搜索
[UdemyCourseDownloader] Artificial Intelligence Masterclass
磁力链接/BT种子名称
[UdemyCourseDownloader] Artificial Intelligence Masterclass
磁力链接/BT种子简介
种子哈希:
ec8f5ab8537179a4fd206fc0d96f66f4aaf43d34
文件大小:
6.12G
已经下载:
1119
次
下载速度:
极快
收录时间:
2021-05-12
最近下载:
2024-11-23
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:EC8F5AB8537179A4FD206FC0D96F66F4AAF43D34
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
最近搜索
alien 2160p remux
vocal
ppt-100
洛丽塔户外
obelix
1pondo_071715_116
灌肠
鄂州 家庭乱伦 鄂州一家人
电影
2745133953
沈樵新来的技师给客人提供全套服务
无毛 吞精
小炮友内射
qualcuno dietro di me
小西樱子
animo_dog love
kri-055
神木
ピンクパイナップルキミはやさし寝取られる
jyma+007
美魔女
n0787
背舞
珊珊珊直播
漫天堂
cp
无套双飞姐妹花
janis joplin
母女穿上丝
a most wanted man
文件列表
12. The Final Run/1. The Whole Implementation.mp4
286.9 MB
1. Introduction/2. Introduction + Course Structure + Demo.mp4
204.8 MB
3. Step 2 - Convolutional Neural Network/8. Step 4 - Full Connection.mp4
203.7 MB
7. Step 6 - Recurrent Neural Network/6. LSTM Practical Intuition.mp4
196.5 MB
6. Step 5 - Implementing the CNN-VAE/7. Implementing the Training operations.mp4
196.1 MB
9. Step 8 - Implementing the MDN-RNN/9. Implementing the Training operations (Part 1).mp4
186.1 MB
9. Step 8 - Implementing the MDN-RNN/10. Implementing the Training operations (Part 2).mp4
170.8 MB
12. The Final Run/3. Installing the required packages.mp4
166.4 MB
10. Step 9 - Reinforcement Learning/3. A Pseudo Implementation of Reinforcement Learning for the Full World Model.mp4
161.7 MB
11. Step 10 - Deep NeuroEvolution/4. Genetic Algorithms.mp4
156.4 MB
9. Step 8 - Implementing the MDN-RNN/7. Building the MDN - Getting the Input, Hidden Layer and Output of the MDN.mp4
154.1 MB
11. Step 10 - Deep NeuroEvolution/5. Covariance-Matrix Adaptation Evolution Strategy (CMA-ES).mp4
151.1 MB
11. Step 10 - Deep NeuroEvolution/6. Parameter-Exploring Policy Gradients (PEPG).mp4
150.9 MB
3. Step 2 - Convolutional Neural Network/6. Step 2 - Pooling.mp4
147.0 MB
7. Step 6 - Recurrent Neural Network/5. LSTMs.mp4
143.2 MB
1. Introduction/4. Your Three Best Resources.mp4
141.0 MB
6. Step 5 - Implementing the CNN-VAE/4. Building the Encoder part of the VAE.mp4
140.1 MB
9. Step 8 - Implementing the MDN-RNN/5. Building the RNN - Setting up the Input, Target, and Output of the RNN.mp4
137.5 MB
9. Step 8 - Implementing the MDN-RNN/4. Building the RNN - Creating an LSTM cell with Dropout.mp4
133.3 MB
9. Step 8 - Implementing the MDN-RNN/6. Building the RNN - Getting the Deterministic Output of the RNN.mp4
131.6 MB
12. The Final Run/4. The Final Race Human Intelligence vs. Artificial Intelligence.mp4
131.2 MB
7. Step 6 - Recurrent Neural Network/3. What are Recurrent Neural Networks.mp4
127.0 MB
11. Step 10 - Deep NeuroEvolution/3. Evolution Strategies.mp4
125.2 MB
3. Step 2 - Convolutional Neural Network/10. Softmax & Cross-Entropy.mp4
123.7 MB
2. Step 1 - Artificial Neural Network/6. How do Neural Networks learn.mp4
117.6 MB
7. Step 6 - Recurrent Neural Network/4. The Vanishing Gradient Problem.mp4
116.6 MB
9. Step 8 - Implementing the MDN-RNN/8. Building the MDN - Getting the MDN parameters.mp4
114.8 MB
11. Step 10 - Deep NeuroEvolution/2. Deep NeuroEvolution.mp4
