搜索
[FreeCourseSite.com] Udemy - Machine Learning Essentials (2023) - Master core ML concepts
磁力链接/BT种子名称
[FreeCourseSite.com] Udemy - Machine Learning Essentials (2023) - Master core ML concepts
磁力链接/BT种子简介
种子哈希:
dff3f9fa09449dc2c837c358f8debb0414345afb
文件大小:
15.85G
已经下载:
2496
次
下载速度:
极快
收录时间:
2024-03-16
最近下载:
2024-11-06
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:DFF3F9FA09449DC2C837C358F8DEBB0414345AFB
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
最近搜索
无水印原版超强乱伦!真实原创海神【我的极品姐姐】乱伦记录10部,车震制服各种性爱,高潮喷水乱射,淫语
dont come home s01
【高清剧集网 www.bthdtv.com】老友记 第9季
阴蒂调教
[同人av] ありすほりっく
91王
media classic player
男子3人
做b超
hmn-615
the slayer chronicles
《神乃麻美写真集妖精开花》
show xxx
重双飞女神“关之琳”
酒店偷拍浴缸
眼泪山谷之战
豬
健身房的發洩
savannah bond 12 11
闺蜜 磨豆腐
caminhos
夏迎春
舞体
加淫乱俱乐部品味各种猛
李雅和摄像师
不作不死
做爱姿势
位4
黑纱网红
解苗苗
文件列表
5. Logistic Regression/3. Hypothesis Function.mp4
285.5 MB
3. Linear Regression/7. Gradient Descent Code.mp4
284.5 MB
19. Ensemble Learning Boosting/5. GBDT Algorithm.mp4
257.1 MB
4. Linear Regression - Multiple Features/8. Code 04 - Gradient Computation.mp4
233.1 MB
12. Naive Bayes Algorithm/7. Understanding Golf Dataset.mp4
229.4 MB
19. Ensemble Learning Boosting/3. Boosting Mathematical Formulation.mp4
221.8 MB
13. Multinomial Naive Bayes/4. Bernoulli Naive Bayes.mp4
214.7 MB
15. Decision Trees/5. Information Gain.mp4
209.2 MB
2. Supervised vs Unsupervised Learning/2. Supervised Learning Example.mp4
207.7 MB
9. PROJECT - Face Recognition/7. Face Recognition 01 - Data Collection.mp4
207.6 MB
3. Linear Regression/4. Loss Error Function.mp4
204.9 MB
12. Naive Bayes Algorithm/6. Computing Likelihood.mp4
202.5 MB
13. Multinomial Naive Bayes/3. Multinomial Naive Bayes Example.mp4
187.9 MB
7. Principal Component Analysis (PCA)/3. Maximising Variance.mp4
186.6 MB
3. Linear Regression/2. Notation.mp4
179.7 MB
3. Linear Regression/11. Code 02 - Data Normalisation.mp4
179.2 MB
12. Naive Bayes Algorithm/10. CODE - Likelihood.mp4
174.6 MB
12. Naive Bayes Algorithm/5. Naive Bayes for Text Classification.mp4
168.5 MB
14. PROJECT Spam Classifier/2. Data Clearning.mp4
165.6 MB
19. Ensemble Learning Boosting/4. Concept of Pseudo Residuals.mp4
160.2 MB
5. Logistic Regression/5. Gradient Update Rule.mp4
153.7 MB
12. Naive Bayes Algorithm/3. Bayes Theorem Question.mp4
152.0 MB
18. Ensemble Learning Bagging/3. Why Bagging Helps.mp4
149.6 MB
13. Multinomial Naive Bayes/1. Multinomial Naive Bayes.mp4
148.0 MB
7. Principal Component Analysis (PCA)/2. Conceptual Overview of PCA.mp4
147.7 MB
3. Linear Regression/15. R2 Score.mp4
146.1 MB
13. Multinomial Naive Bayes/5. Bernoulli Naive Bayes Example.mp4
145.0 MB
15. Decision Trees/2. Decision Trees Example.mp4
144.0 MB
15. Decision Trees/6. CODE Split Data.mp4
142.3 MB
19. Ensemble Learning Boosting/2. Boosting Intuition.mp4
140.0 MB
19. Ensemble Learning Boosting/7. CODE - Gradient Boosting Decision Trees.mp4
138.0 MB
18. Ensemble Learning Bagging/2. Bagging Model.mp4
135.1 MB
18. Ensemble Learning Bagging/5. Bias Variance Tradeoff.mp4
133.6 MB
20. PROJECT Customer Churn Prediction/1. Project Overview.mp4
128.3 MB
19. Ensemble Learning Boosting/1. Boosting Introduction.mp4
