搜索
[FreeCourseSite.com] Udemy - Manage Finance Data with Python & Pandas Unique Masterclass
磁力链接/BT种子名称
[FreeCourseSite.com] Udemy - Manage Finance Data with Python & Pandas Unique Masterclass
磁力链接/BT种子简介
种子哈希:
dfb254f385d072587e95344814ed4f8a1a2f24fc
文件大小:
9.79G
已经下载:
2893
次
下载速度:
极快
收录时间:
2021-03-28
最近下载:
2024-11-29
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:DFB254F385D072587E95344814ED4F8A1A2F24FC
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
最近搜索
这个面试有点硬
老逼败火
filthytaboo kylie
越南
小伙酒店约炮公司的美女前台还是个无毛的小白虎完美露
草帽
正片大片
puaffect3d
nsps-603
顶级约啪大神未流出多部视频集p3,几位都高颜值,皮裤黑丝美腿,强插喷水!皮裤牛仔裤妹子+超级美+很主
pppe-150
龙口门
1999-01-01
客人排队一个接一个,快餐式
hookup hotshot rebel rhyder
前后撞击
fc1191142
露路人
艳舞诱惑
避孕
偷拍+身材+大奶
baldur gate 3
soothe2 os
ユニコーン
remastered color climax
onlyfans.2023.naomi
有个离异的岳母
黏黏团子兔极乐净土
022912-95
遥控跳蛋店
文件列表
19. Appendix 1 Python Crash Course (optional)/7. Data Types Lists (Part 2).mp4
140.9 MB
19. Appendix 1 Python Crash Course (optional)/17. Visualization with Matplotlib.mp4
130.3 MB
8. Time Series Data in Pandas Introduction/5. Creating a customized DatetimeIndex with pd.date_range().mp4
120.3 MB
3. Pandas Basics/5. Coding Exercise 0 Coding the Video Lectures.mp4
118.9 MB
5. Data Visualization with Matplotlib and Seaborn/3. Customization of Plots.mp4
108.1 MB
10. Financial Data - Advanced Techniques (Rolling Statistics & Reporting)/21. Coding Exercise 13 (Solution).mp4
101.3 MB
3. Pandas Basics/17. Slicing Rows and Columns with loc (label-based indexing).mp4
95.9 MB
12. Create, Analyze and Optimize Financial Portfolios/12. Coding Exercise 15 (Solution).mp4
92.8 MB
6. Pandas Advanced Topics/8. Adding new Rows to a DataFrame.mp4
92.3 MB
13. Modern Portfolio Theory & Asset Pricing (CAPM, Beta, Alpha, SLM & Risk divers.)/4. The Portfolio Diversification Effect.mp4
90.7 MB
1. Getting Started/5. Installation of Anaconda.mp4
90.4 MB
19. Appendix 1 Python Crash Course (optional)/10. Conditional Statements (if, elif, else, while).mp4
90.2 MB
8. Time Series Data in Pandas Introduction/9. Downsampling Time Series with resample() (Part 1).mp4
89.7 MB
5. Data Visualization with Matplotlib and Seaborn/8. Categorical Seaborn Plots.mp4
89.3 MB
20. Appendix 2 Numpy Crash Course (optional)/11. Visualization and (Linear) Regression.mp4
88.6 MB
4. Pandas Intermediate Topics/35. Coding Exercise 6 (Solution).mp4
88.0 MB
10. Financial Data - Advanced Techniques (Rolling Statistics & Reporting)/2. Importing Financial Data from Excel.mp4
84.6 MB
5. Data Visualization with Matplotlib and Seaborn/9. Seaborn Regression Plots.mp4
83.3 MB
6. Pandas Advanced Topics/18. stack() and unstack().mp4
82.6 MB
17. ---------- PART 4 ADVANCED TOPICS ----------------/2. Filling NA Values with bfill, ffill and interpolation.mp4
82.3 MB
19. Appendix 1 Python Crash Course (optional)/5. Data Types Strings.mp4
81.5 MB
4. Pandas Intermediate Topics/5. EXCURSUS Updating Pandas Anaconda.mp4
80.8 MB
4. Pandas Intermediate Topics/13. Changing Row Index with set_index() and reset_index().mp4
78.7 MB
20. Appendix 2 Numpy Crash Course (optional)/5. Numpy Arrays Indexing and Slicing of multi-dimensional Arrays.mp4
77.2 MB
13. Modern Portfolio Theory & Asset Pricing (CAPM, Beta, Alpha, SLM & Risk divers.)/5. Systematic vs. unsystematic Risk.mp4
76.6 MB
4. Pandas Intermediate Topics/3. Analyzing Numerical Series with unique(), nunique() and value_counts().mp4
76.2 MB
12. Create, Analyze and Optimize Financial Portfolios/4. Creating many random Portfolios with Python.mp4
76.0 MB
4. Pandas Intermediate Topics/28. Coding Exercise 5 (Solution).mp4
75.4 MB
9. Financial Data - Essential Workflows (Risk, Return & Correlation)/3. Importing Stock Price Data from Yahoo Finance (it still works!).mp4
75.3 MB
1. Getting Started/1. Course Overview and how to maximize your learning success.mp4
74.4 MB
6. Pandas Advanced Topics/16. split-apply-combine applied.mp4
74.1 MB
5. Data Visualization with Matplotlib and Seaborn/2. Visualization with Matplotlib (Intro).mp4
73.7 MB
11. Create and Analyze Financial Indexes/17. Coding Exercise 14 (Solution).mp4
73.3 MB
4. Pandas Intermediate Topics/30. Handling NA Values missing Values.mp4
71.9 MB
13. Modern Portfolio Theory & Asset Pricing (CAPM, Beta, Alpha, SLM & Risk divers.)/14. Coding Exercise 16 (Solution).mp4
71.8 MB
20. Appendix 2 Numpy Crash Course (optional)/7. Generating Random Numbers.mp4
70.8 MB
1. Getting Started/7. How to use Jupyter Notebooks.mp4
69.5 MB
4. Pandas Intermediate Topics/24. Advanced Filtering with between(), isin() and ~.mp4
68.6 MB
1. Getting Started/6. Opening a Jupyter Notebook.mp4
68.2 MB
20. Appendix 2 Numpy Crash Course (optional)/2. Numpy Arrays Vectorization.mp4
67.9 MB
19. Appendix 1 Python Crash Course (optional)/14. User Defined Functions (Part 1).mp4
67.5 MB
11. Create and Analyze Financial Indexes/1. Financial Indexes - an Overview.mp4
67.5 MB
6. Pandas Advanced Topics/5. Arithmetic Operations (Part 1).mp4
66.6 MB
19. Appendix 1 Python Crash Course (optional)/6. Data Types Lists (Part 1).mp4
65.8 MB
5. Data Visualization with Matplotlib and Seaborn/12. Coding Exercise 7 (Solution).mp4
65.2 MB
3. Pandas Basics/19. Summary and Outlook.mp4
65.1 MB
14. Forward-looking Mean-Variance Optimization & Asset Allocation/2. Mean-Variance Optimization (MVO).mp4
64.7 MB
3. Pandas Basics/9. Explore your own Dataset Coding Exercise 1 (Intro).mp4
63.5 MB
10. Financial Data - Advanced Techniques (Rolling Statistics & Reporting)/11. The S&P 500 Return Triangle (Part 2).mp4
63.3 MB
14. Forward-looking Mean-Variance Optimization & Asset Allocation/5. It´s not that simple - Part 2 (Investments 101 vs. Real World).mp4
63.0 MB
19. Appendix 1 Python Crash Course (optional)/9. Operators & Booleans.mp4
62.4 MB
16. ----- PART 3 THE FINANCIAL ANALYST CHALLENGE (FINAL PROJECT) ----/9. Financial Analyst Challenge (Solution Part 7).mp4
61.4 MB
