搜索
[CourseClub.NET] Coursera - Bayesian Methods for Machine Learning
磁力链接/BT种子名称
[CourseClub.NET] Coursera - Bayesian Methods for Machine Learning
磁力链接/BT种子简介
种子哈希:
d9950c61565fb6179880197913a1b39713c5e252
文件大小:
2.2G
已经下载:
659
次
下载速度:
极快
收录时间:
2021-03-07
最近下载:
2024-11-28
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:D9950C61565FB6179880197913A1B39713C5E252
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
最近搜索
伪娘直男
天然g奶
巨乳肥臀
操熟女
海角社区
风骚大学老师
楼梯间允儿
幼++
学生酒店偷拍
巨乳女战
preteen
++nude+yoga
天城サリ
父女乱伦
guy in
抖胸热舞
网友最新投搞自拍药物迷倒黑丝良家少妇
苍井
媲美欣系列
mr babe deepfake
928b
电影
mium 1028
第十年
4k电影
一只小鱼呀
kam189
anitapr3
[yarashii]
博主
文件列表
007.Latent Dirichlet Allocation/036. LDA M-step & prediction.mp4
98.0 MB
006.Variational inference/028. Mean field approximation.mp4
81.1 MB
007.Latent Dirichlet Allocation/034. LDA E-step, theta.mp4
79.2 MB
011.Gaussian Processes and Bayesian Optimization/062. Derivation of main formula.mp4
73.3 MB
006.Variational inference/029. Example Ising model.mp4
71.5 MB
004.Expectation Maximization algorithm/017. E-step details.mp4
69.5 MB
004.Expectation Maximization algorithm/020. Example EM for discrete mixture, M-step.mp4
68.6 MB
005.Applications and examples/022. General EM for GMM.mp4
65.6 MB
008.MCMC/041. Gibbs sampling.mp4
64.4 MB
001.Introduction to Bayesian methods/004. Example thief & alarm.mp4
62.8 MB
007.Latent Dirichlet Allocation/035. LDA E-step, z.mp4
62.1 MB
004.Expectation Maximization algorithm/019. Example EM for discrete mixture, E-step.mp4
59.1 MB
001.Introduction to Bayesian methods/005. Linear regression.mp4
52.5 MB
009.Variational autoencoders/052. Scaling variational EM.mp4
50.1 MB
008.MCMC/040. Markov Chains.mp4
49.3 MB
008.MCMC/039. Sampling from 1-d distributions.mp4
49.3 MB
008.MCMC/047. MCMC for LDA.mp4
49.0 MB
008.MCMC/038. Monte Carlo estimation.mp4
46.7 MB
008.MCMC/044. Metropolis-Hastings choosing the critic.mp4
44.0 MB
005.Applications and examples/025. Probabilistic PCA.mp4
40.9 MB
011.Gaussian Processes and Bayesian Optimization/063. Nuances of GP.mp4
38.6 MB
003.Latent Variable Models/010. Latent Variable Models.mp4
38.6 MB
008.MCMC/045. Example of Metropolis-Hastings.mp4
38.4 MB
010.Variational Dropout/057. Dropout as Bayesian procedure.mp4
36.7 MB
008.MCMC/048. Bayesian Neural Networks.mp4
35.7 MB
009.Variational autoencoders/050. Modeling a distribution of images.mp4
33.8 MB
004.Expectation Maximization algorithm/016. Expectation-Maximization algorithm.mp4
33.5 MB
003.Latent Variable Models/013. Training GMM.mp4
33.1 MB
003.Latent Variable Models/014. Example of GMM training.mp4
32.8 MB
011.Gaussian Processes and Bayesian Optimization/064. Bayesian optimization.mp4
32.7 MB
005.Applications and examples/024. K-means, M-step.mp4
32.5 MB
010.Variational Dropout/056. Learning with priors.mp4
31.9 MB
008.MCMC/043. Metropolis-Hastings.mp4
31.4 MB
010.Variational Dropout/058. Sparse variational dropout.mp4
31.1 MB
003.Latent Variable Models/012. Gaussian Mixture Model.mp4
30.6 MB
005.Applications and examples/023. K-means from probabilistic perspective.mp4
29.8 MB
004.Expectation Maximization algorithm/015. Jensen's inequality & Kullback Leibler divergence.mp4
29.7 MB
008.MCMC/042. Example of Gibbs sampling.mp4
28.9 MB
008.MCMC/046. Markov Chain Monte Carlo summary.mp4
28.1 MB
009.Variational autoencoders/055. Reparameterization trick.mp4