126.2 MB
16. Decision Trees Implementation/2. CODE - Train Decision Tree.mp4
125.6 MB
19. Ensemble Learning Boosting/8. XGBoost.mp4
125.1 MB
19. Ensemble Learning Boosting/9. Adaptive Boosting (AdaBoost).mp4
124.6 MB
15. Decision Trees/3. Entropy.mp4
124.2 MB
3. Linear Regression/13. Code 04 - Modelling.mp4
123.8 MB
18. Ensemble Learning Bagging/4. Random Forest Algorithm.mp4
123.8 MB
16. Decision Trees Implementation/7. CODE - Prediction.mp4
122.0 MB
18. Ensemble Learning Bagging/6. CODE Random Forest.mp4
121.2 MB
12. Naive Bayes Algorithm/12. Implementing Naive Bayes - Sklearn.mp4
116.9 MB
3. Linear Regression/6. Gradient Descent Optimisation.mp4
115.7 MB
16. Decision Trees Implementation/8. Handling Numeric Features.mp4
115.3 MB
13. Multinomial Naive Bayes/7. Gaussian Naive Bayes.mp4
114.7 MB
12. Naive Bayes Algorithm/9. CODE - Conditional Probability.mp4
113.3 MB
14. PROJECT Spam Classifier/3. WordCloud.mp4
111.4 MB
5. Logistic Regression/2. Notation.mp4
110.4 MB
3. Linear Regression/9. The Math of Training.mp4
110.4 MB
4. Linear Regression - Multiple Features/5. Code 01 - Data Prep.mp4
109.3 MB
3. Linear Regression/17. Code 07 - Visualisation.mp4
108.5 MB
20. PROJECT Customer Churn Prediction/2. Exploratory Data Analysis.mp4
108.3 MB
16. Decision Trees Implementation/6. CODE - Explore Decision Tree Model.mp4
107.3 MB
20. PROJECT Customer Churn Prediction/7. Hyperparameter tuning.mp4
106.1 MB
17. PROJECT Titanic Survival Prediction/1. Project Overview.mp4
105.7 MB
1. Introduction/7. Automatic Speech Recognition.mp4
105.6 MB
9. PROJECT - Face Recognition/9. Face Recognition 03 - Predictions using KNN.mp4
104.5 MB
15. Decision Trees/9. Stopping Conditions.mp4
103.0 MB
7. Principal Component Analysis (PCA)/4. Minimising Distances.mp4
99.9 MB
3. Linear Regression/3. Hypothesis.mp4
99.7 MB
17. PROJECT Titanic Survival Prediction/5. Handling Missing Values.mp4
99.4 MB
13. Multinomial Naive Bayes/6. Bias Variance Tradeoff.mp4
99.0 MB
2. Supervised vs Unsupervised Learning/3. Unsupervised Learning.mp4
98.5 MB
3. Linear Regression/18. Code 08 - Trajectory [Optional].mp4
98.5 MB
13. Multinomial Naive Bayes/8. CODE - Variants of Naive Bayes.mp4
98.5 MB
15. Decision Trees/7. CODE Information Gain.mp4
98.3 MB
17. PROJECT Titanic Survival Prediction/7. Visualize Decision Tree.mp4
97.1 MB
13. Multinomial Naive Bayes/2. Laplace Smoothing.mp4
96.0 MB
5. Logistic Regression/4. Binary Cross-Entropy Loss Function.mp4
95.2 MB
8. K-Nearest Neigbours/4. KNN Algorithm Code.mp4
95.2 MB
16. Decision Trees Implementation/10. Decision Trees for Regression.mp4
93.8 MB
3. Linear Regression/12. Code 03 - Train Test Split.mp4
93.6 MB
21. Deep Learning Introduction - Neural Network/8. Tensorflow Playground.mp4
93.0 MB
4. Linear Regression - Multiple Features/1. Introduction.mp4
92.5 MB
14. PROJECT Spam Classifier/1. Project Overview.mp4
91.7 MB
12. Naive Bayes Algorithm/1. Bayes Theorem.mp4
91.5 MB
4. Linear Regression - Multiple Features/9. Code 05 - Training Loop.mp4
91.0 MB
5. Logistic Regression/1. Binary Classification Introduction.mp4
89.6 MB
21. Deep Learning Introduction - Neural Network/11. CODE - Model Training and Testing.mp4
