搜索
[GigaCourse.com] Udemy - Machine Learning A-Z™ Hands-On Python & R In Data Science
磁力链接/BT种子名称
[GigaCourse.com] Udemy - Machine Learning A-Z™ Hands-On Python & R In Data Science
磁力链接/BT种子简介
种子哈希:
e856ffe88ac9036f6f9ff4831afcadf5d1d45518
文件大小:
5.93G
已经下载:
558
次
下载速度:
极快
收录时间:
2021-03-29
最近下载:
2024-10-29
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:E856FFE88AC9036F6F9FF4831AFCADF5D1D45518
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
最近搜索
潮吹
大学女厕全景偷拍
1386935
hellraiser 2018 hindi
atid 473
无损音乐
探花+老板娘
小学
wjsn secret
女团成员
mesu-043
天蝎
狮子座
fc2-ppv 4509708
绿奴生孩子
无耻之徒1-8季床戏集锦大合集
轩逸探花
木又
sone+2218
destruction finale
幼女在浴室
承欢记第06集
隐形丝袜
骚妈性欲大发
精东+底
2023.10.偷
淫母いんぼ
母畜
小糖糖
kong 2024
文件列表
1. Welcome to the course!/6.1 Machine_Learning_A-Z_New.zip
239.5 MB
36. Kernel PCA/3. Kernel PCA in R.mp4
59.3 MB
1. Welcome to the course!/7. Updates on Udemy Reviews.mp4
55.5 MB
39. XGBoost/5. THANK YOU bonus video.mp4
54.8 MB
12. Logistic Regression/14. Logistic Regression in R - Step 5.mp4
54.2 MB
35. Linear Discriminant Analysis (LDA)/4. LDA in R.mp4
53.8 MB
17. Decision Tree Classification/4. Decision Tree Classification in R.mp4
53.7 MB
18. Random Forest Classification/4. Random Forest Classification in R.mp4
51.8 MB
31. Artificial Neural Networks/13. ANN in Python - Step 2.mp4
50.4 MB
39. XGBoost/4. XGBoost in R.mp4
49.6 MB
27. Upper Confidence Bound (UCB)/10. Upper Confidence Bound in R - Step 3.mp4
49.5 MB
18. Random Forest Classification/3. Random Forest Classification in Python.mp4
49.4 MB
32. Convolutional Neural Networks/20. CNN in Python - Step 9.mp4
49.1 MB
7. Support Vector Regression (SVR)/2. SVR Intuition.mp4
48.9 MB
7. Support Vector Regression (SVR)/3. SVR in Python.mp4
48.4 MB
35. Linear Discriminant Analysis (LDA)/3. LDA in Python.mp4
47.6 MB
8. Decision Tree Regression/4. Decision Tree Regression in R.mp4
46.5 MB
16. Naive Bayes/1. Bayes Theorem.mp4
46.0 MB
24. Apriori/5. Apriori in R - Step 3.mp4
46.0 MB
38. Model Selection/3. k-Fold Cross Validation in R.mp4
45.8 MB
6. Polynomial Regression/11. Polynomial Regression in R - Step 3.mp4
45.4 MB
28. Thompson Sampling/4. Thompson Sampling in Python - Step 1.mp4
45.2 MB
6. Polynomial Regression/6. Polynomial Regression in Python - Step 3.mp4
45.1 MB
24. Apriori/3. Apriori in R - Step 1.mp4
45.0 MB
32. Convolutional Neural Networks/7. Step 4 - Full Connection.mp4
44.8 MB
12. Logistic Regression/7. Logistic Regression in Python - Step 5.mp4
44.6 MB
15. Kernel SVM/6. Kernel SVM in Python.mp4
43.6 MB
13. K-Nearest Neighbors (K-NN)/4. K-NN in R.mp4
43.4 MB
29. Part 7 Natural Language Processing/24. Natural Language Processing in R - Step 10.mp4
43.2 MB
27. Upper Confidence Bound (UCB)/6. Upper Confidence Bound in Python - Step 3.mp4
43.1 MB
28. Thompson Sampling/6. Thompson Sampling in R - Step 1.mp4
42.9 MB
2. Part 1 Data Preprocessing/7. Categorical Data.mp4
42.8 MB
15. Kernel SVM/7. Kernel SVM in R.mp4
42.4 MB
29. Part 7 Natural Language Processing/15. Natural Language Processing in R - Step 1.mp4
42.3 MB
9. Random Forest Regression/4. Random Forest Regression in R.mp4
42.3 MB
32. Convolutional Neural Networks/5. Step 2 - Pooling.mp4
42.2 MB
21. K-Means Clustering/5. K-Means Clustering in Python.mp4
41.7 MB
5. Multiple Linear Regression/19. Multiple Linear Regression in R - Backward Elimination - HOMEWORK !.mp4
41.7 MB
5. Multiple Linear Regression/9. Multiple Linear Regression in Python - Step 1.mp4
41.5 MB
29. Part 7 Natural Language Processing/11. Natural Language Processing in Python - Step 8.mp4
41.4 MB
9. Random Forest Regression/3. Random Forest Regression in Python.mp4
41.4 MB
2. Part 1 Data Preprocessing/9. Splitting the Dataset into the Training set and Test set.mp4
40.9 MB
31. Artificial Neural Networks/22. ANN in R - Step 1.mp4
40.4 MB
38. Model Selection/4. Grid Search in Python - Step 1.mp4
40.1 MB
24. Apriori/6. Apriori in Python - Step 1.mp4
39.8 MB
4. Simple Linear Regression/12. Simple Linear Regression in R - Step 4.mp4
39.2 MB
16. Naive Bayes/7. Naive Bayes in R.mp4
39.1 MB
28. Thompson Sampling/1. Thompson Sampling Intuition.mp4
39.1 MB
34. Principal Component Analysis (PCA)/8. PCA in R - Step 3.mp4
38.5 MB
38. Model Selection/6. Grid Search in R.mp4
37.3 MB
27. Upper Confidence Bound (UCB)/5. Upper Confidence Bound in Python - Step 2.mp4
37.2 MB
13. K-Nearest Neighbors (K-NN)/3. K-NN in Python.mp4
36.9 MB
29. Part 7 Natural Language Processing/4. Natural Language Processing in Python - Step 1.mp4
36.9 MB
24. Apriori/1. Apriori Intuition.mp4
36.7 MB
2. Part 1 Data Preprocessing/10. Feature Scaling.mp4
36.3 MB
8. Decision Tree Regression/3. Decision Tree Regression in Python.mp4
35.2 MB
31. Artificial Neural Networks/25. ANN in R - Step 4 (Last step).mp4
35.1 MB
36. Kernel PCA/2. Kernel PCA in Python.mp4
35.0 MB
32. Convolutional Neural Networks/9. Softmax & Cross-Entropy.mp4
34.8 MB
38. Model Selection/2. k-Fold Cross Validation in Python.mp4
34.4 MB
5. Multiple Linear Regression/13. Multiple Linear Regression in Python - Backward Elimination - HOMEWORK !.mp4
34.2 MB
14. Support Vector Machine (SVM)/4. SVM in R.mp4
33.8 MB
2. Part 1 Data Preprocessing/6. Missing Data.mp4
33.7 MB
34. Principal Component Analysis (PCA)/1. Principal Component Analysis (PCA) Intuition.mp4
33.7 MB
39. XGBoost/3. XGBoost in Python - Step 2.mp4
33.5 MB
34. Principal Component Analysis (PCA)/3. PCA in Python - Step 1.mp4
33.5 MB
27. Upper Confidence Bound (UCB)/4. Upper Confidence Bound in Python - Step 1.mp4