6. Pandas Advanced Topics/6. Arithmetic Operations (Part 2).mp4
61.3 MB
19. Appendix 1 Python Crash Course (optional)/11. For Loops.mp4
61.2 MB
8. Time Series Data in Pandas Introduction/2. Converting strings to datetime objects with pd.to_datetime().mp4
60.8 MB
4. Pandas Intermediate Topics/32. Summary Statistics and Accumulations.mp4
60.4 MB
19. Appendix 1 Python Crash Course (optional)/15. User Defined Functions (Part 2).mp4
60.2 MB
3. Pandas Basics/4. First Steps (Inspection of Data, Part 2).mp4
59.5 MB
16. ----- PART 3 THE FINANCIAL ANALYST CHALLENGE (FINAL PROJECT) ----/4. Financial Analyst Challenge (Solution Part 2).mp4
59.3 MB
10. Financial Data - Advanced Techniques (Rolling Statistics & Reporting)/10. The S&P 500 Return Triangle (Part 1).mp4
59.1 MB
9. Financial Data - Essential Workflows (Risk, Return & Correlation)/13. Coding Exercise 12 (Solution).mp4
58.7 MB
15. Interactive Financial Charts with Plotly and Cufflinks/3. Creating Offline Graphs in Jupyter Notebooks.mp4
58.1 MB
6. Pandas Advanced Topics/11. Coding Exercise 8 (Solution).mp4
57.2 MB
4. Pandas Intermediate Topics/19. Sorting DataFrames with sort_index() and sort_values().mp4
57.0 MB
12. Create, Analyze and Optimize Financial Portfolios/3. Creating the equally-weighted Portfolio.mp4
56.9 MB
3. Pandas Basics/7. Make it easy TAB Completion and Tooltip.mp4
56.8 MB
10. Financial Data - Advanced Techniques (Rolling Statistics & Reporting)/6. S&P 500 Performance Reporting - rolling risk and return.mp4
56.7 MB
3. Pandas Basics/13. Selecting Rows with iloc (position-based indexing).mp4
56.6 MB
9. Financial Data - Essential Workflows (Risk, Return & Correlation)/9. Financial Time Series - Return and Risk.mp4
56.3 MB
20. Appendix 2 Numpy Crash Course (optional)/3. Numpy Arrays Indexing and Slicing.mp4
56.1 MB
4. Pandas Intermediate Topics/21. Filtering DataFrames (one Condition).mp4
55.5 MB
16. ----- PART 3 THE FINANCIAL ANALYST CHALLENGE (FINAL PROJECT) ----/8. Financial Analyst Challenge (Solution Part 6).mp4
54.9 MB
19. Appendix 1 Python Crash Course (optional)/16. User Defined Functions (Part 3).mp4
54.7 MB
10. Financial Data - Advanced Techniques (Rolling Statistics & Reporting)/7. S&P 500 Investment Horizon and Performance.mp4
53.5 MB
3. Pandas Basics/6. Built-in Functions, Attributes and Methods.mp4
53.1 MB
3. Pandas Basics/22. Coding Exercise 2 (Solution).mp4
53.0 MB
14. Forward-looking Mean-Variance Optimization & Asset Allocation/3. It´s not that simple - Part 1 (Investments 101 vs. Real World).mp4
52.9 MB
8. Time Series Data in Pandas Introduction/12. Advanced Indexing with reindex().mp4
52.9 MB
11. Create and Analyze Financial Indexes/6. Creating a Price-Weighted Stock Index with Python.mp4
52.7 MB
20. Appendix 2 Numpy Crash Course (optional)/8. Performance Issues.mp4
52.3 MB
11. Create and Analyze Financial Indexes/12. Creating a Market Value-Weighted Stock Index with Python (Part 1).mp4
52.2 MB
6. Pandas Advanced Topics/14. Splitting with many Keys.mp4
52.1 MB
6. Pandas Advanced Topics/3. Removing Rows.mp4
52.1 MB
17. ---------- PART 4 ADVANCED TOPICS ----------------/5. Upsampling with resample().mp4
52.0 MB
19. Appendix 1 Python Crash Course (optional)/4. Data Types Integers & Floats.mp4
51.9 MB
8. Time Series Data in Pandas Introduction/10. Downsampling Time Series with resample (Part 2).mp4
51.5 MB
13. Modern Portfolio Theory & Asset Pricing (CAPM, Beta, Alpha, SLM & Risk divers.)/7. Capital Asset Pricing Model (CAPM) & Security Market Line (SLM).mp4
50.7 MB
8. Time Series Data in Pandas Introduction/4. Indexing and Slicing Time Series.mp4
50.5 MB
12. Create, Analyze and Optimize Financial Portfolios/8. Finding the Optimal Portfolio.mp4
50.1 MB
16. ----- PART 3 THE FINANCIAL ANALYST CHALLENGE (FINAL PROJECT) ----/5. Financial Analyst Challenge (Solution Part 3).mp4
50.0 MB
6. Pandas Advanced Topics/15. split-apply-combine.mp4
49.3 MB
15. Interactive Financial Charts with Plotly and Cufflinks/5. Customizing Plotly Charts.mp4
49.2 MB
17. ---------- PART 4 ADVANCED TOPICS ----------------/3. resample() and agg().mp4
48.9 MB
6. Pandas Advanced Topics/13. Understanding the GroupBy Object.mp4
48.5 MB
13. Modern Portfolio Theory & Asset Pricing (CAPM, Beta, Alpha, SLM & Risk divers.)/10. Redefining the Market Portfolio.mp4
48.0 MB
4. Pandas Intermediate Topics/29. Intro to NA Values missing Values.mp4
47.9 MB
20. Appendix 2 Numpy Crash Course (optional)/9. Case Study Numpy vs. Python Standard Library.mp4
47.8 MB
11. Create and Analyze Financial Indexes/9. Creating an Equal-Weighted Stock Index with Python.mp4
47.7 MB
20. Appendix 2 Numpy Crash Course (optional)/13. Numpy Quiz Solution.mp4
47.7 MB
3. Pandas Basics/3. First Steps (Inspection of Data, Part 1).mp4
47.4 MB
12. Create, Analyze and Optimize Financial Portfolios/6. Portfolio Analysis and the Sharpe Ratio with Python.mp4
47.0 MB
20. Appendix 2 Numpy Crash Course (optional)/10. Summary Statistics.mp4
47.0 MB
8. Time Series Data in Pandas Introduction/8. Coding Exercise 10 (Solution).mp4
46.6 MB
6. Pandas Advanced Topics/21. Coding Exercise 9 (Solution).mp4
46.6 MB
17. ---------- PART 4 ADVANCED TOPICS ----------------/1. Helpful DatetimeIndex Attributes and Methods.mp4
46.4 MB
11. Create and Analyze Financial Indexes/13. Creating a Market Value-Weighted Stock Index with Python (Part 2).mp4
46.4 MB
9. Financial Data - Essential Workflows (Risk, Return & Correlation)/5. Normalizing Time Series to a Base Value (100).mp4
46.4 MB
20. Appendix 2 Numpy Crash Course (optional)/6. Numpy Arrays Boolean Indexing.mp4
46.3 MB
8. Time Series Data in Pandas Introduction/14. Coding Exercise 11 (Solution).mp4
46.2 MB
9. Financial Data - Essential Workflows (Risk, Return & Correlation)/8. Measuring Stock Performance with MEAN Returns and STD of Returns.mp4
46.1 MB
1. Getting Started/2. Tips How to get the most out of this Course.mp4
