搜索
[TutNetFlix.com] Udemy - Complete Machine Learning and Data Science Zero to Mastery
磁力链接/BT种子名称
[TutNetFlix.com] Udemy - Complete Machine Learning and Data Science Zero to Mastery
磁力链接/BT种子简介
种子哈希:
e9ebe8cb28eb780549dbb4ccfd04455aa24f78fa
文件大小:
19.12G
已经下载:
339
次
下载速度:
极快
收录时间:
2021-03-27
最近下载:
2025-01-02
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:E9EBE8CB28EB780549DBB4CCFD04455AA24F78FA
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
少女初夜
萝莉岛
最近搜索
plugins vst
melody marks [rarbg]
韩国+码
我的枪好长 最新
sinfulxxx.1080p.mp4 [rarbg]
caterina
高端泄密流出火爆全网嫖妓达人金先生约炮+给95年的bj女主播刘承妍狂刷礼物,内射2次
至高
泰国52p
+-+leona+-+hot+dance
dragon 福建
这妹子淫叫
打电话给爸爸
酒店约操苗条身材
小早肛
ipov+240
castellano 4k hdr
e1
浪妻
狮子座短裤
901182
合集探花合集
裸体滤镜动漫粉丝服务合集
ジュディオング
习明
麻豆传媒+修女
9-1-1 2160p
信心
蜡笔小新 第9季
無修正-流出uncensored
文件列表
5. Data Science Environment Setup/8. Windows Environment Setup 2.mp4
238.7 MB
9. Scikit-learn Creating Machine Learning Models/7. Typical scikit-learn Workflow.mp4
199.4 MB
9. Scikit-learn Creating Machine Learning Models/8. Optional Debugging Warnings In Jupyter.mp4
184.7 MB
16. Career Advice + Extra Bits/9. CWD Git + Github.mp4
184.7 MB
9. Scikit-learn Creating Machine Learning Models/38. Tuning Hyperparameters.mp4
184.1 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/32. Training Your Deep Neural Network.mp4
174.7 MB
16. Career Advice + Extra Bits/3. What If I Don_t Have Enough Experience.mp4
168.8 MB
12. Milestone Project 2 Supervised Learning (Time Series Data)/7. Feature Engineering.mp4
166.9 MB
9. Scikit-learn Creating Machine Learning Models/44. Putting It All Together.mp4
166.0 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/34. Make And Transform Predictons.mp4
162.5 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/21. Turning Data Into Batches 2.mp4
156.6 MB
12. Milestone Project 2 Supervised Learning (Time Series Data)/8. Turning Data Into Numbers.mp4
153.3 MB
5. Data Science Environment Setup/5. Mac Environment Setup.mp4
151.4 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/37. Visualizing And Evaluate Model Predictions 2.mp4
150.8 MB
9. Scikit-learn Creating Machine Learning Models/14. Choosing The Right Model For Your Data.mp4
150.2 MB
12. Milestone Project 2 Supervised Learning (Time Series Data)/19. Feature Importance.mp4
149.2 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/41. Making Predictions On Test Images.mp4
147.7 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/40. Training Model On Full Dataset.mp4
146.6 MB
12. Milestone Project 2 Supervised Learning (Time Series Data)/17. Preproccessing Our Data.mp4
146.1 MB
11. Milestone Project 1 Supervised Learning (Classification)/9. Finding Patterns 3.mp4
144.6 MB
12. Milestone Project 2 Supervised Learning (Time Series Data)/5. Exploring Our Data.mp4
144.5 MB
9. Scikit-learn Creating Machine Learning Models/13. Getting Your Data Ready Handling Missing Values With Scikit-learn.mp4
143.5 MB
9. Scikit-learn Creating Machine Learning Models/11. Getting Your Data Ready Convert Data To Numbers.mp4
141.6 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/15. Preparing The Images.mp4
140.4 MB
16. Career Advice + Extra Bits/11. Contributing To Open Source.mp4
136.6 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/35. Transform Predictions To Text.mp4
136.2 MB
11. Milestone Project 1 Supervised Learning (Classification)/20. Finding The Most Important Features.mp4
133.7 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/39. Saving And Loading A Trained Model.mp4
133.2 MB
5. Data Science Environment Setup/6. Mac Environment Setup 2.mp4
131.6 MB
8. Matplotlib + Seaborn Plotting and Data Visualization/18. Customizing Your Plots 2.mp4
129.6 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/22. Visualizing Our Data.mp4
127.9 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/25. Building A Deep Learning Model.mp4
127.8 MB
9. Scikit-learn Creating Machine Learning Models/40. Tuning Hyperparameters 3.mp4
127.7 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/42. Submitting Model to Kaggle.mp4
127.2 MB
8. Matplotlib + Seaborn Plotting and Data Visualization/16. Plotting from Pandas DataFrames 7.mp4
125.6 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/36. Visualizing Model Predictions.mp4
125.1 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/43. Making Predictions On Our Images.mp4
125.0 MB
9. Scikit-learn Creating Machine Learning Models/18. Choosing The Right Model For Your Data 3 (Classification).mp4
124.6 MB
16. Career Advice + Extra Bits/10. CWD Git + Github 2.mp4
124.1 MB
9. Scikit-learn Creating Machine Learning Models/45. Putting It All Together 2.mp4
122.5 MB
9. Scikit-learn Creating Machine Learning Models/39. Tuning Hyperparameters 2.mp4
122.4 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/9. Importing TensorFlow 2.mp4
122.4 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/14. Loading Our Data Labels.mp4
120.4 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/38. Visualizing And Evaluate Model Predictions 3.mp4
118.7 MB
16. Career Advice + Extra Bits/12. Contributing To Open Source 2.mp4
118.5 MB
11. Milestone Project 1 Supervised Learning (Classification)/14. Tuning Hyperparameters.mp4
113.2 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/16. Turning Data Labels Into Numbers.mp4
112.7 MB
6. Pandas Data Analysis/8. Selecting and Viewing Data with Pandas Part 2.mp4
111.7 MB
12. Milestone Project 2 Supervised Learning (Time Series Data)/9. Filling Missing Numerical Values.mp4
111.5 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/27. Building A Deep Learning Model 3.mp4
111.1 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/26. Building A Deep Learning Model 2.mp4
111.0 MB
11. Milestone Project 1 Supervised Learning (Classification)/4. Step 1~4 Framework Setup.mp4
110.6 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/19. Preprocess Images 2.mp4
110.2 MB
6. Pandas Data Analysis/9. Manipulating Data.mp4
110.1 MB
9. Scikit-learn Creating Machine Learning Models/12. Getting Your Data Ready Handling Missing Values With Pandas.mp4
109.9 MB
17. Learn Python/1. What Is A Programming Language.mp4
109.9 MB
11. Milestone Project 1 Supervised Learning (Classification)/15. Tuning Hyperparameters 2.mp4
109.2 MB
5. Data Science Environment Setup/11. Jupyter Notebook Walkthrough 2.mp4
109.0 MB
12. Milestone Project 2 Supervised Learning (Time Series Data)/13. Custom Evaluation Function.mp4
108.4 MB
11. Milestone Project 1 Supervised Learning (Classification)/13. TuningImproving Our Model.mp4
107.8 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/2. Deep Learning and Unstructured Data.mp4
107.0 MB
12. Milestone Project 2 Supervised Learning (Time Series Data)/3. Project Environment Setup.mp4
106.2 MB
11. Milestone Project 1 Supervised Learning (Classification)/3. Project Environment Setup.mp4
105.7 MB
11. Milestone Project 1 Supervised Learning (Classification)/8. Finding Patterns 2.mp4
104.8 MB
8. Matplotlib + Seaborn Plotting and Data Visualization/11. Plotting From Pandas DataFrames 2.mp4
103.6 MB
11. Milestone Project 1 Supervised Learning (Classification)/11. Choosing The Right Models.mp4
101.1 MB
9. Scikit-learn Creating Machine Learning Models/24. Evaluating A Machine Learning Model 2 (Cross Validation).mp4
100.6 MB
6. Pandas Data Analysis/4. Series, Data Frames and CSVs.mp4
100.0 MB
9. Scikit-learn Creating Machine Learning Models/36. Evaluating A Model With Scikit-learn Functions.mp4
99.4 MB
17. Learn Python/16. Variables.mp4
98.1 MB
12. Milestone Project 2 Supervised Learning (Time Series Data)/14. Reducing Data.mp4
98.0 MB
17. Learn Python/2. Python Interpreter.mp4
98.0 MB
8. Matplotlib + Seaborn Plotting and Data Visualization/17. Customizing Your Plots.mp4
96.7 MB
9. Scikit-learn Creating Machine Learning Models/35. Evaluating A Model With Cross Validation and Scoring Parameter.mp4
95.9 MB
7. NumPy/13. Exercise Nut Butter Store Sales.mp4
95.8 MB
6. Pandas Data Analysis/11. Manipulating Data 3.mp4
95.4 MB
9. Scikit-learn Creating Machine Learning Models/37. Improving A Machine Learning Model.mp4
95.4 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/18. Preprocess Images.mp4
94.5 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/13. Optional Reloading Colab Notebook.mp4
93.0 MB
9. Scikit-learn Creating Machine Learning Models/4. Refresher What Is Machine Learning.mp4
