搜索
[CourseClub.NET] Coursera - Machine Learning
磁力链接/BT种子名称
[CourseClub.NET] Coursera - Machine Learning
磁力链接/BT种子简介
种子哈希:
eb46b659343d7111e04ff448748e9542ba50c169
文件大小:
1.82G
已经下载:
2094
次
下载速度:
极快
收录时间:
2018-10-19
最近下载:
2024-12-10
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:EB46B659343D7111E04FF448748E9542BA50C169
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
最近搜索
子宫颈
fc2ppv-2824930
t-28551
户外+勾搭
人体艺术摄影师
原始版
중1언니 자위 도와주는 동생
定制
背迪奥开保时捷,跟男友做爱疯狂欲望强烈
勇音
adn-263
拔作
19歳種付け孕ませ中出
open matte 2024
604
riley reid 2014 06 02
禁止吸烟电影
微博网红笨蛋
the lord of the rings rings the rings rings of pow
picture claire
早濑麻衣合集
이시영
淫術の館 the animation
胖子传媒工作室 少妇 烧烤
韩国偷拍
モヴモヴ
结婚前约
hairy+mom
天梯
咩宝
文件列表
001.Welcome/001. Welcome to Machine Learning!.mp4
9.6 MB
001.Welcome/001. Welcome to Machine Learning!.srt
2.4 kB
002.Introduction/002. Welcome.mp4
19.2 MB
002.Introduction/002. Welcome.srt
9.7 kB
002.Introduction/003. What is Machine Learning.mp4
12.0 MB
002.Introduction/003. What is Machine Learning.srt
11.3 kB
002.Introduction/004. Supervised Learning.mp4
17.5 MB
002.Introduction/004. Supervised Learning.srt
19.3 kB
002.Introduction/005. Unsupervised Learning.mp4
24.5 MB
002.Introduction/005. Unsupervised Learning.srt
28.1 kB
003.Model and Cost Function/006. Model Representation.mp4
12.0 MB
003.Model and Cost Function/006. Model Representation.srt
9.8 kB
003.Model and Cost Function/007. Cost Function.mp4
12.1 MB
003.Model and Cost Function/007. Cost Function.srt
10.4 kB
003.Model and Cost Function/008. Cost Function - Intuition I.mp4
16.3 MB
003.Model and Cost Function/008. Cost Function - Intuition I.srt
12.0 kB
003.Model and Cost Function/009. Cost Function - Intuition II.mp4
17.8 MB
003.Model and Cost Function/009. Cost Function - Intuition II.srt
11.0 kB
004.Parameter Learning/010. Gradient Descent.mp4
19.6 MB
004.Parameter Learning/010. Gradient Descent.srt
16.7 kB
004.Parameter Learning/011. Gradient Descent Intuition.mp4
17.4 MB
004.Parameter Learning/011. Gradient Descent Intuition.srt
16.3 kB
004.Parameter Learning/012. Gradient Descent For Linear Regression.mp4
17.2 MB
004.Parameter Learning/012. Gradient Descent For Linear Regression.srt
13.7 kB
005.Linear Algebra Review/013. Matrices and Vectors.mp4
12.5 MB
005.Linear Algebra Review/013. Matrices and Vectors.srt
15.3 kB
005.Linear Algebra Review/014. Addition and Scalar Multiplication.mp4
9.7 MB
005.Linear Algebra Review/014. Addition and Scalar Multiplication.srt
11.5 kB
005.Linear Algebra Review/015. Matrix Vector Multiplication.mp4
19.8 MB
005.Linear Algebra Review/015. Matrix Vector Multiplication.srt
23.4 kB
005.Linear Algebra Review/016. Matrix Matrix Multiplication.mp4
17.1 MB
005.Linear Algebra Review/016. Matrix Matrix Multiplication.srt
14.0 kB
005.Linear Algebra Review/017. Matrix Multiplication Properties.mp4
12.7 MB
005.Linear Algebra Review/017. Matrix Multiplication Properties.srt
11.8 kB
005.Linear Algebra Review/018. Inverse and Transpose.mp4
17.8 MB
005.Linear Algebra Review/018. Inverse and Transpose.srt
20.3 kB
006.Multivariate Linear Regression/019. Multiple Features.mp4
12.1 MB
006.Multivariate Linear Regression/019. Multiple Features.srt
14.0 kB
006.Multivariate Linear Regression/020. Gradient Descent for Multiple Variables.mp4
8.0 MB
006.Multivariate Linear Regression/020. Gradient Descent for Multiple Variables.srt
6.5 kB
006.Multivariate Linear Regression/021. Gradient Descent in Practice I - Feature Scaling.mp4