33.1 MB
30. Part 8 Deep Learning/2. What is Deep Learning.mp4
32.8 MB
14. Support Vector Machine (SVM)/3. SVM in Python.mp4
32.7 MB
32. Convolutional Neural Networks/3. Step 1 - Convolution Operation.mp4
32.5 MB
4. Simple Linear Regression/8. Simple Linear Regression in Python - Step 4.mp4
32.3 MB
34. Principal Component Analysis (PCA)/6. PCA in R - Step 1.mp4
32.1 MB
24. Apriori/4. Apriori in R - Step 2.mp4
32.0 MB
27. Upper Confidence Bound (UCB)/1. The Multi-Armed Bandit Problem.mp4
31.7 MB
31. Artificial Neural Networks/2. The Neuron.mp4
31.3 MB
17. Decision Tree Classification/3. Decision Tree Classification in Python.mp4
31.2 MB
29. Part 7 Natural Language Processing/2. Natural Language Processing Intuition.mp4
31.1 MB
31. Artificial Neural Networks/16. ANN in Python - Step 5.mp4
31.0 MB
24. Apriori/7. Apriori in Python - Step 2.mp4
31.0 MB
38. Model Selection/5. Grid Search in Python - Step 2.mp4
30.9 MB
32. Convolutional Neural Networks/2. What are convolutional neural networks.mp4
30.9 MB
27. Upper Confidence Bound (UCB)/2. Upper Confidence Bound (UCB) Intuition.mp4
30.7 MB
31. Artificial Neural Networks/12. ANN in Python - Step 1.mp4
30.7 MB
15. Kernel SVM/3. The Kernel Trick.mp4
30.7 MB
12. Logistic Regression/1. Logistic Regression Intuition.mp4
30.6 MB
34. Principal Component Analysis (PCA)/7. PCA in R - Step 2.mp4
30.4 MB
27. Upper Confidence Bound (UCB)/9. Upper Confidence Bound in R - Step 2.mp4
30.4 MB
21. K-Means Clustering/6. K-Means Clustering in R.mp4
30.4 MB
29. Part 7 Natural Language Processing/23. Natural Language Processing in R - Step 9.mp4
30.4 MB
31. Artificial Neural Networks/24. ANN in R - Step 3.mp4
30.3 MB
5. Multiple Linear Regression/8. Multiple Linear Regression Intuition - Step 5.mp4
30.2 MB
27. Upper Confidence Bound (UCB)/8. Upper Confidence Bound in R - Step 1.mp4
29.4 MB
16. Naive Bayes/2. Naive Bayes Intuition.mp4
29.1 MB
6. Polynomial Regression/8. Python Regression Template.mp4
28.8 MB
32. Convolutional Neural Networks/15. CNN in Python - Step 4.mp4
28.5 MB
5. Multiple Linear Regression/14. Multiple Linear Regression in Python - Backward Elimination - Homework Solution.mp4
28.5 MB
6. Polynomial Regression/5. Polynomial Regression in Python - Step 2.mp4
28.4 MB
35. Linear Discriminant Analysis (LDA)/1. Linear Discriminant Analysis (LDA) Intuition.mp4
28.3 MB
24. Apriori/8. Apriori in Python - Step 3.mp4
28.3 MB
21. K-Means Clustering/1. K-Means Clustering Intuition.mp4
28.2 MB
31. Artificial Neural Networks/5. How do Neural Networks learn.mp4
27.8 MB
5. Multiple Linear Regression/17. Multiple Linear Regression in R - Step 2.mp4
27.2 MB
7. Support Vector Regression (SVR)/4. SVR in R.mp4
27.1 MB
34. Principal Component Analysis (PCA)/5. PCA in Python - Step 3.mp4
26.7 MB
6. Polynomial Regression/13. R Regression Template.mp4
26.6 MB
32. Convolutional Neural Networks/12. CNN in Python - Step 1.mp4
26.1 MB
6. Polynomial Regression/4. Polynomial Regression in Python - Step 1.mp4
26.1 MB
10. Evaluating Regression Models Performance/4. Interpreting Linear Regression Coefficients.mp4
25.4 MB
29. Part 7 Natural Language Processing/13. Natural Language Processing in Python - Step 10.mp4
25.3 MB
29. Part 7 Natural Language Processing/7. Natural Language Processing in Python - Step 4.mp4
25.2 MB
6. Polynomial Regression/10. Polynomial Regression in R - Step 2.mp4
25.0 MB
5. Multiple Linear Regression/12. Multiple Linear Regression in Python - Backward Elimination - Preparation.mp4
25.0 MB
31. Artificial Neural Networks/4. How do Neural Networks work.mp4
24.7 MB
16. Naive Bayes/6. Naive Bayes in Python.mp4
24.5 MB
2. Part 1 Data Preprocessing/4. Importing the Dataset.mp4
24.4 MB
21. K-Means Clustering/3. K-Means Selecting The Number Of Clusters.mp4
24.3 MB
22. Hierarchical Clustering/3. Hierarchical Clustering Using Dendrograms.mp4
23.9 MB
8. Decision Tree Regression/1. Decision Tree Regression Intuition.mp4
23.8 MB
6. Polynomial Regression/12. Polynomial Regression in R - Step 4.mp4
23.4 MB
34. Principal Component Analysis (PCA)/4. PCA in Python - Step 2.mp4
23.1 MB
29. Part 7 Natural Language Processing/5. Natural Language Processing in Python - Step 2.mp4
23.0 MB
10. Evaluating Regression Models Performance/3. Evaluating Regression Models Performance - Homework's Final Part.mp4
23.0 MB
4. Simple Linear Regression/5. Simple Linear Regression in Python - Step 1.mp4
22.8 MB
39. XGBoost/2. XGBoost in Python - Step 1.mp4
22.4 MB
2. Part 1 Data Preprocessing/2. Get the dataset.mp4
22.2 MB
25. Eclat/3. Eclat in R.mp4
21.7 MB
32. Convolutional Neural Networks/21. CNN in Python - Step 10.mp4
21.6 MB
2. Part 1 Data Preprocessing/11. And here is our Data Preprocessing Template!.mp4
20.6 MB
1. Welcome to the course!/8. Installing Python and Anaconda (Mac, Linux & Windows).mp4
20.5 MB
18. Random Forest Classification/1. Random Forest Classification Intuition.mp4
20.4 MB
10. Evaluating Regression Models Performance/2. Adjusted R-Squared Intuition.mp4
20.2 MB
16. Naive Bayes/4. Naive Bayes Intuition (Extras).mp4
19.9 MB
17. Decision Tree Classification/1. Decision Tree Classification Intuition.mp4
19.7 MB
4. Simple Linear Regression/6. Simple Linear Regression in Python - Step 2.mp4
19.7 MB
19. Evaluating Classification Models Performance/4. CAP Curve.mp4
19.6 MB
31. Artificial Neural Networks/6. Gradient Descent.mp4
19.4 MB
31. Artificial Neural Networks/19. ANN in Python - Step 8.mp4
19.1 MB
