.srt 7.3 kB
  • 10 Natural Binary Classification/122 The Sigmoid Equation with Logistic Regression.id.srt 7.3 kB
  • 02 Algorithm Overview/014 Testing the Algorithm.en.srt 7.3 kB
  • 10 Natural Binary Classification/120 Encoding Label Values.id.srt 7.3 kB
  • 08 Plotting Data with Javascript/104 Plotting MSE History against B Values.en.srt 7.2 kB
  • 13 Performance Optimization/154 Handing Large Datasets.en.srt 7.2 kB
  • 11 Multi-Value Classification/137 Classifying Continuous Values.en.srt 7.2 kB
  • 07 Increasing Performance with Vectorized Solutions/092 Reminder on Standardization.en.srt 7.1 kB
  • 13 Performance Optimization/163 Tensorflows Eager Memory Usage.en.srt 7.1 kB
  • 13 Performance Optimization/170 Plotting Cost History.id.srt 7.1 kB
  • 02 Algorithm Overview/030 Applying Normalization.en.srt 7.1 kB
  • 13 Performance Optimization/171 NaN in Cost History.en.srt 7.1 kB
  • 10 Natural Binary Classification/119 Importing Vehicle Data.id.srt 7.0 kB
  • 10 Natural Binary Classification/120 Encoding Label Values.en.srt 7.0 kB
  • 10 Natural Binary Classification/129 Finishing the Cost Refactor.en.srt 7.0 kB
  • 14 Appendix Custom CSV Loader/181 Custom Value Parsing.id.srt 7.0 kB
  • 04 Applications of Tensorflow/059 What Now.id.srt 7.0 kB
  • 01 What is Machine Learning/006 Identifying Relevant Data.id.srt 7.0 kB
  • 08 Plotting Data with Javascript/102 Observing Changing Learning Rate and MSE.en.srt 7.0 kB
  • 04 Applications of Tensorflow/046 A Change in Data Structure.id.srt 6.9 kB
  • 10 Natural Binary Classification/122 The Sigmoid Equation with Logistic Regression.en.srt 6.9 kB
  • 13 Performance Optimization/174 Improving Model Accuracy.en.srt 6.9 kB
  • 01 What is Machine Learning/006 Identifying Relevant Data.en.srt 6.8 kB
  • 10 Natural Binary Classification/119 Importing Vehicle Data.en.srt 6.8 kB
  • 02 Algorithm Overview/015 Interpreting Bad Results.id.srt 6.8 kB
  • 13 Performance Optimization/161 Measuring Footprint Reduction.id.srt 6.8 kB
  • 03 Onwards to Tensorflow JS/039 Logging Tensor Data.id.srt 6.8 kB
  • 13 Performance Optimization/170 Plotting Cost History.en.srt 6.8 kB
  • 04 Applications of Tensorflow/046 A Change in Data Structure.en.srt 6.7 kB
  • 14 Appendix Custom CSV Loader/181 Custom Value Parsing.en.srt 6.7 kB
  • 02 Algorithm Overview/015 Interpreting Bad Results.en.srt 6.6 kB
  • 02 Algorithm Overview/024 Multi-Dimensional KNN.id.srt 6.6 kB
  • 02 Algorithm Overview/016 Test and Training Data.id.srt 6.6 kB
  • 13 Performance Optimization/166 Tidying the Training Loop.id.srt 6.6 kB
  • 04 Applications of Tensorflow/059 What Now.en.srt 6.5 kB
  • 04 Applications of Tensorflow/057 Applying Standardization.id.srt 6.5 kB
  • 05 Getting Started with Gradient Descent/069 Answering Common Questions.id.srt 6.5 kB
  • 02 Algorithm Overview/024 Multi-Dimensional KNN.en.srt 6.5 kB
  • 01 What is Machine Learning/008 Recording Observation Data.id.srt 6.4 kB
  • 13 Performance Optimization/166 Tidying the Training Loop.en.srt 6.4 kB
  • 03 Onwards to Tensorflow JS/039 Logging Tensor Data.en.srt 6.4 kB
  • 13 Performance Optimization/161 Measuring Footprint Reduction.en.srt 6.4 kB
  • 04 Applications of Tensorflow/057 Applying Standardization.en.srt 6.3 kB
  • 11 Multi-Value Classification/133 A Smarter Refactor.id.srt 6.3 kB
