MuerBT磁力搜索 BT种子搜索利器 免费下载BT种子,超5000万条种子数据

[FreeCourseSite.com] Udemy - Artificial Intelligence - Reinforcement Learning in Python

磁力链接/BT种子名称

[FreeCourseSite.com] Udemy - Artificial Intelligence - Reinforcement Learning in Python

磁力链接/BT种子简介

种子哈希:edcbe0cda27fd80b9be3be832b7148dd69c01a97
文件大小: 4.14G
已经下载:1762次
下载速度:极快
收录时间:2022-01-20
最近下载:2025-10-17

移花宫入口

移花宫.com邀月.com怜星.com花无缺.comyhgbt.icuyhgbt.top

磁力链接下载

magnet:?xt=urn:btih:EDCBE0CDA27FD80B9BE3BE832B7148DD69C01A97
推荐使用PIKPAK网盘下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看

下载BT种子文件

磁力链接 迅雷下载 PIKPAK在线播放 世界之窗 小蓝俱乐部 含羞草 欲漫涩 逼哩逼哩 成人快手 51品茶 51动漫 91短视频 抖音Max TikTok成人版 PornHub 暗网Xvideo 草榴社区 哆哔涩漫 呦乐园 萝莉岛 搜同

最近搜索

はれ rickysroom how to hack 厕拍♀ 幼女中出 广场舞 跳跳羊 会所风 上海肥猪哥 涉母大侠高清 电影 molly+little+-+part+ 最新加勒比 紧缚性教育实习!羽月希 anna+vlasova+ brima teen xxx 位 中年夫妻性生活 hikr180 ai generated 美杜莎 孩子你要 办公室 onlyfans 里根福克斯 silvia dellai eveline russian institute nikki+++dredd 5200元svip群资源调教白月光女神,一字马沙发插逼,有露脸,高颜值漂亮反差荡妇! 爱溢 边打电话边被操 齐鲁屌王