14. Support Vector Machine (SVM)/1. SVM Intuition.mp4
18.9 MB
5. Multiple Linear Regression/16. Multiple Linear Regression in R - Step 1.mp4
18.8 MB
6. Polynomial Regression/9. Polynomial Regression in R - Step 1.mp4
18.6 MB
1. Welcome to the course!/10. Installing R and R Studio (Mac, Linux & Windows).mp4
18.4 MB
29. Part 7 Natural Language Processing/16. Natural Language Processing in R - Step 2.mp4
18.3 MB
22. Hierarchical Clustering/2. Hierarchical Clustering How Dendrograms Work.mp4
18.3 MB
5. Multiple Linear Regression/20. Multiple Linear Regression in R - Backward Elimination - Homework Solution.mp4
18.1 MB
29. Part 7 Natural Language Processing/10. Natural Language Processing in Python - Step 7.mp4
17.9 MB
31. Artificial Neural Networks/21. ANN in Python - Step 10.mp4
17.9 MB
31. Artificial Neural Networks/20. ANN in Python - Step 9.mp4
17.7 MB
31. Artificial Neural Networks/7. Stochastic Gradient Descent.mp4
17.6 MB
22. Hierarchical Clustering/1. Hierarchical Clustering Intuition.mp4
17.3 MB
31. Artificial Neural Networks/10. Business Problem Description.mp4
17.2 MB
4. Simple Linear Regression/7. Simple Linear Regression in Python - Step 3.mp4
16.4 MB
21. K-Means Clustering/2. K-Means Random Initialization Trap.mp4
16.1 MB
29. Part 7 Natural Language Processing/8. Natural Language Processing in Python - Step 5.mp4
15.6 MB
31. Artificial Neural Networks/3. The Activation Function.mp4
15.5 MB
12. Logistic Regression/11. Logistic Regression in R - Step 3.mp4
15.3 MB
4. Simple Linear Regression/10. Simple Linear Regression in R - Step 2.mp4
15.0 MB
5. Multiple Linear Regression/11. Multiple Linear Regression in Python - Step 3.mp4
15.0 MB
5. Multiple Linear Regression/5. Multiple Linear Regression Intuition - Step 3.mp4
15.0 MB
31. Artificial Neural Networks/23. ANN in R - Step 2.mp4
14.9 MB
32. Convolutional Neural Networks/4. Step 1(b) - ReLU Layer.mp4
14.8 MB
28. Thompson Sampling/2. Algorithm Comparison UCB vs Thompson Sampling.mp4
14.8 MB
29. Part 7 Natural Language Processing/12. Natural Language Processing in Python - Step 9.mp4
14.7 MB
9. Random Forest Regression/1. Random Forest Regression Intuition.mp4
14.5 MB
15. Kernel SVM/2. Mapping to a higher dimension.mp4
14.4 MB
19. Evaluating Classification Models Performance/1. False Positives & False Negatives.mp4
14.3 MB
29. Part 7 Natural Language Processing/17. Natural Language Processing in R - Step 3.mp4
14.2 MB
6. Polynomial Regression/7. Polynomial Regression in Python - Step 4.mp4
14.2 MB
16. Naive Bayes/3. Naive Bayes Intuition (Challenge Reveal).mp4
13.9 MB
29. Part 7 Natural Language Processing/22. Natural Language Processing in R - Step 8.mp4
13.9 MB
32. Convolutional Neural Networks/18. CNN in Python - Step 7.mp4
13.6 MB
12. Logistic Regression/3. Logistic Regression in Python - Step 1.mp4
13.6 MB
1. Welcome to the course!/3. Why Machine Learning is the Future.mp4
13.4 MB
29. Part 7 Natural Language Processing/20. Natural Language Processing in R - Step 6.mp4
13.4 MB
22. Hierarchical Clustering/6. HC in Python - Step 2.mp4
13.3 MB
12. Logistic Regression/9. Logistic Regression in R - Step 1.mp4
13.2 MB
12. Logistic Regression/15. R Classification Template.mp4
13.1 MB
15. Kernel SVM/4. Types of Kernel Functions.mp4
12.9 MB
22. Hierarchical Clustering/7. HC in Python - Step 3.mp4
12.9 MB
12. Logistic Regression/8. Python Classification Template.mp4
12.7 MB
22. Hierarchical Clustering/8. HC in Python - Step 4.mp4
12.6 MB
16. Naive Bayes/5. How to get the dataset.mp4
12.3 MB
18. Random Forest Classification/2. How to get the dataset.mp4
12.3 MB
21. K-Means Clustering/4. How to get the dataset.mp4
12.3 MB
22. Hierarchical Clustering/4. How to get the dataset.mp4
12.3 MB
31. Artificial Neural Networks/9. How to get the dataset.mp4
12.3 MB
32. Convolutional Neural Networks/10. How to get the dataset.mp4
12.3 MB
38. Model Selection/1. How to get the dataset.mp4
12.3 MB
4. Simple Linear Regression/1. How to get the dataset.mp4
12.3 MB
9. Random Forest Regression/2. How to get the dataset.mp4
12.3 MB
12. Logistic Regression/2. How to get the dataset.mp4
12.3 MB
13. K-Nearest Neighbors (K-NN)/2. How to get the dataset.mp4
12.3 MB
14. Support Vector Machine (SVM)/2. How to get the dataset.mp4
12.3 MB
15. Kernel SVM/5. How to get the dataset.mp4
12.3 MB
17. Decision Tree Classification/2. How to get the dataset.mp4
12.3 MB
24. Apriori/2. How to get the dataset.mp4
12.3 MB
25. Eclat/2. How to get the dataset.mp4
12.3 MB
27. Upper Confidence Bound (UCB)/3. How to get the dataset.mp4
12.3 MB
28. Thompson Sampling/3. How to get the dataset.mp4
12.3 MB
29. Part 7 Natural Language Processing/3. How to get the dataset.mp4
12.3 MB
34. Principal Component Analysis (PCA)/2. How to get the dataset.mp4
12.3 MB
35. Linear Discriminant Analysis (LDA)/2. How to get the dataset.mp4
12.3 MB
36. Kernel PCA/1. How to get the dataset.mp4
12.3 MB
39. XGBoost/1. How to get the dataset.mp4
12.3 MB
5. Multiple Linear Regression/1. How to get the dataset.mp4
12.3 MB
6. Polynomial Regression/2. How to get the dataset.mp4
12.3 MB
7. Support Vector Regression (SVR)/1. How to get the dataset.mp4
12.3 MB
8. Decision Tree Regression/2. How to get the dataset.mp4
12.3 MB
19. Evaluating Classification Models Performance/5. CAP Curve Analysis.mp4
12.1 MB
22. Hierarchical Clustering/11. HC in R - Step 2.mp4
11.7 MB
2. Part 1 Data Preprocessing/3. Importing the Libraries.mp4
11.6 MB
31. Artificial Neural Networks/8. Backpropagation.mp4