  • 02 Algorithm Overview/016 Test and Training Data.en.srt 6.2 kB
  • 01 What is Machine Learning/008 Recording Observation Data.en.srt 6.2 kB
  • 10 Natural Binary Classification/130 Plotting Changing Cost History.id.srt 6.2 kB
  • 02 Algorithm Overview/017 Randomizing Test Data.id.srt 6.1 kB
  • 02 Algorithm Overview/018 Generalizing KNN.id.srt 6.1 kB
  • 05 Getting Started with Gradient Descent/069 Answering Common Questions.en.srt 6.1 kB
  • 11 Multi-Value Classification/133 A Smarter Refactor.en.srt 6.1 kB
  • 07 Increasing Performance with Vectorized Solutions/088 Same Results Or Not.id.srt 6.0 kB
  • 07 Increasing Performance with Vectorized Solutions/093 Data Processing in a Helper Method.id.srt 5.8 kB
  • 02 Algorithm Overview/017 Randomizing Test Data.en.srt 5.8 kB
  • 10 Natural Binary Classification/130 Plotting Changing Cost History.en.srt 5.8 kB
  • 14 Appendix Custom CSV Loader/180 Parsing Number Values.id.srt 5.8 kB
  • 02 Algorithm Overview/018 Generalizing KNN.en.srt 5.8 kB
  • 13 Performance Optimization/165 Implementing TF Tidy.id.srt 5.7 kB
  • 10 Natural Binary Classification/124 Gauging Classification Accuracy.id.srt 5.7 kB
  • 07 Increasing Performance with Vectorized Solutions/093 Data Processing in a Helper Method.en.srt 5.7 kB
  • 12 Image Recognition In Action/146 Many Features.id.srt 5.6 kB
  • 14 Appendix Custom CSV Loader/180 Parsing Number Values.en.srt 5.6 kB
  • 07 Increasing Performance with Vectorized Solutions/088 Same Results Or Not.en.srt 5.6 kB
  • 10 Natural Binary Classification/124 Gauging Classification Accuracy.en.srt 5.6 kB
  • 13 Performance Optimization/165 Implementing TF Tidy.en.srt 5.5 kB
  • 02 Algorithm Overview/020 Printing a Report.id.srt 5.5 kB
  • 11 Multi-Value Classification/143 Calculating Accuracy.id.srt 5.5 kB
  • 12 Image Recognition In Action/146 Many Features.en.srt 5.5 kB
  • 04 Applications of Tensorflow/051 Moving to the Editor.id.srt 5.5 kB
  • 06 Gradient Descent with Tensorflow/078 Updating Coefficients.id.srt 5.4 kB
  • 04 Applications of Tensorflow/051 Moving to the Editor.en.srt 5.4 kB
  • 06 Gradient Descent with Tensorflow/075 Formulating the Training Loop.id.srt 5.4 kB
  • 13 Performance Optimization/160 Releasing References.id.srt 5.3 kB
  • 11 Multi-Value Classification/143 Calculating Accuracy.en.srt 5.2 kB
  • 01 What is Machine Learning/005 Problem Outline.id.srt 5.2 kB
  • 06 Gradient Descent with Tensorflow/075 Formulating the Training Loop.en.srt 5.2 kB
  • 07 Increasing Performance with Vectorized Solutions/096 Massaging Learning Rates.id.srt 5.2 kB
  • 02 Algorithm Overview/020 Printing a Report.en.srt 5.1 kB
  • 06 Gradient Descent with Tensorflow/078 Updating Coefficients.en.srt 5.1 kB
  • 13 Performance Optimization/160 Releasing References.en.srt 5.1 kB
  • 01 What is Machine Learning/005 Problem Outline.en.srt 5.0 kB
  • 05 Getting Started with Gradient Descent/060 Linear Regression.id.srt 4.9 kB
  • 13 Performance Optimization/169 Final Memory Report.id.srt 4.9 kB
  • 07 Increasing Performance with Vectorized Solutions/096 Massaging Learning Rates.en.srt 4.8 kB
  • 13 Performance Optimization/164 Cleaning up Tensors with Tidy.id.srt 4.7 kB
  • 14 Appendix Custom CSV Loader/177 Reading Files from Disk.id.srt 4.6 kB
  • 05 Getting Started with Gradient Descent/060 Linear Regression.en.srt 4.6 kB