文件列表

  • 11. Setting Up Your Environment (FAQ by Student Request)/1. Windows-Focused Environment Setup 2018.mp4 195.4 MB
  • 4. Markov Decision Proccesses/11. Bellman Examples.mp4 91.3 MB
  • 10. Stock Trading Project with Reinforcement Learning/1. Beginners, halt! Stop here if you skipped ahead.mp4 87.8 MB
  • 12. Extra Help With Python Coding for Beginners (FAQ by Student Request)/3. Proof that using Jupyter Notebook is the same as not using it.mp4 82.1 MB
  • 8. Approximation Methods/7. Approximation Methods for Control Code.mp4 81.5 MB
  • 2. Return of the Multi-Armed Bandit/16. Bayesian Bandits Thompson Sampling Theory (pt 2).mp4 78.1 MB
  • 5. Dynamic Programming/5. Iterative Policy Evaluation in Code.mp4 71.8 MB
  • 10. Stock Trading Project with Reinforcement Learning/7. Code pt 2.mp4 68.5 MB
  • 6. Monte Carlo/5. Monte Carlo Control in Code.mp4 67.5 MB
  • 1. Welcome/5. Warmup.mp4 65.6 MB
  • 8. Approximation Methods/5. Approximation Methods for Prediction Code.mp4 65.3 MB
  • 4. Markov Decision Proccesses/5. Markov Decision Processes (MDPs).mp4 64.7 MB
  • 5. Dynamic Programming/2. Iterative Policy Evaluation.mp4 63.8 MB
  • 5. Dynamic Programming/10. Policy Iteration in Code.mp4 59.1 MB
  • 4. Markov Decision Proccesses/12. Optimal Policy and Optimal Value Function (pt 1).mp4 58.8 MB
  • 2. Return of the Multi-Armed Bandit/15. Bayesian Bandits Thompson Sampling Theory (pt 1).mp4 58.6 MB
  • 2. Return of the Multi-Armed Bandit/12. UCB1 Theory.mp4 58.2 MB
  • 3. High Level Overview of Reinforcement Learning/1. What is Reinforcement Learning.mp4 57.3 MB
  • 4. Markov Decision Proccesses/2. Gridworld.mp4 56.6 MB
  • 10. Stock Trading Project with Reinforcement Learning/9. Code pt 4.mp4 55.5 MB
  • 10. Stock Trading Project with Reinforcement Learning/3. Data and Environment.mp4 54.5 MB
  • 2. Return of the Multi-Armed Bandit/1. Section Introduction The Explore-Exploit Dilemma.mp4 54.5 MB
  • 6. Monte Carlo/3. Monte Carlo Policy Evaluation in Code.mp4 54.2 MB
  • 5. Dynamic Programming/11. Policy Iteration in Windy Gridworld.mp4 53.9 MB
  • 2. Return of the Multi-Armed Bandit/2. Applications of the Explore-Exploit Dilemma.mp4 53.7 MB
  • 2. Return of the Multi-Armed Bandit/24. (Optional) Alternative Bandit Designs.mp4 52.8 MB
  • 10. Stock Trading Project with Reinforcement Learning/6. Code pt 1.mp4 52.1 MB
  • 2. Return of the Multi-Armed Bandit/19. Thompson Sampling With Gaussian Reward Theory.mp4 50.9 MB
  • 6. Monte Carlo/1. Monte Carlo Intro.mp4 49.9 MB
  • 6. Monte Carlo/2. Monte Carlo Policy Evaluation.mp4 49.4 MB
  • 5. Dynamic Programming/7. Iterative Policy Evaluation for Windy Gridworld in Code.mp4 49.2 MB
  • 8. Approximation Methods/9. CartPole Code.mp4 49.1 MB
  • 5. Dynamic Programming/4. Gridworld in Code.mp4 49.1 MB
  • 8. Approximation Methods/3. Feature Engineering.mp4 48.1 MB
  • 5. Dynamic Programming/13. Value Iteration in Code.mp4 47.9 MB
  • 7. Temporal Difference Learning/5. SARSA in Code.mp4 47.1 MB
  • 10. Stock Trading Project with Reinforcement Learning/4. How to Model Q for Q-Learning.mp4 47.1 MB
  • 5. Dynamic Programming/8. Policy Improvement.mp4 46.1 MB
  • 11. Setting Up Your Environment (FAQ by Student Request)/2. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4 46.0 MB
