搜索
[Tutorialsplanet.NET] Udemy - Natural Language Processing (NLP) in Python with 8 Projects
磁力链接/BT种子名称
[Tutorialsplanet.NET] Udemy - Natural Language Processing (NLP) in Python with 8 Projects
磁力链接/BT种子简介
种子哈希:
e2d3cfc417710b4def6154ec3c646c2d048bbafb
文件大小:
4.72G
已经下载:
4932
次
下载速度:
极快
收录时间:
2022-03-26
最近下载:
2025-03-14
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:E2D3CFC417710B4DEF6154EC3C646C2D048BBAFB
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
少女初夜
萝莉岛
最近搜索
metart+2019
さくら【声を大にして大当たり!】
莫菁艳照门
插尿道
迷操173cm极品模特+沙发震轮操爆干内射
angelthedreamgirl
8组
吸血贵利王
fc2ppv3166039
megapack+by+sorefordays
ap-251
revelations
0704
风情万种
start-237-uc
yrh-355
会叫床
guizai3
异地偷拍
情侣酒店啪啪
4646609
国模 浅浅
香月杏
巨大尻
+臨月
多摩
mbrba-123
kidm-816b
一本道+vr
真实欧美
文件列表
09 - Deep Learning Basics/002 Activation Function.mp4
164.3 MB
10 - Word Embeddings/001 Introduction to Word Embedding.mp4
153.5 MB
01 - Welcome/003 Introduction to NLP.mp4
140.0 MB
13 - Project 8 _ Automatic Text Generation using TensorFlow, Keras and LSTM/001 Text Generation Part I.mp4
119.8 MB
14 - FastText Library for Text Classification/006 Text Classification with Fasttext.mp4
111.5 MB
09 - Deep Learning Basics/001 The Neuron.mp4
107.0 MB
11 - Project 6 _ Text Classification with CNN/001 Convolutional Neural Network Part 1.mp4
101.0 MB
11 - Project 6 _ Text Classification with CNN/003 Spam Detection with CNN - I.mp4
95.9 MB
17 - Data Visualization with Matplotlib/006 Matplotlib Part 4.mp4
95.6 MB
17 - Data Visualization with Matplotlib/001 Matplotlib Part 1 - Functional Method.mp4
95.0 MB
03 - Basics of Natural Language Processing/008 Vocabulary and Matching Part - 1.mp4
88.5 MB
03 - Basics of Natural Language Processing/012 Named Entity Recognition.mp4
86.9 MB
11 - Project 6 _ Text Classification with CNN/002 Convolutional Neural Network Part 2.mp4
85.1 MB
02 - Installation & Setup/001 Course Installation.mp4
85.0 MB
06 - Project 3 _ IMDB, Amazon and Yelp review Classification/001 Review Classification Part -1.mp4
83.3 MB
16 - Data analysis with Pandas/003 DataFrames Part 1.mp4
81.8 MB
11 - Project 6 _ Text Classification with CNN/004 Spam Detection with CNN - II.mp4
81.8 MB
09 - Deep Learning Basics/004 Gradient Descent and Back-Propagation.mp4
78.4 MB
08 - Project 5 _ Twitter sentiment Analysis/003 Find Setiment from Tweets.mp4
77.8 MB
03 - Basics of Natural Language Processing/002 Tokenization Basic Part - 1.mp4
76.6 MB
03 - Basics of Natural Language Processing/009 Vocabulary and Matching Part - 2 (Rule Based).mp4
76.4 MB
06 - Project 3 _ IMDB, Amazon and Yelp review Classification/002 Review Classification Part - 2.mp4
75.9 MB
10 - Word Embeddings/002 Train Model for Embedding - I.mp4
74.9 MB
05 - Project 2 _ Restaurant Review Prediction (Good or bad)/004 Bag of Word Model.mp4
73.4 MB
16 - Data analysis with Pandas/002 Pandas Series.mp4
73.4 MB
12 - Project 7 _ Text Classification with RNN/004 Spam Detection with RNN.mp4
67.5 MB
04 - Project 1 _ Spam Message Classification/004 Apply Random Forest.mp4
67.0 MB
10 - Word Embeddings/004 Embeddings with Pretrained model.mp4
66.8 MB
07 - Project 4 _ Automated Text Summarization/001 Importing the libraries and Dataset.mp4
64.1 MB
12 - Project 7 _ Text Classification with RNN/003 LSTM and GRU.mp4
62.8 MB
18 - Appendix/002 Text File Processing - II.mp4
60.8 MB
07 - Project 4 _ Automated Text Summarization/003 Calculate Sentence Score.mp4