26.4 MB
009.Variational autoencoders/051. Using CNNs with a mixture of Gaussians.mp4
26.1 MB
011.Gaussian Processes and Bayesian Optimization/060. Gaussian processes.mp4
25.4 MB
001.Introduction to Bayesian methods/001. Think bayesian & Statistics review.mp4
24.8 MB
005.Applications and examples/026. EM for Probabilistic PCA.mp4
22.9 MB
003.Latent Variable Models/011. Probabilistic clustering.mp4
22.8 MB
009.Variational autoencoders/054. Log derivative trick.mp4
21.8 MB
007.Latent Dirichlet Allocation/032. Dirichlet distribution.mp4
21.5 MB
004.Expectation Maximization algorithm/021. Summary of Expectation Maximization.mp4
21.3 MB
009.Variational autoencoders/049. Scaling Variational Inference & Unbiased estimates.mp4
20.4 MB
009.Variational autoencoders/053. Gradient of decoder.mp4
20.2 MB
004.Expectation Maximization algorithm/018. M-step details.mp4
20.1 MB
007.Latent Dirichlet Allocation/033. Latent Dirichlet Allocation.mp4
19.1 MB
011.Gaussian Processes and Bayesian Optimization/059. Nonparametric methods.mp4
19.0 MB
006.Variational inference/030. Variational EM & Review.mp4
18.2 MB
001.Introduction to Bayesian methods/002. Bayesian approach to statistics.mp4
17.9 MB
007.Latent Dirichlet Allocation/031. Topic modeling.mp4
17.6 MB
011.Gaussian Processes and Bayesian Optimization/065. Applications of Bayesian optimization.mp4
17.4 MB
002.Conjugate priors/008. Example Normal, precision.mp4
17.2 MB
011.Gaussian Processes and Bayesian Optimization/061. GP for machine learning.mp4
17.1 MB
007.Latent Dirichlet Allocation/037. Extensions of LDA.mp4
16.6 MB
006.Variational inference/027. Why approximate inference.mp4
16.5 MB
002.Conjugate priors/009. Example Bernoulli.mp4
14.7 MB
002.Conjugate priors/006. Analytical inference.mp4
14.5 MB
001.Introduction to Bayesian methods/003. How to define a model.mp4
10.5 MB
002.Conjugate priors/007. Conjugate distributions.mp4
9.7 MB
008.MCMC/047. MCMC for LDA.srt
21.3 kB
009.Variational autoencoders/052. Scaling variational EM.srt
19.4 kB
008.MCMC/038. Monte Carlo estimation.srt
17.3 kB
006.Variational inference/029. Example Ising model.srt
17.3 kB
008.MCMC/039. Sampling from 1-d distributions.srt
16.9 kB
005.Applications and examples/025. Probabilistic PCA.srt
16.4 kB
008.MCMC/040. Markov Chains.srt
16.1 kB
003.Latent Variable Models/010. Latent Variable Models.srt
15.5 kB
008.MCMC/048. Bayesian Neural Networks.srt
15.2 kB
005.Applications and examples/022. General EM for GMM.srt
14.6 kB
009.Variational autoencoders/050. Modeling a distribution of images.srt
14.6 kB
011.Gaussian Processes and Bayesian Optimization/063. Nuances of GP.srt
14.1 kB
003.Latent Variable Models/013. Training GMM.srt
14.1 kB
004.Expectation Maximization algorithm/016. Expectation-Maximization algorithm.srt
13.7 kB
003.Latent Variable Models/014. Example of GMM training.srt
13.5 kB
004.Expectation Maximization algorithm/017. E-step details.srt
13.3 kB
003.Latent Variable Models/012. Gaussian Mixture Model.srt
13.2 kB
008.MCMC/041. Gibbs sampling.srt
13.2 kB
001.Introduction to Bayesian methods/004. Example thief & alarm.srt
12.8 kB
011.Gaussian Processes and Bayesian Optimization/064. Bayesian optimization.srt
12.8 kB
008.MCMC/045. Example of Metropolis-Hastings.srt
12.8 kB
008.MCMC/046. Markov Chain Monte Carlo summary.srt