89.1 MB
17. PROJECT Titanic Survival Prediction/2. Exploratory Data Analysis.mp4
87.9 MB
16. Decision Trees Implementation/5. CODE - Train Child Nodes.mp4
87.4 MB
19. Ensemble Learning Boosting/6. Bias Variance Tradeoff.mp4
87.4 MB
17. PROJECT Titanic Survival Prediction/4. Data Preparation for ML Model.mp4
87.4 MB
10. K-Means/6. Code 05 - Visualizing K-Means & Results.mp4
85.7 MB
12. Naive Bayes Algorithm/4. Naive Bayes Algorithm.mp4
84.7 MB
5. Logistic Regression/6. Code 01 - Data Prep.mp4
83.7 MB
9. PROJECT - Face Recognition/3. Object Detection using Haarcascades.mp4
83.5 MB
17. PROJECT Titanic Survival Prediction/3. Exploratory Data Analysis - II.mp4
82.9 MB
9. PROJECT - Face Recognition/4. Face Detection in Images.mp4
82.5 MB
4. Linear Regression - Multiple Features/6. Code 02 - Hypothesis.mp4
82.3 MB
2. Supervised vs Unsupervised Learning/1. Supervised Learning Introduction.mp4
82.1 MB
15. Decision Trees/1. Decision Trees Introduction.mp4
81.8 MB
17. PROJECT Titanic Survival Prediction/6. Decision Tree Model Building.mp4
81.6 MB
10. K-Means/4. Code 03 - Assigning Points.mp4
79.3 MB
12. Naive Bayes Algorithm/2. Derivation of Bayes Theorem.mp4
78.5 MB
20. PROJECT Customer Churn Prediction/6. Model Building.mp4
78.3 MB
5. Logistic Regression/14. Multiclass Classification One Vs Rest.mp4
75.9 MB
16. Decision Trees Implementation/4. CODE - Stopping Conditions.mp4
75.9 MB
9. PROJECT - Face Recognition/8. Face Recognition 02 - Loading Data.mp4
75.2 MB
12. Naive Bayes Algorithm/11. CODE - Prediction.mp4
74.9 MB
11. Project - Dominant Color Extraction/5. Image in K-Colors.mp4
74.5 MB
15. Decision Trees/4. CODE Entropy.mp4
73.5 MB
18. Ensemble Learning Bagging/1. Ensemble Learning.mp4
72.7 MB
3. Linear Regression/10. Code 01 - Data Generation.mp4
71.5 MB
14. PROJECT Spam Classifier/6. Model Evaluation.mp4
71.2 MB
20. PROJECT Customer Churn Prediction/4. Finding relations.mp4
70.7 MB
1. Introduction/3. Machine Learning.mp4
70.2 MB
15. Decision Trees/8. Construction of Decision Trees.mp4
69.6 MB
10. K-Means/3. Code 02 - Init Centers.mp4
68.9 MB
1. Introduction/6. Natural Language Processing.mp4
67.6 MB
6. Dimensionality Reduction Feature Selection/6. Feature Selection - Code.mp4
66.7 MB
7. Principal Component Analysis (PCA)/1. Introduction to PCA.mp4
66.4 MB
5. Logistic Regression/10. Code 05 - Training Loop.mp4
64.6 MB
20. PROJECT Customer Churn Prediction/5. Data Preparation.mp4
64.3 MB
16. Decision Trees Implementation/1. CODE - Decision Tree Node.mp4
64.1 MB
12. Naive Bayes Algorithm/8. CODE - Prior Probability.mp4
64.1 MB
10. K-Means/1. K-Means Algorithm.mp4
63.1 MB
16. Decision Trees Implementation/3. CODE - Assign Target Variable to Each Node.mp4
62.8 MB
10. K-Means/5. Code 04 - Updating Centroids.mp4
61.9 MB
16. Decision Trees Implementation/9. Bias Variance Tradeoff.mp4
61.8 MB
21. Deep Learning Introduction - Neural Network/5. Neural Networks.mp4
60.8 MB
5. Logistic Regression/12. Code 07 - Predictions & Accuracy.mp4
58.2 MB
1. Introduction/4. Deep Learning.mp4
57.1 MB
3. Linear Regression/14. Code 05 - Predictions.mp4
56.7 MB