92.6 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/20. Turning Data Into Batches.mp4
92.0 MB
9. Scikit-learn Creating Machine Learning Models/30. Evaluating A Classification Model 6 (Classification Report).mp4
91.5 MB
9. Scikit-learn Creating Machine Learning Models/23. Evaluating A Machine Learning Model (Score).mp4
91.4 MB
9. Scikit-learn Creating Machine Learning Models/15. Choosing The Right Model For Your Data 2 (Regression).mp4
91.1 MB
6. Pandas Data Analysis/10. Manipulating Data 2.mp4
90.7 MB
8. Matplotlib + Seaborn Plotting and Data Visualization/3. Importing And Using Matplotlib.mp4
90.6 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/28. Building A Deep Learning Model 4.mp4
90.5 MB
11. Milestone Project 1 Supervised Learning (Classification)/21. Reviewing The Project.mp4
90.3 MB
7. NumPy/16. Turn Images Into NumPy Arrays.mp4
90.1 MB
12. Milestone Project 2 Supervised Learning (Time Series Data)/15. RandomizedSearchCV.mp4
90.0 MB
12. Milestone Project 2 Supervised Learning (Time Series Data)/4. Step 1~4 Framework Setup.mp4
89.8 MB
7. NumPy/12. Dot Product vs Element Wise.mp4
88.0 MB
12. Milestone Project 2 Supervised Learning (Time Series Data)/12. Splitting Data.mp4
86.7 MB
18. Learn Python Part 2/45. Modules in Python.mp4
86.2 MB
8. Matplotlib + Seaborn Plotting and Data Visualization/4. Anatomy Of A Matplotlib Figure.mp4
86.1 MB
17. Learn Python/5. Python 2 vs Python 3.mp4
86.1 MB
8. Matplotlib + Seaborn Plotting and Data Visualization/15. Plotting from Pandas DataFrames 6.mp4
86.0 MB
7. NumPy/8. Manipulating Arrays.mp4
84.6 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/11. Using A GPU.mp4
84.5 MB
13. Data Engineering/9. Optional OLTP Databases.mp4
83.6 MB
11. Milestone Project 1 Supervised Learning (Classification)/5. Getting Our Tools Ready.mp4
83.2 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/30. Evaluating Our Model.mp4
83.1 MB
12. Milestone Project 2 Supervised Learning (Time Series Data)/16. Improving Hyperparameters.mp4
83.1 MB
12. Milestone Project 2 Supervised Learning (Time Series Data)/18. Making Predictions.mp4
83.1 MB
7. NumPy/4. NumPy DataTypes and Attributes.mp4
82.8 MB
9. Scikit-learn Creating Machine Learning Models/28. Evaluating A Classification Model 4 (Confusion Matrix).mp4
81.5 MB
1. Introduction/1. Course Outline.mp4
81.0 MB
6. Pandas Data Analysis/6. Describing Data with Pandas.mp4
79.2 MB
9. Scikit-learn Creating Machine Learning Models/6. Scikit-learn Cheatsheet.mp4
78.8 MB
8. Matplotlib + Seaborn Plotting and Data Visualization/12. Plotting from Pandas DataFrames 3.mp4
78.3 MB
18. Learn Python Part 2/2. Conditional Logic.mp4
78.2 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/4. Setting Up Google Colab.mp4
77.8 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/33. Evaluating Performance With TensorBoard.mp4
77.8 MB
17. Learn Python/10. Numbers.mp4
76.2 MB
11. Milestone Project 1 Supervised Learning (Classification)/10. Preparing Our Data For Machine Learning.mp4
76.1 MB
18. Learn Python Part 2/48. Packages in Python.mp4
75.9 MB
6. Pandas Data Analysis/7. Selecting and Viewing Data with Pandas.mp4
75.9 MB
11. Milestone Project 1 Supervised Learning (Classification)/17. Evaluating Our Model.mp4
75.1 MB
5. Data Science Environment Setup/12. Jupyter Notebook Walkthrough 3.mp4
74.9 MB
7. NumPy/7. Viewing Arrays and Matrices.mp4
74.1 MB
9. Scikit-learn Creating Machine Learning Models/31. Evaluating A Regression Model 1 (R2 Score).mp4
73.8 MB
8. Matplotlib + Seaborn Plotting and Data Visualization/6. Histograms And Subplots.mp4
73.1 MB
17. Learn Python/26. Built-In Functions + Methods.mp4
72.8 MB
7. NumPy/9. Manipulating Arrays 2.mp4
71.2 MB
18. Learn Python Part 2/36. Pure Functions.mp4
70.6 MB
5. Data Science Environment Setup/10. Jupyter Notebook Walkthrough.mp4
70.6 MB
8. Matplotlib + Seaborn Plotting and Data Visualization/5. Scatter Plot And Bar Plot.mp4
70.3 MB
12. Milestone Project 2 Supervised Learning (Time Series Data)/10. Filling Missing Categorical Values.mp4
70.2 MB
11. Milestone Project 1 Supervised Learning (Classification)/6. Exploring Our Data.mp4
70.1 MB
6. Pandas Data Analysis/13. How To Download The Course Assignments.mp4
70.0 MB
7. NumPy/5. Creating NumPy Arrays.mp4
70.0 MB
9. Scikit-learn Creating Machine Learning Models/20. Making Predictions With Our Model.mp4
69.7 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/17. Creating Our Own Validation Set.mp4
69.7 MB
9. Scikit-learn Creating Machine Learning Models/26. Evaluating A Classification Model 2 (ROC Curve).mp4
69.2 MB
11. Milestone Project 1 Supervised Learning (Classification)/19. Evaluating Our Model 3.mp4
68.0 MB
17. Learn Python/48. Sets 2.mp4
67.4 MB
17. Learn Python/3. How To Run Python Code.mp4
67.0 MB
9. Scikit-learn Creating Machine Learning Models/9. Getting Your Data Ready Splitting Your Data.mp4
66.8 MB
9. Scikit-learn Creating Machine Learning Models/29. Evaluating A Classification Model 5 (Confusion Matrix).mp4
66.7 MB
11. Milestone Project 1 Supervised Learning (Classification)/7. Finding Patterns.mp4
66.4 MB
18. Learn Python Part 2/24. return.mp4
66.1 MB
11. Milestone Project 1 Supervised Learning (Classification)/16. Tuning Hyperparameters 3.mp4
66.1 MB
17. Learn Python/34. List Methods.mp4
64.8 MB
3. Machine Learning and Data Science Framework/4. Types of Machine Learning Problems.mp4
63.4 MB
8. Matplotlib + Seaborn Plotting and Data Visualization/9. Plotting From Pandas DataFrames.mp4
63.3 MB
17. Learn Python/12. DEVELOPER FUNDAMENTALS I.mp4
62.6 MB
8. Matplotlib + Seaborn Plotting and Data Visualization/14. Plotting from Pandas DataFrames 5.mp4
59.7 MB
9. Scikit-learn Creating Machine Learning Models/43. Saving And Loading A Model 2.mp4
59.5 MB
9. Scikit-learn Creating Machine Learning Models/19. Fitting A Model To The Data.mp4
59.3 MB
12. Milestone Project 2 Supervised Learning (Time Series Data)/11. Fitting A Machine Learning Model.mp4
58.2 MB
11. Milestone Project 1 Supervised Learning (Classification)/12. Experimenting With Machine Learning Models.mp4
58.0 MB
9. Scikit-learn Creating Machine Learning Models/33. Evaluating A Regression Model 3 (MSE).mp4
57.6 MB
9. Scikit-learn Creating Machine Learning Models/21. predict() vs predict_proba().mp4
57.0 MB
7. NumPy/11. Reshape and Transpose.mp4
56.1 MB
18. Learn Python Part 2/41. List Comprehensions.mp4
55.9 MB
18. Learn Python Part 2/47. Optional PyCharm.mp4
55.6 MB
9. Scikit-learn Creating Machine Learning Models/42. Saving And Loading A Model.mp4
55.2 MB
18. Learn Python Part 2/40. reduce().mp4
54.8 MB
12. Milestone Project 2 Supervised Learning (Time Series Data)/6. Exploring Our Data 2.mp4
54.6 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/6. Uploading Project Data.mp4
54.5 MB
7. NumPy/6. NumPy Random Seed.mp4
54.4 MB
7. NumPy/10. Standard Deviation and Variance.mp4
53.6 MB
17. Learn Python/30. Exercise Password Checker.mp4
53.6 MB
9. Scikit-learn Creating Machine Learning Models/27. Evaluating A Classification Model 3 (ROC Curve).mp4
53.1 MB
17. Learn Python/28. Exercise Type Conversion.mp4
52.8 MB
18. Learn Python Part 2/19. DEVELOPER FUNDAMENTALS IV.mp4
52.7 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/23. Preparing Our Inputs and Outputs.mp4
52.5 MB
17. Learn Python/32. List Slicing.mp4
52.3 MB
18. Learn Python Part 2/18. Our First GUI.mp4
52.0 MB
8. Matplotlib + Seaborn Plotting and Data Visualization/19. Saving And Sharing Your Plots.mp4
51.9 MB
17. Learn Python/23. Formatted Strings.mp4
51.6 MB
17. Learn Python/24. String Indexes.mp4
51.5 MB
8. Matplotlib + Seaborn Plotting and Data Visualization/13. Plotting from Pandas DataFrames 4.mp4
51.4 MB
18. Learn Python Part 2/21. Functions.mp4
51.0 MB
18. Learn Python Part 2/49. Different Ways To Import.mp4
50.3 MB
5. Data Science Environment Setup/7. Windows Environment Setup.mp4
50.2 MB
17. Learn Python/4. Our First Python Program.mp4
49.5 MB
18. Learn Python Part 2/8. Exercise Logical Operators.mp4
48.9 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/12. Optional GPU and Google Colab.mp4
48.1 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/29. Summarizing Our Model.mp4
47.6 MB
9. Scikit-learn Creating Machine Learning Models/22. Making Predictions With Our Model (Regression).mp4
47.1 MB
3. Machine Learning and Data Science Framework/11. Modelling - Comparison.mp4
47.1 MB
18. Learn Python Part 2/11. Iterables.mp4
45.3 MB