  • 1. Welcome/4. How to Succeed in this Course.mp4 46.0 MB
  • 2. Return of the Multi-Armed Bandit/8. Comparing Different Epsilons.mp4 45.8 MB
  • 2. Return of the Multi-Armed Bandit/20. Thompson Sampling With Gaussian Reward Code.mp4 45.5 MB
  • 5. Dynamic Programming/6. Windy Gridworld in Code.mp4 43.5 MB
  • 2. Return of the Multi-Armed Bandit/7. Epsilon-Greedy in Code.mp4 43.4 MB
  • 3. High Level Overview of Reinforcement Learning/2. From Bandits to Full Reinforcement Learning.mp4 43.2 MB
  • 6. Monte Carlo/7. Monte Carlo Control without Exploring Starts in Code.mp4 42.7 MB
  • 1. Welcome/2. Course Outline and Big Picture.mp4 41.6 MB
  • 4. Markov Decision Proccesses/6. Future Rewards.mp4 41.4 MB
  • 13. Effective Learning Strategies for Machine Learning (FAQ by Student Request)/2. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4 40.8 MB
  • 7. Temporal Difference Learning/7. Q Learning in Code.mp4 40.4 MB
  • 9. Interlude Common Beginner Questions/1. This Course vs. RL Book What's the Difference.mp4 40.1 MB
  • 14. Appendix FAQ Finale/2. BONUS Where to get discount coupons and FREE deep learning material.mp4 39.7 MB
  • 13. Effective Learning Strategies for Machine Learning (FAQ by Student Request)/4. Machine Learning and AI Prerequisite Roadmap (pt 2).mp4 39.4 MB
  • 4. Markov Decision Proccesses/1. MDP Section Introduction.mp4 39.0 MB
  • 6. Monte Carlo/4. Monte Carlo Control.mp4 37.3 MB
  • 5. Dynamic Programming/12. Value Iteration.mp4 37.0 MB
  • 5. Dynamic Programming/1. Dynamic Programming Section Introduction.mp4 36.4 MB
  • 2. Return of the Multi-Armed Bandit/23. Bandit Summary, Real Data, and Online Learning.mp4 36.3 MB
  • 8. Approximation Methods/4. Approximation Methods for Prediction.mp4 36.0 MB
  • 1. Welcome/1. Introduction.mp4 35.9 MB
  • 5. Dynamic Programming/9. Policy Iteration.mp4 35.8 MB
  • 10. Stock Trading Project with Reinforcement Learning/8. Code pt 3.mp4 35.4 MB
  • 2. Return of the Multi-Armed Bandit/18. Thompson Sampling Code.mp4 34.4 MB
  • 4. Markov Decision Proccesses/3. Choosing Rewards.mp4 34.1 MB
  • 7. Temporal Difference Learning/3. TD(0) Prediction in Code.mp4 34.0 MB
  • 8. Approximation Methods/2. Linear Models for Reinforcement Learning.mp4 32.6 MB
  • 2. Return of the Multi-Armed Bandit/22. Nonstationary Bandits.mp4 32.5 MB
  • 13. Effective Learning Strategies for Machine Learning (FAQ by Student Request)/3. Machine Learning and AI Prerequisite Roadmap (pt 1).mp4 30.7 MB
  • 2. Return of the Multi-Armed Bandit/5. Epsilon-Greedy Beginner's Exercise Prompt.mp4 30.1 MB
  • 2. Return of the Multi-Armed Bandit/3. Epsilon-Greedy Theory.mp4 29.7 MB
  • 4. Markov Decision Proccesses/8. The Bellman Equation (pt 1).mp4 29.1 MB
  • 2. Return of the Multi-Armed Bandit/21. Why don't we just use a library.mp4 28.7 MB
  • 8. Approximation Methods/8. CartPole.mp4 28.2 MB
  • 10. Stock Trading Project with Reinforcement Learning/2. Stock Trading Project Section Introduction.mp4 28.1 MB
  • 4. Markov Decision Proccesses/9. The Bellman Equation (pt 2).mp4 28.0 MB
  • 5. Dynamic Programming/14. Dynamic Programming Summary.mp4 26.3 MB