45.8 MB
4. Pandas Intermediate Topics/12. First Steps with Pandas Index Objects.mp4
45.1 MB
14. Forward-looking Mean-Variance Optimization & Asset Allocation/4. Changing Expected Returns.mp4
45.0 MB
4. Pandas Intermediate Topics/6. Analyzing non-numerical Series with unique(), nunique(), value_counts().mp4
45.0 MB
17. ---------- PART 4 ADVANCED TOPICS ----------------/10. The Timedelta Object.mp4
44.9 MB
11. Create and Analyze Financial Indexes/10. Market Value-Weighted Index - Theory.mp4
44.8 MB
5. Data Visualization with Matplotlib and Seaborn/10. Seaborn Heatmaps.mp4
44.8 MB
13. Modern Portfolio Theory & Asset Pricing (CAPM, Beta, Alpha, SLM & Risk divers.)/9. Beta and Alpha.mp4
44.7 MB
15. Interactive Financial Charts with Plotly and Cufflinks/8. SMA and Bollinger Bands with Plotly.mp4
44.7 MB
9. Financial Data - Essential Workflows (Risk, Return & Correlation)/4. Initial Inspection and Visualization.mp4
44.4 MB
10. Financial Data - Advanced Techniques (Rolling Statistics & Reporting)/14. The S&P 500 Weather Radar.mp4
43.9 MB
19. Appendix 1 Python Crash Course (optional)/8. Data Types Tuples.mp4
43.8 MB
8. Time Series Data in Pandas Introduction/1. Importing Time Series Data from csv-files.mp4
43.8 MB
4. Pandas Intermediate Topics/8. Sorting of Series and Introduction to the inplace - parameter.mp4
43.4 MB
20. Appendix 2 Numpy Crash Course (optional)/1. Introduction to Numpy Arrays.mp4
43.1 MB
10. Financial Data - Advanced Techniques (Rolling Statistics & Reporting)/3. Simple Moving Averages (SMA) with rolling().mp4
43.0 MB
13. Modern Portfolio Theory & Asset Pricing (CAPM, Beta, Alpha, SLM & Risk divers.)/11. Cyclical vs. non-cyclical Stocks - another Intuition on Beta.mp4
42.5 MB
9. Financial Data - Essential Workflows (Risk, Return & Correlation)/7. The methods diff() and pct_change().mp4
42.2 MB
11. Create and Analyze Financial Indexes/15. Price Index vs. PerformanceTotal Return Index.mp4
41.4 MB
3. Pandas Basics/10. Explore your own Dataset Coding Exercise 1 (Solution).mp4
41.4 MB
16. ----- PART 3 THE FINANCIAL ANALYST CHALLENGE (FINAL PROJECT) ----/6. Financial Analyst Challenge (Solution Part 4).mp4
40.7 MB
8. Time Series Data in Pandas Introduction/11. The PeriodIndex object.mp4
40.7 MB
15. Interactive Financial Charts with Plotly and Cufflinks/4. Interactive Price Charts with Plotly.mp4
40.6 MB
3. Pandas Basics/11. Selecting Columns.mp4
40.4 MB
19. Appendix 1 Python Crash Course (optional)/19. Quiz Solution.mp4
40.1 MB
19. Appendix 1 Python Crash Course (optional)/13. Generating Random Numbers.mp4
40.0 MB
17. ---------- PART 4 ADVANCED TOPICS ----------------/7. Timezones and Converting (Part 2).mp4
38.7 MB
19. Appendix 1 Python Crash Course (optional)/12. Key words break, pass, continue.mp4
38.5 MB
5. Data Visualization with Matplotlib and Seaborn/6. Scatterplots.mp4
37.9 MB
6. Pandas Advanced Topics/2. Removing Columns.mp4
37.8 MB
4. Pandas Intermediate Topics/2. First Steps with Pandas Series.mp4
37.7 MB
4. Pandas Intermediate Topics/11. Coding Exercise 3 (Solution).mp4
37.6 MB
9. Financial Data - Essential Workflows (Risk, Return & Correlation)/6. The shift() method.mp4
37.5 MB
20. Appendix 2 Numpy Crash Course (optional)/4. Numpy Arrays Shape and Dimensions.mp4
37.3 MB
16. ----- PART 3 THE FINANCIAL ANALYST CHALLENGE (FINAL PROJECT) ----/7. Financial Analyst Challenge (Solution Part 5).mp4
37.2 MB
8. Time Series Data in Pandas Introduction/3. Initial Analysis Visualization of Time Series.mp4
36.7 MB
11. Create and Analyze Financial Indexes/4. Price-Weighted Index - Theory.mp4
36.7 MB
19. Appendix 1 Python Crash Course (optional)/2. First Steps.mp4
35.9 MB
5. Data Visualization with Matplotlib and Seaborn/5. Histogramms (Part 2).mp4
35.8 MB
4. Pandas Intermediate Topics/15. Renaming Index & Column Labels with rename().mp4
35.2 MB
10. Financial Data - Advanced Techniques (Rolling Statistics & Reporting)/18. rollling() with fixed-sized time offsets.mp4
34.6 MB
10. Financial Data - Advanced Techniques (Rolling Statistics & Reporting)/4. Momentum Trading Strategies with SMAs.mp4
34.6 MB
10. Financial Data - Advanced Techniques (Rolling Statistics & Reporting)/13. The S&P 500 Dollar Triangle.mp4
34.5 MB
6. Pandas Advanced Topics/17. Hierarchical Indexing with Groupby.mp4
34.5 MB
10. Financial Data - Advanced Techniques (Rolling Statistics & Reporting)/8. Simple Returns vs. Log Returns.mp4
34.2 MB
4. Pandas Intermediate Topics/20. nunique() and nlargest() nsmallest() with DataFrames.mp4
34.2 MB
11. Create and Analyze Financial Indexes/14. Comparison of weighting methods.mp4
34.1 MB
10. Financial Data - Advanced Techniques (Rolling Statistics & Reporting)/17. Rolling Correlation.mp4
33.8 MB
10. Financial Data - Advanced Techniques (Rolling Statistics & Reporting)/1. Intro.mp4
33.7 MB
16. ----- PART 3 THE FINANCIAL ANALYST CHALLENGE (FINAL PROJECT) ----/2. Financial Analyst Challenge (Instruction & Hints).mp4
33.1 MB
19. Appendix 1 Python Crash Course (optional)/3. Variables.mp4
33.0 MB
17. ---------- PART 4 ADVANCED TOPICS ----------------/8. Shifting Dates with pd.DateOffset().mp4
32.9 MB
6. Pandas Advanced Topics/9. Manipulating Elements in a DataFrame.mp4
32.8 MB
4. Pandas Intermediate Topics/23. Filtering DataFrames by many Conditions (OR).mp4
32.3 MB
10. Financial Data - Advanced Techniques (Rolling Statistics & Reporting)/19. Merging Aligning Financial Time Series (hands-on).mp4
32.2 MB
15. Interactive Financial Charts with Plotly and Cufflinks/6. Interactive Histograms with Plotly.mp4
32.1 MB
3. Pandas Basics/16. Selecting Rows with loc (label-based indexing).mp4
31.8 MB
17. ---------- PART 4 ADVANCED TOPICS ----------------/6. Timezones and Converting (Part 1).mp4
30.7 MB
11. Create and Analyze Financial Indexes/3. Getting the Data.mp4
29.4 MB
3. Pandas Basics/1. Intro to Tabular Data Pandas.mp4
28.9 MB