18. Learn Python Part 2/29. args and kwargs.mp4
45.1 MB
18. Learn Python Part 2/4. Truthy vs Falsey.mp4
44.9 MB
2. Machine Learning 101/3. Exercise Machine Learning Playground.mp4
44.7 MB
17. Learn Python/44. Dictionary Methods 2.mp4
44.4 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/7. Setting Up Our Data.mp4
44.3 MB
13. Data Engineering/2. What Is Data.mp4
44.3 MB
17. Learn Python/11. Math Functions.mp4
43.8 MB
11. Milestone Project 1 Supervised Learning (Classification)/18. Evaluating Our Model 2.mp4
43.6 MB
9. Scikit-learn Creating Machine Learning Models/2. Scikit-learn Introduction.mp4
42.6 MB
17. Learn Python/37. Common List Patterns.mp4
42.4 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/5. Google Colab Workspace.mp4
41.6 MB
17. Learn Python/7. Learning Python.mp4
40.4 MB
18. Learn Python Part 2/37. map().mp4
40.2 MB
18. Learn Python Part 2/23. Default Parameters and Keyword Arguments.mp4
40.0 MB
8. Matplotlib + Seaborn Plotting and Data Visualization/7. Subplots Option 2.mp4
39.9 MB
18. Learn Python Part 2/32. Scope Rules.mp4
39.5 MB
17. Learn Python/47. Sets.mp4
38.8 MB
3. Machine Learning and Data Science Framework/7. Features In Data.mp4
38.6 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/31. Preventing Overfitting.mp4
38.3 MB
18. Learn Python Part 2/33. global Keyword.mp4
38.3 MB
18. Learn Python Part 2/42. Set Comprehensions.mp4
37.1 MB
11. Milestone Project 1 Supervised Learning (Classification)/2. Project Overview.mp4
36.1 MB
18. Learn Python Part 2/10. For Loops.mp4
36.0 MB
18. Learn Python Part 2/9. is vs ==.mp4
35.2 MB
12. Milestone Project 2 Supervised Learning (Time Series Data)/2. Project Overview.mp4
34.5 MB
7. NumPy/15. Sorting Arrays.mp4
34.4 MB
17. Learn Python/40. Dictionaries.mp4
34.3 MB
13. Data Engineering/7. Types Of Databases.mp4
34.1 MB
8. Matplotlib + Seaborn Plotting and Data Visualization/2. Matplotlib Introduction.mp4
33.0 MB
9. Scikit-learn Creating Machine Learning Models/25. Evaluating A Classification Model 1 (Accuracy).mp4
32.9 MB
17. Learn Python/19. Strings.mp4
32.5 MB
18. Learn Python Part 2/26. Methods vs Functions.mp4
32.2 MB
5. Data Science Environment Setup/4. Conda Environments.mp4
32.0 MB
2. Machine Learning 101/4. How Did We Get Here.mp4
32.0 MB
3. Machine Learning and Data Science Framework/5. Types of Data.mp4
30.7 MB
17. Learn Python/29. DEVELOPER FUNDAMENTALS II.mp4
30.7 MB
17. Learn Python/8. Python Data Types.mp4
30.3 MB
9. Scikit-learn Creating Machine Learning Models/32. Evaluating A Regression Model 2 (MAE).mp4
29.9 MB
18. Learn Python Part 2/7. Logical Operators.mp4
29.7 MB
2. Machine Learning 101/1. What Is Machine Learning.mp4
29.7 MB
18. Learn Python Part 2/13. range().mp4
29.7 MB
18. Learn Python Part 2/15. While Loops.mp4
29.7 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/10. Optional TensorFlow 2.0 Default Issue.mp4
29.5 MB
18. Learn Python Part 2/3. Indentation In Python.mp4
29.4 MB
1. Introduction/4. Your First Day.mp4
29.3 MB
17. Learn Python/36. List Methods 3.mp4
29.0 MB
3. Machine Learning and Data Science Framework/8. Modelling - Splitting Data.mp4
28.8 MB
6. Pandas Data Analysis/3. Pandas Introduction.mp4
28.8 MB
17. Learn Python/35. List Methods 2.mp4
28.7 MB
3. Machine Learning and Data Science Framework/13. Tools We Will Use.mp4
28.7 MB
17. Learn Python/43. Dictionary Methods.mp4
28.5 MB
7. NumPy/2. NumPy Introduction.mp4
28.1 MB
17. Learn Python/41. DEVELOPER FUNDAMENTALS III.mp4
27.9 MB
7. NumPy/14. Comparison Operators.mp4
27.6 MB
17. Learn Python/6. Exercise How Does Python Work.mp4
27.2 MB
18. Learn Python Part 2/16. While Loops 2.mp4
27.2 MB
17. Learn Python/45. Tuples.mp4
26.9 MB
2. Machine Learning 101/8. What Is Machine Learning Round 2.mp4
26.7 MB
18. Learn Python Part 2/14. enumerate().mp4
26.0 MB
13. Data Engineering/5. What Is A Data Engineer 3.mp4
25.5 MB
13. Data Engineering/4. What Is A Data Engineer 2.mp4
25.4 MB
18. Learn Python Part 2/38. filter().mp4
24.7 MB
3. Machine Learning and Data Science Framework/3. 6 Step Machine Learning Framework.mp4
24.6 MB
3. Machine Learning and Data Science Framework/9. Modelling - Picking the Model.mp4
24.4 MB
17. Learn Python/22. Escape Sequences.mp4
24.3 MB
18. Learn Python Part 2/22. Parameters and Arguments.mp4
24.3 MB
2. Machine Learning 101/6. Types of Machine Learning.mp4
23.9 MB
18. Learn Python Part 2/17. break, continue, pass.mp4
23.3 MB
18. Learn Python Part 2/43. Exercise Comprehensions.mp4
23.0 MB
17. Learn Python/31. Lists.mp4
23.0 MB
17. Learn Python/15. Optional bin() and complex.mp4
23.0 MB
18. Learn Python Part 2/30. Exercise Functions.mp4
22.9 MB
3. Machine Learning and Data Science Framework/12. Experimentation.mp4
22.4 MB
18. Learn Python Part 2/39. zip().mp4
22.3 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/8. Setting Up Our Data 2.mp4
21.9 MB
17. Learn Python/25. Immutability.mp4
21.8 MB
17. Learn Python/42. Dictionary Keys.mp4
21.4 MB
18. Learn Python Part 2/1. Breaking The Flow.mp4
21.3 MB
18. Learn Python Part 2/20. Exercise Find Duplicates.mp4
21.2 MB
18. Learn Python Part 2/31. Scope.mp4
21.1 MB
18. Learn Python Part 2/5. Ternary Operator.mp4
20.7 MB
2. Machine Learning 101/2. AIMachine LearningData Science.mp4
20.6 MB
18. Learn Python Part 2/28. Clean Code.mp4
20.6 MB
2. Machine Learning 101/5. Exercise YouTube Recommendation Engine.mp4
20.4 MB
18. Learn Python Part 2/6. Short Circuiting.mp4
20.3 MB
5. Data Science Environment Setup/2. Introducing Our Tools.mp4
20.2 MB
13. Data Engineering/13. Kafka and Stream Processing.mp4
20.2 MB
18. Learn Python Part 2/35. Why Do We Need Scope.mp4
20.1 MB
17. Learn Python/33. Matrix.mp4
20.1 MB
17. Learn Python/21. Type Conversion.mp4
19.9 MB
18. Learn Python Part 2/34. nonlocal Keyword.mp4
19.1 MB
3. Machine Learning and Data Science Framework/6. Types of Evaluation.mp4
18.6 MB
18. Learn Python Part 2/27. Docstrings.mp4
18.2 MB
17. Learn Python/46. Tuples 2.mp4
17.8 MB
9. Scikit-learn Creating Machine Learning Models/41. Quick Tip Correlation Analysis.mp4
17.7 MB
17. Learn Python/27. Booleans.mp4
17.4 MB
9. Scikit-learn Creating Machine Learning Models/10. Quick Tip Clean, Transform, Reduce.mp4
17.3 MB
18. Learn Python Part 2/12. Exercise Tricky Counter.mp4
17.2 MB
3. Machine Learning and Data Science Framework/10. Modelling - Tuning.mp4
16.8 MB
16. Career Advice + Extra Bits/7. JTS Start With Why.mp4
16.2 MB
17. Learn Python/18. Augmented Assignment Operator.mp4
16.1 MB
13. Data Engineering/3. What Is A Data Engineer.mp4
15.9 MB
13. Data Engineering/6. What Is A Data Engineer 4.mp4
15.7 MB
17. Learn Python/13. Operator Precedence.mp4
15.1 MB
17. Learn Python/38. List Unpacking.mp4
14.5 MB
13. Data Engineering/1. Data Engineering Introduction.mp4
14.2 MB
3. Machine Learning and Data Science Framework/1. Section Overview.mp4
14.0 MB
7. NumPy/1. Section Overview.mp4
14.0 MB
5. Data Science Environment Setup/3. What is Conda.mp4
13.1 MB
9. Scikit-learn Creating Machine Learning Models/1. Section Overview.mp4
13.1 MB
8. Matplotlib + Seaborn Plotting and Data Visualization/8. Quick Tip Data Visualizations.mp4
12.8 MB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/1. Section Overview.mp4
12.8 MB
3. Machine Learning and Data Science Framework/2. Introducing Our Framework.mp4
11.9 MB
16. Career Advice + Extra Bits/6. JTS Learn to Learn.mp4
11.7 MB
20. Where To Go From Here/2. Thank You.mp4
11.7 MB
9. Scikit-learn Creating Machine Learning Models/17. Quick Tip How ML Algorithms Work.mp4
11.6 MB
17. Learn Python/17. Expressions vs Statements.mp4
11.5 MB
15. UPLOADED BY FEB 14th Storytelling + Communication How To Present Your Projects/1. Section Overview.mp4
11.4 MB
6. Pandas Data Analysis/1. Section Overview.mp4
11.4 MB
11. Milestone Project 1 Supervised Learning (Classification)/1. Section Overview.mp4
10.7 MB
13. Data Engineering/11. Hadoop, HDFS and MapReduce.mp4
10.6 MB
4. The 2 Paths/1. The 2 Paths.mp4
10.2 MB
12. Milestone Project 2 Supervised Learning (Time Series Data)/1. Section Overview.mp4
9.4 MB
8. Matplotlib + Seaborn Plotting and Data Visualization/1. Section Overview.mp4
9.0 MB
17. Learn Python/39. None.mp4
8.3 MB
17. Learn Python/20. String Concatenation.mp4
7.7 MB
7. NumPy/16.1 numpy-images.zip.zip
7.6 MB
5. Data Science Environment Setup/1. Section Overview.mp4
6.3 MB
13. Data Engineering/12. Apache Spark and Apache Flink.mp4
6.0 MB
2. Machine Learning 101/9. Section Review.mp4
5.8 MB