  • 4. Markov Decision Proccesses/10. The Bellman Equation (pt 3).mp4 25.9 MB
  • 2. Return of the Multi-Armed Bandit/11. Optimistic Initial Values Code.mp4 25.8 MB
  • 12. Extra Help With Python Coding for Beginners (FAQ by Student Request)/1. How to Code by Yourself (part 1).mp4 25.7 MB
  • 2. Return of the Multi-Armed Bandit/6. Designing Your Bandit Program.mp4 25.7 MB
  • 2. Return of the Multi-Armed Bandit/9. Optimistic Initial Values Theory.mp4 24.7 MB
  • 6. Monte Carlo/6. Monte Carlo Control without Exploring Starts.mp4 24.5 MB
  • 10. Stock Trading Project with Reinforcement Learning/5. Design of the Program.mp4 24.4 MB
  • 2. Return of the Multi-Armed Bandit/4. Calculating a Sample Mean (pt 1).mp4 24.3 MB
  • 1. Welcome/3. Where to get the Code.mp4 23.8 MB
  • 5. Dynamic Programming/3. Designing Your RL Program.mp4 23.4 MB
  • 8. Approximation Methods/1. Approximation Methods Section Introduction.mp4 23.1 MB
  • 4. Markov Decision Proccesses/4. The Markov Property.mp4 22.8 MB
  • 8. Approximation Methods/11. Approximation Methods Section Summary.mp4 22.8 MB
  • 2. Return of the Multi-Armed Bandit/14. UCB1 Code.mp4 21.7 MB
  • 7. Temporal Difference Learning/6. Q Learning.mp4 20.8 MB
  • 4. Markov Decision Proccesses/7. Value Functions.mp4 19.5 MB
  • 13. Effective Learning Strategies for Machine Learning (FAQ by Student Request)/1. How to Succeed in this Course (Long Version).mp4 19.2 MB
  • 2. Return of the Multi-Armed Bandit/17. Thompson Sampling Beginner's Exercise Prompt.mp4 18.8 MB
  • 8. Approximation Methods/6. Approximation Methods for Control.mp4 18.4 MB
  • 8. Approximation Methods/10. Approximation Methods Exercise.mp4 18.4 MB
  • 7. Temporal Difference Learning/4. SARSA.mp4 17.0 MB
  • 2. Return of the Multi-Armed Bandit/25. Suggestion Box.mp4 16.9 MB
  • 7. Temporal Difference Learning/2. TD(0) Prediction.mp4 16.6 MB
  • 10. Stock Trading Project with Reinforcement Learning/10. Stock Trading Project Discussion.mp4 16.5 MB
  • 4. Markov Decision Proccesses/13. Optimal Policy and Optimal Value Function (pt 2).mp4 16.5 MB
  • 12. Extra Help With Python Coding for Beginners (FAQ by Student Request)/2. How to Code by Yourself (part 2).mp4 15.5 MB
  • 7. Temporal Difference Learning/1. Temporal Difference Introduction.mp4 15.1 MB
  • 4. Markov Decision Proccesses/14. MDP Summary.mp4 15.0 MB
  • 2. Return of the Multi-Armed Bandit/10. Optimistic Initial Values Beginner's Exercise Prompt.mp4 14.4 MB
  • 2. Return of the Multi-Armed Bandit/13. UCB1 Beginner's Exercise Prompt.mp4 13.4 MB
  • 6. Monte Carlo/8. Monte Carlo Summary.mp4 12.0 MB
  • 7. Temporal Difference Learning/8. TD Learning Section Summary.mp4 10.5 MB
  • 12. Extra Help With Python Coding for Beginners (FAQ by Student Request)/4. Python 2 vs Python 3.mp4 8.2 MB
  • 14. Appendix FAQ Finale/1. What is the Appendix.mp4 5.7 MB
  • 4. Markov Decision Proccesses/11. Bellman Examples-en_US.srt 27.3 kB
  • 12. Extra Help With Python Coding for Beginners (FAQ by Student Request)/1. How to Code by Yourself (part 1)-en_US.srt 26.6 kB
  • 2. Return of the Multi-Armed Bandit/16. Bayesian Bandits Thompson Sampling Theory (pt 2)-en_US.srt 23.3 kB
  • 13. Effective Learning Strategies for Machine Learning (FAQ by Student Request)/4. Machine Learning and AI Prerequisite Roadmap (pt 2)-en_US.srt 22.7 kB