60.1 MB
16 - Data analysis with Pandas/008 Merging, Joining and Concatenating DataFrames.mp4
60.0 MB
16 - Data analysis with Pandas/005 DataFrames Part 3.mp4
59.2 MB
03 - Basics of Natural Language Processing/011 Parts of Speech Tagging.mp4
58.4 MB
16 - Data analysis with Pandas/004 DataFrames Part 2.mp4
58.0 MB
18 - Appendix/003 Text File Processing - III.mp4
57.4 MB
15 - Data analysis with Numpy/003 Numpy Arrays Part 2.mp4
56.6 MB
17 - Data Visualization with Matplotlib/004 Matplotlib Part 2 - Figure size, Aspect ratio and DPI.mp4
56.6 MB
03 - Basics of Natural Language Processing/013 Sentence Segmentation.mp4
55.5 MB
09 - Deep Learning Basics/003 Cost Function.mp4
54.3 MB
05 - Project 2 _ Restaurant Review Prediction (Good or bad)/003 Cleaning Text Data with NLTK - 2.mp4
53.8 MB
10 - Word Embeddings/003 Train Model for Embedding - II.mp4
52.9 MB
03 - Basics of Natural Language Processing/003 Tokenization Basic Part - 2.mp4
52.8 MB
04 - Project 1 _ Spam Message Classification/002 Data Exploration & Preprocessing.mp4
52.7 MB
17 - Data Visualization with Matplotlib/005 Matplotlib Part 3.mp4
52.5 MB
05 - Project 2 _ Restaurant Review Prediction (Good or bad)/002 Cleaning Text Data with NLTK - 1.mp4
52.0 MB
08 - Project 5 _ Twitter sentiment Analysis/001 Setting up Twitter Developer application.mp4
51.7 MB
16 - Data analysis with Pandas/007 Groupby Method.mp4
51.5 MB
03 - Basics of Natural Language Processing/001 Section _ Introduction.mp4
51.4 MB
13 - Project 8 _ Automatic Text Generation using TensorFlow, Keras and LSTM/002 Text Generation Part II.mp4
49.5 MB
16 - Data analysis with Pandas/010 Reading and Writing Files in Pandas.mp4
48.7 MB
14 - FastText Library for Text Classification/004 Create Linux Virtual Machine.mp4
48.6 MB
18 - Appendix/005 Working with PDF File - I.mp4
47.8 MB
15 - Data analysis with Numpy/005 Numpy Indexing and Selection Part 1.mp4
47.3 MB
17 - Data Visualization with Matplotlib/002 Matplotlib Part 1 - Object Oriented Method.mp4
46.1 MB
14 - FastText Library for Text Classification/005 Install fasttext library.mp4
45.2 MB
04 - Project 1 _ Spam Message Classification/001 Business Problem & Dataset.mp4
44.7 MB
07 - Project 4 _ Automated Text Summarization/002 Create Word Frequency Counter.mp4
44.5 MB
04 - Project 1 _ Spam Message Classification/003 Split Data in Training & Testing.mp4
42.2 MB
18 - Appendix/001 Text File Processing - I.mp4
41.6 MB
12 - Project 7 _ Text Classification with RNN/001 Introduction to Recurrent Neural Networks.mp4
41.5 MB
12 - Project 7 _ Text Classification with RNN/002 Vanishing Gradient Problem.mp4
40.8 MB
16 - Data analysis with Pandas/009 Pandas Operations.mp4
40.7 MB
17 - Data Visualization with Matplotlib/003 Matplotlib Part 2 - Subplots Method.mp4
39.6 MB
01 - Welcome/001 Course Overview.mp4
37.2 MB
16 - Data analysis with Pandas/006 Missing Data.mp4
37.0 MB
04 - Project 1 _ Spam Message Classification/005 Apply Support vector Machine (SVM).mp4
35.4 MB
03 - Basics of Natural Language Processing/010 Vocabulary and Matching Part - 3 (Phrase Based).mp4
34.7 MB
03 - Basics of Natural Language Processing/007 Stop Words.mp4
34.3 MB
14 - FastText Library for Text Classification/003 Virtual Box Installation.mp4
33.7 MB
08 - Project 5 _ Twitter sentiment Analysis/002 Fetch Tweet from Tweeter server.mp4
32.5 MB
15 - Data analysis with Numpy/007 Numpy Operations.mp4