114.1 MB
11. Step 10 - Deep NeuroEvolution/7. OpenAI Evolution Strategy.mp4
113.3 MB
3. Step 2 - Convolutional Neural Network/3. What are Convolutional Neural Networks.mp4
113.2 MB
9. Step 8 - Implementing the MDN-RNN/2. Initializing all the parameters and variables of the MDN-RNN class.mp4
104.3 MB
2. Step 1 - Artificial Neural Network/3. The Neuron.mp4
103.6 MB
3. Step 2 - Convolutional Neural Network/4. Step 1 - The Convolution Operation.mp4
102.7 MB
4. Step 3 - AutoEncoder/3. What are AutoEncoders.mp4
99.2 MB
6. Step 5 - Implementing the CNN-VAE/6. Building the Decoder part of the VAE.mp4
97.4 MB
8. Step 7 - Mixture Density Network/2. Introduction to the MDN-RNN.mp4
87.4 MB
2. Step 1 - Artificial Neural Network/5. How do Neural Networks work.mp4
85.9 MB
6. Step 5 - Implementing the CNN-VAE/5. Building the V part of the VAE.mp4
84.2 MB
9. Step 8 - Implementing the MDN-RNN/3. Building the RNN - Gathering the parameters.mp4
80.3 MB
5. Step 4 - Variational AutoEncoder/2. Introduction to the VAE.mp4
76.3 MB
6. Step 5 - Implementing the CNN-VAE/3. Initializing all the parameters and variables of the CNN-VAE class.mp4
75.2 MB
10. Step 9 - Reinforcement Learning/2. What is Reinforcement Learning.mp4
71.9 MB
2. Step 1 - Artificial Neural Network/8. Stochastic Gradient Descent.mp4
70.6 MB
8. Step 7 - Mixture Density Network/3. Mixture Density Networks.mp4
68.5 MB
2. Step 1 - Artificial Neural Network/7. Gradient Descent.mp4
63.6 MB
6. Step 5 - Implementing the CNN-VAE/2. Introduction to Step 5.mp4
61.7 MB
4. Step 3 - AutoEncoder/7. Sparse AutoEncoders.mp4
60.2 MB
3. Step 2 - Convolutional Neural Network/5. Step 1 Bis - The ReLU Layer.mp4
56.0 MB
4. Step 3 - AutoEncoder/5. Training an AutoEncoder.mp4
52.7 MB
2. Step 1 - Artificial Neural Network/4. The Activation Function.mp4
47.6 MB
8. Step 7 - Mixture Density Network/4. VAE + MDN-RNN Visualization.mp4
47.5 MB
2. Step 1 - Artificial Neural Network/9. Backpropagation.mp4
45.2 MB
3. Step 2 - Convolutional Neural Network/9. Summary.mp4
31.8 MB
12. The Final Run/5. THANK YOU bonus video.mp4
30.6 MB
4. Step 3 - AutoEncoder/6. Overcomplete Hidden Layers.mp4
29.4 MB
5. Step 4 - Variational AutoEncoder/4. Reparameterization Trick.mp4
27.7 MB
5. Step 4 - Variational AutoEncoder/3. Variational AutoEncoders.mp4
27.6 MB
4. Step 3 - AutoEncoder/8. Denoising AutoEncoders.mp4
25.3 MB
1. Introduction/1. Updates on Udemy Reviews.mp4
23.1 MB
3. Step 2 - Convolutional Neural Network/2. Plan of Attack.mp4
22.9 MB
4. Step 3 - AutoEncoder/9. Contractive AutoEncoders.mp4
21.5 MB
7. Step 6 - Recurrent Neural Network/7. LSTM Variations.mp4
21.1 MB
12. The Final Run/2.1 AI Masterclass.zip.zip
17.9 MB
4. Step 3 - AutoEncoder/10. Stacked AutoEncoders.mp4
17.2 MB
2. Step 1 - Artificial Neural Network/2. Plan of Attack.mp4
16.6 MB
4. Step 3 - AutoEncoder/2. Plan of Attack.mp4
16.6 MB
4. Step 3 - AutoEncoder/11. Deep AutoEncoders.mp4
12.5 MB
7. Step 6 - Recurrent Neural Network/2. Plan of Attack.mp4
11.0 MB
4. Step 3 - AutoEncoder/4. A Note on Biases.mp4
9.0 MB
3. Step 2 - Convolutional Neural Network/7. Step 3 - Flattening.mp4
8.3 MB
3. Step 2 - Convolutional Neural Network/8. Step 4 - Full Connection.srt