  • 5. Dynamic Programming/2. Iterative Policy Evaluation-en_US.srt 20.9 kB
  • 10. Stock Trading Project with Reinforcement Learning/1. Beginners, halt! Stop here if you skipped ahead-en_US.srt 20.4 kB
  • 11. Setting Up Your Environment (FAQ by Student Request)/1. Windows-Focused Environment Setup 2018-en_US.srt 19.8 kB
  • 2. Return of the Multi-Armed Bandit/12. UCB1 Theory-en_US.srt 19.6 kB
  • 4. Markov Decision Proccesses/5. Markov Decision Processes (MDPs)-en_US.srt 19.3 kB
  • 1. Welcome/5. Warmup-en_US.srt 18.6 kB
  • 4. Markov Decision Proccesses/2. Gridworld-en_US.srt 17.0 kB
  • 2. Return of the Multi-Armed Bandit/15. Bayesian Bandits Thompson Sampling Theory (pt 1)-en_US.srt 16.5 kB
  • 12. Extra Help With Python Coding for Beginners (FAQ by Student Request)/2. How to Code by Yourself (part 2)-en_US.srt 16.2 kB
  • 5. Dynamic Programming/4. Gridworld in Code-en_US.srt 16.1 kB
  • 11. Setting Up Your Environment (FAQ by Student Request)/2. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow-en_US.srt 16.1 kB
  • 5. Dynamic Programming/5. Iterative Policy Evaluation in Code-en_US.srt 16.0 kB
  • 13. Effective Learning Strategies for Machine Learning (FAQ by Student Request)/3. Machine Learning and AI Prerequisite Roadmap (pt 1)-en_US.srt 15.8 kB
  • 10. Stock Trading Project with Reinforcement Learning/3. Data and Environment-en_US.srt 15.5 kB
  • 2. Return of the Multi-Armed Bandit/19. Thompson Sampling With Gaussian Reward Theory-en_US.srt 14.8 kB
  • 5. Dynamic Programming/8. Policy Improvement-en_US.srt 14.5 kB
  • 6. Monte Carlo/2. Monte Carlo Policy Evaluation-en_US.srt 14.4 kB
  • 13. Effective Learning Strategies for Machine Learning (FAQ by Student Request)/1. How to Succeed in this Course (Long Version)-en_US.srt 14.3 kB
  • 2. Return of the Multi-Armed Bandit/24. (Optional) Alternative Bandit Designs-en_US.srt 14.3 kB
  • 8. Approximation Methods/3. Feature Engineering-en_US.srt 14.2 kB
  • 12. Extra Help With Python Coding for Beginners (FAQ by Student Request)/3. Proof that using Jupyter Notebook is the same as not using it-en_US.srt 13.9 kB
  • 2. Return of the Multi-Armed Bandit/1. Section Introduction The Explore-Exploit Dilemma-en_US.srt 13.3 kB
  • 4. Markov Decision Proccesses/6. Future Rewards-en_US.srt 12.5 kB
  • 6. Monte Carlo/1. Monte Carlo Intro-en_US.srt 12.4 kB
  • 8. Approximation Methods/4. Approximation Methods for Prediction-en_US.srt 12.3 kB
  • 5. Dynamic Programming/1. Dynamic Programming Section Introduction-en_US.srt 12.2 kB
  • 3. High Level Overview of Reinforcement Learning/2. From Bandits to Full Reinforcement Learning-en_US.srt 11.9 kB
  • 10. Stock Trading Project with Reinforcement Learning/4. How to Model Q for Q-Learning-en_US.srt 11.9 kB
  • 10. Stock Trading Project with Reinforcement Learning/7. Code pt 2-en_US.srt 11.6 kB
  • 6. Monte Carlo/4. Monte Carlo Control-en_US.srt 11.4 kB
  • 4. Markov Decision Proccesses/12. Optimal Policy and Optimal Value Function (pt 1)-en_US.srt 11.3 kB
  • 8. Approximation Methods/2. Linear Models for Reinforcement Learning-en_US.srt 11.2 kB
  • 6. Monte Carlo/5. Monte Carlo Control in Code-en_US.srt 11.0 kB