4. Pandas Intermediate Topics/18. Coding Exercise 4 (Solution).mp4
28.7 MB
1. Getting Started/3. Did you know that....mp4
28.2 MB
17. ---------- PART 4 ADVANCED TOPICS ----------------/9. Advanced Date Shifting.mp4
27.9 MB
15. Interactive Financial Charts with Plotly and Cufflinks/7. Candle-Stick and OHLC Charts with Plotly.mp4
27.8 MB
3. Pandas Basics/14. Slicing Rows and Columns with iloc (position-based indexing).mp4
27.2 MB
4. Pandas Intermediate Topics/22. Filtering DataFrames by many Conditions (AND).mp4
27.2 MB
9. Financial Data - Essential Workflows (Risk, Return & Correlation)/11. Financial Time Series - Covariance and Correlation.mp4
27.0 MB
11. Create and Analyze Financial Indexes/7. Equal-Weighted Index - Theory.mp4
26.6 MB
10. Financial Data - Advanced Techniques (Rolling Statistics & Reporting)/16. Expanding Windows.mp4
26.3 MB
4. Pandas Intermediate Topics/7. The copy() method.mp4
26.0 MB
5. Data Visualization with Matplotlib and Seaborn/4. Histogramms (Part 1).mp4
25.8 MB
10. Financial Data - Advanced Techniques (Rolling Statistics & Reporting)/15. Exponentially-weighted Moving Averages (EWMA).mp4
24.9 MB
12. Create, Analyze and Optimize Financial Portfolios/9. Sharpe Ratio - visualized and explained.mp4
24.4 MB
4. Pandas Intermediate Topics/33. The agg() method.mp4
23.9 MB
12. Create, Analyze and Optimize Financial Portfolios/11. Coding Exercise 15 (Intro).mp4
23.6 MB
5. Data Visualization with Matplotlib and Seaborn/7. First Steps with Seaborn.mp4
23.2 MB
12. Create, Analyze and Optimize Financial Portfolios/1. Intro.mp4
23.2 MB
3. Pandas Basics/12. Selecting Rows with Square Brackets (not advisable).mp4
23.1 MB
9. Financial Data - Essential Workflows (Risk, Return & Correlation)/2. Getting Ready (Installing required library).mp4
22.8 MB
4. Pandas Intermediate Topics/14. Changing Column Labels.mp4
22.2 MB
10. Financial Data - Advanced Techniques (Rolling Statistics & Reporting)/20. Coding Exercise 13 (intro).mp4
21.6 MB
14. Forward-looking Mean-Variance Optimization & Asset Allocation/1. Intro.mp4
21.5 MB
15. Interactive Financial Charts with Plotly and Cufflinks/2. Getting Ready (Installing required libraries).mp4
19.7 MB
13. Modern Portfolio Theory & Asset Pricing (CAPM, Beta, Alpha, SLM & Risk divers.)/13. Coding Exercise 16 (Intro).mp4
19.7 MB
16. ----- PART 3 THE FINANCIAL ANALYST CHALLENGE (FINAL PROJECT) ----/3. Financial Analyst Challenge (Solution Part 1).mp4
19.2 MB
6. Pandas Advanced Topics/4. Adding new Columns to a DataFrame.mp4
18.8 MB
9. Financial Data - Essential Workflows (Risk, Return & Correlation)/12. Coding Exercise 12 (intro).mp4
18.4 MB
4. Pandas Intermediate Topics/25. any() and all().mp4
18.4 MB
12. Create, Analyze and Optimize Financial Portfolios/5. What is the Sharpe Ratio and a Risk Free Asset.mp4
17.7 MB
15. Interactive Financial Charts with Plotly and Cufflinks/1. Intro.mp4
17.3 MB
13. Modern Portfolio Theory & Asset Pricing (CAPM, Beta, Alpha, SLM & Risk divers.)/2. Capital Market Line (CML) & Two-Fund-Theorem.mp4
16.6 MB
4. Pandas Intermediate Topics/34. Coding Exercise 6 (Intro).mp4
16.1 MB
4. Pandas Intermediate Topics/31. Exporting DataFrames to csv.mp4
13.9 MB
8. Time Series Data in Pandas Introduction/6. More on pd.date_range().mp4
13.0 MB
12. Create, Analyze and Optimize Financial Portfolios/2. Getting the Data.mp4
12.8 MB
11. Create and Analyze Financial Indexes/16. Coding Exercise 14 (intro).mp4
11.9 MB
15. Interactive Financial Charts with Plotly and Cufflinks/9. More Technical Indicators with Plotly (Volume, MACD, DMI).mp4
11.7 MB
4. Pandas Intermediate Topics/27. Coding Exercise 5 (Intro).mp4
11.5 MB
5. Data Visualization with Matplotlib and Seaborn/11. Coding Exercise 7 (Intro).mp4
11.2 MB
4. Pandas Intermediate Topics/10. Coding Exercise 3 (Intro).mp4
11.0 MB
6. Pandas Advanced Topics/12. Introduction to GroupBy Operations.mp4
10.5 MB
13. Modern Portfolio Theory & Asset Pricing (CAPM, Beta, Alpha, SLM & Risk divers.)/1. Intro.mp4
10.5 MB
16. ----- PART 3 THE FINANCIAL ANALYST CHALLENGE (FINAL PROJECT) ----/1. Financial Analyst Challenge (Intro).mp4
10.5 MB
8. Time Series Data in Pandas Introduction/7. Coding Exercise 10 (intro).mp4
10.4 MB
6. Pandas Advanced Topics/10. Coding Exercise 8 (Intro).mp4
9.5 MB
17. ---------- PART 4 ADVANCED TOPICS ----------------/4. resample() and OHLC().mp4
9.2 MB
8. Time Series Data in Pandas Introduction/13. Coding Exercise 11 (intro).mp4
9.2 MB
3. Pandas Basics/21. Coding Exercise 2 (Intro).mp4
9.1 MB
6. Pandas Advanced Topics/20. Coding Exercise 9 (Intro).mp4
8.2 MB
4. Pandas Intermediate Topics/17. Coding Exercise 4 (Intro).mp4
8.0 MB
19. Appendix 1 Python Crash Course (optional)/1. Intro.mp4
6.2 MB
3. Pandas Basics/9.1 Finance_Data_Exc.zip.zip
4.5 MB
3. Pandas Basics/5.1 Video-Lecture-NBs.zip.zip
2.5 MB
16. ----- PART 3 THE FINANCIAL ANALYST CHALLENGE (FINAL PROJECT) ----/1.1 Final_Project.zip.zip
2.1 MB
19. Appendix 1 Python Crash Course (optional)/7. Data Types Lists (Part 2).vtt
18.6 kB
8. Time Series Data in Pandas Introduction/5. Creating a customized DatetimeIndex with pd.date_range().vtt
16.1 kB
3. Pandas Basics/5. Coding Exercise 0 Coding the Video Lectures.vtt
15.9 kB
5. Data Visualization with Matplotlib and Seaborn/8. Categorical Seaborn Plots.vtt
15.2 kB
1. Getting Started/7. How to use Jupyter Notebooks.vtt
15.2 kB
6. Pandas Advanced Topics/18. stack() and unstack().vtt
14.9 kB
19. Appendix 1 Python Crash Course (optional)/17. Visualization with Matplotlib.vtt
14.8 kB
8. Time Series Data in Pandas Introduction/9. Downsampling Time Series with resample() (Part 1).vtt
14.7 kB
20. Appendix 2 Numpy Crash Course (optional)/13. Numpy Quiz Solution.vtt
14.6 kB
6. Pandas Advanced Topics/8. Adding new Rows to a DataFrame.vtt
14.0 kB
19. Appendix 1 Python Crash Course (optional)/10. Conditional Statements (if, elif, else, while).vtt
13.8 kB