8. Matplotlib + Seaborn Plotting and Data Visualization/4.2 matplotlib-anatomy-of-a-plot-with-code.png.png
670.5 kB
8. Matplotlib + Seaborn Plotting and Data Visualization/4.1 matplotlib-anatomy-of-a-plot.png.png
378.3 kB
6. Pandas Data Analysis/4.1 pandas-anatomy-of-a-dataframe.png.png
341.2 kB
6. Pandas Data Analysis/10.1 pandas-anatomy-of-a-dataframe.png.png
341.2 kB
5. Data Science Environment Setup/3.4 conda-cheatsheet.pdf.pdf
206.1 kB
9. Scikit-learn Creating Machine Learning Models/7. Typical scikit-learn Workflow.srt
32.5 kB
5. Data Science Environment Setup/8. Windows Environment Setup 2.srt
32.4 kB
9. Scikit-learn Creating Machine Learning Models/38. Tuning Hyperparameters.srt
31.3 kB
6. Pandas Data Analysis/9.1 car-sales-extended-missing-data.csv.csv
30.9 kB
9. Scikit-learn Creating Machine Learning Models/44. Putting It All Together.srt
27.1 kB
9. Scikit-learn Creating Machine Learning Models/8. Optional Debugging Warnings In Jupyter.srt
26.1 kB
5. Data Science Environment Setup/5. Mac Environment Setup.srt
24.5 kB
9. Scikit-learn Creating Machine Learning Models/13. Getting Your Data Ready Handling Missing Values With Scikit-learn.srt
23.7 kB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/32. Training Your Deep Neural Network.srt
23.6 kB
9. Scikit-learn Creating Machine Learning Models/11. Getting Your Data Ready Convert Data To Numbers.srt
23.3 kB
5. Data Science Environment Setup/11. Jupyter Notebook Walkthrough 2.srt
23.0 kB
11. Milestone Project 1 Supervised Learning (Classification)/20. Finding The Most Important Features.srt
22.9 kB
11. Milestone Project 1 Supervised Learning (Classification)/8. Finding Patterns 2.srt
22.9 kB
12. Milestone Project 2 Supervised Learning (Time Series Data)/8. Turning Data Into Numbers.srt
22.9 kB
12. Milestone Project 2 Supervised Learning (Time Series Data)/7. Feature Engineering.srt
22.7 kB
9. Scikit-learn Creating Machine Learning Models/14. Choosing The Right Model For Your Data.srt
21.9 kB
16. Career Advice + Extra Bits/9. CWD Git + Github.srt
21.7 kB
5. Data Science Environment Setup/6. Mac Environment Setup 2.srt
21.2 kB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/2. Deep Learning and Unstructured Data.srt
20.7 kB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/21. Turning Data Into Batches 2.srt
20.6 kB
16. Career Advice + Extra Bits/3. What If I Don_t Have Enough Experience.srt
20.5 kB
12. Milestone Project 2 Supervised Learning (Time Series Data)/5. Exploring Our Data.srt
20.5 kB
7. NumPy/4. NumPy DataTypes and Attributes.srt
19.7 kB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/34. Make And Transform Predictons.srt
19.6 kB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/40. Training Model On Full Dataset.srt
19.6 kB
11. Milestone Project 1 Supervised Learning (Classification)/9. Finding Patterns 3.srt
19.3 kB
9. Scikit-learn Creating Machine Learning Models/40. Tuning Hyperparameters 3.srt
19.2 kB
16. Career Advice + Extra Bits/10. CWD Git + Github 2.srt
18.7 kB
6. Pandas Data Analysis/9. Manipulating Data.srt
18.5 kB
9. Scikit-learn Creating Machine Learning Models/35. Evaluating A Model With Cross Validation and Scoring Parameter.srt
18.4 kB
6. Pandas Data Analysis/8. Selecting and Viewing Data with Pandas Part 2.srt
18.4 kB
12. Milestone Project 2 Supervised Learning (Time Series Data)/17. Preproccessing Our Data.srt
18.2 kB
11. Milestone Project 1 Supervised Learning (Classification)/13. TuningImproving Our Model.srt
18.1 kB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/37. Visualizing And Evaluate Model Predictions 2.srt
18.1 kB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/35. Transform Predictions To Text.srt
18.0 kB
12. Milestone Project 2 Supervised Learning (Time Series Data)/19. Feature Importance.srt
17.7 kB
9. Scikit-learn Creating Machine Learning Models/24. Evaluating A Machine Learning Model 2 (Cross Validation).srt
17.7 kB
16. Career Advice + Extra Bits/11. Contributing To Open Source.srt
17.5 kB
9. Scikit-learn Creating Machine Learning Models/18. Choosing The Right Model For Your Data 3 (Classification).srt
17.5 kB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/36. Visualizing Model Predictions.srt
17.4 kB
9. Scikit-learn Creating Machine Learning Models/39. Tuning Hyperparameters 2.srt
17.4 kB
7. NumPy/13. Exercise Nut Butter Store Sales.srt
17.4 kB
9. Scikit-learn Creating Machine Learning Models/12. Getting Your Data Ready Handling Missing Values With Pandas.srt
17.4 kB
12. Milestone Project 2 Supervised Learning (Time Series Data)/9. Filling Missing Numerical Values.srt
17.3 kB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/39. Saving And Loading A Trained Model.srt
17.3 kB
6. Pandas Data Analysis/4. Series, Data Frames and CSVs.srt
17.2 kB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/9. Importing TensorFlow 2.srt
17.2 kB
11. Milestone Project 1 Supervised Learning (Classification)/4. Step 1~4 Framework Setup.srt
17.0 kB
9. Scikit-learn Creating Machine Learning Models/36. Evaluating A Model With Scikit-learn Functions.srt
16.7 kB
7. NumPy/8. Manipulating Arrays.srt
16.6 kB
9. Scikit-learn Creating Machine Learning Models/45. Putting It All Together 2.srt
16.5 kB
12. Milestone Project 2 Supervised Learning (Time Series Data)/13. Custom Evaluation Function.srt
16.5 kB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/14. Loading Our Data Labels.srt
16.5 kB
8. Matplotlib + Seaborn Plotting and Data Visualization/3. Importing And Using Matplotlib.srt
16.4 kB
17. Learn Python/16. Variables.srt
16.4 kB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/25. Building A Deep Learning Model.srt
16.3 kB
12. Milestone Project 2 Supervised Learning (Time Series Data)/3. Project Environment Setup.srt
16.3 kB
11. Milestone Project 1 Supervised Learning (Classification)/14. Tuning Hyperparameters.srt
16.0 kB
18. Learn Python Part 2/2. Conditional Logic.srt
16.0 kB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/22. Visualizing Our Data.srt
16.0 kB
7. NumPy/12. Dot Product vs Element Wise.srt
15.7 kB
5. Data Science Environment Setup/10. Jupyter Notebook Walkthrough.srt
15.5 kB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/15. Preparing The Images.srt
15.5 kB
11. Milestone Project 1 Supervised Learning (Classification)/17. Evaluating Our Model.srt
15.5 kB
9. Scikit-learn Creating Machine Learning Models/28. Evaluating A Classification Model 4 (Confusion Matrix).srt
15.5 kB
11. Milestone Project 1 Supervised Learning (Classification)/15. Tuning Hyperparameters 2.srt
15.5 kB
18. Learn Python Part 2/24. return.srt
15.3 kB
8. Matplotlib + Seaborn Plotting and Data Visualization/16. Plotting from Pandas DataFrames 7.srt
15.3 kB
9. Scikit-learn Creating Machine Learning Models/37. Improving A Machine Learning Model.srt
15.2 kB
8. Matplotlib + Seaborn Plotting and Data Visualization/5. Scatter Plot And Bar Plot.srt
15.0 kB
12. Milestone Project 2 Supervised Learning (Time Series Data)/14. Reducing Data.srt
15.0 kB
6. Pandas Data Analysis/7. Selecting and Viewing Data with Pandas.srt
14.9 kB
9. Scikit-learn Creating Machine Learning Models/30. Evaluating A Classification Model 6 (Classification Report).srt
14.9 kB
11. Milestone Project 1 Supervised Learning (Classification)/3. Project Environment Setup.srt
14.7 kB
8. Matplotlib + Seaborn Plotting and Data Visualization/4. Anatomy Of A Matplotlib Figure.srt
14.5 kB
3. Machine Learning and Data Science Framework/4. Types of Machine Learning Problems.srt
14.3 kB
8. Matplotlib + Seaborn Plotting and Data Visualization/17. Customizing Your Plots.srt
14.3 kB
6. Pandas Data Analysis/10. Manipulating Data 2.srt
14.2 kB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/38. Visualizing And Evaluate Model Predictions 3.srt
14.1 kB
11. Milestone Project 1 Supervised Learning (Classification)/21. Reviewing The Project.srt
14.1 kB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/16. Turning Data Labels Into Numbers.srt
14.1 kB
6. Pandas Data Analysis/11. Manipulating Data 3.srt
14.0 kB
8. Matplotlib + Seaborn Plotting and Data Visualization/11. Plotting From Pandas DataFrames 2.srt
14.0 kB
6. Pandas Data Analysis/6. Describing Data with Pandas.srt
13.9 kB
12. Milestone Project 2 Supervised Learning (Time Series Data)/12. Splitting Data.srt
13.8 kB
11. Milestone Project 1 Supervised Learning (Classification)/7. Finding Patterns.srt
13.7 kB
