搜索
[Tutorialsplanet.NET] Udemy - Data Science Supervised Machine Learning in Python
磁力链接/BT种子名称
[Tutorialsplanet.NET] Udemy - Data Science Supervised Machine Learning in Python
磁力链接/BT种子简介
种子哈希:
e364b80aec5c61f1a6e6571b43fb31ac758f31a7
文件大小:
1.05G
已经下载:
139
次
下载速度:
极快
收录时间:
2021-03-29
最近下载:
2024-10-22
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:E364B80AEC5C61F1A6E6571B43FB31AC758F31A7
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
最近搜索
超高质量!第一眼就让人很惊艳的纯情女神+这是真女神+不需要美颜的那种+居然有点重口+被爆菊+被深喉
呆哥约
欲望+
私生活大曝光
童颜+内射
mizuho uehara
john wick 2023 1080p
the rookie s01
鬼灭之刃训练
国产女人
jux-581
真实情欲
[餅犬製作所+浅貝もっちぬ]+玩具少女+無限絶頂に哭く+[中国翻訳]+[無修正]+[dl版]
大奶老板娘
240-g02
full pack 130
blu-05
性感情人
filipa giordano
淫荡继母
奢香夫人+静静小姐
风吟鸟唱摄影师
dvmm075
31715438
阉狗
抄底極品高顏值可愛小姐姐黑絲加丁看的血脈噴張
请让我男朋友睡觉的时候把鸡巴插进去
放假在家的女大学生露脸激情大秀挣下半年的生活费
abp594
batman begins remux
文件列表
9. Setting Up Your Environment/1. Windows-Focused Environment Setup 2018.mp4
195.4 MB
3. Naive Bayes and Bayes Classifiers/1. Bayes Classifier Intuition (Continuous).mp4
84.1 MB
10. Extra Help With Python Coding for Beginners/3. Proof that using Jupyter Notebook is the same as not using it.mp4
82.1 MB
3. Naive Bayes and Bayes Classifiers/2. Bayes Classifier Intuition (Discrete).mp4
52.5 MB
9. Setting Up Your Environment/2. How to install Numpy, Scipy, Matplotlib, and Sci-Kit Learn.mp4
46.1 MB
11. Effective Learning Strategies for Machine Learning/2. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4
40.9 MB
12. Appendix FAQ/2. BONUS Where to get Udemy coupons and FREE deep learning material.mp4
39.7 MB
11. Effective Learning Strategies for Machine Learning/4. What order should I take your courses in (part 2).mp4
39.4 MB
2. K-Nearest Neighbor/7. Effect of K.mp4
37.6 MB
4. Decision Trees/6. Decision Tree in Code.mp4
31.8 MB
11. Effective Learning Strategies for Machine Learning/3. What order should I take your courses in (part 1).mp4
30.8 MB
10. Extra Help With Python Coding for Beginners/1. How to Code by Yourself (part 1).mp4
25.7 MB
4. Decision Trees/1. Decision Tree Intuition.mp4
21.4 MB
2. K-Nearest Neighbor/3. KNN in Code with MNIST.mp4
18.8 MB
2. K-Nearest Neighbor/1. K-Nearest Neighbor Intuition.mp4
18.4 MB
2. K-Nearest Neighbor/8. KNN Exercise.mp4
17.7 MB
2. K-Nearest Neighbor/9. Suggestion Box.mp4
16.9 MB
6. Practical Machine Learning/5. Sci-Kit Learn.mp4
16.6 MB
3. Naive Bayes and Bayes Classifiers/3. Naive Bayes.mp4
16.5 MB
10. Extra Help With Python Coding for Beginners/2. How to Code by Yourself (part 2).mp4
15.5 MB
3. Naive Bayes and Bayes Classifiers/5. Naive Bayes in Code with MNIST.mp4
15.1 MB
4. Decision Trees/4. Maximizing Information Gain.mp4
14.6 MB
5. Perceptrons/2. Perceptron in Code.mp4
14.4 MB
11. Effective Learning Strategies for Machine Learning/1. How to Succeed in this Course (Long Version).mp4
13.6 MB
5. Perceptrons/1. Perceptron Concepts.mp4
12.8 MB
7. Building a Machine Learning Web Service/2. Building a Machine Learning Web Service Code.mp4
12.5 MB
6. Practical Machine Learning/6. Regression with Sci-Kit Learn is Easy.mp4