13. Modern Portfolio Theory & Asset Pricing (CAPM, Beta, Alpha, SLM & Risk divers.)/4. The Portfolio Diversification Effect.vtt
13.6 kB
4. Pandas Intermediate Topics/3. Analyzing Numerical Series with unique(), nunique() and value_counts().vtt
13.2 kB
6. Pandas Advanced Topics/5. Arithmetic Operations (Part 1).vtt
13.2 kB
20. Appendix 2 Numpy Crash Course (optional)/11. Visualization and (Linear) Regression.vtt
12.9 kB
6. Pandas Advanced Topics/6. Arithmetic Operations (Part 2).vtt
12.9 kB
10. Financial Data - Advanced Techniques (Rolling Statistics & Reporting)/6. S&P 500 Performance Reporting - rolling risk and return.vtt
12.9 kB
13. Modern Portfolio Theory & Asset Pricing (CAPM, Beta, Alpha, SLM & Risk divers.)/5. Systematic vs. unsystematic Risk.vtt
12.8 kB
6. Pandas Advanced Topics/16. split-apply-combine applied.vtt
12.8 kB
19. Appendix 1 Python Crash Course (optional)/19. Quiz Solution.vtt
12.7 kB
5. Data Visualization with Matplotlib and Seaborn/9. Seaborn Regression Plots.vtt
12.5 kB
5. Data Visualization with Matplotlib and Seaborn/3. Customization of Plots.vtt
12.4 kB
10. Financial Data - Advanced Techniques (Rolling Statistics & Reporting)/21. Coding Exercise 13 (Solution).vtt
12.4 kB
10. Financial Data - Advanced Techniques (Rolling Statistics & Reporting)/2. Importing Financial Data from Excel.vtt
12.2 kB
12. Create, Analyze and Optimize Financial Portfolios/4. Creating many random Portfolios with Python.vtt
12.1 kB
14. Forward-looking Mean-Variance Optimization & Asset Allocation/5. It´s not that simple - Part 2 (Investments 101 vs. Real World).vtt
11.9 kB
4. Pandas Intermediate Topics/30. Handling NA Values missing Values.vtt
11.8 kB
4. Pandas Intermediate Topics/21. Filtering DataFrames (one Condition).vtt
11.4 kB
1. Getting Started/1. Course Overview and how to maximize your learning success.vtt
11.2 kB
4. Pandas Intermediate Topics/35. Coding Exercise 6 (Solution).vtt
11.2 kB
3. Pandas Basics/17. Slicing Rows and Columns with loc (label-based indexing).vtt
11.1 kB
12. Create, Analyze and Optimize Financial Portfolios/12. Coding Exercise 15 (Solution).vtt
10.8 kB
17. ---------- PART 4 ADVANCED TOPICS ----------------/2. Filling NA Values with bfill, ffill and interpolation.vtt
10.7 kB
10. Financial Data - Advanced Techniques (Rolling Statistics & Reporting)/7. S&P 500 Investment Horizon and Performance.vtt
10.6 kB
4. Pandas Intermediate Topics/13. Changing Row Index with set_index() and reset_index().vtt
10.6 kB
6. Pandas Advanced Topics/15. split-apply-combine.vtt
10.6 kB
11. Create and Analyze Financial Indexes/1. Financial Indexes - an Overview.vtt
10.6 kB
4. Pandas Intermediate Topics/32. Summary Statistics and Accumulations.vtt
10.5 kB
3. Pandas Basics/19. Summary and Outlook.vtt
10.4 kB
3. Pandas Basics/7. Make it easy TAB Completion and Tooltip.vtt
10.4 kB
20. Appendix 2 Numpy Crash Course (optional)/5. Numpy Arrays Indexing and Slicing of multi-dimensional Arrays.vtt
10.2 kB
19. Appendix 1 Python Crash Course (optional)/11. For Loops.vtt
10.2 kB
19. Appendix 1 Python Crash Course (optional)/5. Data Types Strings.vtt
10.1 kB
10. Financial Data - Advanced Techniques (Rolling Statistics & Reporting)/8. Simple Returns vs. Log Returns.vtt
10.0 kB
8. Time Series Data in Pandas Introduction/2. Converting strings to datetime objects with pd.to_datetime().vtt
9.9 kB
10. Financial Data - Advanced Techniques (Rolling Statistics & Reporting)/11. The S&P 500 Return Triangle (Part 2).vtt
9.9 kB
19. Appendix 1 Python Crash Course (optional)/9. Operators & Booleans.vtt
9.9 kB
11. Create and Analyze Financial Indexes/6. Creating a Price-Weighted Stock Index with Python.vtt
9.8 kB
1. Getting Started/6. Opening a Jupyter Notebook.vtt
9.8 kB
11. Create and Analyze Financial Indexes/10. Market Value-Weighted Index - Theory.vtt
9.7 kB
5. Data Visualization with Matplotlib and Seaborn/2. Visualization with Matplotlib (Intro).vtt
9.7 kB
4. Pandas Intermediate Topics/19. Sorting DataFrames with sort_index() and sort_values().vtt
9.7 kB
10. Financial Data - Advanced Techniques (Rolling Statistics & Reporting)/3. Simple Moving Averages (SMA) with rolling().vtt
9.7 kB
9. Financial Data - Essential Workflows (Risk, Return & Correlation)/8. Measuring Stock Performance with MEAN Returns and STD of Returns.vtt
9.6 kB
4. Pandas Intermediate Topics/29. Intro to NA Values missing Values.vtt
9.5 kB
4. Pandas Intermediate Topics/8. Sorting of Series and Introduction to the inplace - parameter.vtt
9.5 kB
19. Appendix 1 Python Crash Course (optional)/14. User Defined Functions (Part 1).vtt
9.4 kB
11. Create and Analyze Financial Indexes/4. Price-Weighted Index - Theory.vtt
9.4 kB
14. Forward-looking Mean-Variance Optimization & Asset Allocation/2. Mean-Variance Optimization (MVO).vtt
9.3 kB
13. Modern Portfolio Theory & Asset Pricing (CAPM, Beta, Alpha, SLM & Risk divers.)/14. Coding Exercise 16 (Solution).vtt
9.3 kB
5. Data Visualization with Matplotlib and Seaborn/10. Seaborn Heatmaps.vtt
9.3 kB
8. Time Series Data in Pandas Introduction/12. Advanced Indexing with reindex().vtt
9.2 kB
8. Time Series Data in Pandas Introduction/10. Downsampling Time Series with resample (Part 2).vtt
9.0 kB
9. Financial Data - Essential Workflows (Risk, Return & Correlation)/3. Importing Stock Price Data from Yahoo Finance (it still works!).vtt
9.0 kB
9. Financial Data - Essential Workflows (Risk, Return & Correlation)/9. Financial Time Series - Return and Risk.vtt
9.0 kB
20. Appendix 2 Numpy Crash Course (optional)/7. Generating Random Numbers.vtt
9.0 kB
19. Appendix 1 Python Crash Course (optional)/2. First Steps.vtt
9.0 kB
3. Pandas Basics/6. Built-in Functions, Attributes and Methods.vtt
8.9 kB
20. Appendix 2 Numpy Crash Course (optional)/2. Numpy Arrays Vectorization.vtt
8.9 kB
12. Create, Analyze and Optimize Financial Portfolios/3. Creating the equally-weighted Portfolio.vtt