8. Matplotlib + Seaborn Plotting and Data Visualization/18. Customizing Your Plots 2.srt
13.6 kB
3. Machine Learning and Data Science Framework/11. Modelling - Comparison.srt
13.4 kB
11. Milestone Project 1 Supervised Learning (Classification)/11. Choosing The Right Models.srt
13.3 kB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/18. Preprocess Images.srt
13.2 kB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/19. Preprocess Images 2.srt
13.2 kB
7. NumPy/7. Viewing Arrays and Matrices.srt
13.2 kB
9. Scikit-learn Creating Machine Learning Models/23. Evaluating A Machine Learning Model (Score).srt
13.2 kB
11. Milestone Project 1 Supervised Learning (Classification)/5. Getting Our Tools Ready.srt
13.1 kB
18. Learn Python Part 2/45. Modules in Python.srt
13.0 kB
12. Milestone Project 2 Supervised Learning (Time Series Data)/15. RandomizedSearchCV.srt
13.0 kB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/26. Building A Deep Learning Model 2.srt
12.8 kB
18. Learn Python Part 2/48. Packages in Python.srt
12.8 kB
8. Matplotlib + Seaborn Plotting and Data Visualization/6. Histograms And Subplots.srt
12.7 kB
7. NumPy/5. Creating NumPy Arrays.srt
12.7 kB
12. Milestone Project 2 Supervised Learning (Time Series Data)/4. Step 1~4 Framework Setup.srt
12.7 kB
9. Scikit-learn Creating Machine Learning Models/26. Evaluating A Classification Model 2 (ROC Curve).srt
12.6 kB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/11. Using A GPU.srt
12.4 kB
13. Data Engineering/9. Optional OLTP Databases.srt
12.4 kB
9. Scikit-learn Creating Machine Learning Models/20. Making Predictions With Our Model.srt
12.4 kB
9. Scikit-learn Creating Machine Learning Models/9. Getting Your Data Ready Splitting Your Data.srt
12.4 kB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/28. Building A Deep Learning Model 4.srt
12.3 kB
11. Milestone Project 1 Supervised Learning (Classification)/10. Preparing Our Data For Machine Learning.srt
12.3 kB
9. Scikit-learn Creating Machine Learning Models/31. Evaluating A Regression Model 1 (R2 Score).srt
12.3 kB
9. Scikit-learn Creating Machine Learning Models/15. Choosing The Right Model For Your Data 2 (Regression).srt
12.3 kB
8. Matplotlib + Seaborn Plotting and Data Visualization/14. Plotting from Pandas DataFrames 5.srt
11.9 kB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/20. Turning Data Into Batches.srt
11.9 kB
9. Scikit-learn Creating Machine Learning Models/21. predict() vs predict_proba().srt
11.8 kB
11. Milestone Project 1 Supervised Learning (Classification)/19. Evaluating Our Model 3.srt
11.8 kB
7. NumPy/9. Manipulating Arrays 2.srt
11.8 kB
5. Data Science Environment Setup/12. Jupyter Notebook Walkthrough 3.srt
11.8 kB
8. Matplotlib + Seaborn Plotting and Data Visualization/12. Plotting from Pandas DataFrames 3.srt
11.7 kB
11. Milestone Project 1 Supervised Learning (Classification)/6. Exploring Our Data.srt
11.7 kB
12. Milestone Project 2 Supervised Learning (Time Series Data)/18. Making Predictions.srt
11.6 kB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/17. Creating Our Own Validation Set.srt
11.6 kB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/27. Building A Deep Learning Model 3.srt
11.5 kB
12. Milestone Project 2 Supervised Learning (Time Series Data)/10. Filling Missing Categorical Values.srt
11.5 kB
9. Scikit-learn Creating Machine Learning Models/29. Evaluating A Classification Model 5 (Confusion Matrix).srt
11.5 kB
17. Learn Python/10. Numbers.srt
11.4 kB
8. Matplotlib + Seaborn Plotting and Data Visualization/15. Plotting from Pandas DataFrames 6.srt
11.3 kB
5. Data Science Environment Setup/10.3 heart-disease.csv.csv
11.3 kB
8. Matplotlib + Seaborn Plotting and Data Visualization/13.1 heart-disease.csv.csv
11.3 kB
11. Milestone Project 1 Supervised Learning (Classification)/6.1 heart-disease.csv.csv
11.3 kB
6. Pandas Data Analysis/13. How To Download The Course Assignments.srt
11.3 kB
12. Milestone Project 2 Supervised Learning (Time Series Data)/16. Improving Hyperparameters.srt
11.3 kB
17. Learn Python/34. List Methods.srt
11.0 kB
9. Scikit-learn Creating Machine Learning Models/2. Scikit-learn Introduction.srt
10.9 kB
18. Learn Python Part 2/47. Optional PyCharm.srt
10.8 kB
12. Milestone Project 2 Supervised Learning (Time Series Data)/11. Fitting A Machine Learning Model.srt
10.7 kB
7. NumPy/16. Turn Images Into NumPy Arrays.srt
10.7 kB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/30. Evaluating Our Model.srt
10.7 kB
18. Learn Python Part 2/18. Our First GUI.srt
10.6 kB
17. Learn Python/26. Built-In Functions + Methods.srt
10.5 kB
16. Career Advice + Extra Bits/12. Contributing To Open Source 2.srt
10.4 kB
9. Scikit-learn Creating Machine Learning Models/6. Scikit-learn Cheatsheet.srt
10.3 kB
18. Learn Python Part 2/36. Pure Functions.srt
10.3 kB
9. Scikit-learn Creating Machine Learning Models/27. Evaluating A Classification Model 3 (ROC Curve).srt
10.3 kB
11. Milestone Project 1 Supervised Learning (Classification)/2. Project Overview.srt
10.3 kB
11. Milestone Project 1 Supervised Learning (Classification)/16. Tuning Hyperparameters 3.srt
10.2 kB
9. Scikit-learn Creating Machine Learning Models/42. Saving And Loading A Model.srt
10.1 kB
7. NumPy/6. NumPy Random Seed.srt
10.0 kB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/4. Setting Up Google Colab.srt
9.9 kB
11. Milestone Project 1 Supervised Learning (Classification)/12. Experimenting With Machine Learning Models.srt
9.9 kB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/33. Evaluating Performance With TensorBoard.srt
9.8 kB
7. NumPy/11. Reshape and Transpose.srt
9.8 kB
8. Matplotlib + Seaborn Plotting and Data Visualization/13. Plotting from Pandas DataFrames 4.srt
9.6 kB
18. Learn Python Part 2/41. List Comprehensions.srt
9.6 kB
7. NumPy/10. Standard Deviation and Variance.srt
9.6 kB
9. Scikit-learn Creating Machine Learning Models/19. Fitting A Model To The Data.srt
9.6 kB
17. Learn Python/48. Sets 2.srt
9.5 kB
9. Scikit-learn Creating Machine Learning Models/33. Evaluating A Regression Model 3 (MSE).srt
9.5 kB
17. Learn Python/24. String Indexes.srt
9.4 kB
18. Learn Python Part 2/21. Functions.srt
9.4 kB
1. Introduction/1. Course Outline.srt
9.4 kB
9. Scikit-learn Creating Machine Learning Models/22. Making Predictions With Our Model (Regression).srt
9.3 kB
17. Learn Python/4. Our First Python Program.srt
9.2 kB
8. Matplotlib + Seaborn Plotting and Data Visualization/9. Plotting From Pandas DataFrames.srt
9.2 kB
9. Scikit-learn Creating Machine Learning Models/43. Saving And Loading A Model 2.srt
9.2 kB
17. Learn Python/23. Formatted Strings.srt
9.0 kB
7. NumPy/15. Sorting Arrays.srt
9.0 kB
2. Machine Learning 101/1. What Is Machine Learning.srt
8.9 kB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/6. Uploading Project Data.srt
8.8 kB
12. Milestone Project 2 Supervised Learning (Time Series Data)/6. Exploring Our Data 2.srt
8.8 kB
17. Learn Python/28. Exercise Type Conversion.srt
8.8 kB
17. Learn Python/32. List Slicing.srt
8.7 kB
18. Learn Python Part 2/32. Scope Rules.srt
8.7 kB
17. Learn Python/47. Sets.srt
8.6 kB
18. Learn Python Part 2/8. Exercise Logical Operators.srt
8.6 kB
18. Learn Python Part 2/40. reduce().srt
8.6 kB
13. Data Engineering/7. Types Of Databases.srt
8.6 kB
17. Learn Python/2. Python Interpreter.srt
8.5 kB
17. Learn Python/5. Python 2 vs Python 3.srt
8.4 kB
18. Learn Python Part 2/9. is vs ==.srt
8.3 kB
18. Learn Python Part 2/7. Logical Operators.srt
8.3 kB
2. Machine Learning 101/3. Exercise Machine Learning Playground.srt
8.3 kB
18. Learn Python Part 2/29. args and kwargs.srt
8.3 kB
8. Matplotlib + Seaborn Plotting and Data Visualization/2. Matplotlib Introduction.srt
8.2 kB
17. Learn Python/30. Exercise Password Checker.srt
8.1 kB
18. Learn Python Part 2/19. DEVELOPER FUNDAMENTALS IV.srt
8.0 kB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/23. Preparing Our Inputs and Outputs.srt
8.0 kB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/13. Optional Reloading Colab Notebook.srt
8.0 kB
3. Machine Learning and Data Science Framework/8. Modelling - Splitting Data.srt
7.9 kB
5. Data Science Environment Setup/7. Windows Environment Setup.srt
7.8 kB
13. Data Engineering/2. What Is Data.srt
7.8 kB
18. Learn Python Part 2/10. For Loops.srt
7.7 kB
7. NumPy/2. NumPy Introduction.srt
7.7 kB
18. Learn Python Part 2/49. Different Ways To Import.srt
7.7 kB