13.6 MB
006.Multivariate Linear Regression/021. Gradient Descent in Practice I - Feature Scaling.srt
16.4 kB
006.Multivariate Linear Regression/022. Gradient Descent in Practice II - Learning Rate.mp4
13.2 MB
006.Multivariate Linear Regression/022. Gradient Descent in Practice II - Learning Rate.srt
12.8 kB
006.Multivariate Linear Regression/023. Features and Polynomial Regression.mp4
12.1 MB
006.Multivariate Linear Regression/023. Features and Polynomial Regression.srt
15.3 kB
007.Computing Parameters Analytically/024. Normal Equation.mp4
24.8 MB
007.Computing Parameters Analytically/024. Normal Equation.srt
30.2 kB
007.Computing Parameters Analytically/025. Normal Equation Noninvertibility.mp4
9.2 MB
007.Computing Parameters Analytically/025. Normal Equation Noninvertibility.srt
8.9 kB
008.Submitting Programming Assignments/026. Working on and Submitting Programming Assignments.mp4
9.4 MB
008.Submitting Programming Assignments/026. Working on and Submitting Programming Assignments.srt
4.4 kB
009.Octave Matlab Tutorial/027. Basic Operations.mp4
26.1 MB
009.Octave Matlab Tutorial/027. Basic Operations.srt
24.5 kB
009.Octave Matlab Tutorial/028. Moving Data Around.mp4
31.0 MB
009.Octave Matlab Tutorial/028. Moving Data Around.srt
27.6 kB
009.Octave Matlab Tutorial/029. Computing on Data.mp4
20.8 MB
009.Octave Matlab Tutorial/029. Computing on Data.srt
17.1 kB
009.Octave Matlab Tutorial/030. Plotting Data.mp4
21.1 MB
009.Octave Matlab Tutorial/030. Plotting Data.srt
16.7 kB
009.Octave Matlab Tutorial/031. Control Statements for, while, if statement.mp4
25.0 MB
009.Octave Matlab Tutorial/031. Control Statements for, while, if statement.srt
22.6 kB
009.Octave Matlab Tutorial/032. Vectorization.mp4
23.3 MB
009.Octave Matlab Tutorial/032. Vectorization.srt
17.7 kB
010.Classification and Representation/033. Classification.mp4
11.9 MB
010.Classification and Representation/033. Classification.srt
11.7 kB
010.Classification and Representation/034. Hypothesis Representation.mp4
11.7 MB
010.Classification and Representation/034. Hypothesis Representation.srt
9.8 kB
010.Classification and Representation/035. Decision Boundary.mp4
23.3 MB
010.Classification and Representation/035. Decision Boundary.srt
18.3 kB
011.Logistic Regression Model/036. Cost Function.mp4
16.6 MB
011.Logistic Regression Model/036. Cost Function.srt
13.7 kB
011.Logistic Regression Model/037. Simplified Cost Function and Gradient Descent.mp4
17.0 MB
011.Logistic Regression Model/037. Simplified Cost Function and Gradient Descent.srt
14.3 kB
011.Logistic Regression Model/038. Advanced Optimization.mp4
28.1 MB
011.Logistic Regression Model/038. Advanced Optimization.srt
26.9 kB
012.Multiclass Classification/039. Multiclass Classification One-vs-all.mp4
9.5 MB
012.Multiclass Classification/039. Multiclass Classification One-vs-all.srt
9.5 kB
013.Solving the Problem of Overfitting/040. The Problem of Overfitting.mp4
15.7 MB
013.Solving the Problem of Overfitting/040. The Problem of Overfitting.srt
18.6 kB
013.Solving the Problem of Overfitting/041. Cost Function.mp4
16.3 MB
013.Solving the Problem of Overfitting/041. Cost Function.srt
19.1 kB
013.Solving the Problem of Overfitting/042. Regularized Linear Regression.mp4
16.4 MB
013.Solving the Problem of Overfitting/042. Regularized Linear Regression.srt
14.5 kB
013.Solving the Problem of Overfitting/043. Regularized Logistic Regression.mp4
17.6 MB