11.5 MB
22. Hierarchical Clustering/5. HC in Python - Step 1.mp4
11.2 MB
25. Eclat/1. Eclat Intuition.mp4
11.2 MB
5. Multiple Linear Regression/18. Multiple Linear Regression in R - Step 3.mp4
10.9 MB
12. Logistic Regression/6. Logistic Regression in Python - Step 4.mp4
10.9 MB
5. Multiple Linear Regression/2. Dataset + Business Problem Description.mp4
10.5 MB
32. Convolutional Neural Networks/16. CNN in Python - Step 5.mp4
10.4 MB
32. Convolutional Neural Networks/17. CNN in Python - Step 6.mp4
10.2 MB
4. Simple Linear Regression/9. Simple Linear Regression in R - Step 1.mp4
10.0 MB
4. Simple Linear Regression/3. Simple Linear Regression Intuition - Step 1.mp4
9.9 MB
6. Polynomial Regression/1. Polynomial Regression Intuition.mp4
9.9 MB
13. K-Nearest Neighbors (K-NN)/1. K-Nearest Neighbor Intuition.mp4
9.7 MB
27. Upper Confidence Bound (UCB)/7. Upper Confidence Bound in Python - Step 4.mp4
9.6 MB
31. Artificial Neural Networks/18. ANN in Python - Step 7.mp4
9.4 MB
10. Evaluating Regression Models Performance/1. R-Squared Intuition.mp4
9.3 MB
4. Simple Linear Regression/11. Simple Linear Regression in R - Step 3.mp4
9.1 MB
28. Thompson Sampling/5. Thompson Sampling in Python - Step 2.mp4
8.8 MB
22. Hierarchical Clustering/9. HC in Python - Step 5.mp4
8.8 MB
31. Artificial Neural Networks/14. ANN in Python - Step 3.mp4
8.8 MB
12. Logistic Regression/4. Logistic Regression in Python - Step 2.mp4
8.6 MB
19. Evaluating Classification Models Performance/2. Confusion Matrix.mp4
8.6 MB
1. Welcome to the course!/1. Applications of Machine Learning.mp4
8.4 MB
32. Convolutional Neural Networks/8. Summary.mp4
8.3 MB
12. Logistic Regression/10. Logistic Regression in R - Step 2.mp4
8.2 MB
22. Hierarchical Clustering/12. HC in R - Step 3.mp4
8.2 MB
29. Part 7 Natural Language Processing/21. Natural Language Processing in R - Step 7.mp4
7.9 MB
28. Thompson Sampling/7. Thompson Sampling in R - Step 2.mp4
7.8 MB
22. Hierarchical Clustering/13. HC in R - Step 4.mp4
7.8 MB
27. Upper Confidence Bound (UCB)/11. Upper Confidence Bound in R - Step 4.mp4
7.8 MB
22. Hierarchical Clustering/10. HC in R - Step 1.mp4
7.8 MB
5. Multiple Linear Regression/10. Multiple Linear Regression in Python - Step 2.mp4
7.6 MB
31. Artificial Neural Networks/17. ANN in Python - Step 6.mp4
7.4 MB
12. Logistic Regression/12. Logistic Regression in R - Step 4.mp4
7.2 MB
22. Hierarchical Clustering/14. HC in R - Step 5.mp4
7.2 MB
32. Convolutional Neural Networks/19. CNN in Python - Step 8.mp4
7.1 MB
4. Simple Linear Regression/2. Dataset + Business Problem Description.mp4
6.9 MB
29. Part 7 Natural Language Processing/18. Natural Language Processing in R - Step 4.mp4
6.8 MB
29. Part 7 Natural Language Processing/9. Natural Language Processing in Python - Step 6.mp4
6.8 MB
12. Logistic Regression/5. Logistic Regression in Python - Step 3.mp4
6.3 MB
32. Convolutional Neural Networks/1. Plan of attack.mp4
6.2 MB
31. Artificial Neural Networks/15. ANN in Python - Step 4.mp4
6.2 MB
32. Convolutional Neural Networks/13. CNN in Python - Step 2.mp4
6.1 MB
15. Kernel SVM/1. Kernel SVM Intuition.mp4
6.1 MB
4. Simple Linear Regression/4. Simple Linear Regression Intuition - Step 2.mp4
5.6 MB
31. Artificial Neural Networks/1. Plan of attack.mp4
5.0 MB
29. Part 7 Natural Language Processing/19. Natural Language Processing in R - Step 5.mp4
4.8 MB
5. Multiple Linear Regression/6. Multiple Linear Regression Intuition - Step 4.mp4
4.7 MB
19. Evaluating Classification Models Performance/3. Accuracy Paradox.mp4
4.0 MB
29. Part 7 Natural Language Processing/6. Natural Language Processing in Python - Step 3.mp4
3.5 MB
32. Convolutional Neural Networks/6. Step 3 - Flattening.mp4
3.4 MB
2. Part 1 Data Preprocessing/1. Welcome to Part 1 - Data Preprocessing.mp4
3.1 MB
1. Welcome to the course!/5.1 Machine_Learning_A_Z_Q_A.pdf
2.4 MB
32. Convolutional Neural Networks/14. CNN in Python - Step 3.mp4
2.3 MB
5. Multiple Linear Regression/3. Multiple Linear Regression Intuition - Step 1.mp4
1.9 MB
5. Multiple Linear Regression/4. Multiple Linear Regression Intuition - Step 2.mp4
1.9 MB
25. Eclat/3.1 Eclat.zip
49.7 kB
16. Naive Bayes/1. Bayes Theorem.srt
35.3 kB
18. Random Forest Classification/4. Random Forest Classification in R.srt
33.2 kB
8. Decision Tree Regression/4. Decision Tree Regression in R.srt
32.9 kB
6. Polynomial Regression/6. Polynomial Regression in Python - Step 3.srt
32.2 kB
24. Apriori/5. Apriori in R - Step 3.srt
31.9 kB
24. Apriori/3. Apriori in R - Step 1.srt
31.8 kB
7. Support Vector Regression (SVR)/3. SVR in Python.srt
31.6 kB
6. Polynomial Regression/11. Polynomial Regression in R - Step 3.srt
31.6 kB
36. Kernel PCA/3. Kernel PCA in R.srt
31.5 kB
18. Random Forest Classification/3. Random Forest Classification in Python.srt
31.5 kB
12. Logistic Regression/7. Logistic Regression in Python - Step 5.srt
30.4 kB
35. Linear Discriminant Analysis (LDA)/4. LDA in R.srt
30.4 kB
32. Convolutional Neural Networks/20. CNN in Python - Step 9.srt
30.1 kB
17. Decision Tree Classification/4. Decision Tree Classification in R.srt
29.8 kB
12. Logistic Regression/14. Logistic Regression in R - Step 5.srt
29.8 kB
31. Artificial Neural Networks/13. ANN in Python - Step 2.srt
29.6 kB
28. Thompson Sampling/4. Thompson Sampling in Python - Step 1.srt
29.6 kB
32. Convolutional Neural Networks/7. Step 4 - Full Connection.srt
29.3 kB
15. Kernel SVM/6. Kernel SVM in Python.srt
28.9 kB