11. Milestone Project 1 Supervised Learning (Classification)/18. Evaluating Our Model 2.srt
7.6 kB
18. Learn Python Part 2/15. While Loops.srt
7.5 kB
17. Learn Python/44. Dictionary Methods 2.srt
7.3 kB
9. Scikit-learn Creating Machine Learning Models/34. Machine Learning Model Evaluation.html
7.3 kB
17. Learn Python/40. Dictionaries.srt
7.3 kB
2. Machine Learning 101/4. How Did We Get Here.srt
7.2 kB
17. Learn Python/1. What Is A Programming Language.srt
7.2 kB
18. Learn Python Part 2/11. Iterables.srt
7.0 kB
3. Machine Learning and Data Science Framework/7. Features In Data.srt
6.9 kB
18. Learn Python Part 2/33. global Keyword.srt
6.8 kB
12. Milestone Project 2 Supervised Learning (Time Series Data)/2. Project Overview.srt
6.8 kB
3. Machine Learning and Data Science Framework/3. 6 Step Machine Learning Framework.srt
6.8 kB
18. Learn Python Part 2/42. Set Comprehensions.srt
6.7 kB
3. Machine Learning and Data Science Framework/5. Types of Data.srt
6.7 kB
17. Learn Python/3. How To Run Python Code.srt
6.6 kB
9. Scikit-learn Creating Machine Learning Models/10. Quick Tip Clean, Transform, Reduce.srt
6.6 kB
18. Learn Python Part 2/16. While Loops 2.srt
6.6 kB
8. Matplotlib + Seaborn Plotting and Data Visualization/7. Subplots Option 2.srt
6.5 kB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/7. Setting Up Our Data.srt
6.5 kB
2. Machine Learning 101/2. AIMachine LearningData Science.srt
6.5 kB
9. Scikit-learn Creating Machine Learning Models/4. Refresher What Is Machine Learning.srt
6.5 kB
13. Data Engineering/4. What Is A Data Engineer 2.srt
6.5 kB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/5. Google Colab Workspace.srt
6.5 kB
17. Learn Python/19. Strings.srt
6.4 kB
18. Learn Python Part 2/37. map().srt
6.4 kB
3. Machine Learning and Data Science Framework/9. Modelling - Picking the Model.srt
6.4 kB
5. Data Science Environment Setup/4. Conda Environments.srt
6.3 kB
2. Machine Learning 101/8. What Is Machine Learning Round 2.srt
6.2 kB
3. Machine Learning and Data Science Framework/13. Tools We Will Use.srt
6.1 kB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/12. Optional GPU and Google Colab.srt
6.1 kB
18. Learn Python Part 2/4. Truthy vs Falsey.srt
6.1 kB
18. Learn Python Part 2/23. Default Parameters and Keyword Arguments.srt
6.1 kB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/29. Summarizing Our Model.srt
6.1 kB
9. Scikit-learn Creating Machine Learning Models/25. Evaluating A Classification Model 1 (Accuracy).srt
6.0 kB
18. Learn Python Part 2/13. range().srt
6.0 kB
8. Matplotlib + Seaborn Plotting and Data Visualization/19. Saving And Sharing Your Plots.srt
6.0 kB
17. Learn Python/37. Common List Patterns.srt
6.0 kB
9. Scikit-learn Creating Machine Learning Models/32. Evaluating A Regression Model 2 (MAE).srt
5.8 kB
17. Learn Python/45. Tuples.srt
5.8 kB
2. Machine Learning 101/5. Exercise YouTube Recommendation Engine.srt
5.8 kB
17. Learn Python/31. Lists.srt
5.7 kB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/31. Preventing Overfitting.srt
5.7 kB
17. Learn Python/11. Math Functions.srt
5.6 kB
13. Data Engineering/5. What Is A Data Engineer 3.srt
5.5 kB
18. Learn Python Part 2/28. Clean Code.srt
5.5 kB
17. Learn Python/29. DEVELOPER FUNDAMENTALS II.srt
5.4 kB
18. Learn Python Part 2/3. Indentation In Python.srt
5.4 kB
2. Machine Learning 101/6. Types of Machine Learning.srt
5.4 kB
1. Introduction/4. Your First Day.srt
5.4 kB
17. Learn Python/43. Dictionary Methods.srt
5.4 kB
7. NumPy/14. Comparison Operators.srt
5.4 kB
18. Learn Python Part 2/17. break, continue, pass.srt
5.4 kB
18. Learn Python Part 2/26. Methods vs Functions.srt
5.4 kB
17. Learn Python/12. DEVELOPER FUNDAMENTALS I.srt
5.3 kB
17. Learn Python/8. Python Data Types.srt
5.3 kB
18. Learn Python Part 2/38. filter().srt
5.2 kB
13. Data Engineering/13. Kafka and Stream Processing.srt
5.2 kB
17. Learn Python/36. List Methods 3.srt
5.1 kB
17. Learn Python/22. Escape Sequences.srt
5.1 kB
3. Machine Learning and Data Science Framework/12. Experimentation.srt
5.1 kB
18. Learn Python Part 2/43. Exercise Comprehensions.srt
5.1 kB
13. Data Engineering/3. What Is A Data Engineer.srt
5.0 kB
18. Learn Python Part 2/22. Parameters and Arguments.srt
5.0 kB
3. Machine Learning and Data Science Framework/10. Modelling - Tuning.srt
5.0 kB
18. Learn Python Part 2/5. Ternary Operator.srt
4.9 kB
17. Learn Python/15. Optional bin() and complex.srt
4.9 kB
18. Learn Python Part 2/35. Why Do We Need Scope.srt
4.9 kB
4. The 2 Paths/1. The 2 Paths.srt
4.8 kB
13. Data Engineering/11. Hadoop, HDFS and MapReduce.srt
4.8 kB
18. Learn Python Part 2/30. Exercise Functions.srt
4.8 kB
3. Machine Learning and Data Science Framework/1. Section Overview.srt
4.8 kB
18. Learn Python Part 2/14. enumerate().srt
4.7 kB
17. Learn Python/35. List Methods 2.srt
4.6 kB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/10. Optional TensorFlow 2.0 Default Issue.srt
4.6 kB
18. Learn Python Part 2/6. Short Circuiting.srt
4.6 kB
18. Learn Python Part 2/20. Exercise Find Duplicates.srt
4.5 kB
5. Data Science Environment Setup/2. Introducing Our Tools.srt
4.4 kB
3. Machine Learning and Data Science Framework/6. Types of Evaluation.srt
4.4 kB
18. Learn Python Part 2/27. Docstrings.srt
4.4 kB
13. Data Engineering/1. Data Engineering Introduction.srt
4.4 kB
17. Learn Python/42. Dictionary Keys.srt
4.3 kB
17. Learn Python/33. Matrix.srt
4.2 kB
9. Scikit-learn Creating Machine Learning Models/1. Section Overview.srt
4.2 kB
18. Learn Python Part 2/34. nonlocal Keyword.srt
4.2 kB
17. Learn Python/27. Booleans.srt
4.0 kB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/44. Finishing Dog Vision Where to next.html
4.0 kB
13. Data Engineering/6. What Is A Data Engineer 4.srt
4.0 kB
18. Learn Python Part 2/31. Scope.srt
3.9 kB
6. Pandas Data Analysis/1. Section Overview.srt
3.8 kB
3. Machine Learning and Data Science Framework/2. Introducing Our Framework.srt
3.8 kB
20. Where To Go From Here/2. Thank You.srt
3.7 kB
17. Learn Python/41. DEVELOPER FUNDAMENTALS III.srt
3.7 kB
18. Learn Python Part 2/12. Exercise Tricky Counter.srt
3.7 kB
17. Learn Python/13. Operator Precedence.srt
3.6 kB
17. Learn Python/25. Immutability.srt
3.6 kB
5. Data Science Environment Setup/3. What is Conda.srt
3.5 kB
15. UPLOADED BY FEB 14th Storytelling + Communication How To Present Your Projects/1. Section Overview.srt
3.4 kB
18. Learn Python Part 2/39. zip().srt
3.3 kB
11. Milestone Project 1 Supervised Learning (Classification)/1. Section Overview.srt
3.2 kB
7. NumPy/1. Section Overview.srt
3.2 kB
9. Scikit-learn Creating Machine Learning Models/41. Quick Tip Correlation Analysis.srt
3.2 kB
17. Learn Python/21. Type Conversion.srt
3.2 kB
17. Learn Python/46. Tuples 2.srt
3.1 kB
18. Learn Python Part 2/1. Breaking The Flow.srt
3.1 kB
16. Career Advice + Extra Bits/7. JTS Start With Why.srt
3.0 kB
17. Learn Python/18. Augmented Assignment Operator.srt
3.0 kB
17. Learn Python/38. List Unpacking.srt
3.0 kB
17. Learn Python/6. Exercise How Does Python Work.srt
2.9 kB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/1. Section Overview.srt
2.8 kB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/24. Optional How machines learn and what_s going on behind the scenes.html
2.8 kB
8. Matplotlib + Seaborn Plotting and Data Visualization/1. Section Overview.srt
2.8 kB
17. Learn Python/7. Learning Python.srt
2.6 kB
1. Introduction/3. Exercise Meet The Community.html
2.6 kB
16. Career Advice + Extra Bits/6. JTS Learn to Learn.srt
2.6 kB
2. Machine Learning 101/9. Section Review.srt
2.4 kB
8. Matplotlib + Seaborn Plotting and Data Visualization/8. Quick Tip Data Visualizations.srt
2.4 kB
13. Data Engineering/12. Apache Spark and Apache Flink.srt
2.4 kB
1. Introduction/2. Join Our Online Classroom!.html
2.3 kB
17. Learn Python/39. None.srt
2.2 kB
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/8. Setting Up Our Data 2.srt
2.2 kB
7. NumPy/17. Assignment NumPy Practice.html
2.2 kB
5. Data Science Environment Setup/1. Section Overview.srt
2.2 kB
9. Scikit-learn Creating Machine Learning Models/46. Scikit-Learn Practice.html
2.1 kB
8. Matplotlib + Seaborn Plotting and Data Visualization/20. Assignment Matplotlib Practice.html
2.1 kB
6. Pandas Data Analysis/12. Assignment Pandas Practice.html
2.1 kB
9. Scikit-learn Creating Machine Learning Models/17. Quick Tip How ML Algorithms Work.srt
2.0 kB