30.7 MB
05 - Project 2 _ Restaurant Review Prediction (Good or bad)/005 Apply Naive Bayes Algorithm.mp4
30.2 MB
15 - Data analysis with Numpy/004 Numpy Arrays Part 3.mp4
28.6 MB
07 - Project 4 _ Automated Text Summarization/004 Extract summary of document.mp4
28.5 MB
03 - Basics of Natural Language Processing/005 Stemming & Lemmatization - 1.mp4
28.1 MB
15 - Data analysis with Numpy/006 Numpy Indexing and Selection Part 2.mp4
27.9 MB
05 - Project 2 _ Restaurant Review Prediction (Good or bad)/001 Business Problem.mp4
27.0 MB
03 - Basics of Natural Language Processing/006 Stemming & Lemmatization - 2.mp4
24.6 MB
15 - Data analysis with Numpy/002 Numpy Arrays Part 1.mp4
17.6 MB
15 - Data analysis with Numpy/001 Introduction to NumPy.mp4
17.1 MB
04 - Project 1 _ Spam Message Classification/006 Predict Testing Data both model.mp4
17.0 MB
18 - Appendix/004 Text File Processing - IV.mp4
16.2 MB
03 - Basics of Natural Language Processing/004 Tokenization Basic Part - 3.mp4
13.4 MB
16 - Data analysis with Pandas/001 Pandas Introduction.mp4
13.1 MB
14 - FastText Library for Text Classification/001 fasttext Installation steps [Video].mp4
8.5 MB
01 - Welcome/002 Reviews UPDATE.mp4
5.6 MB
04 - Project 1 _ Spam Message Classification/25152746-spam.tsv
513.9 kB
11 - Project 6 _ Text Classification with CNN/25153370-spam.csv
503.7 kB
12 - Project 7 _ Text Classification with RNN/25153382-spam.csv
503.7 kB
06 - Project 3 _ IMDB, Amazon and Yelp review Classification/25152804-imdb-labelled.txt
85.3 kB
14 - FastText Library for Text Classification/27130276-reviews.txt
71.8 kB
05 - Project 2 _ Restaurant Review Prediction (Good or bad)/25152756-Restaurant-Reviews.tsv
61.3 kB
06 - Project 3 _ IMDB, Amazon and Yelp review Classification/25152808-yelp-labelled.txt
61.3 kB
06 - Project 3 _ IMDB, Amazon and Yelp review Classification/25152800-amazon-cells-labelled.txt
58.2 kB
14 - FastText Library for Text Classification/006 Text Classification with Fasttext_en.vtt
16.1 kB
03 - Basics of Natural Language Processing/012 Named Entity Recognition_en.vtt
13.2 kB
13 - Project 8 _ Automatic Text Generation using TensorFlow, Keras and LSTM/001 Text Generation Part I_en.vtt
12.9 kB
02 - Installation & Setup/001 Course Installation_en.vtt
12.5 kB
04 - Project 1 _ Spam Message Classification/004 Apply Random Forest_en.vtt
12.3 kB
10 - Word Embeddings/001 Introduction to Word Embedding_en.vtt
12.0 kB
18 - Appendix/003 Text File Processing - III_en.vtt
11.4 kB
16 - Data analysis with Pandas/003 DataFrames Part 1_en.vtt
11.3 kB
06 - Project 3 _ IMDB, Amazon and Yelp review Classification/001 Review Classification Part -1_en.vtt
11.1 kB
05 - Project 2 _ Restaurant Review Prediction (Good or bad)/004 Bag of Word Model_en.vtt
10.7 kB
11 - Project 6 _ Text Classification with CNN/003 Spam Detection with CNN - I_en.vtt
10.6 kB
08 - Project 5 _ Twitter sentiment Analysis/003 Find Setiment from Tweets_en.vtt
10.4 kB
16 - Data analysis with Pandas/002 Pandas Series_en.vtt
10.3 kB
17 - Data Visualization with Matplotlib/001 Matplotlib Part 1 - Functional Method_en.vtt
10.1 kB
03 - Basics of Natural Language Processing/002 Tokenization Basic Part - 1_en.vtt
10.0 kB
03 - Basics of Natural Language Processing/008 Vocabulary and Matching Part - 1_en.vtt
9.9 kB
11 - Project 6 _ Text Classification with CNN/004 Spam Detection with CNN - II_en.vtt
9.8 kB