013.Solving the Problem of Overfitting/043. Regularized Logistic Regression.srt
16.6 kB
014.Motivations/044. Non-linear Hypotheses.mp4
15.5 MB
014.Motivations/044. Non-linear Hypotheses.srt
18.4 kB
014.Motivations/045. Neurons and the Brain.mp4
15.3 MB
014.Motivations/045. Neurons and the Brain.srt
15.8 kB
015.Neural Networks/046. Model Representation I.mp4
18.9 MB
015.Neural Networks/046. Model Representation I.srt
14.8 kB
015.Neural Networks/047. Model Representation II.mp4
19.3 MB
015.Neural Networks/047. Model Representation II.srt
21.6 kB
016.Applications/048. Examples and Intuitions I.mp4
10.6 MB
016.Applications/048. Examples and Intuitions I.srt
8.7 kB
016.Applications/049. Examples and Intuitions II.mp4
21.9 MB
016.Applications/049. Examples and Intuitions II.srt
11.7 kB
016.Applications/050. Multiclass Classification.mp4
7.3 MB
016.Applications/050. Multiclass Classification.srt
7.2 kB
017.Cost Function and Backpropagation/051. Cost Function.mp4
10.7 MB
017.Cost Function and Backpropagation/051. Cost Function.srt
9.1 kB
017.Cost Function and Backpropagation/052. Backpropagation Algorithm.mp4
20.0 MB
017.Cost Function and Backpropagation/052. Backpropagation Algorithm.srt
22.0 kB
017.Cost Function and Backpropagation/053. Backpropagation Intuition.mp4
23.3 MB
017.Cost Function and Backpropagation/053. Backpropagation Intuition.srt
18.1 kB
018.Backpropagation in Practice/054. Implementation Note Unrolling Parameters.mp4
13.5 MB
018.Backpropagation in Practice/054. Implementation Note Unrolling Parameters.srt
14.4 kB
018.Backpropagation in Practice/055. Gradient Checking.mp4
19.2 MB
018.Backpropagation in Practice/055. Gradient Checking.srt
17.4 kB
018.Backpropagation in Practice/056. Random Initialization.mp4
10.3 MB
018.Backpropagation in Practice/056. Random Initialization.srt
10.6 kB
018.Backpropagation in Practice/057. Putting It Together.mp4
24.7 MB
018.Backpropagation in Practice/057. Putting It Together.srt
26.8 kB
019.Application of Neural Networks/058. Autonomous Driving.mp4
29.7 MB
019.Application of Neural Networks/058. Autonomous Driving.srt
7.0 kB
020.Evaluating a Learning Algorithm/059. Deciding What to Try Next.mp4
9.8 MB
020.Evaluating a Learning Algorithm/059. Deciding What to Try Next.srt
12.0 kB
020.Evaluating a Learning Algorithm/060. Evaluating a Hypothesis.mp4
11.6 MB
020.Evaluating a Learning Algorithm/060. Evaluating a Hypothesis.srt
11.2 kB
020.Evaluating a Learning Algorithm/061. Model Selection and Train Validation Test Sets.mp4
20.0 MB
020.Evaluating a Learning Algorithm/061. Model Selection and Train Validation Test Sets.srt
17.3 kB
021.Bias vs. Variance/062. Diagnosing Bias vs. Variance.mp4
12.8 MB
021.Bias vs. Variance/062. Diagnosing Bias vs. Variance.srt
11.5 kB
021.Bias vs. Variance/063. Regularization and Bias Variance.mp4
17.2 MB
021.Bias vs. Variance/063. Regularization and Bias Variance.srt
15.3 kB
021.Bias vs. Variance/064. Learning Curves.mp4
17.2 MB
021.Bias vs. Variance/064. Learning Curves.srt
23.9 kB
021.Bias vs. Variance/065. Deciding What to Do Next Revisited.mp4
12.0 MB
021.Bias vs. Variance/065. Deciding What to Do Next Revisited.srt
13.6 kB
022.Building a Spam Classifier/066. Prioritizing What to Work On.mp4
15.8 MB
022.Building a Spam Classifier/066. Prioritizing What to Work On.srt
19.0 kB
022.Building a Spam Classifier/067. Error Analysis.mp4
22.3 MB
022.Building a Spam Classifier/067. Error Analysis.srt
19.8 kB