8.9 kB
11. Create and Analyze Financial Indexes/12. Creating a Market Value-Weighted Stock Index with Python (Part 1).vtt
8.9 kB
3. Pandas Basics/4. First Steps (Inspection of Data, Part 2).vtt
8.9 kB
11. Create and Analyze Financial Indexes/9. Creating an Equal-Weighted Stock Index with Python.vtt
8.8 kB
6. Pandas Advanced Topics/13. Understanding the GroupBy Object.vtt
8.8 kB
19. Appendix 1 Python Crash Course (optional)/6. Data Types Lists (Part 1).vtt
8.7 kB
8. Time Series Data in Pandas Introduction/1. Importing Time Series Data from csv-files.vtt
8.7 kB
4. Pandas Intermediate Topics/28. Coding Exercise 5 (Solution).vtt
8.6 kB
3. Pandas Basics/9. Explore your own Dataset Coding Exercise 1 (Intro).vtt
8.6 kB
17. ---------- PART 4 ADVANCED TOPICS ----------------/10. The Timedelta Object.vtt
8.4 kB
4. Pandas Intermediate Topics/24. Advanced Filtering with between(), isin() and ~.vtt
8.1 kB
9. Financial Data - Essential Workflows (Risk, Return & Correlation)/13. Coding Exercise 12 (Solution).vtt
8.1 kB
11. Create and Analyze Financial Indexes/17. Coding Exercise 14 (Solution).vtt
8.1 kB
3. Pandas Basics/11. Selecting Columns.vtt
8.0 kB
20. Appendix 2 Numpy Crash Course (optional)/1. Introduction to Numpy Arrays.vtt
8.0 kB
10. Financial Data - Advanced Techniques (Rolling Statistics & Reporting)/17. Rolling Correlation.vtt
8.0 kB
1. Getting Started/5. Installation of Anaconda.vtt
8.0 kB
10. Financial Data - Advanced Techniques (Rolling Statistics & Reporting)/4. Momentum Trading Strategies with SMAs.vtt
7.9 kB
13. Modern Portfolio Theory & Asset Pricing (CAPM, Beta, Alpha, SLM & Risk divers.)/9. Beta and Alpha.vtt
7.9 kB
16. ----- PART 3 THE FINANCIAL ANALYST CHALLENGE (FINAL PROJECT) ----/8. Financial Analyst Challenge (Solution Part 6).vtt
7.8 kB
13. Modern Portfolio Theory & Asset Pricing (CAPM, Beta, Alpha, SLM & Risk divers.)/7. Capital Asset Pricing Model (CAPM) & Security Market Line (SLM).vtt
7.8 kB
11. Create and Analyze Financial Indexes/13. Creating a Market Value-Weighted Stock Index with Python (Part 2).vtt
7.8 kB
13. Modern Portfolio Theory & Asset Pricing (CAPM, Beta, Alpha, SLM & Risk divers.)/10. Redefining the Market Portfolio.vtt
7.8 kB
19. Appendix 1 Python Crash Course (optional)/4. Data Types Integers & Floats.vtt
7.8 kB
16. ----- PART 3 THE FINANCIAL ANALYST CHALLENGE (FINAL PROJECT) ----/9. Financial Analyst Challenge (Solution Part 7).vtt
7.7 kB
20. Appendix 2 Numpy Crash Course (optional)/9. Case Study Numpy vs. Python Standard Library.vtt
7.7 kB
4. Pandas Intermediate Topics/6. Analyzing non-numerical Series with unique(), nunique(), value_counts().vtt
7.7 kB
9. Financial Data - Essential Workflows (Risk, Return & Correlation)/6. The shift() method.vtt
7.7 kB
20. Appendix 2 Numpy Crash Course (optional)/10. Summary Statistics.vtt
7.6 kB
8. Time Series Data in Pandas Introduction/4. Indexing and Slicing Time Series.vtt
7.6 kB
16. ----- PART 3 THE FINANCIAL ANALYST CHALLENGE (FINAL PROJECT) ----/4. Financial Analyst Challenge (Solution Part 2).vtt
7.6 kB
3. Pandas Basics/13. Selecting Rows with iloc (position-based indexing).vtt
7.6 kB
9. Financial Data - Essential Workflows (Risk, Return & Correlation)/7. The methods diff() and pct_change().vtt
7.6 kB
12. Create, Analyze and Optimize Financial Portfolios/8. Finding the Optimal Portfolio.vtt
7.5 kB
5. Data Visualization with Matplotlib and Seaborn/12. Coding Exercise 7 (Solution).vtt
7.5 kB
12. Create, Analyze and Optimize Financial Portfolios/6. Portfolio Analysis and the Sharpe Ratio with Python.vtt
7.5 kB
6. Pandas Advanced Topics/3. Removing Rows.vtt
7.4 kB
5. Data Visualization with Matplotlib and Seaborn/6. Scatterplots.vtt
7.3 kB
6. Pandas Advanced Topics/14. Splitting with many Keys.vtt
7.3 kB
19. Appendix 1 Python Crash Course (optional)/3. Variables.vtt
7.3 kB
4. Pandas Intermediate Topics/2. First Steps with Pandas Series.vtt
7.2 kB
5. Data Visualization with Matplotlib and Seaborn/5. Histogramms (Part 2).vtt
7.2 kB
15. Interactive Financial Charts with Plotly and Cufflinks/3. Creating Offline Graphs in Jupyter Notebooks.vtt
7.1 kB
3. Pandas Basics/22. Coding Exercise 2 (Solution).vtt
7.0 kB
19. Appendix 1 Python Crash Course (optional)/13. Generating Random Numbers.vtt
7.0 kB
14. Forward-looking Mean-Variance Optimization & Asset Allocation/4. Changing Expected Returns.vtt
7.0 kB
19. Appendix 1 Python Crash Course (optional)/15. User Defined Functions (Part 2).vtt
6.9 kB
9. Financial Data - Essential Workflows (Risk, Return & Correlation)/5. Normalizing Time Series to a Base Value (100).vtt
6.9 kB
11. Create and Analyze Financial Indexes/15. Price Index vs. PerformanceTotal Return Index.vtt
6.9 kB
10. Financial Data - Advanced Techniques (Rolling Statistics & Reporting)/10. The S&P 500 Return Triangle (Part 1).vtt
6.9 kB
19. Appendix 1 Python Crash Course (optional)/8. Data Types Tuples.vtt
6.9 kB
6. Pandas Advanced Topics/17. Hierarchical Indexing with Groupby.vtt
6.8 kB
14. Forward-looking Mean-Variance Optimization & Asset Allocation/3. It´s not that simple - Part 1 (Investments 101 vs. Real World).vtt
6.8 kB
10. Financial Data - Advanced Techniques (Rolling Statistics & Reporting)/18. rollling() with fixed-sized time offsets.vtt
6.8 kB
13. Modern Portfolio Theory & Asset Pricing (CAPM, Beta, Alpha, SLM & Risk divers.)/11. Cyclical vs. non-cyclical Stocks - another Intuition on Beta.vtt
6.8 kB
6. Pandas Advanced Topics/21. Coding Exercise 9 (Solution).vtt
6.7 kB
17. ---------- PART 4 ADVANCED TOPICS ----------------/5. Upsampling with resample().vtt
6.6 kB
6. Pandas Advanced Topics/11. Coding Exercise 8 (Solution).vtt
6.6 kB
19. Appendix 1 Python Crash Course (optional)/12. Key words break, pass, continue.vtt
6.5 kB
17. ---------- PART 4 ADVANCED TOPICS ----------------/1. Helpful DatetimeIndex Attributes and Methods.vtt
6.4 kB
