搜索
[FreeCourseSite.com] Udemy - Data Science Supervised Machine Learning in Python
磁力链接/BT种子名称
[FreeCourseSite.com] Udemy - Data Science Supervised Machine Learning in Python
磁力链接/BT种子简介
种子哈希:
e61fe4d155bf84133951d1dd35df3c0e0cb6141c
文件大小:
1004.51M
已经下载:
1705
次
下载速度:
极快
收录时间:
2022-01-09
最近下载:
2025-01-02
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:E61FE4D155BF84133951D1DD35DF3C0E0CB6141C
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
少女初夜
萝莉岛
最近搜索
艳舞视频
女同舔逼
萝莉红人
办公室道具
fc2-ppv-4298863
ai画质增强 小宝
与码
無套內射後當場生氣爆走
仓本合集
yoshizawa+akiho
露出 2024
稀缺资源猎奇福利视频重磅
网红玲珑
麻豆传媒 教学
人气探花
云盘骚
女s绿帽
换妻探花扑克
高腰裙
又操了一个3k价位的顶级身材整容美女
eroticax] alexa grace - getting even
2160p remux 2023
小宝寻花,冲击日榜,今夜干抖音网红主播,极品大胸,玲珑有致魔鬼身材,精品佳作值得收藏.mp4
reindeer+games
deeper.22.10.28.kenna.james
shuangxi0186
黄厂
082923-902
hunks
1日10回射精無码
文件列表
9. Appendix/3. Windows-Focused Environment Setup 2018.mp4
195.4 MB
3. Naive Bayes and Bayes Classifiers/1. Bayes Classifier Intuition (Continuous).mp4
84.1 MB
9. Appendix/9. Proof that using Jupyter Notebook is the same as not using it.mp4
82.1 MB
3. Naive Bayes and Bayes Classifiers/2. Bayes Classifier Intuition (Discrete).mp4
52.5 MB
9. Appendix/4. How to install Numpy, Scipy, Matplotlib, and Sci-Kit Learn.mp4
46.0 MB
9. Appendix/8. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4
40.9 MB
9. Appendix/12. What order should I take your courses in (part 2).mp4
39.4 MB
2. K-Nearest Neighbor/7. Effect of K.mp4
37.5 MB
4. Decision Trees/6. Decision Tree in Code.mp4
31.8 MB
9. Appendix/11. What order should I take your courses in (part 1).mp4
30.7 MB
9. Appendix/5. How to Code by Yourself (part 1).mp4
25.7 MB
4. Decision Trees/1. Decision Tree Intuition.mp4
21.4 MB
2. K-Nearest Neighbor/3. KNN in Code with MNIST.mp4
18.8 MB
2. K-Nearest Neighbor/1. K-Nearest Neighbor Intuition.mp4
18.4 MB
6. Practical Machine Learning/5. Sci-Kit Learn.mp4
16.6 MB
3. Naive Bayes and Bayes Classifiers/3. Naive Bayes.mp4
16.5 MB
9. Appendix/6. How to Code by Yourself (part 2).mp4
15.5 MB
3. Naive Bayes and Bayes Classifiers/5. Naive Bayes in Code with MNIST.mp4
15.1 MB
4. Decision Trees/4. Maximizing Information Gain.mp4
14.6 MB
5. Perceptrons/2. Perceptron in Code.mp4
14.4 MB
9. Appendix/7. How to Succeed in this Course (Long Version).mp4
13.6 MB
5. Perceptrons/1. Perceptron Concepts.mp4
12.8 MB
7. Building a Machine Learning Web Service/2. Building a Machine Learning Web Service Code.mp4
12.4 MB
6. Practical Machine Learning/6. Regression with Sci-Kit Learn is Easy.mp4
11.3 MB
3. Naive Bayes and Bayes Classifiers/8. Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA).mp4
10.9 MB
5. Perceptrons/3. Perceptron for MNIST and XOR.mp4
9.2 MB
6. Practical Machine Learning/3. Comparison to Deep Learning.mp4
9.1 MB
2. K-Nearest Neighbor/2. K-Nearest Neighbor Concepts.mp4
9.0 MB
4. Decision Trees/2. Decision Tree Basics.mp4
8.7 MB
9. Appendix/10. Python 2 vs Python 3.mp4
8.2 MB
2. K-Nearest Neighbor/4. When KNN Can Fail.mp4
8.1 MB
1. Introduction and Review/1. Introduction and Outline.mp4
8.0 MB
6. Practical Machine Learning/1. Hyperparameters and Cross-Validation.mp4
7.8 MB
3. Naive Bayes and Bayes Classifiers/6. Non-Naive Bayes.mp4
7.7 MB
7. Building a Machine Learning Web Service/1. Building a Machine Learning Web Service Concepts.mp4
7.6 MB
6. Practical Machine Learning/2. Feature Extraction and Feature Selection.mp4
7.4 MB
4. Decision Trees/3. Information Entropy.mp4
7.3 MB
4. Decision Trees/5. Choosing the Best Split.mp4
7.0 MB
5. Perceptrons/4. Perceptron Loss Function.mp4
6.6 MB
8. Conclusion/1. What’s Next Support Vector Machines and Ensemble Methods (e.g. Random Forest).mp4
6.6 MB
1. Introduction and Review/2. Review of Important Concepts.mp4
6.3 MB
3. Naive Bayes and Bayes Classifiers/4. Naive Bayes Handwritten Example.mp4
6.1 MB
6. Practical Machine Learning/4. Multiclass Classification.mp4
5.9 MB
9. Appendix/1. What is the Appendix.mp4
5.7 MB
2. K-Nearest Neighbor/6. KNN for the Donut Problem.mp4
5.7 MB
3. Naive Bayes and Bayes Classifiers/9. Generative vs Discriminative Models.mp4
5.4 MB