11.3 MB
3. Naive Bayes and Bayes Classifiers/8. Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA).mp4
10.9 MB
5. Perceptrons/3. Perceptron for MNIST and XOR.mp4
9.2 MB
6. Practical Machine Learning/3. Comparison to Deep Learning.mp4
9.1 MB
2. K-Nearest Neighbor/2. K-Nearest Neighbor Concepts.mp4
9.0 MB
4. Decision Trees/2. Decision Tree Basics.mp4
8.7 MB
10. Extra Help With Python Coding for Beginners/4. Python 2 vs Python 3.mp4
8.2 MB
2. K-Nearest Neighbor/4. When KNN Can Fail.mp4
8.1 MB
1. Introduction and Review/1. Introduction and Outline.mp4
8.0 MB
6. Practical Machine Learning/1. Hyperparameters and Cross-Validation.mp4
7.8 MB
3. Naive Bayes and Bayes Classifiers/6. Non-Naive Bayes.mp4
7.7 MB
7. Building a Machine Learning Web Service/1. Building a Machine Learning Web Service Concepts.mp4
7.6 MB
6. Practical Machine Learning/2. Feature Extraction and Feature Selection.mp4
7.4 MB
4. Decision Trees/3. Information Entropy.mp4
7.3 MB
4. Decision Trees/5. Choosing the Best Split.mp4
7.1 MB
5. Perceptrons/4. Perceptron Loss Function.mp4
6.6 MB
8. Conclusion/1. What’s Next Support Vector Machines and Ensemble Methods (e.g. Random Forest).mp4
6.6 MB
1. Introduction and Review/2. Review of Important Concepts.mp4
6.3 MB
3. Naive Bayes and Bayes Classifiers/4. Naive Bayes Handwritten Example.mp4
6.1 MB
6. Practical Machine Learning/4. Multiclass Classification.mp4
5.9 MB
12. Appendix FAQ/1. What is the Appendix.mp4
5.7 MB
2. K-Nearest Neighbor/6. KNN for the Donut Problem.mp4
5.7 MB
3. Naive Bayes and Bayes Classifiers/9. Generative vs Discriminative Models.mp4
5.4 MB
3. Naive Bayes and Bayes Classifiers/7. Bayes Classifier in Code with MNIST.mp4
4.7 MB
2. K-Nearest Neighbor/5. KNN for the XOR Problem.mp4
4.5 MB
1. Introduction and Review/3. Where to get the Code and Data.mp4
4.1 MB
1. Introduction and Review/4. How to Succeed in this Course.mp4
3.5 MB
11. Effective Learning Strategies for Machine Learning/2. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.srt
32.5 kB
11. Effective Learning Strategies for Machine Learning/4. What order should I take your courses in (part 2).srt
23.6 kB
3. Naive Bayes and Bayes Classifiers/1. Bayes Classifier Intuition (Continuous).srt
23.5 kB
10. Extra Help With Python Coding for Beginners/1. How to Code by Yourself (part 1).srt
23.3 kB
9. Setting Up Your Environment/1. Windows-Focused Environment Setup 2018.srt
20.6 kB
11. Effective Learning Strategies for Machine Learning/3. What order should I take your courses in (part 1).srt
16.4 kB
11. Effective Learning Strategies for Machine Learning/1. How to Succeed in this Course (Long Version).srt
15.0 kB
9. Setting Up Your Environment/2. How to install Numpy, Scipy, Matplotlib, and Sci-Kit Learn.srt
14.8 kB
10. Extra Help With Python Coding for Beginners/3. Proof that using Jupyter Notebook is the same as not using it.srt
14.5 kB
10. Extra Help With Python Coding for Beginners/2. How to Code by Yourself (part 2).srt
13.6 kB
3. Naive Bayes and Bayes Classifiers/2. Bayes Classifier Intuition (Discrete).srt