12. Milestone Project 2 Supervised Learning (Time Series Data)/1. Section Overview.srt
1.9 kB
17. Learn Python/17. Expressions vs Statements.srt
1.8 kB
21. Extras/1. Bonus Special Thank You Gift.html
1.6 kB
16. Career Advice + Extra Bits/14. Exercise Contribute To Open Source.html
1.5 kB
17. Learn Python/20. String Concatenation.srt
1.5 kB
7. NumPy/3. Quick Note Correction In Next Video.html
1.3 kB
18. Learn Python Part 2/44. Python Exam Testing Your Understanding.html
1.1 kB
6. Pandas Data Analysis/5. Data from URLs.html
1.1 kB
5. Data Science Environment Setup/9. Linux Environment Setup.html
1.1 kB
7. NumPy/18. Optional Extra NumPy resources.html
1.0 kB
9. Scikit-learn Creating Machine Learning Models/5. Quick Note Upcoming Videos.html
1.0 kB
3. Machine Learning and Data Science Framework/14. Optional Elements of AI.html
975 Bytes
18. Learn Python Part 2/50. Next Steps.html
959 Bytes
16. Career Advice + Extra Bits/13. Coding Challenges.html
948 Bytes
20. Where To Go From Here/1. Become An Alumni.html
944 Bytes
6. Pandas Data Analysis/2. Downloading Workbooks and Assignments.html
774 Bytes
10. Supervised Learning Classification + Regression/1. Milestone Projects!.html
738 Bytes
19. Bonus Learn Advanced Statistics and Mathematics for FREE!/1. Statistics and Mathematics.html
710 Bytes
16. Career Advice + Extra Bits/1. Endorsements On LinkedIn.html
688 Bytes
17. Learn Python/14. Exercise Operator Precedence.html
683 Bytes
8. Matplotlib + Seaborn Plotting and Data Visualization/10. Quick Note Regular Expressions.html
632 Bytes
16. Career Advice + Extra Bits/2. Quick Note Upcoming Video.html
587 Bytes
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/3. Setting Up With Google.html
568 Bytes
16. Career Advice + Extra Bits/5. Quick Note Upcoming Videos.html
565 Bytes
13. Data Engineering/8. Quick Note Upcoming Video.html
481 Bytes
4. The 2 Paths/2. Python Developer Monthly.html
476 Bytes
18. Learn Python Part 2/46. Quick Note Upcoming Videos.html
448 Bytes
13. Data Engineering/10. Optional Learn SQL.html
410 Bytes
18. Learn Python Part 2/25. Exercise Tesla.html
402 Bytes
9. Scikit-learn Creating Machine Learning Models/3. Quick Note Upcoming Video.html
390 Bytes
6. Pandas Data Analysis/7.1 car-sales.csv.csv
369 Bytes
16. Career Advice + Extra Bits/8. Quick Note Upcoming Videos.html
352 Bytes
16. Career Advice + Extra Bits/4. Learning Guideline.html
310 Bytes
17. Learn Python/9. How To Succeed.html
280 Bytes
Support Us For Premium Courses.txt
263 Bytes
9. Scikit-learn Creating Machine Learning Models/16. Quick Note Decision Trees.html
221 Bytes
12. Milestone Project 2 Supervised Learning (Time Series Data)/2.4 End-to-end Bluebook Bulldozer Regression Notebook (same as in videos).html
214 Bytes
12. Milestone Project 2 Supervised Learning (Time Series Data)/19.2 End-to-end Bluebook Bulldozer Regression Notebook (same as in videos).html
214 Bytes
12. Milestone Project 2 Supervised Learning (Time Series Data)/2.2 End-to-end Bluebook Bulldozer Regression Notebook (with annotations).html
208 Bytes
12. Milestone Project 2 Supervised Learning (Time Series Data)/19.1 End-to-end Bluebook Bulldozer Regression Notebook (with annotations).html
208 Bytes
11. Milestone Project 1 Supervised Learning (Classification)/2.1 End-to-end Heart Disease Classification Notebook (same as in videos).html
207 Bytes
11. Milestone Project 1 Supervised Learning (Classification)/21.2 End-to-end Heart Disease Classification Notebook (same as in videos).html
207 Bytes
15. UPLOADED BY FEB 14th Storytelling + Communication How To Present Your Projects/2. Videos uploaded by FEB 14th.html
203 Bytes
11. Milestone Project 1 Supervised Learning (Classification)/2.3 End-to-end Heart Disease Classification Notebook (with annotations).html
201 Bytes
11. Milestone Project 1 Supervised Learning (Classification)/21.1 End-to-end Heart Disease Classification Notebook (with annotations).html
201 Bytes
9. Scikit-learn Creating Machine Learning Models/2.1 Introduction to Scikit-Learn Jupyter Notebook (from the upcoming videos).html
197 Bytes
9. Scikit-learn Creating Machine Learning Models/45.1 Introduction to Scikit-Learn Jupyter Notebook (from the videos).html
197 Bytes
8. Matplotlib + Seaborn Plotting and Data Visualization/2.2 Introduction to Matplotlib Jupyter Notebook (from the upcoming videos).html
195 Bytes
8. Matplotlib + Seaborn Plotting and Data Visualization/19.1 Introduction to Matplotlib Notebook (from the videos).html
195 Bytes
9. Scikit-learn Creating Machine Learning Models/6.1 Scikit-Learn Reference Notebook.html
194 Bytes
9. Scikit-learn Creating Machine Learning Models/7.1 Example Scikit-Learn Workflow Notebook.html
192 Bytes
6. Pandas Data Analysis/3.3 Introduction to Pandas Jupyter Notebook (from the upcoming videos).html
191 Bytes
6. Pandas Data Analysis/11.1 Introduction to Pandas Jupyter Notebook (from the videos).html
191 Bytes
9. Scikit-learn Creating Machine Learning Models/2.2 Introduction to Scikit-Learn Jupyter Notebook (with annotations).html
191 Bytes
9. Scikit-learn Creating Machine Learning Models/45.2 Introduction to Scikit-Learn Jupyter Notebook (with annotations).html
191 Bytes
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/43.2 End-to-end Dog Vision Notebook (from the videos).html
191 Bytes
7. NumPy/2.2 Introduction to NumPy Jupyter Notebook (from the upcoming videos).html
190 Bytes
7. NumPy/16.2 Introduction to NumPy Jupyter Notebook (from the videos).html
190 Bytes
6. Pandas Data Analysis/3.4 Introduction to Pandas Jupyter Notebook (with annotations).html
185 Bytes
6. Pandas Data Analysis/11.2 Introduction to Pandas Jupyter Notebook (with annotations).html
185 Bytes
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/43.1 End-to-end Dog Vision Notebook (with annotations).html
185 Bytes
7. NumPy/2.3 Introduction to NumPy Jupyter Notebook (with annotations).html
184 Bytes
7. NumPy/16.3 Introduction to NumPy Jupyter Notebook (with annotations).html
184 Bytes
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/4.5 End-to-end Dog Vision Notebook (the project we_ll be working through).html
182 Bytes
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/42.1 Dog Vision Predictions with MobileNetV2 Ready for Kaggle Submission.html
180 Bytes
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/27.2 Step by step breakdown of a convolutional neural network (what MobileNetV2 is made of).html
172 Bytes
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/41.1 Dog Vision Prediction Probabilities Array.html
170 Bytes
18. Learn Python Part 2/4.1 Truthy vs Falsey Stackoverflow.html
170 Bytes
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/28.1 [Article] How to choose loss _ activation functions when building a deep learning model.html
169 Bytes
5. Data Science Environment Setup/3.1 Getting your computer ready for machine learning How, what and why you should use Anaconda, Miniconda and Conda (blog post).html
167 Bytes
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/27.3 MobileNetV2 (the model we_re using) architecture explanation by Sik-Ho Tsang.html
163 Bytes
17. Learn Python/5.2 Python 2 vs Python 3.html
161 Bytes
2. Machine Learning 101/7. Are You Getting It Yet.html
160 Bytes
11. Milestone Project 1 Supervised Learning (Classification)/2.2 Structured Data Projects on GitHub.html
155 Bytes
12. Milestone Project 2 Supervised Learning (Time Series Data)/2.3 Structured Data Projects on GitHub.html
155 Bytes
3. Machine Learning and Data Science Framework/3.1 A 6 Step Field Guide for Machine Learning Modelling (blog post).html
147 Bytes
6. Pandas Data Analysis/9.2 Jake VanderPlas_s Data Manipulation with Pandas.html
146 Bytes
12. Milestone Project 2 Supervised Learning (Time Series Data)/9.1 Pandas Categorical Datatype Documentation.html
143 Bytes
5. Data Science Environment Setup/3.2 Getting started with Conda (documentation).html
139 Bytes
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/31.1 Early Stopping Callback (a way to stop your model from training when it stops improving) Documentation.html
136 Bytes
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/30.1 TensorBoard Callback Documentation.html
134 Bytes
9. Scikit-learn Creating Machine Learning Models/14.1 Scikit-Learn machine learning map (how to choose the right machine learning model).html
133 Bytes
6. Pandas Data Analysis/3.2 10-minutes to pandas (from the pandas documentation).html