29.2 kB
12. The Final Run/1. The Whole Implementation.srt
29.0 kB
7. Step 6 - Recurrent Neural Network/5. LSTMs.srt
28.9 kB
10. Step 9 - Reinforcement Learning/3. A Pseudo Implementation of Reinforcement Learning for the Full World Model.srt
27.6 kB
6. Step 5 - Implementing the CNN-VAE/4. Building the Encoder part of the VAE.srt
26.8 kB
3. Step 2 - Convolutional Neural Network/10. Softmax & Cross-Entropy.srt
25.9 kB
3. Step 2 - Convolutional Neural Network/8. Step 4 - Full Connection.vtt
25.6 kB
12. The Final Run/1. The Whole Implementation.vtt
25.5 kB
2. Step 1 - Artificial Neural Network/3. The Neuron.srt
25.2 kB
7. Step 6 - Recurrent Neural Network/5. LSTMs.vtt
25.2 kB
7. Step 6 - Recurrent Neural Network/3. What are Recurrent Neural Networks.srt
24.4 kB
10. Step 9 - Reinforcement Learning/3. A Pseudo Implementation of Reinforcement Learning for the Full World Model.vtt
24.1 kB
6. Step 5 - Implementing the CNN-VAE/7. Implementing the Training operations.srt
24.0 kB
3. Step 2 - Convolutional Neural Network/4. Step 1 - The Convolution Operation.srt
23.8 kB
6. Step 5 - Implementing the CNN-VAE/4. Building the Encoder part of the VAE.vtt
23.3 kB
3. Step 2 - Convolutional Neural Network/3. What are Convolutional Neural Networks.srt
22.7 kB
3. Step 2 - Convolutional Neural Network/10. Softmax & Cross-Entropy.vtt
22.7 kB
1. Introduction/2. Introduction + Course Structure + Demo.srt
22.5 kB
9. Step 8 - Implementing the MDN-RNN/4. Building the RNN - Creating an LSTM cell with Dropout.srt
22.4 kB
2. Step 1 - Artificial Neural Network/3. The Neuron.vtt
22.1 kB
3. Step 2 - Convolutional Neural Network/6. Step 2 - Pooling.srt
21.5 kB
7. Step 6 - Recurrent Neural Network/6. LSTM Practical Intuition.srt
21.5 kB
7. Step 6 - Recurrent Neural Network/3. What are Recurrent Neural Networks.vtt
21.3 kB
7. Step 6 - Recurrent Neural Network/4. The Vanishing Gradient Problem.srt
21.3 kB
9. Step 8 - Implementing the MDN-RNN/9. Implementing the Training operations (Part 1).srt
20.9 kB
3. Step 2 - Convolutional Neural Network/4. Step 1 - The Convolution Operation.vtt
20.9 kB
6. Step 5 - Implementing the CNN-VAE/7. Implementing the Training operations.vtt
20.9 kB
9. Step 8 - Implementing the MDN-RNN/5. Building the RNN - Setting up the Input, Target, and Output of the RNN.srt
20.5 kB
3. Step 2 - Convolutional Neural Network/3. What are Convolutional Neural Networks.vtt
19.9 kB
9. Step 8 - Implementing the MDN-RNN/4. Building the RNN - Creating an LSTM cell with Dropout.vtt
19.7 kB
1. Introduction/2. Introduction + Course Structure + Demo.vtt
19.6 kB
2. Step 1 - Artificial Neural Network/5. How do Neural Networks work.srt
19.5 kB
2. Step 1 - Artificial Neural Network/6. How do Neural Networks learn.srt
19.4 kB
9. Step 8 - Implementing the MDN-RNN/10. Implementing the Training operations (Part 2).srt
19.4 kB
3. Step 2 - Convolutional Neural Network/6. Step 2 - Pooling.vtt
18.8 kB
7. Step 6 - Recurrent Neural Network/6. LSTM Practical Intuition.vtt
18.8 kB
7. Step 6 - Recurrent Neural Network/4. The Vanishing Gradient Problem.vtt
18.7 kB
10. Step 9 - Reinforcement Learning/2. What is Reinforcement Learning.srt