  • 4. Markov Decision Proccesses/8. The Bellman Equation (pt 1)-en_US.srt 10.9 kB
  • 5. Dynamic Programming/11. Policy Iteration in Windy Gridworld-en_US.srt 10.8 kB
  • 8. Approximation Methods/7. Approximation Methods for Control Code-en_US.srt 10.8 kB
  • 3. High Level Overview of Reinforcement Learning/1. What is Reinforcement Learning-en_US.srt 10.8 kB
  • 2. Return of the Multi-Armed Bandit/2. Applications of the Explore-Exploit Dilemma-en_US.srt 10.8 kB
  • 5. Dynamic Programming/10. Policy Iteration in Code-en_US.srt 10.6 kB
  • 8. Approximation Methods/5. Approximation Methods for Prediction Code-en_US.srt 10.4 kB
  • 6. Monte Carlo/3. Monte Carlo Policy Evaluation in Code-en_US.srt 10.4 kB
  • 1. Welcome/2. Course Outline and Big Picture-en_US.srt 10.3 kB
  • 5. Dynamic Programming/6. Windy Gridworld in Code-en_US.srt 10.3 kB
  • 5. Dynamic Programming/9. Policy Iteration-en_US.srt 10.2 kB
  • 9. Interlude Common Beginner Questions/1. This Course vs. RL Book What's the Difference-en_US.srt 10.1 kB
  • 5. Dynamic Programming/7. Iterative Policy Evaluation for Windy Gridworld in Code-en_US.srt 9.6 kB
  • 5. Dynamic Programming/12. Value Iteration-en_US.srt 9.5 kB
  • 10. Stock Trading Project with Reinforcement Learning/6. Code pt 1-en_US.srt 9.5 kB
  • 2. Return of the Multi-Armed Bandit/22. Nonstationary Bandits-en_US.srt 9.4 kB
  • 2. Return of the Multi-Armed Bandit/3. Epsilon-Greedy Theory-en_US.srt 9.3 kB
  • 2. Return of the Multi-Armed Bandit/23. Bandit Summary, Real Data, and Online Learning-en_US.srt 9.0 kB
  • 5. Dynamic Programming/13. Value Iteration in Code-en_US.srt 8.7 kB
  • 2. Return of the Multi-Armed Bandit/7. Epsilon-Greedy in Code-en_US.srt 8.5 kB
  • 4. Markov Decision Proccesses/9. The Bellman Equation (pt 2)-en_US.srt 8.4 kB
  • 10. Stock Trading Project with Reinforcement Learning/5. Design of the Program-en_US.srt 8.4 kB
  • 4. Markov Decision Proccesses/1. MDP Section Introduction-en_US.srt 8.2 kB
  • 1. Welcome/4. How to Succeed in this Course-en_US.srt 8.1 kB
  • 10. Stock Trading Project with Reinforcement Learning/9. Code pt 4-en_US.srt 8.1 kB
  • 4. Markov Decision Proccesses/4. The Markov Property-en_US.srt 7.9 kB
  • 14. Appendix FAQ Finale/2. BONUS Where to get discount coupons and FREE deep learning material-en_US.srt 7.8 kB
  • 7. Temporal Difference Learning/5. SARSA in Code-en_US.srt 7.6 kB
  • 4. Markov Decision Proccesses/10. The Bellman Equation (pt 3)-en_US.srt 7.6 kB
  • 2. Return of the Multi-Armed Bandit/21. Why don't we just use a library-en_US.srt 7.5 kB
  • 2. Return of the Multi-Armed Bandit/4. Calculating a Sample Mean (pt 1)-en_US.srt 7.4 kB
  • 8. Approximation Methods/8. CartPole-en_US.srt 7.2 kB
  • 2. Return of the Multi-Armed Bandit/20. Thompson Sampling With Gaussian Reward Code-en_US.srt 7.1 kB
  • 6. Monte Carlo/7. Monte Carlo Control without Exploring Starts in Code-en_US.srt 7.1 kB
  • 2. Return of the Multi-Armed Bandit/9. Optimistic Initial Values Theory-en_US.srt 7.0 kB
  • 7. Temporal Difference Learning/2. TD(0) Prediction-en_US.srt 6.8 kB
  • 10. Stock Trading Project with Reinforcement Learning/2. Stock Trading Project Section Introduction-en_US.srt 6.7 kB
