搜索
[Tutorialsplanet.NET] Udemy - Machine Learning 101 with Scikit-learn and StatsModels
磁力链接/BT种子名称
[Tutorialsplanet.NET] Udemy - Machine Learning 101 with Scikit-learn and StatsModels
磁力链接/BT种子简介
种子哈希:
d9083f9a5c05b1841aa3c62ec6670163f16b3b21
文件大小:
2.48G
已经下载:
245
次
下载速度:
极快
收录时间:
2021-03-28
最近下载:
2024-11-29
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:D9083F9A5C05B1841AA3C62EC6670163F16B3B21
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
最近搜索
コスプレ実写asmr
优优
现场脱内裤
耀灵推特
pink discography flac
168cm喷水
蒋勤勤生图
pedomom
[+高清剧集网+www.bthdtv.com+]
韩国完整版
the breed
fc2-ppv-4584528
maxxxine 2024 lat
完具白丝
behind scenes
midv-531
失恋妹妹
defloration.20
推特小仙云
欲雨雨
不handang
ipx-034
wowgirls.11.11.17
反差小娇妻
合不
高贵老师
evil 2019 1080p
関西援交 45
91东哥
妹
文件列表
5. Linear Regression - Practical Example/1. Practical Example (Part 1).mp4
101.8 MB
6. Logistic Regression/3. What is the Difference Between a Logistic and a Logit Function.mp4
79.5 MB
7. Cluster Analysis/17. What Can be Done with Cluster Analysis.mp4
66.6 MB
7. Cluster Analysis/2. Examples of Clustering.mp4
66.0 MB
6. Logistic Regression/14. Underfitting and Overfitting.srt
62.2 MB
5. Linear Regression - Practical Example/8. Practical Example (Part 5).mp4
60.7 MB
5. Linear Regression - Practical Example/6. Practical Example (Part 4).mp4
58.7 MB
1. Introduction/1. What Does the Course Cover.mp4
54.0 MB
3. Linear Regression with StatsModels/38. Dealing with Categorical Data.mp4
53.9 MB
3. Linear Regression with StatsModels/3. The Linear Regression Model.mp4
53.5 MB
7. Cluster Analysis/16. Practical Example Market Segmentation (Part 2).mp4
53.3 MB
3. Linear Regression with StatsModels/23. Adjusted R-Squared.mp4
52.1 MB
4. Linear Regression with Sklearn/19. Training and Testing.mp4
51.6 MB
7. Cluster Analysis/6. A Hands on Example of K-Means.mp4
51.0 MB
5. Linear Regression - Practical Example/2. Practical Example (Part 2).mp4
48.2 MB
7. Cluster Analysis/1. Introduction to Cluster Analysis.mp4
46.8 MB
3. Linear Regression with StatsModels/15. SST, SSR, and SSE.mp4
44.3 MB
3. Linear Regression with StatsModels/10. Simple Linear Regression in Python.mp4
43.8 MB
2. Setting Up The Working Environment/2. Why Python and Why Jupyter.mp4
43.1 MB
3. Linear Regression with StatsModels/13. What Does the StatsModels Summary Regression Table Tell us.mp4
42.9 MB
7. Cluster Analysis/10. The Elbow Method or How to Choose the Number of Clusters.mp4
42.3 MB
7. Cluster Analysis/15. Practical Example Market Segmentation (Part 1).srt
42.2 MB
7. Cluster Analysis/15. Practical Example Market Segmentation (Part 1).mp4
42.2 MB
3. Linear Regression with StatsModels/33. A3 Normality and Homoscedasticity.mp4
41.9 MB
3. Linear Regression with StatsModels/38. Dealing with Categorical Data.srt
41.5 MB
4. Linear Regression with Sklearn/14. Feature Scaling.mp4
41.0 MB
8. Cluster Analysis Additional Topics/1. Other Types of Clustering.mp4
38.9 MB
3. Linear Regression with StatsModels/19. Goodness of Fit The R-Squared.mp4
38.8 MB
3. Linear Regression with StatsModels/9. Python Packages Installation.mp4
38.6 MB
6. Logistic Regression/10. Dummies in a Logistic Regression.mp4
37.3 MB
2. Setting Up The Working Environment/4. Installing Anaconda.mp4
36.6 MB
4. Linear Regression with Sklearn/15. Feature Selection through Standardization.mp4
36.6 MB
4. Linear Regression with Sklearn/3. Simple Linear Regression with sklearn.mp4
36.5 MB
7. Cluster Analysis/12. Pros and Cons of K-Means.mp4
34.2 MB
3. Linear Regression with StatsModels/31. A2 No Endogeneity.mp4
34.0 MB
6. Logistic Regression/2. A Simple Example of a Logistic Regression in Python.mp4