4. Pandas Intermediate Topics/5. EXCURSUS Updating Pandas Anaconda.vtt
6.4 kB
8. Time Series Data in Pandas Introduction/11. The PeriodIndex object.vtt
6.4 kB
16. ----- PART 3 THE FINANCIAL ANALYST CHALLENGE (FINAL PROJECT) ----/5. Financial Analyst Challenge (Solution Part 3).vtt
6.4 kB
15. Interactive Financial Charts with Plotly and Cufflinks/8. SMA and Bollinger Bands with Plotly.vtt
6.3 kB
11. Create and Analyze Financial Indexes/7. Equal-Weighted Index - Theory.vtt
6.3 kB
20. Appendix 2 Numpy Crash Course (optional)/6. Numpy Arrays Boolean Indexing.vtt
6.3 kB
5. Data Visualization with Matplotlib and Seaborn/7. First Steps with Seaborn.vtt
6.3 kB
20. Appendix 2 Numpy Crash Course (optional)/4. Numpy Arrays Shape and Dimensions.vtt
6.2 kB
20. Appendix 2 Numpy Crash Course (optional)/8. Performance Issues.vtt
6.2 kB
8. Time Series Data in Pandas Introduction/3. Initial Analysis Visualization of Time Series.vtt
6.1 kB
11. Create and Analyze Financial Indexes/14. Comparison of weighting methods.vtt
6.1 kB
3. Pandas Basics/3. First Steps (Inspection of Data, Part 1).vtt
6.1 kB
4. Pandas Intermediate Topics/12. First Steps with Pandas Index Objects.vtt
6.0 kB
1. Getting Started/2. Tips How to get the most out of this Course.vtt
6.0 kB
3. Pandas Basics/16. Selecting Rows with loc (label-based indexing).vtt
5.8 kB
4. Pandas Intermediate Topics/20. nunique() and nlargest() nsmallest() with DataFrames.vtt
5.7 kB
15. Interactive Financial Charts with Plotly and Cufflinks/6. Interactive Histograms with Plotly.vtt
5.6 kB
8. Time Series Data in Pandas Introduction/8. Coding Exercise 10 (Solution).vtt
5.6 kB
1. Getting Started/4. FAQ Important Information.html
5.6 kB
8. Time Series Data in Pandas Introduction/14. Coding Exercise 11 (Solution).vtt
5.5 kB
3. Pandas Basics/14. Slicing Rows and Columns with iloc (position-based indexing).vtt
5.5 kB
3. Pandas Basics/1. Intro to Tabular Data Pandas.vtt
5.5 kB
9. Financial Data - Essential Workflows (Risk, Return & Correlation)/4. Initial Inspection and Visualization.vtt
5.5 kB
6. Pandas Advanced Topics/2. Removing Columns.vtt
5.4 kB
12. Create, Analyze and Optimize Financial Portfolios/9. Sharpe Ratio - visualized and explained.vtt
5.4 kB
10. Financial Data - Advanced Techniques (Rolling Statistics & Reporting)/19. Merging Aligning Financial Time Series (hands-on).vtt
5.3 kB
4. Pandas Intermediate Topics/11. Coding Exercise 3 (Solution).vtt
5.3 kB
17. ---------- PART 4 ADVANCED TOPICS ----------------/3. resample() and agg().vtt
5.3 kB
4. Pandas Intermediate Topics/23. Filtering DataFrames by many Conditions (OR).vtt
5.2 kB
10. Financial Data - Advanced Techniques (Rolling Statistics & Reporting)/16. Expanding Windows.vtt
5.2 kB
14. Forward-looking Mean-Variance Optimization & Asset Allocation/1. Intro.vtt
5.1 kB
3. Pandas Basics/10. Explore your own Dataset Coding Exercise 1 (Solution).vtt
5.1 kB
6. Pandas Advanced Topics/9. Manipulating Elements in a DataFrame.vtt
5.1 kB
16. ----- PART 3 THE FINANCIAL ANALYST CHALLENGE (FINAL PROJECT) ----/7. Financial Analyst Challenge (Solution Part 5).vtt
5.1 kB
10. Financial Data - Advanced Techniques (Rolling Statistics & Reporting)/15. Exponentially-weighted Moving Averages (EWMA).vtt
5.1 kB
15. Interactive Financial Charts with Plotly and Cufflinks/5. Customizing Plotly Charts.vtt
5.0 kB
9. Financial Data - Essential Workflows (Risk, Return & Correlation)/11. Financial Time Series - Covariance and Correlation.vtt
5.0 kB
12. Create, Analyze and Optimize Financial Portfolios/5. What is the Sharpe Ratio and a Risk Free Asset.vtt
4.9 kB
17. ---------- PART 4 ADVANCED TOPICS ----------------/7. Timezones and Converting (Part 2).vtt
4.9 kB
15. Interactive Financial Charts with Plotly and Cufflinks/4. Interactive Price Charts with Plotly.vtt
4.9 kB
16. ----- PART 3 THE FINANCIAL ANALYST CHALLENGE (FINAL PROJECT) ----/6. Financial Analyst Challenge (Solution Part 4).vtt
4.9 kB
17. ---------- PART 4 ADVANCED TOPICS ----------------/8. Shifting Dates with pd.DateOffset().vtt
4.8 kB
4. Pandas Intermediate Topics/15. Renaming Index & Column Labels with rename().vtt
4.8 kB
5. Data Visualization with Matplotlib and Seaborn/4. Histogramms (Part 1).vtt
4.8 kB
17. ---------- PART 4 ADVANCED TOPICS ----------------/6. Timezones and Converting (Part 1).vtt
4.8 kB
10. Financial Data - Advanced Techniques (Rolling Statistics & Reporting)/14. The S&P 500 Weather Radar.vtt
4.7 kB
4. Pandas Intermediate Topics/7. The copy() method.vtt
4.7 kB
4. Pandas Intermediate Topics/22. Filtering DataFrames by many Conditions (AND).vtt
4.7 kB
15. Interactive Financial Charts with Plotly and Cufflinks/7. Candle-Stick and OHLC Charts with Plotly.vtt
4.6 kB
10. Financial Data - Advanced Techniques (Rolling Statistics & Reporting)/13. The S&P 500 Dollar Triangle.vtt
4.3 kB
12. Create, Analyze and Optimize Financial Portfolios/1. Intro.vtt
4.3 kB
4. Pandas Intermediate Topics/25. any() and all().vtt
4.2 kB
16. ----- PART 3 THE FINANCIAL ANALYST CHALLENGE (FINAL PROJECT) ----/2. Financial Analyst Challenge (Instruction & Hints).vtt
4.1 kB
3. Pandas Basics/12. Selecting Rows with Square Brackets (not advisable).vtt
4.1 kB
4. Pandas Intermediate Topics/18. Coding Exercise 4 (Solution).vtt
4.0 kB
4. Pandas Intermediate Topics/33. The agg() method.vtt
3.8 kB
11. Create and Analyze Financial Indexes/3. Getting the Data.vtt
3.6 kB
13. Modern Portfolio Theory & Asset Pricing (CAPM, Beta, Alpha, SLM & Risk divers.)/2. Capital Market Line (CML) & Two-Fund-Theorem.vtt
3.6 kB
4. Pandas Intermediate Topics/14. Changing Column Labels.vtt
3.6 kB
6. Pandas Advanced Topics/4. Adding new Columns to a DataFrame.vtt
3.5 kB
17. ---------- PART 4 ADVANCED TOPICS ----------------/9. Advanced Date Shifting.vtt
3.5 kB
1. Getting Started/3. Did you know that....vtt
3.4 kB
8. Time Series Data in Pandas Introduction/6. More on pd.date_range().vtt