023.Handling Skewed Data/068. Error Metrics for Skewed Classes.mp4
18.8 MB
023.Handling Skewed Data/068. Error Metrics for Skewed Classes.srt
21.3 kB
023.Handling Skewed Data/069. Trading Off Precision and Recall.mp4
22.3 MB
023.Handling Skewed Data/069. Trading Off Precision and Recall.srt
20.1 kB
024.Using Large Data Sets/070. Data For Machine Learning.mp4
18.2 MB
024.Using Large Data Sets/070. Data For Machine Learning.srt
22.4 kB
025.Large Margin Classification/071. Optimization Objective.mp4
23.0 MB
025.Large Margin Classification/071. Optimization Objective.srt
20.3 kB
025.Large Margin Classification/072. Large Margin Intuition.mp4
15.9 MB
025.Large Margin Classification/072. Large Margin Intuition.srt
20.6 kB
025.Large Margin Classification/073. Mathematics Behind Large Margin Classification.mp4
29.9 MB
025.Large Margin Classification/073. Mathematics Behind Large Margin Classification.srt
34.6 kB
026.Kernels/074. Kernels I.mp4
23.9 MB
026.Kernels/074. Kernels I.srt
28.0 kB
026.Kernels/075. Kernels II.mp4
23.7 MB
026.Kernels/075. Kernels II.srt
29.6 kB
027.SVMs in Practice/076. Using An SVM.mp4
33.5 MB
027.SVMs in Practice/076. Using An SVM.srt
42.1 kB
028.Clustering/077. Unsupervised Learning Introduction.mp4
5.4 MB
028.Clustering/077. Unsupervised Learning Introduction.srt
5.1 kB
028.Clustering/078. K-Means Algorithm.mp4
18.5 MB
028.Clustering/078. K-Means Algorithm.srt
25.3 kB
028.Clustering/079. Optimization Objective.mp4
11.4 MB
028.Clustering/079. Optimization Objective.srt
9.5 kB
028.Clustering/080. Random Initialization.mp4
11.7 MB
028.Clustering/080. Random Initialization.srt
15.7 kB
028.Clustering/081. Choosing the Number of Clusters.mp4
12.8 MB
028.Clustering/081. Choosing the Number of Clusters.srt
17.3 kB
029.Motivation/082. Motivation I Data Compression.mp4
22.5 MB
029.Motivation/082. Motivation I Data Compression.srt
19.4 kB
029.Motivation/083. Motivation II Visualization.mp4
8.7 MB
029.Motivation/083. Motivation II Visualization.srt
9.8 kB
030.Principal Component Analysis/084. Principal Component Analysis Problem Formulation.mp4
14.7 MB
030.Principal Component Analysis/084. Principal Component Analysis Problem Formulation.srt
13.4 kB
030.Principal Component Analysis/085. Principal Component Analysis Algorithm.mp4
25.5 MB
030.Principal Component Analysis/085. Principal Component Analysis Algorithm.srt
27.6 kB
031.Applying PCA/086. Reconstruction from Compressed Representation.mp4
7.5 MB
031.Applying PCA/086. Reconstruction from Compressed Representation.srt
5.2 kB
031.Applying PCA/087. Choosing the Number of Principal Components.mp4
16.4 MB
031.Applying PCA/087. Choosing the Number of Principal Components.srt
20.4 kB
031.Applying PCA/088. Advice for Applying PCA.mp4
20.7 MB
031.Applying PCA/088. Advice for Applying PCA.srt
25.4 kB
032.Density Estimation/089. Problem Motivation.mp4
11.1 MB
032.Density Estimation/089. Problem Motivation.srt
15.5 kB
032.Density Estimation/090. Gaussian Distribution.mp4
15.9 MB
032.Density Estimation/090. Gaussian Distribution.srt
14.9 kB
032.Density Estimation/091. Algorithm.mp4
19.9 MB
032.Density Estimation/091. Algorithm.srt
22.7 kB
033.Building an Anomaly Detection System/092. Developing and Evaluating an Anomaly Detection System.mp4
21.5 MB
033.Building an Anomaly Detection System/092. Developing and Evaluating an Anomaly Detection System.srt
26.4 kB
033.Building an Anomaly Detection System/093. Anomaly Detection vs. Supervised Learning.mp4
13.8 MB