33.7 MB
4. Linear Regression with Sklearn/4. Simple Linear Regression with sklearn - Summary Table.mp4
33.6 MB
4. Linear Regression with Sklearn/8. Adjusted R-Squared.mp4
32.4 MB
6. Logistic Regression/15. Testing our Model and Bulding a Confusion Matrix.mp4
32.0 MB
7. Cluster Analysis/3. Classification vs Clustering.mp4
31.9 MB
4. Linear Regression with Sklearn/10. Feature Selection through p-values (F-regression).mp4
31.0 MB
6. Logistic Regression/12. Assessing the Accuracy of a Classification Model.mp4
31.0 MB
6. Logistic Regression/9. Interpreting the Odds Ratio.mp4
30.3 MB
3. Linear Regression with StatsModels/34. A4 No Autocorrelation.mp4
30.0 MB
6. Logistic Regression/7. Going through the Regression Summary Table.mp4
29.2 MB
8. Cluster Analysis Additional Topics/3. Heatmaps.mp4
28.7 MB
4. Linear Regression with Sklearn/1. What is sklearn.mp4
28.6 MB
7. Cluster Analysis/13. Standardization of Features when Clustering.mp4
28.1 MB
8. Cluster Analysis Additional Topics/2. The Dendrogram.mp4
28.1 MB
3. Linear Regression with StatsModels/36. A5 No Multicollinearity.mp4
27.9 MB
3. Linear Regression with StatsModels/17. The Ordinary Least Squares (OLS).mp4
27.3 MB
4. Linear Regression with Sklearn/16. Making Predictions with Standardized Coefficients.mp4
27.2 MB
7. Cluster Analysis/5. K-Means Clustering.mp4
26.2 MB
5. Linear Regression - Practical Example/4. Practical Example (Part 3).mp4
24.9 MB
6. Logistic Regression/1. Introduction to Logistic Regression.mp4
24.6 MB
3. Linear Regression with StatsModels/40. Making Predictions.mp4
24.2 MB
2. Setting Up The Working Environment/6. The Jupyter Dashboard - Part 2.mp4
22.3 MB
6. Logistic Regression/6. A Coding Tip (optional).mp4
22.1 MB
6. Logistic Regression/14. Underfitting and Overfitting.mp4
21.4 MB
7. Cluster Analysis/8. Categorical Data in Cluster Analysis.mp4
21.2 MB
4. Linear Regression with Sklearn/7. Multiple Linear Regression with sklearn.mp4
21.0 MB
3. Linear Regression with StatsModels/27. Assumptions of the OLS Framework.mp4
20.3 MB
4. Linear Regression with Sklearn/2. Game Plan for sklearn.mp4
20.3 MB
3. Linear Regression with StatsModels/21. The Multiple Linear Regression Model.mp4
20.0 MB
4. Linear Regression with Sklearn/18. Underfitting and Overfitting.mp4
17.8 MB
6. Logistic Regression/4. Your First Logistic Regression.mp4
16.7 MB
3. Linear Regression with StatsModels/26. F-Statistic and F-Test for a Linear Regression.mp4
15.8 MB
3. Linear Regression with StatsModels/1. Introduction to Regression Analysis.mp4
15.4 MB
7. Cluster Analysis/4. Math Concepts Needed to Proceed.mp4
14.1 MB
3. Linear Regression with StatsModels/5. Correlation vs Regression.mp4
13.3 MB
4. Linear Regression with Sklearn/12. Creating a Summary Table with the p-values.mp4
12.9 MB
3. Linear Regression with StatsModels/29. A1 Linearity.mp4
12.6 MB
3. Linear Regression with StatsModels/12. What is Seaborn.mp4
11.5 MB
2. Setting Up The Working Environment/5. The Jupyter Dashboard - Part 1.mp4
10.0 MB
7. Cluster Analysis/14. Cluster Analysis and Regression Analysis.mp4
9.6 MB
2. Setting Up The Working Environment/9. Installing sklearn.mp4
8.2 MB
2. Setting Up The Working Environment/1. Setting Up the Environment - An Introduction (Do Not Skip, Please)!.mp4
5.5 MB
3. Linear Regression with StatsModels/7. Geometrical Representation.mp4
5.2 MB
2. Setting Up The Working Environment/7.1 Shortcuts-for-Jupyter.pdf
634.0 kB
6. Logistic Regression/1.1 Course_Notes_Logistic_Regression.pdf
343.2 kB
6. Logistic Regression/2.2 Course_Notes_Logistic_Regression.pdf
343.2 kB