21. K-Means Clustering/5. K-Means Clustering in Python.srt
28.9 kB
9. Random Forest Regression/4. Random Forest Regression in R.srt
28.8 kB
24. Apriori/6. Apriori in Python - Step 1.srt
28.6 kB
38. Model Selection/3. k-Fold Cross Validation in R.srt
28.6 kB
28. Thompson Sampling/6. Thompson Sampling in R - Step 1.srt
28.5 kB
9. Random Forest Regression/3. Random Forest Regression in Python.srt
28.2 kB
28. Thompson Sampling/1. Thompson Sampling Intuition.srt
28.2 kB
5. Multiple Linear Regression/19. Multiple Linear Regression in R - Backward Elimination - HOMEWORK !.srt
28.1 kB
2. Part 1 Data Preprocessing/7. Categorical Data.srt
27.7 kB
27. Upper Confidence Bound (UCB)/6. Upper Confidence Bound in Python - Step 3.srt
27.6 kB
2. Part 1 Data Preprocessing/9. Splitting the Dataset into the Training set and Test set.srt
27.6 kB
31. Artificial Neural Networks/22. ANN in R - Step 1.srt
27.4 kB
35. Linear Discriminant Analysis (LDA)/3. LDA in Python.srt
27.1 kB
29. Part 7 Natural Language Processing/24. Natural Language Processing in R - Step 10.srt
26.9 kB
39. XGBoost/4. XGBoost in R.srt
26.6 kB
24. Apriori/1. Apriori Intuition.srt
26.5 kB
22. Hierarchical Clustering/16.1 Clustering-Pros-Cons.pdf
26.4 kB
15. Kernel SVM/7. Kernel SVM in R.srt
26.1 kB
27. Upper Confidence Bound (UCB)/10. Upper Confidence Bound in R - Step 3.srt
25.9 kB
32. Convolutional Neural Networks/9. Softmax & Cross-Entropy.srt
25.9 kB
27. Upper Confidence Bound (UCB)/5. Upper Confidence Bound in Python - Step 2.srt
25.9 kB
31. Artificial Neural Networks/2. The Neuron.srt
25.6 kB
5. Multiple Linear Regression/9. Multiple Linear Regression in Python - Step 1.srt
25.0 kB
29. Part 7 Natural Language Processing/15. Natural Language Processing in R - Step 1.srt
24.6 kB
12. Logistic Regression/1. Logistic Regression Intuition.srt
24.5 kB
4. Simple Linear Regression/12. Simple Linear Regression in R - Step 4.srt
24.5 kB
29. Part 7 Natural Language Processing/11. Natural Language Processing in Python - Step 8.srt
24.4 kB
8. Decision Tree Regression/3. Decision Tree Regression in Python.srt
24.3 kB
5. Multiple Linear Regression/8. Multiple Linear Regression Intuition - Step 5.srt
24.1 kB
2. Part 1 Data Preprocessing/10. Feature Scaling.srt
24.0 kB
13. K-Nearest Neighbors (K-NN)/4. K-NN in R.srt
23.9 kB
21. K-Means Clustering/1. K-Means Clustering Intuition.srt
23.9 kB
16. Naive Bayes/2. Naive Bayes Intuition.srt
23.9 kB
32. Convolutional Neural Networks/3. Step 1 - Convolution Operation.srt
23.8 kB
24. Apriori/4. Apriori in R - Step 2.srt
23.6 kB
2. Part 1 Data Preprocessing/6. Missing Data.srt
23.2 kB
24. Apriori/7. Apriori in Python - Step 2.srt
23.1 kB
4. Simple Linear Regression/8. Simple Linear Regression in Python - Step 4.srt
23.0 kB
27. Upper Confidence Bound (UCB)/1. The Multi-Armed Bandit Problem.srt
22.8 kB
27. Upper Confidence Bound (UCB)/9. Upper Confidence Bound in R - Step 2.srt
22.7 kB
32. Convolutional Neural Networks/2. What are convolutional neural networks.srt
22.6 kB
38. Model Selection/4. Grid Search in Python - Step 1.srt
22.6 kB
27. Upper Confidence Bound (UCB)/2. Upper Confidence Bound (UCB) Intuition.srt
22.4 kB
16. Naive Bayes/7. Naive Bayes in R.srt
22.4 kB
27. Upper Confidence Bound (UCB)/4. Upper Confidence Bound in Python - Step 1.srt
22.4 kB
36. Kernel PCA/2. Kernel PCA in Python.srt
22.0 kB
13. K-Nearest Neighbors (K-NN)/3. K-NN in Python.srt
21.7 kB
32. Convolutional Neural Networks/5. Step 2 - Pooling.srt
21.5 kB
38. Model Selection/6. Grid Search in R.srt
21.4 kB
31. Artificial Neural Networks/25. ANN in R - Step 4 (Last step).srt
21.2 kB
27. Upper Confidence Bound (UCB)/8. Upper Confidence Bound in R - Step 1.srt
21.0 kB
38. Model Selection/2. k-Fold Cross Validation in Python.srt
20.7 kB
31. Artificial Neural Networks/12. ANN in Python - Step 1.srt
20.5 kB
34. Principal Component Analysis (PCA)/8. PCA in R - Step 3.srt
20.2 kB
5. Multiple Linear Regression/13. Multiple Linear Regression in Python - Backward Elimination - HOMEWORK !.srt
20.2 kB
29. Part 7 Natural Language Processing/23. Natural Language Processing in R - Step 9.srt
20.1 kB
24. Apriori/8. Apriori in Python - Step 3.srt
20.1 kB
31. Artificial Neural Networks/16. ANN in Python - Step 5.srt
20.0 kB
21. K-Means Clustering/6. K-Means Clustering in R.srt
19.9 kB
17. Decision Tree Classification/3. Decision Tree Classification in Python.srt
19.9 kB
32. Convolutional Neural Networks/15. CNN in Python - Step 4.srt
19.7 kB
14. Support Vector Machine (SVM)/3. SVM in Python.srt
19.6 kB
31. Artificial Neural Networks/4. How do Neural Networks work.srt
19.6 kB
31. Artificial Neural Networks/5. How do Neural Networks learn.srt
19.4 kB
39. XGBoost/3. XGBoost in Python - Step 2.srt
19.3 kB
31. Artificial Neural Networks/24. ANN in R - Step 3.srt
19.3 kB
34. Principal Component Analysis (PCA)/6. PCA in R - Step 1.srt
19.1 kB
7. Support Vector Regression (SVR)/4. SVR in R.srt
19.1 kB
2. Part 1 Data Preprocessing/4. Importing the Dataset.srt
19.1 kB
6. Polynomial Regression/13. R Regression Template.srt
19.1 kB
21. K-Means Clustering/3. K-Means Selecting The Number Of Clusters.srt
18.9 kB
14. Support Vector Machine (SVM)/4. SVM in R.srt
18.8 kB
32. Convolutional Neural Networks/12. CNN in Python - Step 1.srt
18.8 kB
29. Part 7 Natural Language Processing/4. Natural Language Processing in Python - Step 1.srt
18.8 kB
30. Part 8 Deep Learning/2. What is Deep Learning.srt
18.6 kB