12.7 kB
004.Expectation Maximization algorithm/020. Example EM for discrete mixture, M-step.srt
12.7 kB
004.Expectation Maximization algorithm/015. Jensen's inequality & Kullback Leibler divergence.srt
12.2 kB
006.Variational inference/028. Mean field approximation.srt
11.9 kB
007.Latent Dirichlet Allocation/036. LDA M-step & prediction.srt
11.9 kB
001.Introduction to Bayesian methods/005. Linear regression.srt
11.5 kB
005.Applications and examples/023. K-means from probabilistic perspective.srt
11.5 kB
001.Introduction to Bayesian methods/001. Think bayesian & Statistics review.srt
10.9 kB
004.Expectation Maximization algorithm/019. Example EM for discrete mixture, E-step.srt
10.4 kB
008.MCMC/043. Metropolis-Hastings.srt
10.0 kB
009.Variational autoencoders/051. Using CNNs with a mixture of Gaussians.srt
9.9 kB
011.Gaussian Processes and Bayesian Optimization/060. Gaussian processes.srt
9.9 kB
011.Gaussian Processes and Bayesian Optimization/062. Derivation of main formula.srt
9.7 kB
007.Latent Dirichlet Allocation/034. LDA E-step, theta.srt
9.7 kB
009.Variational autoencoders/055. Reparameterization trick.srt
9.6 kB
008.MCMC/042. Example of Gibbs sampling.srt
9.5 kB
008.MCMC/044. Metropolis-Hastings choosing the critic.srt
9.4 kB
010.Variational Dropout/056. Learning with priors.srt
8.9 kB
005.Applications and examples/026. EM for Probabilistic PCA.srt
8.9 kB
010.Variational Dropout/057. Dropout as Bayesian procedure.srt
8.5 kB
009.Variational autoencoders/049. Scaling Variational Inference & Unbiased estimates.srt
8.4 kB
007.Latent Dirichlet Allocation/032. Dirichlet distribution.srt
8.4 kB
004.Expectation Maximization algorithm/021. Summary of Expectation Maximization.srt
8.3 kB
003.Latent Variable Models/011. Probabilistic clustering.srt
8.2 kB
004.Expectation Maximization algorithm/018. M-step details.srt
8.2 kB
009.Variational autoencoders/054. Log derivative trick.srt
8.2 kB
009.Variational autoencoders/053. Gradient of decoder.srt
7.8 kB
006.Variational inference/030. Variational EM & Review.srt
7.8 kB
010.Variational Dropout/058. Sparse variational dropout.srt
7.7 kB
011.Gaussian Processes and Bayesian Optimization/059. Nonparametric methods.srt
7.7 kB
007.Latent Dirichlet Allocation/035. LDA E-step, z.srt
7.7 kB
005.Applications and examples/024. K-means, M-step.srt
7.4 kB
001.Introduction to Bayesian methods/002. Bayesian approach to statistics.srt
7.1 kB
002.Conjugate priors/008. Example Normal, precision.srt
6.9 kB
007.Latent Dirichlet Allocation/033. Latent Dirichlet Allocation.srt
6.8 kB
007.Latent Dirichlet Allocation/031. Topic modeling.srt
6.7 kB
011.Gaussian Processes and Bayesian Optimization/061. GP for machine learning.srt
6.6 kB
006.Variational inference/027. Why approximate inference.srt
6.4 kB
007.Latent Dirichlet Allocation/037. Extensions of LDA.srt
6.3 kB
011.Gaussian Processes and Bayesian Optimization/065. Applications of Bayesian optimization.srt
6.2 kB
002.Conjugate priors/009. Example Bernoulli.srt
5.6 kB
002.Conjugate priors/006. Analytical inference.srt
5.0 kB
001.Introduction to Bayesian methods/003. How to define a model.srt
4.2 kB
002.Conjugate priors/007. Conjugate distributions.srt
3.4 kB
[FCS Forum].url
133 Bytes
[FreeCourseSite.com].url
127 Bytes
[CourseClub.NET].url
123 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>