3. Linear Regression with StatsModels/1.1 Course notes_regression_analysis.pdf
319.7 kB
3. Linear Regression with StatsModels/3.1 Course notes_regression_analysis.pdf
319.7 kB
7. Cluster Analysis/1.1 Course_Notes_Cluster_Analysis.pdf
213.7 kB
7. Cluster Analysis/2.1 Course_Notes_Cluster_Analysis.pdf
213.7 kB
5. Linear Regression - Practical Example/1. Practical Example (Part 1).srt
15.2 kB
5. Linear Regression - Practical Example/6. Practical Example (Part 4).srt
11.8 kB
5. Linear Regression - Practical Example/8. Practical Example (Part 5).srt
10.8 kB
4. Linear Regression with Sklearn/19. Training and Testing.srt
9.8 kB
7. Cluster Analysis/6. A Hands on Example of K-Means.srt
9.4 kB
7. Cluster Analysis/16. Practical Example Market Segmentation (Part 2).srt
9.1 kB
5. Linear Regression - Practical Example/2. Practical Example (Part 2).srt
8.2 kB
3. Linear Regression with StatsModels/10. Simple Linear Regression in Python.srt
8.1 kB
4. Linear Regression with Sklearn/14. Feature Scaling.srt
7.9 kB
8. Cluster Analysis Additional Topics/2. The Dendrogram.srt
7.6 kB
4. Linear Regression with Sklearn/3. Simple Linear Regression with sklearn.srt
7.5 kB
4. Linear Regression with Sklearn/15. Feature Selection through Standardization.srt
7.4 kB
7. Cluster Analysis/10. The Elbow Method or How to Choose the Number of Clusters.srt
7.4 kB
3. Linear Regression with StatsModels/23. Adjusted R-Squared.srt
7.3 kB
3. Linear Regression with StatsModels/3. The Linear Regression Model.srt
7.1 kB
2. Setting Up The Working Environment/6. The Jupyter Dashboard - Part 2.srt
6.9 kB
4. Linear Regression with Sklearn/4. Simple Linear Regression with sklearn - Summary Table.srt
6.9 kB
4. Linear Regression with Sklearn/10. Feature Selection through p-values (F-regression).srt
6.8 kB
3. Linear Regression with StatsModels/19. Goodness of Fit The R-Squared.srt
6.8 kB
3. Linear Regression with StatsModels/33. A3 Normality and Homoscedasticity.srt
6.7 kB
7. Cluster Analysis/5. K-Means Clustering.srt
6.7 kB
3. Linear Regression with StatsModels/13. What Does the StatsModels Summary Regression Table Tell us.srt
6.7 kB
6. Logistic Regression/15. Testing our Model and Bulding a Confusion Matrix.srt
6.6 kB
8. Cluster Analysis Additional Topics/3. Heatmaps.srt
6.5 kB
7. Cluster Analysis/17. What Can be Done with Cluster Analysis.srt
6.5 kB
2. Setting Up The Working Environment/2. Why Python and Why Jupyter.srt
6.5 kB
4. Linear Regression with Sklearn/8. Adjusted R-Squared.srt
6.4 kB
7. Cluster Analysis/2. Examples of Clustering.srt
6.3 kB
1. Introduction/1. What Does the Course Cover.srt
6.2 kB
7. Cluster Analysis/13. Standardization of Features when Clustering.srt
6.1 kB
6. Logistic Regression/2. A Simple Example of a Logistic Regression in Python.srt
5.9 kB
4. Linear Regression with Sklearn/16. Making Predictions with Standardized Coefficients.srt
5.7 kB
6. Logistic Regression/10. Dummies in a Logistic Regression.srt
5.5 kB
3. Linear Regression with StatsModels/9. Python Packages Installation.srt
5.5 kB
3. Linear Regression with StatsModels/31. A2 No Endogeneity.srt
5.4 kB
6. Logistic Regression/7. Going through the Regression Summary Table.srt
5.2 kB
6. Logistic Regression/3. What is the Difference Between a Logistic and a Logit Function.srt
5.0 kB
3. Linear Regression with StatsModels/34. A4 No Autocorrelation.srt
4.9 kB
7. Cluster Analysis/1. Introduction to Cluster Analysis.srt
4.9 kB
3. Linear Regression with StatsModels/36. A5 No Multicollinearity.srt
4.8 kB
6. Logistic Regression/9. Interpreting the Odds Ratio.srt
4.8 kB
8. Cluster Analysis Additional Topics/1. Other Types of Clustering.srt