  • 13 Performance Optimization/169 Final Memory Report.en.srt 4.6 kB
  • 14 Appendix Custom CSV Loader/177 Reading Files from Disk.en.srt 4.5 kB
  • 14 Appendix Custom CSV Loader/178 Splitting into Columns.id.srt 4.5 kB
  • 13 Performance Optimization/164 Cleaning up Tensors with Tidy.en.srt 4.5 kB
  • 02 Algorithm Overview/033 Evaluating Different Feature Values.id.srt 4.4 kB
  • 11 Multi-Value Classification/142 Implementing Accuracy Gauges.id.srt 4.4 kB
  • 12 Image Recognition In Action/153 Backfilling Variance.id.srt 4.4 kB
  • 11 Multi-Value Classification/142 Implementing Accuracy Gauges.en.srt 4.4 kB
  • 14 Appendix Custom CSV Loader/178 Splitting into Columns.en.srt 4.4 kB
  • 02 Algorithm Overview/033 Evaluating Different Feature Values.en.srt 4.3 kB
  • 14 Appendix Custom CSV Loader/179 Dropping Trailing Columns.id.srt 4.2 kB
  • 12 Image Recognition In Action/153 Backfilling Variance.en.srt 4.2 kB
  • 10 Natural Binary Classification/111 Introducing Logistic Regression.id.srt 4.1 kB
  • 10 Natural Binary Classification/111 Introducing Logistic Regression.en.srt 4.0 kB
  • 13 Performance Optimization/168 One More Optimization.id.srt 4.0 kB
  • 14 Appendix Custom CSV Loader/179 Dropping Trailing Columns.en.srt 4.0 kB
  • 11 Multi-Value Classification/131 Multinominal Logistic Regression.id.srt 3.9 kB
  • 13 Performance Optimization/168 One More Optimization.en.srt 3.8 kB
  • 12 Image Recognition In Action/144 Handwriting Recognition.id.srt 3.8 kB
  • 01 What is Machine Learning/004 App Setup.id.srt 3.7 kB
  • 15 Extras/185 Bonus.html 3.7 kB
  • 11 Multi-Value Classification/131 Multinominal Logistic Regression.en.srt 3.7 kB
  • 12 Image Recognition In Action/144 Handwriting Recognition.en.srt 3.7 kB
  • 14 Appendix Custom CSV Loader/175 Loading CSV Files.id.srt 3.6 kB
  • 01 What is Machine Learning/004 App Setup.en.srt 3.5 kB
  • 12 Image Recognition In Action/150 Unchanging Accuracy.id.srt 3.5 kB
  • 14 Appendix Custom CSV Loader/175 Loading CSV Files.en.srt 3.5 kB
  • 12 Image Recognition In Action/150 Unchanging Accuracy.en.srt 3.3 kB
  • 13 Performance Optimization/173 Massaging Learning Parameters.id.srt 3.1 kB
  • 14 Appendix Custom CSV Loader/176 A Test Dataset.id.srt 3.0 kB
  • 14 Appendix Custom CSV Loader/176 A Test Dataset.en.srt 3.0 kB
  • 13 Performance Optimization/162 Optimization Tensorflow Memory Usage.id.srt 3.0 kB
  • 13 Performance Optimization/173 Massaging Learning Parameters.en.srt 2.8 kB
  • 13 Performance Optimization/162 Optimization Tensorflow Memory Usage.en.srt 2.7 kB
  • 13 Performance Optimization/167 Measuring Reduced Memory Usage.id.srt 2.6 kB
  • 13 Performance Optimization/167 Measuring Reduced Memory Usage.en.srt 2.5 kB
  • 10 Natural Binary Classification/116 Changes for Logistic Regression.id.srt 2.1 kB
  • 10 Natural Binary Classification/116 Changes for Logistic Regression.en.srt 2.0 kB
  • 01 What is Machine Learning/001 Getting Started - How to Get Help.id.srt 1.9 kB
  • 01 What is Machine Learning/001 Getting Started - How to Get Help.en.srt 1.8 kB
  • 10 Natural Binary Classification/118 Project Download.html 1.1 kB
  • [FreeCourseWorld.Com].url 54 Bytes
  • [DesireCourse.Net].url 51 Bytes
  • [CourseClub.Me].url 48 Bytes

随机展示

相关说明

本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!