34. Principal Component Analysis (PCA)/3. PCA in Python - Step 1.srt
18.1 kB
22. Hierarchical Clustering/3. Hierarchical Clustering Using Dendrograms.srt
18.0 kB
6. Polynomial Regression/4. Polynomial Regression in Python - Step 1.srt
17.9 kB
29. Part 7 Natural Language Processing/7. Natural Language Processing in Python - Step 4.srt
17.9 kB
6. Polynomial Regression/5. Polynomial Regression in Python - Step 2.srt
17.6 kB
8. Decision Tree Regression/1. Decision Tree Regression Intuition.srt
17.5 kB
34. Principal Component Analysis (PCA)/7. PCA in R - Step 2.srt
17.3 kB
15. Kernel SVM/3. The Kernel Trick.srt
16.9 kB
6. Polynomial Regression/8. Python Regression Template.srt
16.8 kB
19. Evaluating Classification Models Performance/4. CAP Curve.srt
16.6 kB
16. Naive Bayes/4. Naive Bayes Intuition (Extras).srt
16.3 kB
29. Part 7 Natural Language Processing/5. Natural Language Processing in Python - Step 2.srt
16.2 kB
25. Eclat/3. Eclat in R.srt
16.2 kB
14. Support Vector Machine (SVM)/1. SVM Intuition.srt
16.1 kB
4. Simple Linear Regression/5. Simple Linear Regression in Python - Step 1.srt
15.8 kB
6. Polynomial Regression/12. Polynomial Regression in R - Step 4.srt
15.8 kB
5. Multiple Linear Regression/17. Multiple Linear Regression in R - Step 2.srt
15.8 kB
38. Model Selection/5. Grid Search in Python - Step 2.srt
15.7 kB
6. Polynomial Regression/10. Polynomial Regression in R - Step 2.srt
15.6 kB
5. Multiple Linear Regression/12. Multiple Linear Regression in Python - Backward Elimination - Preparation.srt
15.3 kB
34. Principal Component Analysis (PCA)/5. PCA in Python - Step 3.srt
15.2 kB
22. Hierarchical Clustering/1. Hierarchical Clustering Intuition.srt
14.9 kB
10. Evaluating Regression Models Performance/2. Adjusted R-Squared Intuition.srt
14.8 kB
29. Part 7 Natural Language Processing/13. Natural Language Processing in Python - Step 10.srt
14.7 kB
22. Hierarchical Clustering/2. Hierarchical Clustering How Dendrograms Work.srt
14.7 kB
5. Multiple Linear Regression/14. Multiple Linear Regression in Python - Backward Elimination - Homework Solution.srt
14.5 kB
2. Part 1 Data Preprocessing/11. And here is our Data Preprocessing Template!.srt
14.5 kB
6. Polynomial Regression/9. Polynomial Regression in R - Step 1.srt
14.5 kB
31. Artificial Neural Networks/6. Gradient Descent.srt
14.4 kB
16. Naive Bayes/6. Naive Bayes in Python.srt
14.1 kB
39. XGBoost/2. XGBoost in Python - Step 1.srt
14.0 kB
10. Evaluating Regression Models Performance/4. Interpreting Linear Regression Coefficients.srt
13.6 kB
32. Convolutional Neural Networks/21. CNN in Python - Step 10.srt
13.3 kB
21. K-Means Clustering/2. K-Means Random Initialization Trap.srt
13.3 kB
10. Evaluating Regression Models Performance/3. Evaluating Regression Models Performance - Homework's Final Part.srt
13.2 kB
29. Part 7 Natural Language Processing/16. Natural Language Processing in R - Step 2.srt
13.2 kB
17. Decision Tree Classification/1. Decision Tree Classification Intuition.srt
13.2 kB
4. Simple Linear Regression/6. Simple Linear Regression in Python - Step 2.srt
12.6 kB
1. Welcome to the course!/8. Installing Python and Anaconda (Mac, Linux & Windows).srt
12.6 kB
31. Artificial Neural Networks/7. Stochastic Gradient Descent.srt
12.4 kB
31. Artificial Neural Networks/3. The Activation Function.srt
12.3 kB
5. Multiple Linear Regression/20. Multiple Linear Regression in R - Backward Elimination - Homework Solution.srt
12.1 kB
5. Multiple Linear Regression/16. Multiple Linear Regression in R - Step 1.srt
12.1 kB
34. Principal Component Analysis (PCA)/4. PCA in Python - Step 2.srt
12.1 kB
7. Support Vector Regression (SVR)/2. SVR Intuition.srt
11.6 kB
19. Evaluating Classification Models Performance/1. False Positives & False Negatives.srt
11.6 kB
28. Thompson Sampling/2. Algorithm Comparison UCB vs Thompson Sampling.srt
11.4 kB
31. Artificial Neural Networks/19. ANN in Python - Step 8.srt
11.3 kB
5. Multiple Linear Regression/5. Multiple Linear Regression Intuition - Step 3.srt
11.0 kB
2. Part 1 Data Preprocessing/2. Get the dataset.srt
10.9 kB
29. Part 7 Natural Language Processing/8. Natural Language Processing in Python - Step 5.srt
10.9 kB
15. Kernel SVM/2. Mapping to a higher dimension.srt
10.8 kB
31. Artificial Neural Networks/21. ANN in Python - Step 10.srt
10.6 kB
9. Random Forest Regression/1. Random Forest Regression Intuition.srt
10.5 kB
29. Part 7 Natural Language Processing/17. Natural Language Processing in R - Step 3.srt
10.4 kB
31. Artificial Neural Networks/23. ANN in R - Step 2.srt
10.4 kB
4. Simple Linear Regression/7. Simple Linear Regression in Python - Step 3.srt
10.1 kB
29. Part 7 Natural Language Processing/10. Natural Language Processing in Python - Step 7.srt
10.0 kB
22. Hierarchical Clustering/6. HC in Python - Step 2.srt
9.7 kB
31. Artificial Neural Networks/20. ANN in Python - Step 9.srt
9.7 kB
16. Naive Bayes/3. Naive Bayes Intuition (Challenge Reveal).srt
9.7 kB
19. Evaluating Classification Models Performance/5. CAP Curve Analysis.srt
9.5 kB
1. Welcome to the course!/3. Why Machine Learning is the Future.srt
9.5 kB
32. Convolutional Neural Networks/4. Step 1(b) - ReLU Layer.srt
9.4 kB
1. Welcome to the course!/10. Installing R and R Studio (Mac, Linux & Windows).srt
9.4 kB
32. Convolutional Neural Networks/18. CNN in Python - Step 7.srt
9.3 kB
12. Logistic Regression/9. Logistic Regression in R - Step 1.srt
9.1 kB
4. Simple Linear Regression/10. Simple Linear Regression in R - Step 2.srt