132 Bytes
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/25.5 MobileNetV2 (the model we_re using) on TensorFlow Hub.html
132 Bytes
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/10.1 Loading TensorFlow 2.0 into a Colab Notebook (if it isn_t the default).html
129 Bytes
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/14.1 Documentation on how many images Google recommends for image problems.html
129 Bytes
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/35.1 TensorFlow documentation for the unbatch() function.html
127 Bytes
13. Data Engineering/7.1 OLTP vs OLAP.html
126 Bytes
7. NumPy/12.1 Matrix Multiplication Explained.html
119 Bytes
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/4.1 Kaggle Dog Breed Identification Competition (the basis of our upcoming project).html
119 Bytes
17. Learn Python/43.1 Dictionary Methods.html
119 Bytes
12. Milestone Project 2 Supervised Learning (Time Series Data)/2.1 Kaggle Bluebook for Bulldozers Competition.html
118 Bytes
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/21.1 Yann LeCun_s (OG of deep learning) Tweet on Batch Sizes.html
118 Bytes
5. Data Science Environment Setup/10.1 Dataquest Jupyter Notebook for Beginners Tutorial.html
117 Bytes
13. Data Engineering/7.2 A Primer on ACID Transactions.html
117 Bytes
17. Learn Python/16.1 Python Keywords.html
117 Bytes
17. Learn Python/35.2 Python Keywords.html
117 Bytes
7. NumPy/8.1 Standard deviation and variance explained.html
116 Bytes
7. NumPy/9.1 Standard deviation and variance explained.html
116 Bytes
7. NumPy/10.1 Standard deviation and variance explained.html
116 Bytes
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/4.3 Introduction to Google Colab example notebook.html
116 Bytes
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/12.2 Introduction to Google Colab example notebook.html
116 Bytes
17. Learn Python/18.1 Exercise Repl.html
116 Bytes
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/6.1 Kaggle Dog Breed Identification Competition Data.html
115 Bytes
17. Learn Python/26.1 String Methods.html
115 Bytes
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/11.1 Google Colab example GPU usage.html
114 Bytes
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/12.1 Google Colab Example of GPU speed up versus CPU.html
114 Bytes
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/18.2 Documentation for loading images in TensorFlow.html
114 Bytes
17. Learn Python/46.1 Tuple Methods.html
114 Bytes
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/4.4 Google Colab IO example (how to get data in and out of your Colab notebook).html
113 Bytes
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/6.2 Google Colab IO example (how to get data in and out of your Colab notebook).html
113 Bytes
17. Learn Python/34.1 List Methods.html
113 Bytes
17. Learn Python/48.2 Sets Methods.html
112 Bytes
5. Data Science Environment Setup/10.2 Jupyter Notebook documentation.html
111 Bytes
17. Learn Python/15.1 Base Numbers.html
111 Bytes
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/5.1 Google Colab FAQ (things you should know about Google Colab).html
110 Bytes
17. Learn Python/26.2 Built in Functions.html
109 Bytes
6. Pandas Data Analysis/13.1 Course notebooks - Github.html
108 Bytes
9. Scikit-learn Creating Machine Learning Models/2.3 Scikit-Learn Documentation.html
108 Bytes
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/17.1 Blog post by Rachel Thomas (of fast.ai) on how and why you should create a validation set.html
108 Bytes
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/26.1 Keras in TensorFlow Overview Documentation.html
108 Bytes
18. Learn Python Part 2/30.1 Solution Repl.html
108 Bytes
5. Data Science Environment Setup/5.1 Miniconda download documentation.html
107 Bytes
5. Data Science Environment Setup/7.1 Miniconda download documentation.html
107 Bytes
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/27.1 The Softmax Function (activation function we use in our model).html
107 Bytes
6. Pandas Data Analysis/3.1 Pandas Documentation.html
106 Bytes
17. Learn Python/13.1 Exercise Repl.html
106 Bytes
17. Learn Python/14.1 Exercise Repl.html
106 Bytes
17. Learn Python/29.1 Python Comments Best Practices.html
106 Bytes
17. Learn Python/5.1 The Story of Python.html
104 Bytes
17. Learn Python/10.1 Floating point numbers.html
104 Bytes
17. Learn Python/23.1 Exercise Repl.html
104 Bytes
8. Matplotlib + Seaborn Plotting and Data Visualization/2.1 Matplotlib Documentation.html
103 Bytes
18. Learn Python Part 2/20.1 Solution Repl.html
102 Bytes
18. Learn Python Part 2/43.1 Solution Repl.html
102 Bytes
2. Machine Learning 101/3.1 Teachable Machine.html
101 Bytes
17. Learn Python/24.1 Exercise Repl.html
101 Bytes
18. Learn Python Part 2/43.2 Exercise Repl.html
100 Bytes
18. Learn Python Part 2/18.1 Solution Repl.html
99 Bytes
18. Learn Python Part 2/18.2 Exercise Repl.html
99 Bytes
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/18.1 TensorFlow guidelines for loading all kinds of data (turning your data into Tensors).html
98 Bytes
17. Learn Python/44.1 Exercise Repl.html
97 Bytes
6. Pandas Data Analysis/13.2 Google Colab.html
95 Bytes
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/4.2 Google Colab (our workspace for the upcoming project).html
95 Bytes
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/5.2 Google Colab (our workspace for the upcoming project).html
95 Bytes
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/25.1 Andrei Karpathy_s talk on AI at Tesla.html
95 Bytes
18. Learn Python Part 2/34.1 Solution Repl.html
95 Bytes
17. Learn Python/35.1 Exercise Repl.html
94 Bytes
17. Learn Python/37.1 Exercise Repl.html
94 Bytes
5. Data Science Environment Setup/3.3 Conda documentation.html
93 Bytes
17. Learn Python/33.1 Exercise Repl.html
93 Bytes
13. Data Engineering/2.1 Kaggle.html
92 Bytes
17. Learn Python/32.1 Exercise Repl.html
92 Bytes
18. Learn Python Part 2/12.1 Solution Repl.html
92 Bytes
17. Learn Python/48.1 Exercise Repl.html
91 Bytes
2. Machine Learning 101/5.1 Machine Learning Playground.html
88 Bytes
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/25.3 Papers with Code (a great resource for some of the best machine learning papers with code examples).html
88 Bytes
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/25.2 PyTorch Hub (PyTorch version of TensorFlow Hub).html
85 Bytes
7. NumPy/2.1 NumPy Documentation.html
83 Bytes
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/23.1 TensorFlow Hub (resource for pre-trained deep learning models and more).html
79 Bytes
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/25.4 TensorFlow Hub (resource for pre-trained deep learning models and more).html
79 Bytes
1. Introduction/Tutnetflix.com - Telegram @FTUplusrip.txt
37 Bytes
2. Machine Learning 101/Tutnetflix.com - Telegram @FTUplusrip.txt
37 Bytes
3. Machine Learning and Data Science Framework/Tutnetflix.com - Telegram @FTUplusrip.txt
37 Bytes
4. The 2 Paths/Tutnetflix.com - Telegram @FTUplusrip.txt
37 Bytes
5. Data Science Environment Setup/Tutnetflix.com - Telegram @FTUplusrip.txt
37 Bytes
6. Pandas Data Analysis/Tutnetflix.com - Telegram @FTUplusrip.txt
37 Bytes
7. NumPy/Tutnetflix.com - Telegram @FTUplusrip.txt
37 Bytes
8. Matplotlib + Seaborn Plotting and Data Visualization/Tutnetflix.com - Telegram @FTUplusrip.txt
37 Bytes
9. Scikit-learn Creating Machine Learning Models/Tutnetflix.com - Telegram @FTUplusrip.txt
37 Bytes
10. Supervised Learning Classification + Regression/Tutnetflix.com - Telegram @FTUplusrip.txt
37 Bytes
11. Milestone Project 1 Supervised Learning (Classification)/Tutnetflix.com - Telegram @FTUplusrip.txt
37 Bytes
12. Milestone Project 2 Supervised Learning (Time Series Data)/Tutnetflix.com - Telegram @FTUplusrip.txt
37 Bytes
13. Data Engineering/Tutnetflix.com - Telegram @FTUplusrip.txt
37 Bytes
14. Neural Networks Deep Learning, Transfer Learning and TensorFlow 2/Tutnetflix.com - Telegram @FTUplusrip.txt
37 Bytes
15. UPLOADED BY FEB 14th Storytelling + Communication How To Present Your Projects/Tutnetflix.com - Telegram @FTUplusrip.txt
37 Bytes
16. Career Advice + Extra Bits/Tutnetflix.com - Telegram @FTUplusrip.txt
37 Bytes
17. Learn Python/Tutnetflix.com - Telegram @FTUplusrip.txt
37 Bytes
18. Learn Python Part 2/Tutnetflix.com - Telegram @FTUplusrip.txt
37 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>