3. Naive Bayes and Bayes Classifiers/7. Bayes Classifier in Code with MNIST.mp4
4.7 MB
2. K-Nearest Neighbor/5. KNN for the XOR Problem.mp4
4.5 MB
9. Appendix/2. Where to get Udemy coupons and FREE deep learning material.mp4
4.2 MB
1. Introduction and Review/3. Where to get the Code and Data.mp4
4.0 MB
1. Introduction and Review/4. How to Succeed in this Course.mp4
3.5 MB
9. Appendix/8. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.vtt
28.4 kB
9. Appendix/12. What order should I take your courses in (part 2).vtt
20.7 kB
3. Naive Bayes and Bayes Classifiers/1. Bayes Classifier Intuition (Continuous).vtt
20.5 kB
9. Appendix/5. How to Code by Yourself (part 1).vtt
20.3 kB
9. Appendix/3. Windows-Focused Environment Setup 2018.vtt
17.8 kB
9. Appendix/11. What order should I take your courses in (part 1).vtt
14.4 kB
9. Appendix/7. How to Succeed in this Course (Long Version).vtt
13.2 kB
9. Appendix/4. How to install Numpy, Scipy, Matplotlib, and Sci-Kit Learn.vtt
12.7 kB
9. Appendix/9. Proof that using Jupyter Notebook is the same as not using it.vtt
12.5 kB
9. Appendix/6. How to Code by Yourself (part 2).vtt
11.9 kB
3. Naive Bayes and Bayes Classifiers/2. Bayes Classifier Intuition (Discrete).vtt
11.6 kB
3. Naive Bayes and Bayes Classifiers/3. Naive Bayes.vtt
10.3 kB
6. Practical Machine Learning/5. Sci-Kit Learn.vtt
10.1 kB
4. Decision Trees/6. Decision Tree in Code.vtt
9.8 kB
4. Decision Trees/4. Maximizing Information Gain.vtt
8.7 kB
5. Perceptrons/1. Perceptron Concepts.vtt
7.8 kB
7. Building a Machine Learning Web Service/2. Building a Machine Learning Web Service Code.vtt
6.7 kB
3. Naive Bayes and Bayes Classifiers/8. Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA).vtt
6.7 kB
2. K-Nearest Neighbor/3. KNN in Code with MNIST.vtt
6.6 kB
2. K-Nearest Neighbor/7. Effect of K.vtt
6.3 kB
2. K-Nearest Neighbor/2. K-Nearest Neighbor Concepts.vtt
5.6 kB
4. Decision Trees/2. Decision Tree Basics.vtt
5.5 kB
6. Practical Machine Learning/3. Comparison to Deep Learning.vtt
5.5 kB
9. Appendix/10. Python 2 vs Python 3.vtt
5.5 kB
6. Practical Machine Learning/6. Regression with Sci-Kit Learn is Easy.vtt
5.4 kB
1. Introduction and Review/1. Introduction and Outline.vtt
5.2 kB
4. Decision Trees/1. Decision Tree Intuition.vtt
5.0 kB
7. Building a Machine Learning Web Service/1. Building a Machine Learning Web Service Concepts.vtt
4.8 kB
6. Practical Machine Learning/1. Hyperparameters and Cross-Validation.vtt
4.6 kB
2. K-Nearest Neighbor/1. K-Nearest Neighbor Intuition.vtt
4.4 kB
3. Naive Bayes and Bayes Classifiers/6. Non-Naive Bayes.vtt
4.4 kB
5. Perceptrons/4. Perceptron Loss Function.vtt
4.4 kB
6. Practical Machine Learning/2. Feature Extraction and Feature Selection.vtt
4.4 kB
4. Decision Trees/5. Choosing the Best Split.vtt
4.3 kB
3. Naive Bayes and Bayes Classifiers/5. Naive Bayes in Code with MNIST.vtt
4.3 kB
5. Perceptrons/2. Perceptron in Code.vtt
4.2 kB
2. K-Nearest Neighbor/4. When KNN Can Fail.vtt
4.1 kB
1. Introduction and Review/2. Review of Important Concepts.vtt
4.0 kB
4. Decision Trees/3. Information Entropy.vtt
3.9 kB
6. Practical Machine Learning/4. Multiclass Classification.vtt
3.7 kB
1. Introduction and Review/4. How to Succeed in this Course.vtt
3.6 kB
9. Appendix/1. What is the Appendix.vtt
3.4 kB
3. Naive Bayes and Bayes Classifiers/4. Naive Bayes Handwritten Example.vtt
3.2 kB
8. Conclusion/1. What’s Next Support Vector Machines and Ensemble Methods (e.g. Random Forest).vtt
3.2 kB
9. Appendix/2. Where to get Udemy coupons and FREE deep learning material.vtt
3.1 kB
3. Naive Bayes and Bayes Classifiers/9. Generative vs Discriminative Models.vtt
2.8 kB
1. Introduction and Review/3. Where to get the Code and Data.vtt
2.4 kB
2. K-Nearest Neighbor/6. KNN for the Donut Problem.vtt
2.3 kB
5. Perceptrons/3. Perceptron for MNIST and XOR.vtt
2.0 kB
2. K-Nearest Neighbor/5. KNN for the XOR Problem.vtt
2.0 kB
3. Naive Bayes and Bayes Classifiers/7. Bayes Classifier in Code with MNIST.vtt
1.5 kB
[FCS Forum].url
133 Bytes
[FreeCourseSite.com].url
127 Bytes
[CourseClub.NET].url
123 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>