  • 8. Approximation Methods/9. CartPole Code-en_US.srt 6.7 kB
  • 2. Return of the Multi-Armed Bandit/8. Comparing Different Epsilons-en_US.srt 6.7 kB
  • 5. Dynamic Programming/3. Designing Your RL Program-en_US.srt 6.5 kB
  • 4. Markov Decision Proccesses/7. Value Functions-en_US.srt 6.5 kB
  • 5. Dynamic Programming/14. Dynamic Programming Summary-en_US.srt 6.4 kB
  • 2. Return of the Multi-Armed Bandit/5. Epsilon-Greedy Beginner's Exercise Prompt-en_US.srt 6.3 kB
  • 7. Temporal Difference Learning/6. Q Learning-en_US.srt 6.2 kB
  • 1. Welcome/3. Where to get the Code-en_US.srt 6.2 kB
  • 12. Extra Help With Python Coding for Beginners (FAQ by Student Request)/4. Python 2 vs Python 3-en_US.srt 6.0 kB
  • 7. Temporal Difference Learning/7. Q Learning in Code-en_US.srt 6.0 kB
  • 7. Temporal Difference Learning/3. TD(0) Prediction in Code-en_US.srt 5.9 kB
  • 7. Temporal Difference Learning/4. SARSA-en_US.srt 5.9 kB
  • 6. Monte Carlo/6. Monte Carlo Control without Exploring Starts-en_US.srt 5.7 kB
  • 8. Approximation Methods/1. Approximation Methods Section Introduction-en_US.srt 5.7 kB
  • 8. Approximation Methods/6. Approximation Methods for Control-en_US.srt 5.6 kB
  • 2. Return of the Multi-Armed Bandit/18. Thompson Sampling Code-en_US.srt 5.6 kB
  • 2. Return of the Multi-Armed Bandit/6. Designing Your Bandit Program-en_US.srt 5.5 kB
  • 4. Markov Decision Proccesses/3. Choosing Rewards-en_US.srt 5.4 kB
  • 10. Stock Trading Project with Reinforcement Learning/8. Code pt 3-en_US.srt 5.3 kB
  • 8. Approximation Methods/10. Approximation Methods Exercise-en_US.srt 5.3 kB
  • 7. Temporal Difference Learning/1. Temporal Difference Introduction-en_US.srt 5.2 kB
  • 2. Return of the Multi-Armed Bandit/11. Optimistic Initial Values Code-en_US.srt 5.1 kB
  • 4. Markov Decision Proccesses/13. Optimal Policy and Optimal Value Function (pt 2)-en_US.srt 5.0 kB
  • 2. Return of the Multi-Armed Bandit/25. Suggestion Box-en_US.srt 4.6 kB
  • 10. Stock Trading Project with Reinforcement Learning/10. Stock Trading Project Discussion-en_US.srt 4.3 kB
  • 1. Welcome/1. Introduction-en_US.srt 4.1 kB
  • 8. Approximation Methods/11. Approximation Methods Section Summary-en_US.srt 3.9 kB
  • 2. Return of the Multi-Armed Bandit/14. UCB1 Code-en_US.srt 3.7 kB
  • 14. Appendix FAQ Finale/1. What is the Appendix-en_US.srt 3.7 kB
  • 4. Markov Decision Proccesses/14. MDP Summary-en_US.srt 3.5 kB
  • 2. Return of the Multi-Armed Bandit/17. Thompson Sampling Beginner's Exercise Prompt-en_US.srt 3.3 kB
  • 7. Temporal Difference Learning/8. TD Learning Section Summary-en_US.srt 2.9 kB
  • 2. Return of the Multi-Armed Bandit/10. Optimistic Initial Values Beginner's Exercise Prompt-en_US.srt 2.9 kB
  • 2. Return of the Multi-Armed Bandit/13. UCB1 Beginner's Exercise Prompt-en_US.srt 2.7 kB
  • 6. Monte Carlo/8. Monte Carlo Summary-en_US.srt 2.1 kB
  • 0. Websites you may like/[FCS Forum].url 133 Bytes
  • 0. Websites you may like/[FreeCourseSite.com].url 127 Bytes
  • 0. Websites you may like/[CourseClub.ME].url 122 Bytes
  • 1. Welcome/3. External URLs.txt 75 Bytes
  • 0. Websites you may like/[GigaCourse.Com].url 49 Bytes

随机展示

相关说明

本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!