033.Building an Anomaly Detection System/093. Anomaly Detection vs. Supervised Learning.srt
11.5 kB
033.Building an Anomaly Detection System/094. Choosing What Features to Use.mp4
20.0 MB
033.Building an Anomaly Detection System/094. Choosing What Features to Use.srt
24.3 kB
034.Multivariate Gaussian Distribution (Optional)/095. Multivariate Gaussian Distribution.mp4
22.9 MB
034.Multivariate Gaussian Distribution (Optional)/095. Multivariate Gaussian Distribution.srt
26.5 kB
034.Multivariate Gaussian Distribution (Optional)/096. Anomaly Detection using the Multivariate Gaussian Distribution.mp4
23.5 MB
034.Multivariate Gaussian Distribution (Optional)/096. Anomaly Detection using the Multivariate Gaussian Distribution.srt
25.4 kB
035.Predicting Movie Ratings/097. Problem Formulation.mp4
17.2 MB
035.Predicting Movie Ratings/097. Problem Formulation.srt
16.2 kB
035.Predicting Movie Ratings/098. Content Based Recommendations.mp4
24.3 MB
035.Predicting Movie Ratings/098. Content Based Recommendations.srt
20.0 kB
036.Collaborative Filtering/099. Collaborative Filtering.mp4
16.3 MB
036.Collaborative Filtering/099. Collaborative Filtering.srt
19.5 kB
036.Collaborative Filtering/100. Collaborative Filtering Algorithm.mp4
15.4 MB
036.Collaborative Filtering/100. Collaborative Filtering Algorithm.srt
15.9 kB
037.Low Rank Matrix Factorization/101. Vectorization Low Rank Matrix Factorization.mp4
13.4 MB
037.Low Rank Matrix Factorization/101. Vectorization Low Rank Matrix Factorization.srt
15.7 kB
037.Low Rank Matrix Factorization/102. Implementational Detail Mean Normalization.mp4
13.5 MB
037.Low Rank Matrix Factorization/102. Implementational Detail Mean Normalization.srt
16.0 kB
038.Gradient Descent with Large Datasets/103. Learning With Large Datasets.mp4
9.0 MB
038.Gradient Descent with Large Datasets/103. Learning With Large Datasets.srt
7.8 kB
038.Gradient Descent with Large Datasets/104. Stochastic Gradient Descent.mp4
22.0 MB
038.Gradient Descent with Large Datasets/104. Stochastic Gradient Descent.srt
18.0 kB
038.Gradient Descent with Large Datasets/105. Mini-Batch Gradient Descent.mp4
10.2 MB
038.Gradient Descent with Large Datasets/105. Mini-Batch Gradient Descent.srt
7.7 kB
038.Gradient Descent with Large Datasets/106. Stochastic Gradient Descent Convergence.mp4
19.0 MB
038.Gradient Descent with Large Datasets/106. Stochastic Gradient Descent Convergence.srt
16.0 kB
039.Advanced Topics/107. Online Learning.mp4
21.5 MB
039.Advanced Topics/107. Online Learning.srt
26.7 kB
039.Advanced Topics/108. Map Reduce and Data Parallelism.mp4
22.3 MB
039.Advanced Topics/108. Map Reduce and Data Parallelism.srt
27.9 kB
040.Photo OCR/109. Problem Description and Pipeline.mp4
10.9 MB
040.Photo OCR/109. Problem Description and Pipeline.srt
14.2 kB
040.Photo OCR/110. Sliding Windows.mp4
23.0 MB
040.Photo OCR/110. Sliding Windows.srt
30.4 kB
040.Photo OCR/111. Getting Lots of Data and Artificial Data.mp4
26.5 MB
040.Photo OCR/111. Getting Lots of Data and Artificial Data.srt
34.0 kB
040.Photo OCR/112. Ceiling Analysis What Part of the Pipeline to Work on Next.mp4
23.0 MB
040.Photo OCR/112. Ceiling Analysis What Part of the Pipeline to Work on Next.srt
22.3 kB
041.Conclusion/113. Summary and Thank You.mp4
9.5 MB
041.Conclusion/113. Summary and Thank You.srt
7.9 kB
[CourseClub.NET].url
123 Bytes
[FCS Forum].url
133 Bytes
[FreeCourseSite.com].url
127 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>