9.1 kB
12. Logistic Regression/3. Logistic Regression in Python - Step 1.srt
9.0 kB
6. Polynomial Regression/7. Polynomial Regression in Python - Step 4.srt
8.9 kB
29. Part 7 Natural Language Processing/20. Natural Language Processing in R - Step 6.srt
8.6 kB
4. Simple Linear Regression/3. Simple Linear Regression Intuition - Step 1.srt
8.5 kB
5. Multiple Linear Regression/11. Multiple Linear Regression in Python - Step 3.srt
8.5 kB
14. Support Vector Machine (SVM)/4.1 SVM.zip
8.5 kB
29. Part 7 Natural Language Processing/12. Natural Language Processing in Python - Step 9.srt
8.4 kB
22. Hierarchical Clustering/11. HC in R - Step 2.srt
8.3 kB
25. Eclat/1. Eclat Intuition.srt
8.3 kB
2. Part 1 Data Preprocessing/3. Importing the Libraries.srt
8.3 kB
13. K-Nearest Neighbors (K-NN)/1. K-Nearest Neighbor Intuition.srt
8.2 kB
29. Part 7 Natural Language Processing/22. Natural Language Processing in R - Step 8.srt
8.2 kB
6. Polynomial Regression/1. Polynomial Regression Intuition.srt
8.0 kB
22. Hierarchical Clustering/7. HC in Python - Step 3.srt
7.9 kB
4. Simple Linear Regression/9. Simple Linear Regression in R - Step 1.srt
7.9 kB
32. Convolutional Neural Networks/17. CNN in Python - Step 6.srt
7.8 kB
22. Hierarchical Clustering/5. HC in Python - Step 1.srt
7.8 kB
19. Evaluating Classification Models Performance/2. Confusion Matrix.srt
7.7 kB
32. Convolutional Neural Networks/16. CNN in Python - Step 5.srt
7.7 kB
12. Logistic Regression/11. Logistic Regression in R - Step 3.srt
7.6 kB
31. Artificial Neural Networks/10. Business Problem Description.srt
7.5 kB
10. Evaluating Regression Models Performance/1. R-Squared Intuition.srt
7.3 kB
12. Logistic Regression/6. Logistic Regression in Python - Step 4.srt
7.3 kB
31. Artificial Neural Networks/8. Backpropagation.srt
7.3 kB
29. Part 7 Natural Language Processing/2. Natural Language Processing Intuition.srt
7.2 kB
5. Multiple Linear Regression/18. Multiple Linear Regression in R - Step 3.srt
7.2 kB
18. Random Forest Classification/1. Random Forest Classification Intuition.srt
7.2 kB
22. Hierarchical Clustering/9. HC in Python - Step 5.srt
7.0 kB
12. Logistic Regression/15. R Classification Template.srt
6.9 kB
22. Hierarchical Clustering/8. HC in Python - Step 4.srt
6.6 kB
22. Hierarchical Clustering/10. HC in R - Step 1.srt
6.5 kB
12. Logistic Regression/8. Python Classification Template.srt
6.2 kB
32. Convolutional Neural Networks/8. Summary.srt
6.2 kB
28. Thompson Sampling/5. Thompson Sampling in Python - Step 2.srt
5.9 kB
31. Artificial Neural Networks/18. ANN in Python - Step 7.srt
5.8 kB
5. Multiple Linear Regression/2. Dataset + Business Problem Description.srt
5.8 kB
29. Part 7 Natural Language Processing/21. Natural Language Processing in R - Step 7.srt
5.7 kB
4. Simple Linear Regression/11. Simple Linear Regression in R - Step 3.srt
5.6 kB
1. Welcome to the course!/1. Applications of Machine Learning.srt
5.4 kB
28. Thompson Sampling/7. Thompson Sampling in R - Step 2.srt
5.4 kB
32. Convolutional Neural Networks/1. Plan of attack.srt
5.4 kB
31. Artificial Neural Networks/14. ANN in Python - Step 3.srt
5.3 kB
35. Linear Discriminant Analysis (LDA)/1. Linear Discriminant Analysis (LDA) Intuition.srt
5.2 kB
34. Principal Component Analysis (PCA)/1. Principal Component Analysis (PCA) Intuition.srt
5.2 kB
27. Upper Confidence Bound (UCB)/7. Upper Confidence Bound in Python - Step 4.srt
5.1 kB
15. Kernel SVM/4. Types of Kernel Functions.srt
5.1 kB
12. Logistic Regression/4. Logistic Regression in Python - Step 2.srt
5.0 kB
12. Logistic Regression/2. How to get the dataset.srt
4.9 kB
13. K-Nearest Neighbors (K-NN)/2. How to get the dataset.srt
4.9 kB
14. Support Vector Machine (SVM)/2. How to get the dataset.srt
4.9 kB
15. Kernel SVM/5. How to get the dataset.srt
4.9 kB
16. Naive Bayes/5. How to get the dataset.srt
4.9 kB
17. Decision Tree Classification/2. How to get the dataset.srt
4.9 kB
18. Random Forest Classification/2. How to get the dataset.srt
4.9 kB
21. K-Means Clustering/4. How to get the dataset.srt
4.9 kB
22. Hierarchical Clustering/4. How to get the dataset.srt
4.9 kB
24. Apriori/2. How to get the dataset.srt
4.9 kB
25. Eclat/2. How to get the dataset.srt
4.9 kB
27. Upper Confidence Bound (UCB)/3. How to get the dataset.srt
4.9 kB
28. Thompson Sampling/3. How to get the dataset.srt
4.9 kB
29. Part 7 Natural Language Processing/3. How to get the dataset.srt
4.9 kB
31. Artificial Neural Networks/9. How to get the dataset.srt
4.9 kB
32. Convolutional Neural Networks/10. How to get the dataset.srt
4.9 kB
34. Principal Component Analysis (PCA)/2. How to get the dataset.srt
4.9 kB
35. Linear Discriminant Analysis (LDA)/2. How to get the dataset.srt
4.9 kB
36. Kernel PCA/1. How to get the dataset.srt
4.9 kB
38. Model Selection/1. How to get the dataset.srt
4.9 kB
39. XGBoost/1. How to get the dataset.srt
4.9 kB
4. Simple Linear Regression/1. How to get the dataset.srt
4.9 kB
5. Multiple Linear Regression/1. How to get the dataset.srt
4.9 kB
6. Polynomial Regression/2. How to get the dataset.srt
4.9 kB
7. Support Vector Regression (SVR)/1. How to get the dataset.srt
4.9 kB
8. Decision Tree Regression/2. How to get the dataset.srt
4.9 kB
9. Random Forest Regression/2. How to get the dataset.srt
4.9 kB
22. Hierarchical Clustering/12. HC in R - Step 3.srt
4.8 kB
40. Bonus Lectures/1. YOUR SPECIAL BONUS.html
4.8 kB
29. Part 7 Natural Language Processing/18. Natural Language Processing in R - Step 4.srt