11. Project - Dominant Color Extraction/3. Finding Clusters.mp4
56.5 MB
8. K-Nearest Neigbours/8. KNN Pros and Cons.mp4
56.4 MB
21. Deep Learning Introduction - Neural Network/4. Gradient Descent Updates.mp4
55.3 MB
20. PROJECT Customer Churn Prediction/3. Data Visualisation.mp4
55.1 MB
14. PROJECT Spam Classifier/5. Model Building.mp4
54.6 MB
3. Linear Regression/8. Gradient Descent - for Linear Regression.mp4
54.3 MB
4. Linear Regression - Multiple Features/11. Code 06 - Evaluation.mp4
53.4 MB
7. Principal Component Analysis (PCA)/8. PCA Code.mp4
53.0 MB
22. PROJECT Pokemon Image Classification/5. Data Preprocessing.mp4
52.7 MB
22. PROJECT Pokemon Image Classification/9. Model evaluation.mp4
52.7 MB
21. Deep Learning Introduction - Neural Network/7. Why Neural Nets.mp4
52.3 MB
1. Introduction/1. Course Overview.mp4
52.0 MB
9. PROJECT - Face Recognition/5. Face Detection in Live Video.mp4
51.7 MB
22. PROJECT Pokemon Image Classification/2. The Data.mp4
51.0 MB
1. Introduction/2. Artificial Intelligence.mp4
51.0 MB
7. Principal Component Analysis (PCA)/5. Eigen Values & Eigen Vectors.mp4
50.8 MB
3. Linear Regression/5. Training Idea.mp4
50.7 MB
21. Deep Learning Introduction - Neural Network/10. CODE - Model Building.mp4
48.0 MB
7. Principal Component Analysis (PCA)/9. Choosing the right dimensions.mp4
47.6 MB
5. Logistic Regression/9. Code 04 - Gradient Computation.mp4
47.4 MB
8. K-Nearest Neigbours/1. Introduction.mp4
47.2 MB
7. Principal Component Analysis (PCA)/7. Understanding Eigen Values.mp4
46.8 MB
14. PROJECT Spam Classifier/4. Text Featurization.mp4
46.3 MB
1. Introduction/8. Reinforcement Learning.mp4
46.0 MB
21. Deep Learning Introduction - Neural Network/9. CODE -Data Preparation.mp4
45.9 MB
4. Linear Regression - Multiple Features/4. Training & Gradient Updates.mp4
45.4 MB
5. Logistic Regression/11. Code 06 - Visualise Decision Boundary.mp4
45.2 MB
1. Introduction/5. Computer Vision.mp4
45.2 MB
22. PROJECT Pokemon Image Classification/4. Data Loading.mp4
44.8 MB
21. Deep Learning Introduction - Neural Network/3. How does a perceptron Learns.mp4
44.8 MB
11. Project - Dominant Color Extraction/4. Dominant Color Swatches.mp4
41.7 MB
16. Decision Trees Implementation/11. Decision Tree Code - Sklearn.mp4
38.5 MB
22. PROJECT Pokemon Image Classification/1. Introduction.mp4
37.5 MB
4. Linear Regression - Multiple Features/12. Linear Regression using Sk-Learn.mp4
37.2 MB
8. K-Nearest Neigbours/2. KNN Idea.mp4
36.2 MB
9. PROJECT - Face Recognition/2. OpenCV - Video Input from WebCam.mp4
35.9 MB
5. Logistic Regression/7. Code 02 - Hypothesis Logit Model.mp4
35.8 MB
21. Deep Learning Introduction - Neural Network/2. A Neuron.mp4
35.8 MB
9. PROJECT - Face Recognition/1. OpenCV - Working with Images.mp4
35.6 MB
5. Logistic Regression/15. Multiclass Classification One Vs One.mp4
35.1 MB
22. PROJECT Pokemon Image Classification/6. Model Architecture.mp4
34.9 MB
4. Linear Regression - Multiple Features/3. Loss Function.mp4
34.8 MB
22. PROJECT Pokemon Image Classification/3. Structured Data.mp4
33.4 MB
22. PROJECT Pokemon Image Classification/10. Predictions.mp4
31.7 MB