04 - Project 1 _ Spam Message Classification/002 Data Exploration & Preprocessing_en.vtt
9.8 kB
16 - Data analysis with Pandas/004 DataFrames Part 2_en.vtt
9.7 kB
10 - Word Embeddings/002 Train Model for Embedding - I_en.vtt
9.5 kB
06 - Project 3 _ IMDB, Amazon and Yelp review Classification/002 Review Classification Part - 2_en.vtt
9.5 kB
05 - Project 2 _ Restaurant Review Prediction (Good or bad)/002 Cleaning Text Data with NLTK - 1_en.vtt
9.2 kB
03 - Basics of Natural Language Processing/013 Sentence Segmentation_en.vtt
9.2 kB
15 - Data analysis with Numpy/003 Numpy Arrays Part 2_en.vtt
9.2 kB
16 - Data analysis with Pandas/005 DataFrames Part 3_en.vtt
9.1 kB
03 - Basics of Natural Language Processing/009 Vocabulary and Matching Part - 2 (Rule Based)_en.vtt
9.0 kB
14 - FastText Library for Text Classification/004 Create Linux Virtual Machine_en.vtt
8.9 kB
17 - Data Visualization with Matplotlib/006 Matplotlib Part 4_en.vtt
8.8 kB
03 - Basics of Natural Language Processing/003 Tokenization Basic Part - 2_en.vtt
8.6 kB
09 - Deep Learning Basics/002 Activation Function_en.vtt
8.6 kB
18 - Appendix/005 Working with PDF File - I_en.vtt
8.5 kB
18 - Appendix/002 Text File Processing - II_en.vtt
8.4 kB
03 - Basics of Natural Language Processing/011 Parts of Speech Tagging_en.vtt
8.2 kB
04 - Project 1 _ Spam Message Classification/001 Business Problem & Dataset_en.vtt
8.2 kB
18 - Appendix/001 Text File Processing - I_en.vtt
7.9 kB
07 - Project 4 _ Automated Text Summarization/001 Importing the libraries and Dataset_en.vtt
7.8 kB
16 - Data analysis with Pandas/008 Merging, Joining and Concatenating DataFrames_en.vtt
7.8 kB
08 - Project 5 _ Twitter sentiment Analysis/001 Setting up Twitter Developer application_en.vtt
7.8 kB
07 - Project 4 _ Automated Text Summarization/002 Create Word Frequency Counter_en.vtt
7.6 kB
01 - Welcome/003 Introduction to NLP_en.vtt
7.6 kB
16 - Data analysis with Pandas/009 Pandas Operations_en.vtt
7.4 kB
16 - Data analysis with Pandas/010 Reading and Writing Files in Pandas_en.vtt
7.3 kB
16 - Data analysis with Pandas/007 Groupby Method_en.vtt
7.3 kB
10 - Word Embeddings/004 Embeddings with Pretrained model_en.vtt
7.1 kB
05 - Project 2 _ Restaurant Review Prediction (Good or bad)/003 Cleaning Text Data with NLTK - 2_en.vtt
7.0 kB
15 - Data analysis with Numpy/005 Numpy Indexing and Selection Part 1_en.vtt
7.0 kB
04 - Project 1 _ Spam Message Classification/003 Split Data in Training & Testing_en.vtt
7.0 kB
12 - Project 7 _ Text Classification with RNN/004 Spam Detection with RNN_en.vtt
6.9 kB
17 - Data Visualization with Matplotlib/004 Matplotlib Part 2 - Figure size, Aspect ratio and DPI_en.vtt
6.9 kB
03 - Basics of Natural Language Processing/007 Stop Words_en.vtt
6.9 kB
03 - Basics of Natural Language Processing/005 Stemming & Lemmatization - 1_en.vtt
6.7 kB
07 - Project 4 _ Automated Text Summarization/003 Calculate Sentence Score_en.vtt
6.7 kB
10 - Word Embeddings/003 Train Model for Embedding - II_en.vtt
6.7 kB
13 - Project 8 _ Automatic Text Generation using TensorFlow, Keras and LSTM/002 Text Generation Part II_en.vtt
6.5 kB
16 - Data analysis with Pandas/006 Missing Data_en.vtt
6.4 kB
09 - Deep Learning Basics/001 The Neuron_en.vtt
6.1 kB
17 - Data Visualization with Matplotlib/002 Matplotlib Part 1 - Object Oriented Method_en.vtt
6.0 kB
14 - FastText Library for Text Classification/003 Virtual Box Installation_en.vtt