18.6 kB
9. Step 8 - Implementing the MDN-RNN/2. Initializing all the parameters and variables of the MDN-RNN class.srt
18.4 kB
9. Step 8 - Implementing the MDN-RNN/9. Implementing the Training operations (Part 1).vtt
18.2 kB
9. Step 8 - Implementing the MDN-RNN/5. Building the RNN - Setting up the Input, Target, and Output of the RNN.vtt
18.1 kB
11. Step 10 - Deep NeuroEvolution/4. Genetic Algorithms.srt
18.1 kB
12. The Final Run/3. Installing the required packages.srt
17.9 kB
11. Step 10 - Deep NeuroEvolution/5. Covariance-Matrix Adaptation Evolution Strategy (CMA-ES).srt
17.6 kB
6. Step 5 - Implementing the CNN-VAE/3. Initializing all the parameters and variables of the CNN-VAE class.srt
17.4 kB
2. Step 1 - Artificial Neural Network/5. How do Neural Networks work.vtt
17.2 kB
9. Step 8 - Implementing the MDN-RNN/7. Building the MDN - Getting the Input, Hidden Layer and Output of the MDN.srt
16.9 kB
2. Step 1 - Artificial Neural Network/6. How do Neural Networks learn.vtt
16.9 kB
9. Step 8 - Implementing the MDN-RNN/10. Implementing the Training operations (Part 2).vtt
16.8 kB
11. Step 10 - Deep NeuroEvolution/6. Parameter-Exploring Policy Gradients (PEPG).srt
16.8 kB
9. Step 8 - Implementing the MDN-RNN/6. Building the RNN - Getting the Deterministic Output of the RNN.srt
16.8 kB
4. Step 3 - AutoEncoder/3. What are AutoEncoders.srt
16.7 kB
10. Step 9 - Reinforcement Learning/2. What is Reinforcement Learning.vtt
16.4 kB
12. The Final Run/4. The Final Race Human Intelligence vs. Artificial Intelligence.srt
16.2 kB
9. Step 8 - Implementing the MDN-RNN/2. Initializing all the parameters and variables of the MDN-RNN class.vtt
16.2 kB
11. Step 10 - Deep NeuroEvolution/4. Genetic Algorithms.vtt
15.8 kB
11. Step 10 - Deep NeuroEvolution/5. Covariance-Matrix Adaptation Evolution Strategy (CMA-ES).vtt
15.5 kB
11. Step 10 - Deep NeuroEvolution/2. Deep NeuroEvolution.srt
15.4 kB
12. The Final Run/3. Installing the required packages.vtt
15.3 kB
6. Step 5 - Implementing the CNN-VAE/3. Initializing all the parameters and variables of the CNN-VAE class.vtt
15.2 kB
9. Step 8 - Implementing the MDN-RNN/7. Building the MDN - Getting the Input, Hidden Layer and Output of the MDN.vtt
15.0 kB
11. Step 10 - Deep NeuroEvolution/6. Parameter-Exploring Policy Gradients (PEPG).vtt
14.9 kB
9. Step 8 - Implementing the MDN-RNN/8. Building the MDN - Getting the MDN parameters.srt
14.9 kB
9. Step 8 - Implementing the MDN-RNN/6. Building the RNN - Getting the Deterministic Output of the RNN.vtt
14.7 kB
4. Step 3 - AutoEncoder/3. What are AutoEncoders.vtt
14.7 kB
2. Step 1 - Artificial Neural Network/7. Gradient Descent.srt
14.5 kB
8. Step 7 - Mixture Density Network/3. Mixture Density Networks.srt
13.9 kB
12. The Final Run/4. The Final Race Human Intelligence vs. Artificial Intelligence.vtt
13.8 kB
6. Step 5 - Implementing the CNN-VAE/5. Building the V part of the VAE.srt
13.8 kB
11. Step 10 - Deep NeuroEvolution/2. Deep NeuroEvolution.vtt
13.7 kB
1. Introduction/4. Your Three Best Resources.srt
13.6 kB
6. Step 5 - Implementing the CNN-VAE/6. Building the Decoder part of the VAE.srt
13.4 kB