4. Linear Regression - Multiple Features/10. A Note about Shapes.mp4
31.6 MB
5. Logistic Regression/13. Logistic Regression using Sk-Learn.mp4
30.9 MB
8. K-Nearest Neigbours/3. KNN Data Prep.mp4
30.6 MB
3. Linear Regression/16. Code 06 - Evaluation.mp4
30.2 MB
4. Linear Regression - Multiple Features/2. Hypothesis.mp4
30.2 MB
21. Deep Learning Introduction - Neural Network/1. Biological Neural Network.mp4
29.8 MB
21. Deep Learning Introduction - Neural Network/6. 3 Layer NN.mp4
29.4 MB
3. Linear Regression/1. Introduction to Linear Regression.mp4
27.9 MB
11. Project - Dominant Color Extraction/1. Introduction.mp4
26.4 MB
11. Project - Dominant Color Extraction/2. Reading Images.mp4
25.3 MB
6. Dimensionality Reduction Feature Selection/3. Filter Method.mp4
24.6 MB
6. Dimensionality Reduction Feature Selection/4. Wrapper Method.mp4
24.1 MB
4. Linear Regression - Multiple Features/7. Code 03 - Loss Function.mp4
23.6 MB
5. Logistic Regression/8. Code 03 - Binary Cross Entropy Loss.mp4
20.4 MB
10. K-Means/2. Code 01 - Data Prep.mp4
19.5 MB
22. PROJECT Pokemon Image Classification/7. Softmax Function.mp4
19.3 MB
7. Principal Component Analysis (PCA)/6. PCA Summary.mp4
19.2 MB
22. PROJECT Pokemon Image Classification/8. Model Training.mp4
18.2 MB
6. Dimensionality Reduction Feature Selection/1. Curse of Dimensionality.mp4
17.8 MB
8. K-Nearest Neigbours/7. KNN and Data Standardisation.mp4
16.0 MB
9. PROJECT - Face Recognition/6. Face Recognition Project Intro.mp4
15.9 MB
6. Dimensionality Reduction Feature Selection/2. Feature Selection Vs. Feature Extraction.mp4
15.8 MB
8. K-Nearest Neigbours/5. Euclidean and Manhattan Distance.mp4
15.6 MB
6. Dimensionality Reduction Feature Selection/5. Embedded Method.mp4
13.4 MB
8. K-Nearest Neigbours/6. Deciding value of K.mp4
7.1 MB
6. Dimensionality Reduction Feature Selection/6.1 train.csv
122.4 kB
17. PROJECT Titanic Survival Prediction/1.1 titanic_train.csv
60.3 kB
1. Introduction/9. Pre-requisites.html
889 Bytes
12. Naive Bayes Algorithm/7.1 golf.csv
430 Bytes
8. K-Nearest Neigbours/9. KNN using Sk-Learn.html
405 Bytes
1. Introduction/10. Code Repository.html
236 Bytes
22. PROJECT Pokemon Image Classification/1.1 Dataset Link.html
129 Bytes
0. Websites you may like/[FreeCourseSite.com].url
127 Bytes
10. K-Means/0. Websites you may like/[FreeCourseSite.com].url
127 Bytes
15. Decision Trees/0. Websites you may like/[FreeCourseSite.com].url
127 Bytes
4. Linear Regression - Multiple Features/0. Websites you may like/[FreeCourseSite.com].url
127 Bytes
0. Websites you may like/[CourseClub.Me].url
122 Bytes
10. K-Means/0. Websites you may like/[CourseClub.Me].url
122 Bytes
15. Decision Trees/0. Websites you may like/[CourseClub.Me].url
122 Bytes
4. Linear Regression - Multiple Features/0. Websites you may like/[CourseClub.Me].url
122 Bytes
0. Websites you may like/[GigaCourse.Com].url
49 Bytes
10. K-Means/0. Websites you may like/[GigaCourse.Com].url
49 Bytes
15. Decision Trees/0. Websites you may like/[GigaCourse.Com].url
49 Bytes
4. Linear Regression - Multiple Features/0. Websites you may like/[GigaCourse.Com].url
49 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>