6.0 kB
14 - FastText Library for Text Classification/005 Install fasttext library_en.vtt
6.0 kB
03 - Basics of Natural Language Processing/006 Stemming & Lemmatization - 2_en.vtt
5.1 kB
17 - Data Visualization with Matplotlib/003 Matplotlib Part 2 - Subplots Method_en.vtt
5.0 kB
11 - Project 6 _ Text Classification with CNN/001 Convolutional Neural Network Part 1_en.vtt
5.0 kB
04 - Project 1 _ Spam Message Classification/005 Apply Support vector Machine (SVM)_en.vtt
5.0 kB
17 - Data Visualization with Matplotlib/005 Matplotlib Part 3_en.vtt
4.9 kB
05 - Project 2 _ Restaurant Review Prediction (Good or bad)/005 Apply Naive Bayes Algorithm_en.vtt
4.8 kB
05 - Project 2 _ Restaurant Review Prediction (Good or bad)/001 Business Problem_en.vtt
4.6 kB
11 - Project 6 _ Text Classification with CNN/002 Convolutional Neural Network Part 2_en.vtt
4.5 kB
15 - Data analysis with Numpy/004 Numpy Arrays Part 3_en.vtt
4.3 kB
15 - Data analysis with Numpy/006 Numpy Indexing and Selection Part 2_en.vtt
4.3 kB
01 - Welcome/001 Course Overview_en.vtt
4.1 kB
03 - Basics of Natural Language Processing/010 Vocabulary and Matching Part - 3 (Phrase Based)_en.vtt
4.1 kB
08 - Project 5 _ Twitter sentiment Analysis/002 Fetch Tweet from Tweeter server_en.vtt
4.1 kB
09 - Deep Learning Basics/004 Gradient Descent and Back-Propagation_en.vtt
4.0 kB
07 - Project 4 _ Automated Text Summarization/004 Extract summary of document_en.vtt
3.8 kB
04 - Project 1 _ Spam Message Classification/006 Predict Testing Data both model_en.vtt
3.8 kB
12 - Project 7 _ Text Classification with RNN/003 LSTM and GRU_en.vtt
3.8 kB
18 - Appendix/004 Text File Processing - IV_en.vtt
3.5 kB
15 - Data analysis with Numpy/007 Numpy Operations_en.vtt
3.5 kB
02 - Installation & Setup/004 Links to Notebooks (More explanatory notebook for refrence).html
3.5 kB
02 - Installation & Setup/003 Links to Notebooks (As taught in Lectures).html
3.3 kB
15 - Data analysis with Numpy/002 Numpy Arrays Part 1_en.vtt
3.3 kB
03 - Basics of Natural Language Processing/004 Tokenization Basic Part - 3_en.vtt
3.3 kB
18 - Appendix/25154140-sample.pdf
3.0 kB
03 - Basics of Natural Language Processing/001 Section _ Introduction_en.vtt
2.8 kB
09 - Deep Learning Basics/003 Cost Function_en.vtt
2.8 kB
14 - FastText Library for Text Classification/001 fasttext Installation steps [Video]_en.vtt
2.2 kB
12 - Project 7 _ Text Classification with RNN/002 Vanishing Gradient Problem_en.vtt
2.1 kB
12 - Project 7 _ Text Classification with RNN/001 Introduction to Recurrent Neural Networks_en.vtt
2.1 kB
01 - Welcome/002 Reviews UPDATE_en.vtt
1.7 kB
01 - Welcome/004 Course FAQs.html
1.6 kB
15 - Data analysis with Numpy/001 Introduction to NumPy_en.vtt
949 Bytes
02 - Installation & Setup/002 Local Installation Steps.html
860 Bytes
16 - Data analysis with Pandas/001 Pandas Introduction_en.vtt
707 Bytes
14 - FastText Library for Text Classification/002 fasttext Installation steps [Text].html
466 Bytes
03 - Basics of Natural Language Processing/external-assets-links.txt
226 Bytes
04 - Project 1 _ Spam Message Classification/external-assets-links.txt
134 Bytes
10 - Word Embeddings/[Tutorialsplanet.NET].url
128 Bytes
[Tutorialsplanet.NET].url
128 Bytes
02 - Installation & Setup/external-assets-links.txt
99 Bytes
02 - Installation & Setup/24056952-requirements.txt
12 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>