4.8 kB
2. Setting Up The Working Environment/4. Installing Anaconda.srt
4.7 kB
7. Cluster Analysis/12. Pros and Cons of K-Means.srt
4.7 kB
3. Linear Regression with StatsModels/40. Making Predictions.srt
4.6 kB
6. Logistic Regression/12. Assessing the Accuracy of a Classification Model.srt
4.5 kB
4. Linear Regression with Sklearn/7. Multiple Linear Regression with sklearn.srt
4.3 kB
5. Linear Regression - Practical Example/4. Practical Example (Part 3).srt
4.2 kB
7. Cluster Analysis/4. Math Concepts Needed to Proceed.srt
4.2 kB
3. Linear Regression with StatsModels/15. SST, SSR, and SSE.srt
4.1 kB
3. Linear Regression with StatsModels/17. The Ordinary Least Squares (OLS).srt
3.6 kB
4. Linear Regression with Sklearn/18. Underfitting and Overfitting.srt
3.5 kB
6. Logistic Regression/4. Your First Logistic Regression.srt
3.5 kB
4. Linear Regression with Sklearn/1. What is sklearn.srt
3.5 kB
7. Cluster Analysis/3. Classification vs Clustering.srt
3.3 kB
7. Cluster Analysis/8. Categorical Data in Cluster Analysis.srt
3.3 kB
3. Linear Regression with StatsModels/21. The Multiple Linear Regression Model.srt
3.3 kB
2. Setting Up The Working Environment/5. The Jupyter Dashboard - Part 1.srt
3.2 kB
6. Logistic Regression/6. A Coding Tip (optional).srt
3.2 kB
4. Linear Regression with Sklearn/12. Creating a Summary Table with the p-values.srt
3.1 kB
3. Linear Regression with StatsModels/27. Assumptions of the OLS Framework.srt
3.0 kB
4. Linear Regression with Sklearn/2. Game Plan for sklearn.srt
3.0 kB
3. Linear Regression with StatsModels/26. F-Statistic and F-Test for a Linear Regression.srt
2.6 kB
3. Linear Regression with StatsModels/29. A1 Linearity.srt
2.5 kB
7. Cluster Analysis/14. Cluster Analysis and Regression Analysis.srt
2.2 kB
3. Linear Regression with StatsModels/1. Introduction to Regression Analysis.srt
2.2 kB
3. Linear Regression with StatsModels/5. Correlation vs Regression.srt
1.9 kB
8. Cluster Analysis Additional Topics/4. Completing 100%.html
1.9 kB
2. Setting Up The Working Environment/9. Installing sklearn.srt
1.7 kB
3. Linear Regression with StatsModels/7. Geometrical Representation.srt
1.7 kB
6. Logistic Regression/1. Introduction to Logistic Regression.srt
1.6 kB
3. Linear Regression with StatsModels/12. What is Seaborn.srt
1.6 kB
2. Setting Up The Working Environment/1. Setting Up the Environment - An Introduction (Do Not Skip, Please)!.srt
1.4 kB
3. Linear Regression with StatsModels/11. Simple Linear Regression in Python - Exercise.html
1.4 kB
5. Linear Regression - Practical Example/3. A Note on Multicollinearity.html
849 Bytes
4. Linear Regression with Sklearn/5. A Note on Normalization.html
733 Bytes
5. Linear Regression - Practical Example/7. Dummy Variables Interpretation - Exercise.html
713 Bytes
2. Setting Up The Working Environment/11. Installing Packages - Solution.html
668 Bytes
5. Linear Regression - Practical Example/9. Linear Regression - Exercise.html
503 Bytes
4. Linear Regression with Sklearn/11. A Note on Calculation of P-values with sklearn.html
433 Bytes
2. Setting Up The Working Environment/10. Installing Packages - Exercise.html
409 Bytes
2. Setting Up The Working Environment/7. Jupyter Shortcuts.html
305 Bytes
2. Setting Up The Working Environment/3. Why Python and Why Jupyter.html
166 Bytes
2. Setting Up The Working Environment/8. The Jupyter Dashboard.html
166 Bytes
3. Linear Regression with StatsModels/14. What Does the StatsModels Summary Regression Table Tell us.html
166 Bytes
3. Linear Regression with StatsModels/16. SST, SSR, and SSE.html
166 Bytes