4.8 kB
32. Convolutional Neural Networks/19. CNN in Python - Step 8.srt
4.7 kB
31. Artificial Neural Networks/17. ANN in Python - Step 6.srt
4.6 kB
32. Convolutional Neural Networks/13. CNN in Python - Step 2.srt
4.6 kB
27. Upper Confidence Bound (UCB)/11. Upper Confidence Bound in R - Step 4.srt
4.5 kB
15. Kernel SVM/1. Kernel SVM Intuition.srt
4.5 kB
29. Part 7 Natural Language Processing/9. Natural Language Processing in Python - Step 6.srt
4.5 kB
12. Logistic Regression/10. Logistic Regression in R - Step 2.srt
4.5 kB
4. Simple Linear Regression/4. Simple Linear Regression Intuition - Step 2.srt
4.4 kB
12. Logistic Regression/5. Logistic Regression in Python - Step 3.srt
4.2 kB
4. Simple Linear Regression/2. Dataset + Business Problem Description.srt
4.2 kB
5. Multiple Linear Regression/10. Multiple Linear Regression in Python - Step 2.srt
4.2 kB
1. Welcome to the course!/7. Updates on Udemy Reviews.srt
4.1 kB
22. Hierarchical Clustering/14. HC in R - Step 5.srt
4.1 kB
31. Artificial Neural Networks/1. Plan of attack.srt
4.1 kB
12. Logistic Regression/12. Logistic Regression in R - Step 4.srt
4.1 kB
31. Artificial Neural Networks/15. ANN in Python - Step 4.srt
4.0 kB
22. Hierarchical Clustering/13. HC in R - Step 4.srt
3.9 kB
5. Multiple Linear Regression/6. Multiple Linear Regression Intuition - Step 4.srt
3.6 kB
19. Evaluating Classification Models Performance/6. Conclusion of Part 3 - Classification.html
3.6 kB
29. Part 7 Natural Language Processing/19. Natural Language Processing in R - Step 5.srt
3.3 kB
1. Welcome to the course!/4. Important notes, tips & tricks for this course.html
3.3 kB
19. Evaluating Classification Models Performance/3. Accuracy Paradox.srt
3.3 kB
10. Evaluating Regression Models Performance/5. Conclusion of Part 2 - Regression.html
3.0 kB
2. Part 1 Data Preprocessing/8. WARNING - Update.html
2.8 kB
29. Part 7 Natural Language Processing/6. Natural Language Processing in Python - Step 3.srt
2.7 kB
32. Convolutional Neural Networks/6. Step 3 - Flattening.srt
2.6 kB
2. Part 1 Data Preprocessing/1. Welcome to Part 1 - Data Preprocessing.srt
2.6 kB
32. Convolutional Neural Networks/22. CNN in R.html
2.4 kB
1. Welcome to the course!/2. BONUS Learning Paths.html
2.4 kB
39. XGBoost/5. THANK YOU bonus video.srt
2.4 kB
5. Multiple Linear Regression/15. Multiple Linear Regression in Python - Automatic Backward Elimination.html
2.2 kB
6. Polynomial Regression/3.1 polynomial_regression-updated.py
2.1 kB
2. Part 1 Data Preprocessing/5. For Python learners, summary of Object-oriented programming classes & objects.html
1.8 kB
1. Welcome to the course!/13. FAQBot!.html
1.8 kB
32. Convolutional Neural Networks/14. CNN in Python - Step 3.srt
1.8 kB
29. Part 7 Natural Language Processing/1. Welcome to Part 7 - Natural Language Processing.html
1.7 kB
2. Part 1 Data Preprocessing/7.1 categorical_data.py
1.7 kB
5. Multiple Linear Regression/3. Multiple Linear Regression Intuition - Step 1.srt
1.6 kB
1. Welcome to the course!/5. This PDF resource will help you a lot.html
1.5 kB
5. Multiple Linear Regression/4. Multiple Linear Regression Intuition - Step 2.srt
1.5 kB
31. Artificial Neural Networks/11. Installing Keras.html
1.4 kB
29. Part 7 Natural Language Processing/25. Homework Challenge.html
1.4 kB
29. Part 7 Natural Language Processing/14. Homework Challenge.html
1.4 kB
12. Logistic Regression/13. Warning - Update.html
1.4 kB
1. Welcome to the course!/9. Update Recommended Anaconda Version.html
1.4 kB
33. Part 9 Dimensionality Reduction/1. Welcome to Part 9 - Dimensionality Reduction.html
1.3 kB
26. Part 6 Reinforcement Learning/1. Welcome to Part 6 - Reinforcement Learning.html
1.2 kB
1. Welcome to the course!/11. BONUS Meet your instructors.html
1.1 kB
1. Welcome to the course!/6. The whole code folder of the course.html
1.0 kB
2. Part 1 Data Preprocessing/6.1 missing_data.py
976 Bytes
32. Convolutional Neural Networks/11. Installing Keras.html
927 Bytes
37. Part 10 Model Selection & Boosting/1. Welcome to Part 10 - Model Selection & Boosting.html
899 Bytes
3. Part 2 Regression/1. Welcome to Part 2 - Regression.html
875 Bytes
30. Part 8 Deep Learning/1. Welcome to Part 8 - Deep Learning.html
870 Bytes
11. Part 3 Classification/1. Welcome to Part 3 - Classification.html
831 Bytes
20. Part 4 Clustering/1. Welcome to Part 4 - Clustering.html
734 Bytes
5. Multiple Linear Regression/21. Multiple Linear Regression in R - Automatic Backward Elimination.html
726 Bytes
5. Multiple Linear Regression/7. Prerequisites What is the P-Value.html
676 Bytes
6. Polynomial Regression/3. Polynomial Regression update for Python.html
609 Bytes
1. Welcome to the course!/12. Some Additional Resources.html
551 Bytes
22. Hierarchical Clustering/16. Conclusion of Part 4 - Clustering.html
516 Bytes
23. Part 5 Association Rule Learning/1. Welcome to Part 5 - Association Rule Learning.html
425 Bytes
12. Logistic Regression/16. Logistic Regression.html
125 Bytes
13. K-Nearest Neighbors (K-NN)/5. K-Nearest Neighbor.html
125 Bytes
2. Part 1 Data Preprocessing/12. Data Preprocessing.html
125 Bytes
21. K-Means Clustering/7. K-Means Clustering.html
125 Bytes
22. Hierarchical Clustering/15. Hierarchical Clustering.html
125 Bytes
4. Simple Linear Regression/13. Simple Linear Regression.html
125 Bytes
5. Multiple Linear Regression/22. Multiple Linear Regression.html
125 Bytes
[GigaCourse.com].url
49 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>