13.2 kB
3. Naive Bayes and Bayes Classifiers/3. Naive Bayes.srt
11.8 kB
4. Decision Trees/6. Decision Tree in Code.srt
11.4 kB
6. Practical Machine Learning/5. Sci-Kit Learn.srt
11.4 kB
4. Decision Trees/4. Maximizing Information Gain.srt
9.9 kB
5. Perceptrons/1. Perceptron Concepts.srt
8.9 kB
12. Appendix FAQ/2. BONUS Where to get Udemy coupons and FREE deep learning material.srt
8.1 kB
7. Building a Machine Learning Web Service/2. Building a Machine Learning Web Service Code.srt
7.6 kB
3. Naive Bayes and Bayes Classifiers/8. Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA).srt
7.6 kB
2. K-Nearest Neighbor/3. KNN in Code with MNIST.srt
7.5 kB
2. K-Nearest Neighbor/7. Effect of K.srt
7.2 kB
2. K-Nearest Neighbor/2. K-Nearest Neighbor Concepts.srt
6.4 kB
4. Decision Trees/2. Decision Tree Basics.srt
6.3 kB
10. Extra Help With Python Coding for Beginners/4. Python 2 vs Python 3.srt
6.2 kB
6. Practical Machine Learning/6. Regression with Sci-Kit Learn is Easy.srt
6.2 kB
6. Practical Machine Learning/3. Comparison to Deep Learning.srt
6.2 kB
1. Introduction and Review/1. Introduction and Outline.srt
5.8 kB
4. Decision Trees/1. Decision Tree Intuition.srt
5.7 kB
2. K-Nearest Neighbor/8. KNN Exercise.srt
5.6 kB
7. Building a Machine Learning Web Service/1. Building a Machine Learning Web Service Concepts.srt
5.5 kB
6. Practical Machine Learning/1. Hyperparameters and Cross-Validation.srt
5.2 kB
5. Perceptrons/4. Perceptron Loss Function.srt
5.0 kB
2. K-Nearest Neighbor/1. K-Nearest Neighbor Intuition.srt
5.0 kB
3. Naive Bayes and Bayes Classifiers/6. Non-Naive Bayes.srt
5.0 kB
6. Practical Machine Learning/2. Feature Extraction and Feature Selection.srt
5.0 kB
4. Decision Trees/5. Choosing the Best Split.srt
4.9 kB
3. Naive Bayes and Bayes Classifiers/5. Naive Bayes in Code with MNIST.srt
4.9 kB
2. K-Nearest Neighbor/9. Suggestion Box.srt
4.8 kB
5. Perceptrons/2. Perceptron in Code.srt
4.8 kB
2. K-Nearest Neighbor/4. When KNN Can Fail.srt
4.7 kB
1. Introduction and Review/2. Review of Important Concepts.srt
4.5 kB
4. Decision Trees/3. Information Entropy.srt
4.4 kB
6. Practical Machine Learning/4. Multiclass Classification.srt
4.2 kB
1. Introduction and Review/4. How to Succeed in this Course.srt
4.1 kB
12. Appendix FAQ/1. What is the Appendix.srt
3.8 kB
3. Naive Bayes and Bayes Classifiers/4. Naive Bayes Handwritten Example.srt
3.7 kB
8. Conclusion/1. What’s Next Support Vector Machines and Ensemble Methods (e.g. Random Forest).srt
3.6 kB
3. Naive Bayes and Bayes Classifiers/9. Generative vs Discriminative Models.srt
3.2 kB
1. Introduction and Review/3. Where to get the Code and Data.srt
2.7 kB
2. K-Nearest Neighbor/6. KNN for the Donut Problem.srt
2.6 kB
5. Perceptrons/3. Perceptron for MNIST and XOR.srt
2.4 kB
2. K-Nearest Neighbor/5. KNN for the XOR Problem.srt
2.2 kB
3. Naive Bayes and Bayes Classifiers/7. Bayes Classifier in Code with MNIST.srt
1.6 kB
[Tutorialsplanet.NET].url
128 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>