3. Linear Regression with StatsModels/18. The Ordinary Least Squares (OLS).html
166 Bytes
3. Linear Regression with StatsModels/2. Introduction to Regression Analysis.html
166 Bytes
3. Linear Regression with StatsModels/20. Goodness of Fit The R-Squared.html
166 Bytes
3. Linear Regression with StatsModels/22. Multiple Linear Regression.html
166 Bytes
3. Linear Regression with StatsModels/24. Adjusted R-Squared.html
166 Bytes
3. Linear Regression with StatsModels/28. Assumptions of the OLS Framework.html
166 Bytes
3. Linear Regression with StatsModels/30. A1 Linearity.html
166 Bytes
3. Linear Regression with StatsModels/32. A2 No Endogeneity.html
166 Bytes
3. Linear Regression with StatsModels/35. A4 No Autocorrelation.html
166 Bytes
3. Linear Regression with StatsModels/37. A5 No Multicollinearity.html
166 Bytes
3. Linear Regression with StatsModels/4. The Linear Regression Model.html
166 Bytes
3. Linear Regression with StatsModels/6. Correlation vs Regression.html
166 Bytes
3. Linear Regression with StatsModels/8. Geometrical Representation.html
166 Bytes
3. Linear Regression with StatsModels/10.1 Simple Linear Regression in Python - Lecture.html
134 Bytes
3. Linear Regression with StatsModels/11.1 Simple Linear Regression in Python - Exercise.html
134 Bytes
3. Linear Regression with StatsModels/23.1 Multiple Linear Regression and Adjusted R-squared - Lecture.html
134 Bytes
3. Linear Regression with StatsModels/25.1 Multiple Linear Regression - Exercise.html
134 Bytes
3. Linear Regression with StatsModels/38.1 Dealing with Categorical Data - Lecture.html
134 Bytes
3. Linear Regression with StatsModels/39.1 Dealing with Categorical Data - Exercise.html
134 Bytes
3. Linear Regression with StatsModels/40.1 Making Predictions - Lecture.html
134 Bytes
4. Linear Regression with Sklearn/10.1 Feature Selection through p-values (F-regression).html
134 Bytes
4. Linear Regression with Sklearn/12.1 Creating a Summary Table with the p-values.html
134 Bytes
4. Linear Regression with Sklearn/13.1 Multiple Linear Regression - Exercise.html
134 Bytes
4. Linear Regression with Sklearn/14.1 Feature Scaling.html
134 Bytes
4. Linear Regression with Sklearn/15.1 Feature Selection through Standardization.html
134 Bytes
4. Linear Regression with Sklearn/16.1 Making Predictions with Standardized Coefficients.html
134 Bytes
4. Linear Regression with Sklearn/17.1 Feature Scaling - Exercise.html
134 Bytes
4. Linear Regression with Sklearn/19.1 Training and Testing.html
134 Bytes
4. Linear Regression with Sklearn/3.1 Simple Linear Regression with sklearn.html
134 Bytes
4. Linear Regression with Sklearn/4.1 Simple Linear Regression with sklearn.html
134 Bytes
4. Linear Regression with Sklearn/6.1 Simple Linear Regression with sklearn - Exercise.html
134 Bytes
4. Linear Regression with Sklearn/7.1 Multiple Linear Regression with sklearn.html
134 Bytes
4. Linear Regression with Sklearn/8.1 Multiple Linear Regression and Adjusted R-squared - Lecture.html
134 Bytes
4. Linear Regression with Sklearn/9.1 Multiple Linear Regression and Adjusted R-squared - Exercise.html
134 Bytes
5. Linear Regression - Practical Example/1.1 Practical Example (Part 1).html
134 Bytes
5. Linear Regression - Practical Example/2.1 Practical Example (Part 2).html
134 Bytes
5. Linear Regression - Practical Example/4.1 Practical Example (Part 3).html
134 Bytes
5. Linear Regression - Practical Example/5.1 Dummies and VIF - Exercise and Solution.html
134 Bytes
5. Linear Regression - Practical Example/6.1 Practical Example (Part 4).html
134 Bytes
5. Linear Regression - Practical Example/8.1 Practical Example (Part 5).html