3.2 kB
12. Create, Analyze and Optimize Financial Portfolios/11. Coding Exercise 15 (Intro).vtt
3.1 kB
10. Financial Data - Advanced Techniques (Rolling Statistics & Reporting)/20. Coding Exercise 13 (intro).vtt
2.9 kB
10. Financial Data - Advanced Techniques (Rolling Statistics & Reporting)/1. Intro.vtt
2.8 kB
13. Modern Portfolio Theory & Asset Pricing (CAPM, Beta, Alpha, SLM & Risk divers.)/13. Coding Exercise 16 (Intro).vtt
2.8 kB
9. Financial Data - Essential Workflows (Risk, Return & Correlation)/12. Coding Exercise 12 (intro).vtt
2.7 kB
19. Appendix 1 Python Crash Course (optional)/1. Intro.vtt
2.6 kB
4. Pandas Intermediate Topics/31. Exporting DataFrames to csv.vtt
2.5 kB
9. Financial Data - Essential Workflows (Risk, Return & Correlation)/2. Getting Ready (Installing required library).vtt
2.5 kB
6. Pandas Advanced Topics/12. Introduction to GroupBy Operations.vtt
2.4 kB
12. Create, Analyze and Optimize Financial Portfolios/2. Getting the Data.vtt
2.2 kB
16. ----- PART 3 THE FINANCIAL ANALYST CHALLENGE (FINAL PROJECT) ----/3. Financial Analyst Challenge (Solution Part 1).vtt
2.2 kB
13. Modern Portfolio Theory & Asset Pricing (CAPM, Beta, Alpha, SLM & Risk divers.)/1. Intro.vtt
2.1 kB
4. Pandas Intermediate Topics/34. Coding Exercise 6 (Intro).vtt
2.0 kB
15. Interactive Financial Charts with Plotly and Cufflinks/9. More Technical Indicators with Plotly (Volume, MACD, DMI).vtt
1.9 kB
15. Interactive Financial Charts with Plotly and Cufflinks/1. Intro.vtt
1.8 kB
15. Interactive Financial Charts with Plotly and Cufflinks/2. Getting Ready (Installing required libraries).vtt
1.6 kB
11. Create and Analyze Financial Indexes/16. Coding Exercise 14 (intro).vtt
1.6 kB
16. ----- PART 3 THE FINANCIAL ANALYST CHALLENGE (FINAL PROJECT) ----/1. Financial Analyst Challenge (Intro).vtt
1.6 kB
4. Pandas Intermediate Topics/10. Coding Exercise 3 (Intro).vtt
1.6 kB
3. Pandas Basics/21. Coding Exercise 2 (Intro).vtt
1.5 kB
17. ---------- PART 4 ADVANCED TOPICS ----------------/4. resample() and OHLC().vtt
1.5 kB
4. Pandas Intermediate Topics/27. Coding Exercise 5 (Intro).vtt
1.4 kB
5. Data Visualization with Matplotlib and Seaborn/1. Intro.html
1.4 kB
8. Time Series Data in Pandas Introduction/7. Coding Exercise 10 (intro).vtt
1.4 kB
4. Pandas Intermediate Topics/17. Coding Exercise 4 (Intro).vtt
1.2 kB
8. Time Series Data in Pandas Introduction/13. Coding Exercise 11 (intro).vtt
1.2 kB
7. ----- PART 2 FINANCIAL DATA ANALYSIS ------/1. Welcome.html
1.1 kB
6. Pandas Advanced Topics/7. Adding new Rows (Hands-on).html
1.1 kB
6. Pandas Advanced Topics/20. Coding Exercise 9 (Intro).vtt
1.0 kB
5. Data Visualization with Matplotlib and Seaborn/11. Coding Exercise 7 (Intro).vtt
1.0 kB
6. Pandas Advanced Topics/10. Coding Exercise 8 (Intro).vtt
1.0 kB
9. Financial Data - Essential Workflows (Risk, Return & Correlation)/1. Intro.html
969 Bytes
16. ----- PART 3 THE FINANCIAL ANALYST CHALLENGE (FINAL PROJECT) ----/10. Additional Bonus Question.html
957 Bytes
2. -- PART 1 DATA ANALYSIS WITH PYTHON & PANDAS FROM ZERO TO HERO --/1. Welcome to Part 1 Intro.html
757 Bytes
4. Pandas Intermediate Topics/1. Intro.html
708 Bytes
3. Pandas Basics/15. Position-based Indexing Cheat Sheets.html
700 Bytes
3. Pandas Basics/18. Label-based Indexing Cheat Sheets.html
700 Bytes
6. Pandas Advanced Topics/1. Intro.html
423 Bytes
15. Interactive Financial Charts with Plotly and Cufflinks/10. Coding Exercise 17.html
407 Bytes
3. Pandas Basics/2. Tabular Data Cheat Sheets.html
383 Bytes
4. Pandas Intermediate Topics/4. UPDATE Pandas Version 0.24.0 (Jan 2019).html
369 Bytes
10. Financial Data - Advanced Techniques (Rolling Statistics & Reporting)/12. Interpreting the Return Triangle.html
146 Bytes
10. Financial Data - Advanced Techniques (Rolling Statistics & Reporting)/5. Trading Strategies.html
146 Bytes
10. Financial Data - Advanced Techniques (Rolling Statistics & Reporting)/9. Simple Returns vs. Log Returns.html
146 Bytes
11. Create and Analyze Financial Indexes/11. VWI.html
146 Bytes
11. Create and Analyze Financial Indexes/2. Financial Indexes.html
146 Bytes
11. Create and Analyze Financial Indexes/5. PWI.html
146 Bytes
11. Create and Analyze Financial Indexes/8. EWI.html
146 Bytes
12. Create, Analyze and Optimize Financial Portfolios/10. Portfolios.html
146 Bytes
12. Create, Analyze and Optimize Financial Portfolios/7. Sharpe Ratio and Risk Free Asset.html
146 Bytes
13. Modern Portfolio Theory & Asset Pricing (CAPM, Beta, Alpha, SLM & Risk divers.)/12. Beta and Alpha.html
146 Bytes
13. Modern Portfolio Theory & Asset Pricing (CAPM, Beta, Alpha, SLM & Risk divers.)/3. Two-Fund-Theorem.html
146 Bytes
13. Modern Portfolio Theory & Asset Pricing (CAPM, Beta, Alpha, SLM & Risk divers.)/6. Risk Diversification.html
146 Bytes
13. Modern Portfolio Theory & Asset Pricing (CAPM, Beta, Alpha, SLM & Risk divers.)/8. CAPM.html
146 Bytes
19. Appendix 1 Python Crash Course (optional)/18. Python Basics.html
146 Bytes
20. Appendix 2 Numpy Crash Course (optional)/12. Numpy.html
146 Bytes
3. Pandas Basics/20. Indexing and Slicing.html
146 Bytes
3. Pandas Basics/8. First Steps.html
146 Bytes
4. Pandas Intermediate Topics/16. Pandas Index Objects.html
146 Bytes
4. Pandas Intermediate Topics/26. Sorting and Filtering.html
146 Bytes
4. Pandas Intermediate Topics/9. Pandas Series.html
146 Bytes
6. Pandas Advanced Topics/19. GroupBy.html
146 Bytes
9. Financial Data - Essential Workflows (Risk, Return & Correlation)/10. Risk & Return.html
146 Bytes
0. Websites you may like/[FCS Forum].url
133 Bytes
0. Websites you may like/[FreeCourseSite.com].url
127 Bytes
0. Websites you may like/[CourseClub.ME].url
122 Bytes
18. ------------------ APPENDIX -------------------/1. Welcome to the Appendix.html
66 Bytes
21. Bonus/1. Bonus Lecture.html
66 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>