11. Step 10 - Deep NeuroEvolution/3. Evolution Strategies.srt
13.3 kB
9. Step 8 - Implementing the MDN-RNN/3. Building the RNN - Gathering the parameters.srt
13.2 kB
9. Step 8 - Implementing the MDN-RNN/8. Building the MDN - Getting the MDN parameters.vtt
13.1 kB
8. Step 7 - Mixture Density Network/2. Introduction to the MDN-RNN.srt
13.0 kB
2. Step 1 - Artificial Neural Network/7. Gradient Descent.vtt
12.6 kB
2. Step 1 - Artificial Neural Network/8. Stochastic Gradient Descent.srt
12.5 kB
8. Step 7 - Mixture Density Network/3. Mixture Density Networks.vtt
12.2 kB
1. Introduction/4. Your Three Best Resources.vtt
12.1 kB
2. Step 1 - Artificial Neural Network/4. The Activation Function.srt
12.1 kB
6. Step 5 - Implementing the CNN-VAE/5. Building the V part of the VAE.vtt
12.1 kB
6. Step 5 - Implementing the CNN-VAE/6. Building the Decoder part of the VAE.vtt
11.7 kB
11. Step 10 - Deep NeuroEvolution/3. Evolution Strategies.vtt
11.7 kB
9. Step 8 - Implementing the MDN-RNN/3. Building the RNN - Gathering the parameters.vtt
11.6 kB
8. Step 7 - Mixture Density Network/2. Introduction to the MDN-RNN.vtt
11.5 kB
5. Step 4 - Variational AutoEncoder/2. Introduction to the VAE.srt
11.3 kB
9. Step 8 - Implementing the MDN-RNN/11. Full Code Section.html
11.1 kB
2. Step 1 - Artificial Neural Network/8. Stochastic Gradient Descent.vtt
11.0 kB
6. Step 5 - Implementing the CNN-VAE/2. Introduction to Step 5.srt
11.0 kB
2. Step 1 - Artificial Neural Network/4. The Activation Function.vtt
10.7 kB
11. Step 10 - Deep NeuroEvolution/7. OpenAI Evolution Strategy.srt
10.6 kB
5. Step 4 - Variational AutoEncoder/2. Introduction to the VAE.vtt
9.9 kB
4. Step 3 - AutoEncoder/5. Training an AutoEncoder.srt
9.8 kB
6. Step 5 - Implementing the CNN-VAE/2. Introduction to Step 5.vtt
9.6 kB
3. Step 2 - Convolutional Neural Network/5. Step 1 Bis - The ReLU Layer.srt
9.5 kB
11. Step 10 - Deep NeuroEvolution/7. OpenAI Evolution Strategy.vtt
9.4 kB
4. Step 3 - AutoEncoder/7. Sparse AutoEncoders.srt
9.0 kB
4. Step 3 - AutoEncoder/5. Training an AutoEncoder.vtt
8.6 kB
3. Step 2 - Convolutional Neural Network/5. Step 1 Bis - The ReLU Layer.vtt
8.4 kB
4. Step 3 - AutoEncoder/7. Sparse AutoEncoders.vtt
8.0 kB
6. Step 5 - Implementing the CNN-VAE/9. The Keras Implementation.html
7.9 kB
8. Step 7 - Mixture Density Network/4. VAE + MDN-RNN Visualization.srt
7.7 kB
2. Step 1 - Artificial Neural Network/9. Backpropagation.srt
7.5 kB
8. Step 7 - Mixture Density Network/4. VAE + MDN-RNN Visualization.vtt
6.8 kB
5. Step 4 - Variational AutoEncoder/4. Reparameterization Trick.srt
6.7 kB
2. Step 1 - Artificial Neural Network/9. Backpropagation.vtt
6.6 kB
5. Step 4 - Variational AutoEncoder/3. Variational AutoEncoders.srt
6.3 kB
3. Step 2 - Convolutional Neural Network/9. Summary.srt
6.2 kB
5. Step 4 - Variational AutoEncoder/4. Reparameterization Trick.vtt
5.9 kB
4. Step 3 - AutoEncoder/6. Overcomplete Hidden Layers.srt
5.8 kB
5. Step 4 - Variational AutoEncoder/3. Variational AutoEncoders.vtt
5.6 kB
3. Step 2 - Convolutional Neural Network/9. Summary.vtt
5.5 kB
3. Step 2 - Convolutional Neural Network/2. Plan of Attack.srt
5.5 kB
9. Step 8 - Implementing the MDN-RNN/12. The Keras Implementation.html