134 Bytes
6. Logistic Regression/10.1 Dummies in a Logistic Regression - Lecture.html
134 Bytes
6. Logistic Regression/11.1 Dummies in a Logistic Regression - Exercise.html
134 Bytes
6. Logistic Regression/12.1 Assessing the Accuracy of a Classification Model.html
134 Bytes
6. Logistic Regression/13.1 Assessing the Accuracy of a Classification Model - Exercise.html
134 Bytes
6. Logistic Regression/15.1 Testing our Model and Bulding a Confusion Matrix.html
134 Bytes
6. Logistic Regression/16.1 Testing our Model and Bulding a Confusion Matrix - Exercise.html
134 Bytes
6. Logistic Regression/2.1 A Simple Example of a Logistic Regression in Python.html
134 Bytes
6. Logistic Regression/4.1 Your First Logistic Regression - Lecture.html
134 Bytes
6. Logistic Regression/5.1 Your First Logistic Regression - Exercise.html
134 Bytes
6. Logistic Regression/8.1 Going through the Regression Summary Table - Exercise.html
134 Bytes
7. Cluster Analysis/10.1 The Elbow Method or How to Choose the Number of Clusters - Lecture.html
134 Bytes
7. Cluster Analysis/11.1 The Elbow Method or How to Choose the Number of Clusters - Exercise.html
134 Bytes
7. Cluster Analysis/15.1 Market Segmentation (Part 1) - Lecture.html
134 Bytes
7. Cluster Analysis/16.1 Market Segmentation (Part 2) - Lecture.html
134 Bytes
7. Cluster Analysis/18.1 EXERCISE Species Segmentation with Cluster Analysis (Part 1).html
134 Bytes
7. Cluster Analysis/19.1 EXERCISE Species Segmentation with Cluster Analysis (Part 2).html
134 Bytes
7. Cluster Analysis/6.1 A Hands on Example of K-Means - Lecture.html
134 Bytes
7. Cluster Analysis/7.1 A Hands on Example of K-Means - Exercise.html
134 Bytes
7. Cluster Analysis/8.1 Categorical Data in Cluster Analysis - Lecture.html
134 Bytes
7. Cluster Analysis/9.1 Categorical Data in Cluster Analysis - Exercise.html
134 Bytes
8. Cluster Analysis Additional Topics/3.1 Heatmaps - Lecture.html
134 Bytes
[Tutorialsplanet.NET].url
128 Bytes
7. Cluster Analysis/18. EXERCISE Species Segmentation with Cluster Analysis (Part 1).html
87 Bytes
3. Linear Regression with StatsModels/25. Multiple Linear Regression - Exercise.html
76 Bytes
3. Linear Regression with StatsModels/39. Dealing with Categorical Data - Exercise.html
76 Bytes
4. Linear Regression with Sklearn/13. Multiple Linear Regression - Exercise.html
76 Bytes
4. Linear Regression with Sklearn/17. Feature Scaling - Exercise.html
76 Bytes
4. Linear Regression with Sklearn/6. Simple Linear Regression with sklearn - Exercise.html
76 Bytes
4. Linear Regression with Sklearn/9. Adjusted R-Squared - Exercise.html
76 Bytes
5. Linear Regression - Practical Example/5. Dummies and VIF - Exercise.html
76 Bytes
6. Logistic Regression/11. Dummies in a Logistic Regression - Exercise.html
76 Bytes
6. Logistic Regression/5. Your First Logistic Regression - Exercise.html
76 Bytes
6. Logistic Regression/8. Going through the Regression Summary Table - Exercise.html
76 Bytes
7. Cluster Analysis/11. The Elbow Method or How to Choose the Number of Clusters - Exercise.html
60 Bytes
6. Logistic Regression/13. Assessing the Accuracy of a Classification Model - Exercise.html
55 Bytes
6. Logistic Regression/16. Testing our Model and Bulding a Confusion Matrix - Exercise.html
55 Bytes
7. Cluster Analysis/19. EXERCISE Species Segmentation with Cluster Analysis (Part 2).html
55 Bytes
7. Cluster Analysis/7. A Hands on Example of K-Means - Exercise.html
55 Bytes
7. Cluster Analysis/9. Categorical Data in Cluster Analysis - Exercise.html
55 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>