5.4 kB
4. Step 3 - AutoEncoder/6. Overcomplete Hidden Layers.vtt
5.1 kB
7. Step 6 - Recurrent Neural Network/7. LSTM Variations.srt
5.0 kB
3. Step 2 - Convolutional Neural Network/2. Plan of Attack.vtt
4.8 kB
7. Step 6 - Recurrent Neural Network/7. LSTM Variations.vtt
4.4 kB
6. Step 5 - Implementing the CNN-VAE/8. Full Code Section.html
4.1 kB
2. Step 1 - Artificial Neural Network/2. Plan of Attack.srt
4.0 kB
4. Step 3 - AutoEncoder/8. Denoising AutoEncoders.srt
3.7 kB
4. Step 3 - AutoEncoder/9. Contractive AutoEncoders.srt
3.7 kB
2. Step 1 - Artificial Neural Network/2. Plan of Attack.vtt
3.6 kB
1. Introduction/1. Updates on Udemy Reviews.srt
3.6 kB
7. Step 6 - Recurrent Neural Network/2. Plan of Attack.srt
3.5 kB
4. Step 3 - AutoEncoder/8. Denoising AutoEncoders.vtt
3.3 kB
4. Step 3 - AutoEncoder/2. Plan of Attack.srt
3.3 kB
4. Step 3 - AutoEncoder/9. Contractive AutoEncoders.vtt
3.2 kB
7. Step 6 - Recurrent Neural Network/2. Plan of Attack.vtt
3.1 kB
1. Introduction/1. Updates on Udemy Reviews.vtt
3.1 kB
4. Step 3 - AutoEncoder/2. Plan of Attack.vtt
2.9 kB
9. Step 8 - Implementing the MDN-RNN/1. Welcome to Step 8 - Implementing the MDN-RNN.html
2.9 kB
4. Step 3 - AutoEncoder/11. Deep AutoEncoders.srt
2.8 kB
3. Step 2 - Convolutional Neural Network/7. Step 3 - Flattening.srt
2.6 kB
4. Step 3 - AutoEncoder/10. Stacked AutoEncoders.srt
2.5 kB
4. Step 3 - AutoEncoder/11. Deep AutoEncoders.vtt
2.5 kB
1. Introduction/3. BONUS Learning Paths.html
2.4 kB
12. The Final Run/5. THANK YOU bonus video.srt
2.4 kB
6. Step 5 - Implementing the CNN-VAE/1. Welcome to Step 5 - Implementing the CNN-VAE.html
2.4 kB
3. Step 2 - Convolutional Neural Network/7. Step 3 - Flattening.vtt
2.3 kB
4. Step 3 - AutoEncoder/10. Stacked AutoEncoders.vtt
2.2 kB
4. Step 3 - AutoEncoder/4. A Note on Biases.srt
2.1 kB
12. The Final Run/5. THANK YOU bonus video.vtt
2.1 kB
4. Step 3 - AutoEncoder/4. A Note on Biases.vtt
1.8 kB
11. Step 10 - Deep NeuroEvolution/1. Welcome to Step 10 - Deep NeuroEvolution.html
1.2 kB
13. Bonus Lectures/1. YOUR SPECIAL BONUS.html
1.1 kB
12. The Final Run/2. Download the whole AI Masterclass folder here.html
1.0 kB
1. Introduction/5. Download the Resources here.html
790 Bytes
1. Introduction/6. Meet your instructors!.html
723 Bytes
2. Step 1 - Artificial Neural Network/1. Welcome to Step 1 - Artificial Neural Network.html
605 Bytes
8. Step 7 - Mixture Density Network/1. Welcome to Step 7 - Mixture Density Network.html
517 Bytes
7. Step 6 - Recurrent Neural Network/1. Welcome to Step 6 - Recurrent Neural Network.html
507 Bytes
3. Step 2 - Convolutional Neural Network/1. Welcome to Step 2 - Convolutional Neural Network.html
430 Bytes
10. Step 9 - Reinforcement Learning/1. Welcome to Step 9 - Reinforcement Learning.html
424 Bytes
5. Step 4 - Variational AutoEncoder/1. Welcome to Step 4 - Variational AutoEncoder.html
423 Bytes
4. Step 3 - AutoEncoder/1. Welcome to Step 3 - AutoEncoder.html
418 Bytes
10. Step 9 - Reinforcement Learning/4. Full Code Section.html
393 Bytes
udemycoursedownloader.com.url
132 Bytes
Udemy Course downloader.txt
94 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>